## DEVELOPMENT OF A METHANOL FUEL PROCESSOR FOR PEMFC APPLICATIONS



### Verakit Anupapwisetkul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2010

530054

| Thesis Title:    | Development of a Methanol Fuel Processor for PEMFC |
|------------------|----------------------------------------------------|
|                  | Applications                                       |
| By:              | Verakit Anupapwisetkul                             |
| Program:         | Petrochemical Technology                           |
| Thesis Advisors: | Asst. Prof. Apanee Luengnaruemitchai               |
|                  | Assoc. Prof. Sujitra Wongkasemjit                  |

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Director

. .

(Asst. Prof. Pomthong Malakul)

**Thesis Committee:** 

apan .....

(Asst. Prof. Apanee Luengnaruemitchai)

(Assoc. Prof. Sujitra Wongkasemjit)

R/ .....

(Assoc. Prof. Pramoch Rangsunvigit)

(Assoc. Prof. Vissanu Meeyoo)

# บทคัดย่อ

วีระกิตติ์ อนุภาพวิเศษกุล : กระบวนการพัฒนาเซลล์เชื้อเพลิงเมทานอลสำหรับการ ประยุกต์ใช้ในเซลล์เชื้อเพลิงแบบเยื่อแลกเปลี่ยนโปรตอน (Development of a Methanol Fuel Processor for PEMFC Applications) อ. ที่ปรึกษา: ผศ. ดร.อาภาณี เหลืองนฤมิตชัย และ รศ. ดร.สุจิตรา วงศ์เกษมจิตต์

การเลือกเกิดปฏิกิริยาออกซิเดชันของก๊าซการ์บอนมอนอกไซด์ภายใต้บรรยากาศ ้ไฮโครเจนเป็นวิธีการหนึ่งที่มีประสิทธิภาพสูงสุดในการลดปริมาณการ์บอนมอนนอกไซด์ที่ ประยุกต์ใช้ในเซลล์เชื้อเพลิงแบบเยื่อแลกเปลี่ยนโปรตอน ในงานวิจัยนี้เป็นการศึกษาตัวเร่ง . ปฏิกิริยาทองบนตัวรองรับโลหะออกไซค์ผสมระหว่างเหล็กและแมงกานีสที่เตรียมค้วยวิธีการ ตกตะกอนร่วม อิทธิพลของอัตราส่วนโดยอะตอมของปริมาณทองบนตัวรองรับของโลหะ ้ออกไซด์ผสม อัตราส่วนโดยโมลของโลหะออกไซด์ผสมระหว่างเหล็กและแมงกานีส อุณหภูมิใน การเผาตัวเร่งปฏิกิริยา และการปรับสภาวะเงื่อนไขบนการศึกษาความว่องไวของตัวเร่งปฏิกิริยา ทองบนตัวรองรับของโลหะออกไซค์ผสมระหว่างเหล็กและแมงกานีส หลังจากการศึกษาเบื้องต้น ของตัวเร่งปฏิกิริยาทองบนตัวรองรับของโลหะออกไซด์ผสมจึงนำมาสู่การประยุกต์ใช้ใน กระบวนการพัฒนาเมทานอล จากการศึกษาพบว่าสภาวะที่เหมาะสมสำหรับตัวเร่งปฏิกิริยาทอง บนตัวรองรับของโลหะออกไซด์ผสบระหว่างเหล็กและแบงกานีสคือ อัตราส่วนโดยอะตอบของ โลหะทอง 1 ส่วน บนตัวรองรับของโลหะออกไซค์ผสม 30 ส่วน โคยที่อัตราส่วนโคยโมลของ โลหะออกไซด์ผสมเป็นเหล็ก 1 ส่วน และแมงกานีส 1 ส่วน ภายใต้อุณหภูมิการเผาไหม้ 400 ้องศาเซลเซียส จากสภาวะตั้งกล่าวให้ก่าความเปลี่ยนแปลงของก๊าซการ์บอน ใคออกไซด์สูงถึง 100 เปอร์เซนต์ และค่าการเลือกเกิดปฏิกิริยาถึง 58 เปอร์เซนต์ เป็นที่น่าสนใจเป็นอย่างยิ่งที่ความ เข้มข้นของไอน้ำในปริมาณ 10 เปอร์เซนต์ในก๊าซตั้งต้น สามารถเพิ่มความไวในการเกิดปฏิกิริยา ของตัวเร่งปฏิกิริยา ในทางกลับกันความเข้มข้นของก๊าซคาร์บอนไคออกไซค์ในปริมาณ 10 เปอร์เซนต์ในก๊าซตั้งต้น ส่งผลทางลบต่อความไวของการเกิดปฏิกิริยาของตัวเร่งปฏิกิริยาอย่าง ้ชัดเจน ไอย่างไรก็ตามตัวเร่งปฏิกิริยาทองบนตัวรองรับของโลหะออกไซด์ผสมแสดงสมรรถนะต่อ ความไวในการเกิดปฏิกิริยาอยู่ในระดับที่ดีในสภาวะเงื่อนไขจริงที่ได้มาจากกระบวนการเซลล์ เชื้อเพลิงเมทานอลเป็นตลอคระยะเวลาถึง 12 ชั่วโมง

#### ABSTRACT

5171027063: Petrochemical Technology
Verakit Anupapwisetkul: Development of a Methanol Fuel Processor
for PEMFC Applications
Thesis Advisors: Asst. Prof. Apanee Luengnaruemitchai,
and Assoc. Prof. Sujitra Wongkasemjit
Keywords: Fuel cell, CO conversion, CO selectivity, Au catalyst, Methanol Fuel
Processor

The preferential oxidation (PROX) of CO in the presence of hydrogen is regarded as one of the most effective methods for reducing CO levels to a desired value in polymer electrolyte membrane fuel cell (PEMFCs) applications. In this research, a series of Au/FeO<sub>x</sub>-MnO<sub>x</sub> catalysts prepared by deposition-precipitation was investigated. The prepared catalysts were investigated in a microreactor for the PROX and then used in a Methanol Fuel Processor (MFP), which included a reformer and PROX reactor. The optimum conditions (Au/FeO<sub>x</sub>-MnO<sub>x</sub> atomic ratio of 1/30, Fe/Mn molar ratio of 1/1, and calcination temperature of 400 °C) provided 100 % CO conversion and 56 % PROX selectivity at 60 °C. The pivotal presence of water vapor (10 %) in the feedstream could significantly enhance the CO conversion. On the other hand, the negative effect of CO<sub>2</sub> (10 %) in the feedstream on catalytic activity was clearly observed. Nevertheless, the Au/FeO<sub>x</sub>-MnO<sub>x</sub> catalyst exhibited good performance in a realistic reformed gas stream using an MFP for 12 hours.

#### ACKNOWLEDGEMENTS

This work could not absolutely proceed and finally complete without assistance, support, and facility from pivotal people and organizations. To help from all of them, I therefore would like to express my appreciation and grateful thanks to the following:

Firstly, I would like to thank the Petroleum and Petrochemical College, Chulalongkorn University for giving me the chance of scholarship for studying in the field of Petrochemical Technology. I then would like to honestly thank the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University for supporting my thesis work.

Secondly, I would like to extend my invaluable gratitude to Asst. Prof Apanee Luengnaruemitchai and Assoc. Prof. Sujitra Wongkasemjit for providing their excellent guidance, counsel, and comment during the time I encountered the problem in my thesis work. I then extraordinary thanks go to Assoc. Prof. Pramoch Rangsunvigit and Assoc. Prof. Vissanu Meeyoo for being the best my thesis committee and for their recommendation.

Thirdly, I especially would like to thank for Mr. Robert J. Wright, enthusiasm, the famous, and the best English teacher in the Petroleum and Petrochemical College. I would also like to thank all member and staff from the Petroleum and Petrochemical College for all facilities. For special senior student in the Petroleum and Petrochemical College, I appreciatively thank to Ms. Pattarasuda Naknam and Mr. Pitsitpong Intarapong for helpful suggestion during my thesis work.

The last but not least, my pivotal sincere thanks go to my family members for their constant support and during studying in the Petroleum and Petrochemical College. . . . . . . . .

## **TABLE OF CONTENTS**

|         |                                                                            | PAGE |
|---------|----------------------------------------------------------------------------|------|
| Title   | Page                                                                       | i    |
| Abstr   | act (in English)                                                           | iii  |
| Abstr   | act (in Thai)                                                              | iv   |
| Ackn    | owledgements                                                               | v    |
| Table   | of Contents                                                                | vi   |
| List o  | fTables                                                                    | ix   |
| List o  | f Figures                                                                  | x    |
|         |                                                                            |      |
| CHAPTER |                                                                            |      |
| Ι       | INTRODUCTION                                                               | 1    |
|         | -                                                                          |      |
| II      | THEORETICAL BACKGROUND AND LITERATURE                                      |      |
|         | REVIEW                                                                     | 3    |
|         | 2.1 Fuel Cells                                                             | 3    |
|         | 2.2 Production of Hydrogen                                                 | 7    |
|         | 2.2.1 Steam Methane Reforming (SMR)                                        | 7    |
|         | 2.2.2 Methanol Steam Reforming (MSR)                                       | 9    |
|         | 2.3 CO Removal Methods                                                     | 11   |
|         | 2.3.1 Water Gas Shift (WGS) Reaction                                       | 11   |
|         | 2.3.2 Preferential Oxidation or Selective Oxidation of CO                  | 12   |
|         | 2.4 Physical and Chemical Properties of Gold                               | 13   |
|         | 2.5 Activity of Supported Gold Catalyst                                    | 15   |
|         | 2.5.1 Catalyst Preparation                                                 | 15   |
|         | 2.5.2 Catalyst Support                                                     | 17   |
|         | 2.5.3 H <sub>2</sub> O and CO <sub>2</sub> Influence on Catalytic Activity | 18   |

| CHAPTER |                                                                 | PAGE  |
|---------|-----------------------------------------------------------------|-------|
| III     | METHODOLOGY                                                     | 20    |
|         | 3.1 Materials                                                   | 20    |
|         | 3.2 Equipments Setup                                            | 21    |
|         | 3.3 Catalyst Preparation Procedure                              | 25    |
|         | 3.4 Catalyst Characterization                                   | 27    |
|         | 3.5 Activity Measurement                                        | 31    |
|         | 3.6 Calculation                                                 | 33    |
| IV      | <b>RESULTS AND DISCUSSION</b>                                   | 34    |
|         | 4.1 Catalyst Characterization                                   | 34    |
|         | 4.1.1 XRD Patterns                                              | 34    |
|         | 4.1.2 UV Measurement                                            | 39    |
|         | 4.1.3 TPR Measurement                                           | 42    |
|         | 4.1.4 BET Surface Area Measurement                              | 48    |
|         | 4.1.5 AAS Measurement                                           | 49    |
|         | 4.2 Activity Measurement                                        | 50    |
|         | 4.2.1 Effect of Au Loading                                      | 50    |
|         | 4.2.2 Effect of Support Molar Ratio                             | 52    |
|         | 4.2.3 Effect of Calcination Temperature                         | 54    |
|         | 4.2.4 Effect of Catalyst Pretreatment                           | 56    |
|         | 4.2.5 Deactivation Test                                         | 58    |
|         | 4.2.5.1 Effect of H <sub>2</sub> O Concentration in the Feed Ga | as 58 |
|         | 4.2.5.2 Effect of $CO_2$ Concentration in the Feed Ga           | as 58 |
|         | 4.2.5.3 Effect of Combination of $CO_2$ and $H_2O$              |       |
|         | on Feed Gas                                                     | 58    |
|         | 4.2.6 Fuel Processing System                                    | 59    |
| V       | CONCLUSIONS AND RECOMMENDATIONS                                 | 61    |
|         | 5.1 Conclusions                                                 | 61    |

5.2 Recommendation 62

## CURRICULUM VITAE

66

63

viii

## LIST OF TABLES

## TABLE

### PAGE

| 2.1 | Comparison of five fuel cell technologies                  | 5  |
|-----|------------------------------------------------------------|----|
| 2.2 | Physical properties of gold compared to platinum           | 14 |
| 4.1 | Reduction peaks of gold-free and gold-containing catalysts | 47 |
| 4.2 | BET surface areas of prepared catalysts                    | 48 |
| 4.3 | Actual Au loading on prepared catalysts                    | 49 |
|     |                                                            |    |

## **LIST OF FIGURES**

| FIGUR | GURE                                                                                                                     |    |
|-------|--------------------------------------------------------------------------------------------------------------------------|----|
| 2.1   | Fuel-cell types and fuel processing.                                                                                     | 4  |
| 2.2   | Diagram of fuel cell.                                                                                                    | 6  |
| 2.3   | Steam methane reforming process.                                                                                         | 8  |
| 2.4   | Schematic graph of water gas shift reaction.                                                                             | 12 |
| 3.1   | Schematic diagram flow of PROX process.                                                                                  | 22 |
| 3.2   | Schematic of fuel processor testing system.                                                                              | 24 |
| 4.1   | XRD patterns of catalysts calcined at 400°C: (a) MnOx without                                                            |    |
|       | Au loading; (b) MnO <sub>x</sub> ; (c) FeO <sub>x</sub> -MnO <sub>x</sub> (1:1 molar ratio); (d) FeO <sub>x</sub>        |    |
|       | with Au loading at $1/30$ atomic ratio; and (e) FeO <sub>x</sub> without                                                 |    |
|       | Au loading.                                                                                                              | 35 |
| 4.2   | XRD patterns of catalysts calcined at 400°C, 1:1 molar ratio of                                                          |    |
|       | mix-oxide support (FeO <sub>x</sub> -MnO <sub>x</sub> ) with different Au/FeO <sub>x</sub> -MnO <sub>x</sub>             |    |
|       | atomic ratios.                                                                                                           | 36 |
| 4.3   | XRD patterns of catalysts calcined at 400°C, 1/30 atomic ratio                                                           |    |
|       | of Au loading with different support molar ratios (FeO <sub>x</sub> -MnO <sub>x</sub> ).                                 | 36 |
| 4.4   | XRD patterns for Au/FeO <sub>x</sub> -MnO <sub>x</sub> catalyst calcined at different                                    |    |
|       | temperatures.                                                                                                            | 37 |
| 4.5   | XRD patterns of fresh catalyst, spent catalysts with different                                                           |    |
|       | pretreatment condition, and spent catalyst after stability test.                                                         | 38 |
| 4.6   | UV-vis spectra of catalysts calcined at 400°C, support molar ratio                                                       |    |
|       | (Fe/Mn) of $1/1$ with different Au/FeO <sub>x</sub> -MnO <sub>x</sub> atomic ratios (AR).                                | 40 |
| 4.7   | UV-vis spectra of catalysts calcined at 400°C, Au/FeOx-MnOx                                                              |    |
|       | atomic ratio of 1/30 with different support molar ratios (Fe/Mn).                                                        | 40 |
| 4.8   | UV-vis spectra of catalysts at Au/FeO <sub>x</sub> -MnO <sub>x</sub> atomic ratio of 1/30,                               |    |
|       | support molar ratio (Fe/Mn) of 1/1 with different calcination                                                            | 41 |
|       | temperatures.                                                                                                            |    |
| 4.9   | UV-vis spectra of FeO <sub>x</sub> , Au/FeO <sub>x</sub> , Au/FeO <sub>x</sub> -MnO <sub>x</sub> , Au/MnO <sub>x</sub> , |    |
|       | and $MnO_x$ catalysts.                                                                                                   | 41 |

## FIGURE

| 4.10 | TPR profiles of unpromoted and promoted Au catalysts over                                   |    |
|------|---------------------------------------------------------------------------------------------|----|
|      | different supports.                                                                         | 44 |
| 4.11 | TPR profiles of catalysts calcined at 400°C, Au/FeO <sub>x</sub> -MnO <sub>x</sub>          |    |
|      | atomic ratio of 1/30 with different support molar ratios (FeOx-MnOx).                       | 45 |
| 4.12 | TPR profiles of Au/FeO <sub>x</sub> -MnO <sub>x</sub> (1:1) atomic ratio of $1/30$ calcined |    |
|      | at 300 and 400°C.                                                                           | 46 |
| 4.13 | Effect of Au loading on Au/FeO <sub>x</sub> -MnO <sub>x</sub> catalysts.                    | 51 |
| 4.14 | Effect of support molar ratio $FeO_x$ -MnO <sub>x</sub> on the performance                  |    |
|      | of Au/FeO <sub>x</sub> -MnO <sub>x</sub> catalysts.                                         | 53 |
| 4.15 | Effect of calcination temperature on Au/FeO <sub>x</sub> -MnO <sub>x</sub> catalyst.        | 55 |
| 4.16 | Effect of catalyst pretreatment on $Au/FeO_x$ - $MnO_x$ .                                   | 57 |
| 4.17 | Deactivation test of Au/FeOx-MnOx catalyst.                                                 | 59 |
| 4.18 | Stability test of Au/FeOx-MnOx catalyst in methanol fuel processor.                         | 60 |
|      |                                                                                             |    |

PAGE