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APPENDICES

Appendix A Determination of Degree of Swelling and Weight Loss of Gelatin

Films

The degree of swelling and weight loss of gelatin were measured in water at
37 °c for 5 days according to the following equations (Bigi et al., 2001):

M-Md
Degree of swelling (%) = ¢ x 100 (1)
and
M1- Md

Weight loss (%) = X 100 (2)

where M = the weight of each sample after submersion in the buffer solution.
Md = the weight of sample after submersion in the buffer solution in its dry
state.
Mi = the initial weight ofthe sample in its dry state.



36

Swelling and Weight loss
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% Weight loss
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0.0000 .0001 .Q002 .0003 .0004 .0005 .0006 .00O7

Crosslinking mol ratio (NcrosslinkerA ~ 6Gelatin)

rigure AL % swelling and % weight loss of crosslinked gelatin (High gel strength)
at various crosslinking ratios, 27 oC (#samples = 3).

Table Al. Molecular weight between crosslinker of gelatin (High gel strength) at
various crosslinking ratio, 27°c. ("samples = 3)

. Crosslink
Sample Crossllmk Molecular weight between density
ratio crosslinker (g/mol) (mol/cm3X 104)

GT 05 4.69xI1d'5~ 13757 + 687 0.73 £ 0.04
Gf 1 9.39x16" 12875 + 344 0.85 +0.073
GT 3 2.81x1 1928 + 296 6.09 + 0.085
GT 5 4.69X103- 696 + 75 16.68 +0.33
GT 7 6.57x1 327 + 16 30.58 + 1.53
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Swelling and Weight loss
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Figure A2 % SWelling and % weight loss of crosslinked gelatin (Mid gel strength) at
vanous crosslinking ratios, 27 °c %#samples =3).

Table A2. Molecular weight tetween crosslinker of gelatin (Mid gel strength) at
vanous crosslinking ratios, 27°¢ (#samples = 3)

Crosslink
Crosslink ratio Molecular weight density
Sample . .
(Ncrosslinker /Ngelatin) between (mol/cm3X
crosslinker (g/mol) 104
GT_0.5 4.69110"5 12939 = 647 0.77 +0.04
GT_1 9.39x10'5 12475 + 624 0.80 +0.04
GTJ 2.8110"* 1525 + 76 6.56 + 033
GTS 4.69x10 4 573 + 29 17.45 + 0.87

GT~7 6.57x10™* 203 + 10 49.26 + 2.46



Swelling and Weight loss
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Crosslinking mol ratio (Ncr088Iinker//\Ge|atin)

rigure a3 0 SWelling and % weight loss of crosslinked gelatin (Low gel strength)
at various crosslinking ratios. 27 °c (#samples = 3).

Table A3. Molecular weight between crosslinker of gelatin (Low gel strength) at
various crosslinking ratios, 2'/ ¢ (#samples = 3)

Crosslink
crosslinker (g/mol) 104
GT0.5 4,69"105 13939 £ 766 0.80+0.04
GT1 9.391105 11475 £542 0.75+0.054
GT3 281*10™ 1445 £ 66 506+ 0.20
GT~5 4.69 do™* 673140 1655+ 0.27

GTJ7 6.57 do"™ 303 15 49.26 + 1.64

% Weight loss
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Appendix B The Thermogr ivimetric Thermogram of Crosslinked Gelatin

The thermogravimetric analyzer (DuPont, model TGA 2950) was used to
determine the thermal behavior of polymers. The experiment was carried out by
weighting a powder sample of 7-13 mg and placed it in a platinum pan, and then
heated it under nitrogen flovy with the heating rate 5°c/min from room temperature
to 600 °c.

There are two transitions for the gelatin and the crosslinked gelatin (0.5,1, 3,
B, 7%) respectively. The first transition (45-100°C) refers to the loss of water. The
second transition (260-340°C) refers to the gelatin degradation. The TGA results of
the gelatin and the crosslink',:d gelatin showe that temperature decomposition does
not change significantly. % maximum weight residue of gelatin is 7%.
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Figure B1 Temperature decomposition of Crosslinked Gelatin ( High gel strength)
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Figure B2 Temperature decomposition of Crosslinked Gelatin ( Mid gel strength)
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Temperature decomposition of crosslinked gelatin
(Low gel strength)
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Figure B3 Temperature decomposition of Crosslinked Gelatin ( Low gel strength)

Table BI. The summary oftile degradation temperature in the TGA thermogram of
Gelatin and Crosslinked Geladn

Sample Td (°C)
High gelatin strength 320
Middle gelatin strength 310

Low gelatin strength 298
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Appendix C Electrorheological properties Measurement of Gelatin

(Temporal response of gelatin film by using stretch fixture)

The temporal response of pure gelatin films with different morphology; High
gel strength; Middle gel strength; and Low gel strength were investigated by melt
rheometer meter (Rheometric Scientific, ARES). It was fitted with a custom-built
stretch fixture, gap =30 mm. A DC voltage was applied with a DC power supply
(Gold Sim 3000, GPS 3003D) work with high voltage power supply (Gamma High
Voltage, UC5-30P), which cah deliver electric field strength to 1 kv/mm. A digital
multimeter was used to monitor the voltage input. In the temporal response testing,
the dynamic strain was applied and the dynamic moduli (G' and G") were measured
as functions of time and electric field strength. Dynamic strain sweep test were first
carried out to determine suitable strains to measured G’ and G” in linear viscoelastic

regime, as following figures (Figure Fl, F2, and F3).
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Relationship between G’(Pa) and strain (%) in strain sweep test mode
(High gelatin strength )
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Figure C | High molecular weight gelatin film in strain sweep test (stretch fixture,

gap = 30 mm, film thickness =0.890 mm, film width =7.0 mm, 25°C)

Relationship between G'(Pa) and strain (%0) in strain sweep test mode
( Middle gelatin strength )
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Figure C2 Middle molecular weight gelatin film in strain sweep test (stretch fixture,

gap = 30 mm, film thickness =0.826 mm, film width = 7.0 mm, 25°C)



Relationship between G'(Pa) and strain (%) in strain sweep test mode
( Low gelatin strength )
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Figure C3 Low molecular weight gelatin film in strain sweep test (stretch fixture,
gap = 30 mm, film thickness = 1.405 mm, film width = 7.0 mm, 25°C).

The time sweep test was carried out with electric field applied on and
off, alternatively. The G’'of each film was investigated to measure time that each film
response reach to steady state and there response under electric field stimulation.
Figure F4, shows G’ of High gelatin strength was steady state after 310 of
measurement. Moreover, the film gelatin does not reversible by electric field (1
kv/mm). In the case of, Figure F5 and F6, Middle gelatin strength and Low gelatin
strength were steady state after 550 and 500 , respectively. There also shows the

similar response under electric field as the High gelatin strength film.
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Relationship between G'(Pa) and strain(%) in dynamic time sweep test
High gelatin s rength¥
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Figure C4 Temporal response testing of storage modulus (G’) of High gelatin
strength (gap 30 mm, film thickness 0.890 mm, film width 7.0 mm, freguency 100

rad/s, electric field (E) 1 kv/mm, 25°C)

Relationship between G’(Pa) and strain(%6) in dynamic time sweep test
( Middle gelatin strength )
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Figure C5 Temporal response testing of storage modulus (G’) of Middle gelatin
strength (gap 30 mm, film thickness 0.826 mm, film width 7.0 mm, freguency 100

rad/s, electric field (E) 1 kv/mm, 25°C)
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Relationship between G'(Pa) and strain(%) in dynamic time sweep test
(‘Low gelatin strength
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Figure C6 Temporal response testing of storage modulus (G’) of Middle gelatin
strength (gap 30 mm, film thickness 1.405 mm, film width 7.0 mm, ffeguency 100

rad/s, electric field (E) TkV/mm, 25°C).
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Appendix D Frequency Sweep test; various Electric fields of Gelatin Films

Relationship between G'(Pa) and frequency (rad/s) sweep test mode
(High gelatin strength)
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Figure D1 High molecular weight gelatin film in frequency sweep test (gap = 30
mm, film thickness = 0.890 mm, film width = 7.0 mm, 25°C)

Relationship between G'(Pa) and frequency (rad/s) sweep test mode
(Medium gelatin strength)
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Figure D2 Middle molecular weight gelatin film in frequency sweep test (gap = 30

mm, film thickness = 0.826 mm, film width =7.0 mm, 25°C)



Relationship between G'(Pa) and frequency (rad/s) sweep test mode
(Low gelatin strength)
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Figure D3 Low molecular weight gelatin film in frequency sweep test (gap = 30

mm, film thickness = 1.420 mm, film width = 7.0 mm, 25°C)
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Relationship between G"(Pa) an frequenc grad/s; in frequency sweep test mode
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Figure D4 High molecular weight gelatin film in frequency sweep test (gap = 30

mm, film thickness = 0.890 mm, film width = 7.0 mm, 25°C)

Relationship between G'(Pa) and frequency (rad/s) in frequency sweep test mode
(Medium gelatin strength)
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Figure D5 Middle molecular weight gelatin film in frequency sweep test (gap = 30

mm, film thickness = 0.826 mm, film width = 7.0 mm, 25°C)
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Figure D6 Low molecular weight gelatin film in frequency sweep test (gap = 30
mm, film thickness = 1.420 mm, film width = 7.0 mm, 25°C)
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Appendix E Effect of Electric field and Frequency on Storage modulus Sensitivity
of Gelatin Films

Effect of electric field and frequency on storage modulus differences
(High gel strength )
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Figure EI High molecular weight gelatin film in effect of electric field and
frequency on storage modulus sensitivity (gap = 30 mm, film thickness = 0.890 mm,
film width = 7.0 mm, 25°C)
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Effect of electric field strength and
e

requency on storage modulus sensitivit
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Figure E2 Middle molecular weight gelatin film in effect of electric field and
frequency on storage modulus sensitivity (gap = 30 mm, film thickness = 0.826 mm,
film width = 7.0 mm, 25°C)

Effect of electric field strength and frequency on storage modulus sensitivity
("Low gelatin strength )
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Figure E3 Low molecular weight gelatin fiim in errect ot electric field and

frequency on storage modulus sensitivity (gap = 30 mm, film thickness = 1.420 mm,
film width = 7.0 mm, 25°C)



Effect of electric field strength and frequency on storage modulus sensitivity of gelatin
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Figure E4 Compare effect of electric field strength and frequency on storage
modulus sensitivity of gelatin; High gel strength(*), Medium gel strength(o), and
Low gel strength(T )



Apendix F Frequency Sweep test at various Electric field and Temperatures

Frequency sweep test of Gelatin films

o4

Relationship between G'(Pa) and frequency (rad/s) atvarious temperatures

in frequency sweep test mode (High molecular weight gelatin)
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Figure FI High molecular weight gelatin film in effect of electric field and
temperature on storage modulus sensitivity (gap = 30 mm, film thickness = 0.897
mm, film width = 7.0 mm, E = 0 v/imm)
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Relationship between G'(Pa) and frequency (rad/s) at various temperatures
in frequency sweep test mode (High molecular weight gelatin) (1000v/rnrn)
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Figure F2 High molecular weight gelatin film in effect of electric field and
temperature on storage modulus sensitivity (gap = 30 mm, film thickness = 0.897
mm, film width = 7.0 mm, E = 1000 v/mm)
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Relationship between G'(Pa) and frequency (rad/s) at various temperatures
in frequency sweep test mode (Medium molecularweight gelatin)
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temperature on storage modulus sensitivity (gap = 30 mm, film thickness = 0.878
mm, film width = 7.0 mm, E = 0 v/mm)



Relationship between G'(Pa) and frequency (rad/s) at various temperatures
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in frequency sweep test mode (Medium molecular weight gelatin) (1000v/imm)
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Figure F4 Medium molecular weight gelatin film in effect of electric field and
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temperature on storage modulus sensitivity (gap = 30 mm, film thickness = 0.878
mm, film width = 7.0 mm, E = 1000 v/mm)
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Relationship between G'(Pa) and frequency (rad/s) at various temperatures
in frequency sweep test mode (Low molecular weight gelatin)
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Figure F5 Low molecular weight gelatin film in effect of electric field and
temperature on storage modulus sensitivity (gap = 30 mm, film thickness = 0.878
mm, film width = 7.0 mm, £ = 0 vimm)



Relationship between G'(Pa) and frequency (rad/s) at various temperatures
in frequency sweep test mode (Low molecular weight gelatin) (1000v/mm)
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Figure F6 Low molecular weight gelatin film in effect of electric field and
temperature on storage modulus sensitivity (gap = 30 mm, film thickness = 0.878
mm, film width = 7.0 mm, E = 1000 v/imm)
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Apendix G The Sensitivity of The Storage modulus of Gelatin Films at various
Temperature

Effect of electric field strength and temperatures on storage modulus differences
of gelatin films (100 rad/s)
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Figure G1 Compare effect of electric field strength and temperature on differentials
storage modulus of gelatin; High gel strength(*), Medium gel strength(o), and Low
gel strength(T)
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Effect of electric field strength and temperatures on storage modulus sensitivity
of gelatin films (100 rad/s)
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Figure G2 Compare effect of electric field strength and temperature on storage
modulus sensitivity of gelatin; High gel strength(«), Medium gel strength(o), and
Low gel strength(T)



62

Compare effect of electric field and temperatures on storage modulus of
gelatin films (100 rad/s)
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Table G1 Compare Sensitivity of Storage modulus of Gelatin Films

Material

High molecular
weight gelatin

Medium
molecular
weight gelatin

Low molecular
weight gelatin

Electric
field

(kv/mm)

1000

1000

1000

Frequecy Temperature
(rzgd/s)y ?C°)
100
100 21
100

Storage

moduPus
(G*)Pa modu

4340900

2823500

292800

Initial
storaPe

us
(G°) Pa

1316500

692800

661300

63

Sensitivity of
stora?e
modulus

(AG'IGO) Pa

2.3

2.16

1.26



Apendix H Review Sensity of Storage modulus of Materials on Electroactive Response

M aterials

Acrylic elastomer 70
Acrylic elastomer 71
Acrylic elastomer 72
Styrene-acrylic copolymers
Styrene-isoprene-stgrene triblock
D1112

Acrylic elastomer 71 + ppp 10%(v/v)
Acrylic elastomer 71 + ppp 30%(v/v)
Styrene-isoprene-stgrene triblock
D1114

Styrene-lsoprene-stgrene triblock

D1164

Styrene-lsoprene-stFyrene triblock
D1162

D114P + PDPA 5%(vlv)
D114P + PDPA 10%(v/v)
D114P + PDPA 30%(v/v)
AR71/lead zirconate titanate
Pb(Zr0.5Ti0.5)03 (0.000019%v/v)
AR71/lead zirconate titanate
Ph(Zr0.5Ti0.5)03 (0.038%vV/v)
poly (dimethyl siloxane) (PDMS)
oly (dimethyl siloxane) (PDMS) +
poly { PA)l/\Ii 20% (v)v)( )
poly (dimethyl siloxane) (PDMS) +
PANi 2% (vIv)
PDMS 5%PEDOQT/PSSIEG
PDMsJi5%PEDOT/PSS/EG

Electric
field
(kv/mm)

2000

1000

2000

2000

2000

Frequecy Temperature

(radls)

100

100

100

(C%)

27

Storage modulus
sensitivity (AGVG-) Pa

0.439
0.586
0.148
1.195

0.746
0.306
0.971

0.122
0.102

0.050
0.040
0.256
0.095

0.149

0.587

0.104
0.25

0.111

0.077
0.333

Reference

Kunanuruksapong
[15]

Thongsek [16]

Tangboriboon [17]

Piyanoot [18]

Wijittra [19]



M aterials

Crosslinked Polyisoprene 3% +
Polythiopene 5% (v/v)
Crosslinked Polyisoprene 3% +
Polythiopene 10% (v/v)
Crosslinked Polyisoprene 3% +
Polythiopene 30% (viv)
Silicone gel
Silicone gel + PMACO 46%
Silicone gel + PMACO 46%
Silicone gel + PMACO 46%
Silicone gel + poly(p-phenylenes) 10%
Silicone gel + poly(p-phenylenes) 10%
Silicone gel + poly(p-phenylenes) 10%
poly(3-hexylthiophene) doped iodine
(amorphous)

——

Electric
field (v/mm)

2000

5000
1000
2000
3000
1000
3000
5000

8.7

Frequecy Temperature

(rad/s)

100

60

300
300
300

(C%)

27

Storage modulus
sensitivity (AG7G-) Pa

0.523
0.33

0.435

not response
0.25
0.75
2
0.333
1133
1.666

0.28

Reference

Toempong (4)

Tohru Shiga
[21,22]
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