การสังเคราะห์ผง ซิงค์แกลเลตและ ซิงค์อะลูมิเนตประเภทสไปเนลโดยวิธีโซลโวเทอร์มอล

นางสาวปวีณา แสงทองอโณทัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2543

ISBN 974-13-0421-8

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

119812838

SOLVOTHERMAL SYNTHESIS OF SPINEL-TYPE ZINC GALLATE AND ZINC ALUMINATE POWDERS

Miss Paveena Sangthonganothai

-

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2000 ISBN 974-13-0421-8 ถิงสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	Solvothermal synthesis of spinel-type zinc gallate and zinc
	aluminate powders
By	Miss Paveena Sangthonganothai
Field of study	Chemical Engineering
Thesis Advisor	Dr. Suphot Phatanasri, Dr. Eng.
Thesis Co-advisor	Professor Piyasan Praserthdam, Dr.Ing.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Much Dean of Faculty of Engineering

(Professor Somsak Panyakeow, Dr.Eng.)

Thesis Committee

Wirst Tanthapenichakor Chairman

(Professor Wiwut Tanthapanichakoon, Ph.D) S. Phatavasu Thesis Advisor

(Dr.Suphot Phatanasri, Dr. Eng)

him hesis Co-advisor

(Professor Piyasan Praserthdam, Dr. Ing.)

Seering Pichunt Member

(Assistant Professor Secroong Prichanont, Ph.D)

นางสาวปวีณา แสงทองอโณทัย: การสังเคราะห์ผงซิงค์แกลเลตและซิงค์อะลูมิเนตประเภทสไปเนลโดย วิธีโซลโวเทอร์มอล (SOLVOTHEMAL SYNTHESIS OF SPINEL-TYPE ZINC GALLATE AND ZINC ALUMINATE POWDERS) อ. ที่ปรึกษา : คร. สุพจน์ พัฒนะศรี, อ. ที่ปรึกษาร่วม : ศ. คร. ปียะสาร ประเสริฐธรรม, 112หน้า. ISBN 974-13-0421-8

ปฏิกิริยาทางความร้อนของซิงค์อะซิเตตและแกลเลียมอะซิติลอะซิโตเนตตามปริมาณสารสัมพันธ์(อัตรา ้ส่วนโดยอะตอมของสังกะสีต่อแกลเลียมเท่ากับ0.50) ในตัวทำละลายอินทรีย์ประเภทไกลคอล (1,4-บิวเทนได ออล์)และสารละลายอินทรีย์ประเภทแอลกอฮอล์ (1-บิวทานอล และ 2-โพรพานอล) ที่อุณหภูมิการทำปฏิกิริยา 300°C ภายใต้สภาวะการเพิ่มขึ้นของความคันตามอณหภูมิ จะให้ผลิตภัณฑ์เป็น ซิงค์แกลเลตที่มีโครงสร้างผลึก เป็นแบบสไปเนล ที่มีขนาคเส้นผ่านศูนย์กลาง 8 ถึง 19 นาโนเมตร และพื้นที่ผิว 52 ถึง 113 ตารางเมตรต่อกรับ ้ส่วนในตัวทำละลายอินทรีย์ที่เฉื่อยต่อปฏิกิริยา (โทลูอีน) ไม่เกิดปฏิกิริยาให้ซิงค์แกลเลต แต่ปฏิกิริยาทางความ ร้อนของซิงค์อะซิเตตและอะลูมิเนียมไอโซพรอกพอกไซค์ สามารถเกิดขึ้นได้ในตัวทำละลายอินทรีย์ทุกชนิดดัง กล่าว ให้ผลิตภัณฑ์เป็นซิงค์อะลูมิเนตที่มีโครงสร้างผลึกแบบสไปเนล มีขนาคเส้นผ่านศูนย์กลาง 7 ถึง 11 นาโน เมตร และพื้นที่ผิว 80 ถึง 198 ตารางเมตรต่อกรับ สมบัติทางกายภาพและความเสถียรทางความร้อนของซิงค์แกล-เลตและซิงค์อะลูมิเนตที่ทำการสังเคราะห์ขึ้นสามารถที่จะควบคุมได้โดยปฏิกิริยาของการเกิดผลึกซึ่งขึ้นกับชนิด ของตัวทำละลาย นอกเหนือจากสภาวะการเกิดปฏิกิริยา และโครงสร้างของกลุ่มอัลคิลของโลหะอัลคอกไซด์ . ปฏิกิริยาของการเกิดผลึกที่เกิดขึ้นได้อย่างรวดเร็วจะทำให้การตกผลึกของผลิตภัณฑ์เกิดเป็นซิงค์แกลเลตและซิงค์ อะลูมิเนตที่มีโครงสร้างผลึกแบบ สไปเนลที่สมบูรณ์และมีความเสถียรทางอุณหภูมิสูง ในงานวิจัยนี้ พบว่า ขนาด ผลึกของซิงค์แกล-เลตและซิงค์อะลมิเนตเปลี่ยนแปลงไปตามชนิดของตัวทำละลายอินทรีย์ที่ใช้ แต่ความเสถียร ทางกวามร้อนของซิงก์แกลเลตและซิงก์อะลุมิเนตไม่ขึ้นกับชนิดของตัวทำละลายอินทรีย์ที่ใช้ แต่ขึ้นโดยตรงกับ ้งนาดผลึก นอกจากนี้ยังพบว่า ซิงค์อะลูมิเนตมีความเสถียรทางความร้อนสูงกว่าซิงค์แกลเลตที่ช่วงอุณหภูมิใน แต่เมื่ออุณหภูมิในการคัลไซน์สูงขึ้น ซิงค์แกลเลตกลับมีความเสถียรทางความร้อนที่คีกว่า การคัลไซน์ที่ไม่สูง ้อย่างไรก็ตาม การลคลงของความเสถียรทางความร้อนของซิงค์อะลูมิเนตจะมากกว่า ซิงค์แกลเลตเมื่อมีการเปลี่ยน แปลงขนาดผลึกเพียงเล็กน้อย แต่การมีโลหะตัวที่สองอยู่ในโครงสร้างจะช่วยเพิ่มความเสถียรทางความร้อนให้ กับโลหะออกไซค์ได้

ภาควิชาวิศวกรรมเคมี	ลายมือชื่อนิสิต	epan
สาขาวิชาวิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่บรึกษา	S. Photanami
ปีการศึกษา2543	ลายมือชื่ออาจารย์ที่ปรึกษาร่ว	BU Pizz LCa

##4270415621:MAJOR CHEMICAL ENGINEERING KEY WORD:SPINEL, ZINC ALUMINATE, ZINC GALLATE

PAVEENA SANGTHONGANOTHAI: SOLVOTHERMAL SYNTHESIS OF SPINEL-TYPE ZINC GALLATE AND ZINC ALUMINATE POWDERS THESIS ADVISOR: DR.SUPHOT PHATANASRI, THESIS CO-ADVISOR: PROF. PIYASAN PRASERTHDAM,

112 pp. ISBN 974-13-0421-8

Thermal reaction of zinc acetate and gallium acetylacetonate, stoichiometric ratio Zn/Ga = 0.50, in 1,4-butanediol (glycol organic media), 1-butanol and 2propanol (alcohol organic media) at 300 °C under autogeneous pressure yielded nanocrystalline spinel zinc gallate with diameter between 8 and 19 nm and BET surface area between 52 and 113 $m^2 g^{-1}$. However, the reaction of them did not take place and not yielded zinc gallate in toluene. As thermal reaction of zinc acetate and aluminium isopropoxide took place in all type of organic media (1,4-butanediol, 1butanol, 2-propanol and toluene). That yielded the nanocrystalline zinc aluminate with diameter between 7 and 11 nm and BET surface area between 80 and 198 m² g⁻¹. When the reaction of crystallite formation occurs rapidly and so does the crystallization of the products then obtain as-synthesized well-crystallized spinel zinc gallate and zinc aluminate having high thermal stability. In this work, found that crystallite sizes of zinc gallate and zinc aluminate depend on type of the organic solvent. As for thermal stability of zinc gallate and zinc aluminate not depend on type of organic solvent but on the crystallite size. Thermal stability of zinc aluminate is better than zinc gallate in early calcination temperature. Conversely, at higher calcination temperature, zinc gallate is more stable than zinc aluminate. And the thermal stability decreasing of zinc aluminate is higher than zinc gallate when crystallite size is decreased. However, the presence of the second metal in the structure could be increased the thermal stability of the single metal oxide.

DepartmentChemical Engineering	Student's signature
Field of studyChemical Engineering	Advisor's signature. S. Phatamasni
Academic year2000	Co-advisor's signature.

ACKNOWLEDGEMENT

The author would like to express her greatest gratitute to her advisor, Dr. Suphot Phatanasri, for his invaluable guidance throughout this study. Special thanks to Professor Piyasarn Praserthdam, her co-advisor, for his kind supervision this thesis. In addition, I would also grateful to Associate Professor Wiwut Tanthapanichakoon, as the chairman, and Assistant Professor Dr. Seeroong Prichanont, members of thesis committee.

Many thanks for kind suggestions and useful help to Mr.Okorn Mekasuvandamrong and Mr.Sornnarong Theinkaew and many best friends in Chemical Engineering Department who have provides encouragement and cooperation throughout this study.

Finally, she also would like to dedicate this thesis to her parents who have always been the source of his support and encouragement.

CONTENTS

ABSTRACT (IN THAI)	iv
ASTRACT (IN ENGLISH)	v
ACKNOWLEDGEMENT	vi
LIST OF TABLES	ix
LIST OF FIGURES	xi
CHAPTER	
I INTRODUCTION	1
II LITERATURE REVIEWS	4
III THEORY	10
3.1 Zinc (Zn)	10
3.2 Zinc compounds	12
3.3 Zinc gallate (ZnGa ₂ O ₄)	13
3.4 Zinc aluminate (ZnAl ₂ O ₄)	17
3.5 Gallium (Ga)	18
3.6 Gallium(III) oxide (Ga ₂ Q ₃)	20
3.7 Gallate(III)	21
3.8 Aluminum (Al)	21
3.9 Aluminum compounds	22
3.10 Aluminate	23
3.11 Metal alkoxides	23
3.12 Spinel	25
IV EXPERIMENTAL	29
4.1 Chemicals	29
4.2 Instruments and apparatus	30
4.3 Catalyst preparation	32
4.4 Characterization of the catalyst samples	33
V RESULTS AND DISCUSSION	36
5.1 Formation of pure zinc gallate	36

5.2 Formation of pure zinc aluminate	38
5.3 Effect of the formation of spinel on the physical	
properties and the thermal stability of the products	8 5
VI CONCLUSIONS AND RECOMMENDATIONS	9 7
6.1 Conclusions	9 7
6.2 Recommendations for the future studies	9 7
REFERENCES	9 9
APPENDICES	10
APPENDIX A. CALCULATION OF CATALYST PREPARATION	10.
APPENDIX B. CALCULATION OF CRYSTALLITE SIZE	10 6
APPENDIX C. CALCULATION OF CHEMICAL COMPOSTION	10 8
APPENDIX D. CALCULATION OF CRYSTALLITE SIZE FROM	
TEM PHOTOGRAPH	110
VITA	112

LIST OF TABLES

TABLE

3.1	Physical properties of zinc	11
3.2	Physical properties of zinc oxide	13
3.3	Physical properties of gallium	19
3.4	Properties and preparation of gallium oxide	21
3.5	Physical properties of aluminum	22
3.6	Crystallographic data for some spinel	28
4.1	Reagents used for synthesis zinc gallate	29
4.2	Reagents used for synthesis of zinc aluminate	30
5.1	BET surface area and crystallite size of the zinc gallate products	
	synthesized by 1,4-butanediol and the samples calcined at various	
	temperatures	47
5.2	BET surface area and crystallite size of the zinc gallate products	
	synthesized by 2-propanol and the samples calcined at various	
	temperatures	53
5.3	temperatures BET surface area and crystallite size of the zinc gallate products	53
5.3	temperatures BET surface area and crystallite size of the zinc gallate products synthesized by 1-butanol and the samples calcined at various	53
5.3	temperatures BET surface area and crystallite size of the zinc gallate products synthesized by 1-butanol and the samples calcined at various temperatures	53 59
5.3 5.4	temperatures BET surface area and crystallite size of the zinc gallate products synthesized by 1-butanol and the samples calcined at various temperatures BET surface area and crystallite size of the zinc aluminate products	53 59
5.3 5.4	temperatures BET surface area and crystallite size of the zinc gallate products synthesized by 1-butanol and the samples calcined at various temperatures BET surface area and crystallite size of the zinc aluminate products synthesized by 1,4-butanediol and the samples calcined at various	53 59
5.3 5.4	temperatures BET surface area and crystallite size of the zinc gallate products synthesized by 1-butanol and the samples calcined at various temperatures BET surface area and crystallite size of the zinc aluminate products synthesized by 1,4-butanediol and the samples calcined at various temperatures	53 59 65
5.3 5.4 5.5	temperatures	53 59 65
5.3 5.4 5.5	temperatures	53 59 65
5.3 5.4 5.5	temperatures BET surface area and crystallite size of the zinc gallate products synthesized by 1-butanol and the samples calcined at various temperatures BET surface area and crystallite size of the zinc aluminate products synthesized by 1,4-butanediol and the samples calcined at various temperatures BET surface area and crystallite size of the zinc aluminate products synthesized by 1,4-butanediol and the samples calcined at various temperatures	53596571
5.35.45.55.6	temperatures BET surface area and crystallite size of the zinc gallate products synthesized by 1-butanol and the samples calcined at various temperatures BET surface area and crystallite size of the zinc aluminate products synthesized by 1,4-butanediol and the samples calcined at various temperatures BET surface area and crystallite size of the zinc aluminate products synthesized by toluene and the samples calcined at various temperatures BET surface area and crystallite size of the zinc aluminate products synthesized by toluene and the samples calcined at various temperatures BET surface area and crystallite size of the zinc aluminate products	53596571
5.35.45.55.6	temperaturesBET surface area and crystallite size of the zinc gallate products synthesized by 1-butanol and the samples calcined at various temperaturesBET surface area and crystallite size of the zinc aluminate products synthesized by 1,4-butanediol and the samples calcined at various temperaturesBET surface area and crystallite size of the zinc aluminate products synthesized by toluene and the samples calcined at various temperaturesBET surface area and crystallite size of the zinc aluminate products synthesized by toluene and the samples calcined at various temperatures	53596571

5.7	BET surface area and crystallite size of the zinc gallate products	
	synthesized by 1-butanol and the samples calcined at various	
	temperatures	83
5.8	Chemical compositions of the as-synthesized products in various solvents	84
5.9	BET surface area of prepared samples	41
5.10) The thermal stability data for the relation in Figure 5.41	92
5.1	The thermal stability data for the relation in Figure 5.42	94
5.12	2 The thermal stability data for the relation in Figure 5.43	96

LIST OF FIGURES

FIGURE

3.1	Structure of zinc gallate.	14
3.2	Structure of zinc aluminate	17
3.3	Structure of metal alkoxide	24
3.4	Aluminum alkoxide	25
4.1	Schematic diagram of the reaction apparatus for the synthesis of zinc	
	gallate and zinc alumnate	31
4.2	Autoclave reactor	32
5.1	The XRD patterns of zinc gallate products at various starting Zn/Ga molar	
	ratios synthesized in 1,4-butanediol	42
5.2	The XRD patterns of the products at starting $Zn/Ga = 1.00$ synthesized in	
	1,4-butanediol before and after calcination at 600, 800, and 1100°C	42
5.3	The XRD patterns of the products at starting $Zn/Ga = 0.50$ synthesized in	
	1,4-butanediol before and after calcination at 600, 800, and 1100°C	43
5.4	The XRD patterns of the products at starting $Zn/Ga = 0.33$ synthesized in	
	1,4-butanediol before and after calcination at 600, 800, and 1100°C	43
5.5	(a) TEM photograph of the products at starting $Zn/Ga = 1.00$ synthesized	
	in 1,4-butanediol	44
5.5	(b) TEM photograph of the products at starting $Zn/Ga = 1.00$ synthesized	
	in 1,4-butanediol after calcination at 1100°C	44
5.5	(c) TEM photograph of the products at starting $Zn/Ga = 0.50$ synthesized	
	in 1,4-butanediol	45
5.5	(d) TEM photograph of the products at starting $Zn/Ga = 0.50$ synthesized	
	in 1,4-butanediol after calcination at 1100°C	45
5.5	(e) TEM photograph of the products at starting $Zn/Ga = 0.33$ synthesized	
	in 1,4-butanediol	46
5.5	(f) TEM photograph of the products at starting $Zn/Ga = 0.33$ synthesized	
	in 1,4-butanediol after calcination at 1100°C	46

5.6 The XRD patterns of zinc gallate products at various starting Zn/Ga molar	
ratios synthesized in 2-propanol.	48
5.7 The XRD patterns of the products at starting $Zn/Ga = 1.00$ synthesized in	
2-propanol before and after calcination at 600, 800, and 1100°C	48
5.8 The XRD patterns of the products at starting $Zn/Ga = 0.50$ synthesized in	
2-propanol before and after calcination at 600, 800, and 1100°C	49
5.9 The XRD patterns of the products at starting $Zn/Ga = 0.33$ synthesized in	
2-propanol before and after calcination at 600, 800, and 1100°C	49
5.10(a) TEM photograph of the products at starting $Zn/Ga = 1.00$ synthesized	
in 2-propanol	50
5.10(b) TEM photograph of the products at starting $Zn/Ga = 1.00$ synthesized	
in 2-propanol after calcination at 1100°C	50
5.10(c) TEM photograph of the products at starting $Zn/Ga = 0.50$ synthesized	
in 2-propanol	51
5.10(d) TEM photograph of the products at starting $Zn/Ga = 0.50$ synthesized	
in 2-propanol after calcination at 1100°C	51
5.10(e) TEM photograph of the products at starting $Zn/Ga = 0.33$ synthesized	
in 2-propanol	52
5.5(f) TEM photograph of the products at starting $Zn/Ga = 0.33$ synthesized	
in 2-propanol after calcination at 1100°C	52
5.11 The XRD patterns of zinc gallate products at various starting Zn/Ga molar	
ratios synthesized in 1-butanol.	54
5.12 The XRD patterns of the products at starting $Zn/Ga = 1.00$ synthesized in	
1-butanol before and after calcination at 600, 800, and 1100°C	54
5.13 The XRD patterns of the products at starting $Zn/Ga = 0.50$ synthesized in	
1-butanol before and after calcination at 600, 800, and 1100°C	55
5.14 The XRD patterns of the products at starting $Zn/Ga = 0.33$ synthesized in	
1-butanol before and after calcination at 600, 800, and 1100°C	55

5.15(a) TEM photograph of the products at starting $Zn/Ga = 1.00$ synthesized
in 1-butanol
5,15(b) TEM photograph of the products at starting $Zn/Ga = 1.00$ synthesized
in 1-butanol after calcination at 1100°C
5.15(c) TEM photograph of the products at starting $Zn/Ga = 0.50$ synthesized
in 1-butanol
5.15(d) TEM photograph of the products at starting $Zn/Ga = 0.50$ synthesized
in 1-butanol after calcination at 1100°C
5.15(e) TEM photograph of the products at starting $Zn/Ga = 0.33$ synthesized
in 1-butanol
5.15(f) TEM photograph of the products at starting $Zn/Ga = 0.33$ synthesized
in 1-butanol after calcination at 1100°C
5.16 The XRD patterns of zinc aluminate products at various starting Zn/Al
molar ratios synthesized in 1,4-butanediol
5.17 The XRD patterns of the products at starting $Zn/Al = 1.00$ synthesized in
1,4-butanediol before and after calcination at 600, 800, and 1100°C
5.18 The XRD patterns of the products at starting $Zn/Al= 0.50$ synthesized in
1,4-butanediol before and after calcination at 600, 800, and 1100°C
5.19 The XRD patterns of the products at starting $Zn/Al = 0.33$ synthesized in
1,4-butanediol before and after calcination at 600, 800, and 1100°C
5.20(a) TEM photograph of the products at starting $Zn/Al = 1.00$ synthesized
in 1,4-butanediol
5.20(b) TEM photograph of the products at starting $Zn/Al = 1.00$ synthesized
in 1,4-butanediol after calcination at 1100°C
5.20(c) TEM photograph of the products at starting $Zn/Al = 0.50$ synthesized
in 1,4-butanediol
5.20(d) TEM photograph of the products at starting $Zn/Al = 0.50$ synthesized
in 1,4-butanediol after calcination at 1100°C

5.20(e) TEM photograph of the products at starting $Zn/Al = 0.33$ synthesized	
in 1,4-butanediol	6
5.20(f) TEM photograph of the products at starting $Zn/Al = 0.33$ synthesized	
in 1,4-butanediol after calcination at 1100°C	64
5.21 The XRD patterns of zinc aluminate products at various starting Zn/Al	
molar ratios synthesized in toluene	60
5.22 The XRD patterns of the products at starting $Zn/Al = 1.00$ synthesized in	
toluene before and after calcination at 600, 800, and 1100°C	6
5.23 The XRD patterns of the products at starting Zn/Al= 0.50 synthesized in	
toluene before and after calcination at 600, 800, and 1100°C	6
5.24 The XRD patterns of the products at starting $Zn/Al = 0.33$ synthesized in	
toluene before and after calcination at 600, 800, and 1100°C	57
5.25(a) TEM photograph of the products at starting $Zn/Al = 1.00$ synthesized	
in toluene	68
5.25(b) TEM photograph of the products at starting $Zn/Al = 1.00$ synthesized	
in toluene after calcination at 1100°C	68
5.25(c) TEM photograph of the products at starting $Zn/Al = 0.50$ synthesized	
in toluene	69
5.25(d) TEM photograph of the products at starting $Zn/Al = 0.50$ synthesized	
in toluene after calcination at 1100°C	69
5.25(e) TEM photograph of the products at starting $Zn/Al = 0.33$ synthesized	
in toluene	7
5.25(f) TEM photograph of the products at starting $Zn/Al = 0.33$ synthesized	
in toluene after calcination at 1100°C	7
5.26 The XRD patterns of zinc aluminate products at various starting Zn/Al	
molar ratios synthesized in 2-propanol	,
5.27 The XRD patterns of the products at starting $Zn/Al = 1.00$ synthesized in	
2-propanol before and after calcination at 600, 800, and 1100°C	-

5.28 The XRD patterns of the products at starting $Zn/Al = 0.50$ synthesized in	
2-propanol before and after calcination at 600, 800, and 1100°C	73
5.29 The XRD patterns of the products at starting $Zn/Al = 0.33$ synthesized in	
1,4-butanediol before and after calcination at 600, 800, and 1100°C	73
5.30(a) TEM photograph of the products at starting $Zn/Al = 1.00$ synthesized	
in 2-propanol	74
5.30(b) TEM photograph of the products at starting $Zn/Al = 1.00$ synthesized	
in 2-propanol after calcination at 1100°C	74
5.30(c) TEM photograph of the products at starting $Zn/Al = 0.50$ synthesized	
in 2-propanol	75
5.30(d) TEM photograph of the products at starting $Zn/Al = 0.50$ synthesized	
in 2-propanol after calcination at 1100°C	75
5.30(e) TEM photograph of the products at starting $Zn/Al = 0.33$ synthesized	
in 2-propanol	76
5.30(f) TEM photograph of the products at starting $Zn/Al = 0.33$ synthesized	
in 2-propanol after calcination at 1100°C	76
5.31 The XRD patterns of zinc aluminate products at various starting Zn/Al molar	r
ratios synthesized in 1-butanol	78
5.32 The XRD patterns of the products at starting $Zn/Al = 1.00$ synthesized in	
1-butanol before and after calcination at 600, 800, and 1100°C	78
5.33 The XRD patterns of the products at starting $Zn/Al = 0.50$ synthesized in	
1-butanol before and after calcination at 600, 800, and 1100°C	79
5.34 The XRD patterns of the products at starting $Zn/Ga = 1.00$ synthesized in	
1-butanol before and after calcination at 600, 800, and 1100°C	79
5.35(a) TEM photograph of the products at starting $Zn/Al = 1.00$ synthesized	
in 1-butanol	80
5.35(b) TEM photograph of the products at starting $Zn/Al = 1.00$ synthesized	
in 1-butanol after calcination at 1100°C	80

5.35(c) TEM photograph of the products at starting $Zn/Al = 0.50$ synthesized	
in 1-butanol	81
5.35(d) TEM photograph of the products at starting $Zn/Al = 0.50$ synthesized	
in 1-butanol after calcination at 1100°C	81
5.35(e) TEM photograph of the products at starting $Zn/Al = 0.33$ synthesized	
in 1-butanol	82
5.35(f) TEM photograph of the products at starting $Zn/Al = 0.33$ synthesized	
in 1-butanol after calcination at 1100°C	82
5.36 Mechanism of glycothermal reaction for the spinel zinc aluminate formation	86
5.37 Mechanism of glycothermal reaction for the spinel zinc gallate formation	87
5.38 Mechansim of thermal decomposition reaction in toluene for the spinel	
zinc aluminate formation	87
5.39 Mechanism of THyCA reaction for the spinel zinc gallate formation	88
5.40 Mechanism of THyCA reaction for the spinel zinc aluminte formation	88
5.41 The relation between log BET/BET_0 and log T/d_c^0.5 of zinc gallate and	
zinc aluminate calcined at various temperatures	91
5.42 The relation between log BET/BET_0 and log T/d_c^0.5 of the products at	
starting Zn/Ga and $Zn/Al = 1.00$ calcined at various temperatures	93
5.43 The relation between log BET/BET_0 and log T/d_c^0.5 of the products at	
starting Zn/Ga and Zn/Al = 0.33 calcined at various temperatures	95