HYBRID COMPOSITE MEMBRANE FOR CO₂/CH₄ SEPARATION

Nakemrach Ployangoonsri

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
Case Western Reserve University

Thesis Title:

Hybrid Composite Membrane for CO₂/CH₄ Separation

By:

Nakemrach Ployangoonsri

Program:

Polymer Science

Thesis Advisors:

Dr. Thanyalak Chaisuwan

Assoc. Prof. Sujitra Wongkasemjit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Dr. Thanyalak Chaisuwan)

(Assoc. Prof. Sujitra Wongkasemjit)

(Asst. Prof. Manit Nithitanakul)

(Asst. Prof. Bussarin Ksapabutr)

ABSTRACT

5172018063 Polymer Science Program

Nakemrach Ployangoonsri: Hybrid Composite Membrane for

CO₂/CH₄ Separation.

Thesis Advisors: Dr. Thanyalak Chaisuwan and Assoc. Prof. Sujitra

Wongkasemjit 51 pp.

Keywords: Mixed Matrix Membrane (MMM)/ Polybenzoxazine/ Gas separation/

ZSM-5/ Hybrid composite membrane

A novel mixed matrix membrane (MMM), ZSM5-polybenzoxazine, has been successfully fabricated. MMM combines the advantages of both matrix and filler to improve the performance of gas separation. The SEM micrographs revealed good interfacial adhesion between the polybenzoxazine and ZSM-5 particles since no micron size void was observed. The XRD patterns showed no changes in the crystal structure of the ZSM-5 after mixing with the polymer matrix. CO₂ and CH₄ permeability were determined by using the single gas measurements. The CO₂ and CH₄ permeability of MMM was decreased with increasing zeolite content, while the CO₂/CH₄ selectivity was also increased with an increase in the zeolite loading.

บทคัดย่อ

ณเขมรัชต์ พลอยองุ่นศรี : การพัฒนาวัสคุเมมเบรนไฮบริคคอมพอสิทจากพอลิ เบนซอกซาซีนและซีโอไลท์เพื่อใช้แยกก๊าซระหว่างก๊าซคาร์บอนไดออกไซด์กับก๊าซมีเทน (Hybrid Composite Membrane for CO_2/CH_4 Separation) อ. ที่ปรึกษา : คร. ธัญญูลักษณ์ ฉายสุวรรณ์ และ รองศาสตราจารย์ คร. สุจิตรา วงศ์เกษมจิตต์ 51 หน้า

งานวิจัยนี้พัฒนาเชื่อเลือกผ่านเมทริกซ์ผสมของพอลิเบนซอกซาซีนกับซีโอไลต์ ZSM-5 เพื่อใช้ในการแยกก๊าซระหว่างก๊าซคาร์บอนไดออกไซด์กับก๊าซมีเทน เชื่อเลือกผ่าน เมทริกซ์ผสมประกอบด้วยส่วนของเมทริกซ์และสารตัวเติมซึ่งจะช่วยเพิ่มประสิทธิภาพในการ แยกก๊าซ การวิเคราะห์โครงสร้างจุลภาคและโครงสร้างผลึกของเชื่อเลือกผ่านเมทริกซ์ผสม โดย ใช้ scanning electron microscopy (SEM) และ X-ray diffraction (XRD) ผลการวิเคราะห์ ด้วย SEM แสดงสัณฐานวิทยาของการเกิดเฟสที่สมบูรณ์ระหว่างพอลิเบนซอกซาซีนและซีโอไลท์ ZSM-5 จากผลการวิเคราะห์ด้วย XRD พบว่าโครงสร้างผลึกของซีโอไลท์ ZSM-5 ไม่มี การเปลี่ยนแปลงหลังจากถูกผสมในเชื่อเลือกผ่านเมทริกซ์ผสม จากการศึกษาการแพร่ผ่านของก๊าซคาร์บอนไดออกไซด์และก๊าซมีเทนพบว่า การแพร่ผ่านของก๊าซคาร์บอนไดออกไซด์และก๊าซมีเทนพบว่า การแพร่ผ่านของก๊าซคาร์บอนไดออกไซด์และก๊าซมีเทนดอกเมื่อเลือกผ่านเมทริกซ์ผสมเพิ่มขึ้นและ การเลือกผ่านของก๊าซคาร์บอนไดออกไซด์และก๊าซมีเทนเพิ่มขึ้นเมื่อปริมาณของซีโอไลท์ ZSM-5 ในเชื่อเลือกผ่านเมทริกซ์ผสมเพิ่มขึ้นและ การเลือกผ่านของก๊าซคาร์บอนไดออกไซด์และก๊าซมีเทนเพิ่มขึ้นเมื่อปริมาณของซีโอไลท์ ZSM-5 ในเชื่อเลือกผ่านเมทริกซ์ผสมเพิ่มขึ้นและ การเลือกผ่านเมทริกซ์ผสมลดลง

ACKNOWLEDGEMENTS

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College, and by the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

I wish to express special thanks to my advisor and co advisors, Dr. Thanyalak Chaisuwan and Assoc Prof. Sujitra Wongkasemjit. Furthermore, I would like to thank you all of the members in my research group for their kindness, cheerfulness, suggestions, encouragement and friendly assistance. I had the most enjoyable time working with all of them. Finally, I am deeply indebted to my parents for their true love, support and understanding through my whole life

I appreciates all Professors for their valuable knowledge and all staffs for their assistances at the Petroleum and Petrochemical College, Chulalongkorn University.

Last I but not least, I would like to thank my family who gave their love, understanding, encouragement, and financial support during my study.

TABLE OF CONTENTS

						PAGE
7	Γitle Pa	age				i
A	Abstrac	et (ir	e Engli	ish)		iii
A	Abstrac	ct (ir	n Thai))		iv
A	Acknov	wled	gemer	nts		v
. 7	Γable c	of Co	ontents	S		vi
İ	list of	Tab	les			ix
Ι	List of Figures			X		
CHAP	TER					
	[INT	ROD	UCTIO	N	1
-						
1	II	LIT	'ERA'	TURE I	REVIEW	3
J	III	EX	PERI	MENTA	AL .	15
		3.1	Mater	rials		15
		3.2	Equip	ment		
		3.3	Meth	odology		15
			3.3.1	Synthes	sis of Polybenzoxazine Membrane	15
				3.3.1.1	Synthesis of Polybenzoxazine Precursors	15
				3.3.1.2	Preparation of Polybenzoxazine Membranes	16
				3.3.1.3	Polybenzoxazine Membrane Characterizations	17
			3.3.2	Synthe	sis of Mixed Matrix Membranes (MMMs)	17
				3.3.2.1	Varying Concentration of ZSM-5	17
				3.3.2.2	Preparation of Mixed Matrix Membranes	17
				3.3.2.3	Mixed Matrix Membranes Characterizations	18
			3.3.3	Gas Pe	rmeability Apparatus	18
			3.3.4	Gas Per	rmeation Measurements	20
				3.3.4.1	Single-Component Gas Permeation	20

CHAPTER		PAGE
	3.3.4.2 Gas Selectivity	20
	3.3.5 The Interaction between Penetrant Gas and MMM	21
IV	RESULTS AND DISCUSSION	22
	4.1 Abstract	22
	4.2 Introduction	23
	4.3 Experimental	24
	4.3.1 Materials	24
	4.3.2 Measurements	24
	4.3.3 Methodology	24
	4.3.3.1 Synthesis of Polybenzoxazine Precursors	24
	4.3.3.2 Preparation of Polybenzoxazine Membranes	25
	4.3.3.3 Preparation of Mixed Matrix Membranes	26
	4.3.3.4 Gas Permeability Apparatus	27
	4.3.3.5 Gas Permeation Measurements	28
	4.3.3.5.1 Single-Component Gas Permeation	28
	4.3.3.5.2 Gas Selectivity	29
	4.4 Results and Discussion	29
	4.4.1 Polybenzoxazine Membrane Characterizations	29
	4.4.1.1 Proton Nuclear Magnetic Resonance (¹ H NMF	₹) 29
	4.4.1.2 Preparation of Polybenzoxazine Membrane	30
	4.4.1.3 Scanning Electron Microscopy (SEM)	31
	4.4.1.4 Fourier Transform Infrared Spectrometer	31
	4.4.2 Characterization of Mixed Matrix Membranes (MMM	s) 32
	4.4.2.1 Formation of Mixed Matrix Membranes	32
	4.2.2.2 Scanning Electron Microscopy (SEM)	33
	4.2.2.3 X-Ray Diffractometer (XRD)	35
	4.4.3 Interfacial Interaction of ZSM-5 and PBZ	35
	A A 3.1 Fourier Transform Infrared Spectrometer	35

CHAPTER	PAGE
4.4.4 Gas Permeability	37
4.4.4.1 The Effect of Zeolite Loading on the	e
CO ₂ and CH ₄ Permeability	37
4.4.4.2 The Effect of Zeolite Loading on the	2
CO ₂ /CH ₄ Selectivity	39
4.4.5 The Interaction of Penetrant Gas on MMM	40
4.5 Conclusion	42
4.6 Acknowledgements	43
4.7 References	43
V CONCLUSIONS AND RECOMENDATIONS	45
REFERENCES	46
CURRICULUM VITAE	51

LIST OF TABLES

TABL	PAGE	
4.1	The chemical structure of reactants.	25

LIST OF FIGURES

FIGURE		PAGE
1.1	Schematic drawing of a mixed matrix membrane – phase	
	A dispersed in phase B matrix.	2
2.1	Ring-opening polymerization of polybenzoxazine.	8
2.2	Structure of a 3,4-dihydro-2 <i>H</i> -1,3-benzoxazine.	9
2.3	Synthetic route to bisphenol A-based polybenzoxazines.	10
2.4	Synthesis of polybenzoxazine precursors.	11
2.5	Pentasil unit.	14
3.1	The structure of polybenzoxazine.	16
3.2	Experimental set up for the gas permeability apparatus.	19
3.3	Schematic of the membrane testing unit.	19
4.1	The chemical structure of polybenzoxazine membranes.	26
4.2	Experimental set up for the gas permeability apparatus.	27
4.3	Schematic of the membrane testing unit.	28
4.4	¹ H NMR spectra of polybenzoxazine precursors.	30
4.5	Appearance of polybenzoxazine membrane.	31
4.6	SEM micrograph of Poly(BA-hda).	31
4.7	FT-IR spectra of poybenzoxazine membrane.	32
4.8	Appearance of mixed matrix membranes: Poly(BA-hda).	33
4.9	SEM surface image of PBZ–ZSM5 MMMs with (a)	
	1 wt.%, (b) 5 wt.% and (c) 10 wt.% of ZSM-5 loading.	33
4.10	Cross-section SEM image of PBZ-ZSM5 MMMs with	
	(a) 1 wt.%,(b) 5 wt.% and (c) 10 wt.% of ZSM-5 loading.	34
4.11	XRD patterns of ZSM-5 and MMM.	35
4.12	The IR spectra of PBZ, MMM and ZSM-5.	36
4.13	Chemical structure of (a) ZSM-5 and (b) PBZ.	37
4.14	Effects of ZSM-5 loadings on CO ₂ and CH ₄ permeability.	38

FIGURE		PAGE
4.15	Effects of ZSM-5 loadings on CO ₂ /CH ₄ selectivity.	39
4.16	IR spectrum of MMM in CO ₂ and after degas.	41
4.17	IR spectrum of MMM in CH ₄ and after degas.	42