ผลของสารก่อผลึกแบบเบต้าต่อโครงสร้างผลึกและสมบัติเชิงกลของของไอโซแทกติกพอลิโพรพิลีน

นาย ทิฆัมพร มีเสน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาวิทยาศาสตร์พอลิเมอร์ประยุกต์และเทคโนโลยีสิ่งทอ ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2542 ISBN 974-334-877-8 ลิขสิทธ์ของ จุฬาลงกรณ์มหาวิทยาลัย

I91719669 2 7 S.A. 2549

Effect of β -nucleator on crystalline structure and mechanical properties of isotactic polypropylene

MR. TIKHAMPORN MEESANE

A Thesis Submitted in Partial Fulfillment of Requirements for the Degree of Master Of Science in Applied Polymer Science and TextileTechnology Department of Materials Science Faculty of Science Chulalongkorn University Academic Year 1999 ISBN 974-334-877-8

Thesis Title	Effect of eta -nucleator on Crystalline Structure and Mechanical	
	Properties of Isotactic Polypropylene.	
Ву	Mr. Tikhampom Meesane	
Department	Materials Science	
Thesis Advisor	Associate Professor Khemchai Hemachandra, Ph.D.	
Thesis Co-advisor	Wannee Chinsirikul, Ph.D.	

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Ward Photh_____ Dean of Faculty of Science

(Associate Professor Wanchai Phothiphichitr, Ph.D.)

THESIS COMMITTEE

Uhr Udun Chairman

(Associate Professor Werasak Udomkichdecha, Ph.D.)

Khemedai Hunachandry_____Thesis Advisor

(Associate Professor Khemchai Hemachandra, Ph.D.)

How Call

Thesis Co-advisor

(Wannee Chinsirikul, Ph.D.)

Rypan Santul Member

......Member

(Associate Professor Paiparn Santisuk)

Omusa Saravan

(Associate Professor Onusa Saravari)

4072488623 : MAJOR APPLIED POLYMER SCIENCE AND TEXTILE TECHNOLOGY KEY WORD : polypropylene / crystalline structure / β nucleator / mechanical properties

TIKHAMPORN MEESANE : EFFECT OF β NUCLEATOR ON CRYSTALLINE STRUCTURE AND MECHANICAL PROPERTIES OF ISOTACTIC POLYPROPYLENE. THESIS ADVISOR: ASSOC.PROF.KHEMCHAI HEMACHANDRA, Ph.D., THESIS COADVISOR : WANNEE CHINSIRIKUL, Ph.D. **87** pp. ISBN 974-334-877-8

eta structure (hexagonal) of isotactic polypropylene (iPP) can be generated by an addition of β nucleator. The nucleator used in this study is quinacridone (Permanent Red E3B). The samples are blended or mixed, by mechanical blending and internal mixing (masterbatch compounding). The PP-eta nucleator blends are pelletizated by a twin-screw extruder and then compressed and extruded into films. The factors affecting structure and mechanical properties of polypropylene with nucleator including additive content, compounding and processing conditions are investigated in this study. Based on WAXD, DSC, polarizing optical microscope analysis results demonstrate that the compressed molded films, PP-quinacridone (0.0001% blended by mechanical blending) has the maximum β content that is shown by the ${\sf k}_{\sf x}$ value of approximately 0.91 and PP-quinacridone (0.0001% blended by internal mixing) has the k_x value of approximately 0.64. However, with lower β -content but better β crystal distribution, the latter condition gave rise to the highest elongation at break and toughness. In the case of extruded film, β structure could not be generated and the smectic structures occur in extruded films. The two conditions producing extruded films with higher elongation and toughness than extruded PP were PP-quinacridone (0.0001 and 0.01 % blended by mechanical blending). Extruded PP film containing only 0.0001 % of quinacridone showed a significant improvement in oxygen permeation as compared to extruded PP film.

ภาควิชา วัสดุศาสตร์ สาขาวิชา วิทยาศาสตร์พอลิเมอร์ประยุกต์ฯ ปีการศึกษา 2542 ลายมือชื่อนิสิต Tikhampon Meesane ลายมือชื่ออาจารย์ที่ปรึกษา Klunchan Hrunachunon ลายมือชื่ออาจารย์ที่ปรึกษาร่วม Man Callo ที่ฆัมพร มีเสน : ผลของสารก่อผลึกแบบเบต้าต่อโครงสร้างผลึกและสมบัติเชิงกลของไอโซแทกติก พอลิโพรพิลีน(EFFECT OF β NUCLEATOR ON CRYSTALLINE STRUCTURE AND MECHANICAL PROPERTIES OF ISOTACTIC POLYPROPYLENE)

อ. ที่ปรึกษา : รองศาสตราจารย์ ดร. เข็มซัย เหมะจันทร อ. ที่ปรึกษาร่วม : ดร. วรรณี ฉินศิริกุล
 87 หน้า ISBN 974-334-877-8

ใคโซแทกติกพคลิโพรพิลีนที่มีโครงสร้างผลึกแบบเบต้าสามารถเตรียมโดยวิธีการเติมสารก่อ ้ผลึกแบบเบต้าซึ่งสารก่อผลึกที่ใช้ในงานวิจัยนี้คือผงสีควินาซริโดน (quinacridone) ชิ้นงานตัวอย่างถูก เตรียมโดยวิธีการผสมแบบเมคานิคอลเบลนดิง (mechanical blending) และอินเตอร์นอลมิกซึ่ง (internal mixing) หลังจากนั้นชิ้นงานตัวอย่างผ่านกระบวนการเพเลตไทเซชั่น (pellezation) และขึ้นรูป เป็นแผ่นฟิล์ม โดยกระบวนการอัดร้อน (compression molding) และกระบวนการอัดรีด (extrusion) โดยแผ่นฟิล์มที่ได้นำมาศึกษาผลกระทบของความเข้มข้นของสารก่อผลึก สภาวะของการผสมและ กระบวนการขึ้นรูปต่อโครงสร้างผลึกและสมบัติเชิงกลของไอโซแทกติกพอลิโพรพิลีน จากการศึกษาโดย เทคนิค ไวด์แองเกิลเอ็กซ์เรย์ดิฟแฟรกชั่น (Wide Angle X-ray Diffraction) ดิฟเฟอร์เรนเซียลสแกนนิง คัลลอรีเมตตรี(Differential Scanning Calorimetry) โพลาไรซิงออพติกคอลไมโครสโคป (Polarizing Optical Microscope) พบว่าแผ่นฟิล์มอัดร้อน (compressed film) ที่มีความเข้มข้นของผงสีควินาซิ ์โดน 0.0001เปอร์เซ็นต์ ซึ่งผสมแบบเมคานิคอลเบลนดิง มีปริมาณของโครงสร้างผลึกแบบเบต้ามากที่ สุดโดยแสดงค่าในรูปของ k_x ประมาณ 0.91 และพบว่าแผ่นฟิล์มอัดร้อนที่มีความเข้มข้นของผงสีควิ ้นาชริโคน 0.0001เปอร์เซ็นต์ ซึ่งผสมแบบอินเตอร์นอลมิกซิง มีค่า k, ประมาณ 0.64 มีค่าความสามารถ ในการยืดดึงและความเหนียวสูงสุด กรณีของแผ่นฟิล์มอัดรีด (extruded film) ไม่ปรากฏโครงสร้างผลึก แบบเบต้า แต่ปรากฏโครงสร้างผลึกแบบสเมกติก (smectic structure) โดยพบว่าแผ่นฟิล์มอัดรีดที่มี ้ความเข้มข้นของผงสีควินาซริโดน 0.0001 และ 0.01เปอร์เซ็นต์ ซึ่งผสมแบบเมคานิคอลเบลนดิง มีค่า ความสามารถในการยึดดึงและความเหนียวสูงสุด ทั้งยังพบว่าฟิล์มอัดรีดพอลิโพรพิลีนที่มีความเข้มข้น ของผงสีควินาซริโดน 0.0001 เปอร์เซ็นต์ มีความสามารถในการซึมผ่านของก๊าซออกซิเจนมากกว่าฟิล์ม อัดรีดพอลิโพรพิลีนบริสุทธิ์

ภาควิชา วัสดุศาสตร์ สาขาวิชา วิทยาศาสตร์พอลิเมอร์ประยุกต์ฯ ปีการศึกษา 2542 ลายมือชื่อนิสิต ที่บริบันร ปีเกโน ลายมือชื่ออาจารย์ที่ปรึกษา/พิตภัย (เองอโดง ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and science appreciation to my advisor Associate Professor Khemchai Hemachandra, for his kindness, valuable guidance advice and supervision.

Appreciation is also extended to my Co-advisor, Dr. Wannee Chinsirikul for her patient guidance, assistance, devotion, encouragement, and many helpful suggestion throughout this thesis.

I am grateful to Associate Professor Werasak Udomkichdecha, Associate Professor Paiparn Santisuk and Associate Professor Onusa Saravari for their assistance and helpful suggestion troughout the course of this study.

My special thank go to HMC Polymer Marketing Co. Ltd. and Clairiant Co.Ltd. for their kindness and support iPP and quinacridone pigment in my thesis.

I also thank to my friends, other Polymer Science student, and staff member of Department of Material Science and National Metal and Material Technology Center for their courteous help.

Finally, I must deeply thank my parent and my sisters for their warmth, love understanding and encouragement which have inspried me to reach the goal.

CO	NT	E	ΝT
----	----	---	----

Page
Abstract (English)iv
Abstract (Thai)v
Acknowledgementvi
Contentvii
List of Tablesviii
List of Figuresix
Chapter
1 Introduction1
2 Literature review
2.1 Isotactic Polypropylene
2.1.1 α-Form
2.1.2 β-Form
2.1.3 γ-Form
2.1.4 smectic
2.2 β -formation of iPP23
2.2.1 Preparation of β -iPP
2.2.1.1 Temperature gradient method27
2.2.1.2 Addition of selection eta -nucleating agent
2.2.1.3 Crystallization in mechanically loaded melts
2.3 Relationship of eta -iPP to mechanical properties
2.4 Application of β -iPP
3 Materials and Methods
3.1 Materials
3.2 Processing
3.2.1 Mixing and Blending
3.2.2 Pelletization

Content (continue)

			Page
	3.2.3	Compressed film preparation	36
	3.2.4	Extruded film preparation	
3.3	Testir	ng and Charaterization	37
	3.3.1	Mechanical testing	
	3.3.2 V	Nide angle X-ray diffraction (WAXD)	37
	3.3.3 [Differential Scanning Calorimetry (DSC)	
	3.3.4 N	Aicroscopy Study	
	3.3.5 (Dxygen Permeation Study	
4 Results	and dis	scussion	
4.1	Crysta	alline Phase Analysis	
	4.1.1	Wide angle X-ray diffraction (WAXD) studies	
	2	4.1.1.1 Compressed films	
	2	4.1.1.2 Extruded films	42
	4.1.2	Differential Scanning Calorimetry (DSC) studies	43
	2	4.1.2.1 Compressed films	43
	2	4.1.2.2 Extruded films	46
	4.1.3	Optical Polarizing microscope studies	49
4.2	Mech	anical properties studies	
	4.2.1	Compressed films	59
	4.2.2	Extruded films	63
4.3 (Oxygen	permeation studies	68
5 Conclus	sion		70
6 Recomm	nendati	on for future work	71
Referrence	ə		72
Appendix.			75
Curriculum	n vitae .		

LIST OF TABLES

Table	Page
2.1 Classification of Polypropylene Spherulites According Keith and Padden	9
2.2 Lattice Parameters of α -Form iPP	10
2.3 Lattice Parameters of β -form iPP	15
2.4 Lattice Parameters of γ-Form iPP	19
4.1 The β -nucleated PP Pellet with various β -nucleator content different	39
4.2 Tensile properties of compressed film and k _x value	62

LIST OF FIGURES

Figure	Page
2.1	Chain configurations in isotactic polypropylene
2.2	WAXD of different morphological forms4
2.3	Impingement of spherulite. The contact between adjacent sperulites
	is either straingth or curved line.(a)Top picture is taken using $\frac{1}{4}$ wave5
2.4	Schematic representation of branching and crosshatching in
	sotactic polypropylene6
2.5	Optical observation of branching in $lpha$ -iPP.(a)with red filter
	(b) without red filter.plate under cross polar condition and
	(b) without ¹ / ₄ wave plate (red filter)6
2.6	The sign of birefringence of spherulites:(a) positive (b) negative11
2.7	Positive birefringence spherulites α_{i} prepared
	at isothermal crystallzation temperature of 115 $^\circ C$.
	(a) With red filter (1/4 wave plate) and (b) without red filter11
2.8.	Negative birefringence spherulites $lpha_{\mbox{\tiny II}}$ prepared
	at isothermal crystallization temperature of 140 °C11
2.9.	Mixed birefringence spherulites $lpha_{ m m}$ prepared at $T_{ m c}$ of 120 °C
	(a) With red filter and (b) without red filter12
2.10.	(a) Mixed birefringence spherulites α_{m} crystallized at T _c =14513
2.11.	During melting the positive birefringence spherulites $lpha_{_1}$
	(see Figure 7) becomes negative. (a) With red filter and
	b)without red filter13
2.12.	Negative radial eta spherulites surrounded by mixed type $lpha$ spherulites
	crystallized at 115 $^\circ C$. (a) With red filter (1/4 wave plate) and
	without red filter16

Figure (continue)

Figure	Page	;
2.13.	Negative ringed eta spherulites isothermally crystallized	
	in 0.5% propylene-ethylene copolymer at 120 $^\circ ext{C}$.	
	(a) With red filter (1/4 wave plate) and (b) without red filter17	
2.14	Mophological changes of the eta form during melting	
	the β from at Tc = 120° surrounded by mixed-type $lpha$ form.	
	same as (a) without red filter c),(d),and (e) during meiting;	
	(a) (f) same as (e) without red filter 17	
2.15.	Schematic arrangement of chain stems in the $lpha$ -monoclinic	
	and the γ orthorhombic unit cells	
2.16.	Spherulitic morphology of the γ form. Sample is isothermally	
	crystallized at 200 MPa (2 kbar) and 187.5° C.	
	The spherulites show negative birefringence	
2.17.	The γ -spherulites, isothermally crystallized at 200 MPa (2 kbar)	
	and 187.5 $^\circ\text{C}$, show no lathlike structure of the $lpha$ form.	
	(a) with red filter (1/4 wave plate); (b) without red filter21	
2.18	X-ray diffractogram of pure β -iPP25	
2.19	Optical micrograph of pure eta -iPP crystallized at T_c =398 K	
	Cryatallization ein the presence of β -nucleating agents promise	
2.20	Melting curves of eta -nucleates iPP samples crystallized	
	at different temperatures plotted on a common baseline (V_{h} =10 K/min) 26	
2.21	Melting curves of IPP samples (Tipplen H523) nucleated with	
	Ca salts (1w/w %) of different organic acids	
	(V_c =10 K/min, V_h =10 K/min, T_R =383 K(1) original iPP; (2) benzoic;	
	(3) phthalic; (4) terephthalic; (5) pyromellitic acid	
3.1	Flow chart of experimental approach34	
3.2	Chemical structure of quinacridone	

Figure (continue)

Figure	Page
4.1	The wide angle X-ray diffraction scans for compressed films of iPP
	P0.0001,P0.001,P0.01,M0.0001,M0.001,M0.0140
4.2	Show the variation of eta -phase content with the concentration of
	eta-nucleators in compressed films prepare from PP-nucleator
	machanical blends or masterbatch41
4.3	The wide angle X-ray diffraction scans for extruded films of iPP
	PP, P0.0001, P0.001, P0.01, M0.0001, M0.001, M0.0142
4.4	The DSC melting thermogram of compressed films
	PP, P0.0001, P0.001, P.01, M0.0001, M0.001, M0.0144
4.5	The DSC crystallization thermogram of compressed films
	PP, P0.0001, P0.001, P0.01, M0.0001, M0.001, M0.0145
4.6	The DSC melting thermogram of extruded films
	PP, P0.0001, P0.001, P0.01, M0.0001, M0.001, M0.0147
4.7	The DSC crystallization thermogram of exrtruded films
	PP, P0.0001, P0.001, P0.01, M0.0001, M0.001, M0.01
4.8	The optical polarizing micrographs for pure iPP.
	A) magnification X 500, B) magnification X 20051
4.9	The optical polarizing micrographs for P0.0001.
	A) magnification X 500, B) magnification X 20052
4.10	The optical polarizing micrographs for P0.001.
	A) magnification X 500, B) magnification X 20053
4.11	The optical polarizing micrographs for P0.01.
	A) magnification X 500, B) magnification X 20054
4.12	The optical polarizing micrographs for M0.0001.
	magnification X 600, B) magnification X 20055
4.13	The optical polarizing micrographs for M0.001.
	A) magnification X 600, B) magnification X 20056

Figure (continue)

Figure		Page
4.14	The optical polarizing micrographs for M0.01.	
	A) magnification X 500, B) magnification X 200	57
4.15	The optical polarizing micrograph for M0.0001	
	A) magnification X 200 at 30°c, B) magnification X 200 at 148°c	58
4.16	Tensile strength of compressed films	.60
4.17	Modulus of elasticity of compressed films	.60
4.18	Elongation at break of compressed films	.61
4.19	Toughness of compressed films	. 62
4.20	Tensile strength in machine direction of extruded film	.64
4.21	Elongation at break in machine direction of extruded film	64
4.22	Toughness in machine direction of extruded film	65
4.23	Modulus of elasticity in machine direction of extruded film	.65
4.24	Tensile behavior of PP extruded films in machine direction	.67
4.25	Tensile behavior of P0.0001 extruded films in machine direction	.67
4.26	Tensile behavior of P0.001 extruded films in machine direction	.67
4.27	Oxygen Permeation measurement	.69