CHAPTER IV
APPLICATION OF QUANTUM BROWNIAN MOTION
ON A VORTEX ESCAPING OUT OF
A METASTABLE POTENTIAL

41 MAGNUS FORCE ON VORTEX AND HAMILTONIAN OF THE PROBLEM

"Magnus force" or sometimes called “lift force” has been discovered for a very long
time ago within the domain of classical hydrodynamics. This force occurs and acts on a
body when a body with a flow circulation around it moves through a fluid (Kutta-Joukowski
theorem). For example, when rotating the cylinder clockwise in the fluid which initially has
a uniform flow from left to right, the cylinder then feels the Magnus force acts in the
upward direction (see fig. 4.1). This comes from the fact that the velocity at the top is
greater than at the bottom of the cylinder which implies due to the Bernoulli's equation that
the pressure at the top is lesser than at the bottom of the cylinder which again implies that
the force acting at the top is lesser than at the bottom and the net force is in the upward
direction because of the symmetry of the cylinder.

Magnus
force

Fig. 4.1 : Magnus force on the rotating cylinder (see ref. [25]).
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Fig. 4.2 : The vortex flow which its center called a “vortex" (see ref. [25]).

From classical hydrodynamics, this force can be computed exactly by various
methods such as the method using theorem of Blasius [22], The Magnus force per unit
length of a cylinder can be written in the form

RI = pKxV (4.0)
where p s the fluid density, v is the velocity of the cylinder relative to the (uniform flow)
velocity of the fluid, and K is the circulation vector of magnitude K,

K =iv.dl (4.2)

Ivhere V is the velocity field of the fluid and ¢ is any close path containing the cylinder,
directed parallel to the axis that is perpendicular to the plane of flow with the right-hand
rule.

“Vortex" in classical hydrodynamics is defined as a center of the vortex flow
defining as the flow that each stream line has a symmetry about the center i.e., the fluid
flows in a circular path with its speed depending only on the distance from the center (see
fig. 4.2). Moreover, if the flow is irrotation (as assumed in this section), the speed of the
fluid must be proportional to Ll where f is the distance from the vortex.  real nature,
the vortex is not exactly a point but it forms the “core” of some radius. This core radius is
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of the order of distance v at which the speed is of the order of the sound velocity. From
fig. 4.2, one can think that the vortex flow is similar to the flow around the cylinder which
has the radius close to zero and the vortex line (the line which has the vorticity (v xv) as
its tangent vector) it self is similar to this zero radius cylinder. From eg. (4.1), one can see
that the Magnus force on the cylinder is independent of its radius. By these reasons, one
may ask the question: can the vortex or vortex ling feel the Magnus force of the form in eq.
(4.1) if it moves through a fluid like in the case of cylinder in fig. 4.1? The answer is that it
does provided that it can actually move through a fluid or,  other words, move with
respect to the fluid. For the perfect fluid (incompressible, invicid, and barotropic fluid) a
conservative force field such as gravity, the Flelmholtz vortex equation [23] and Kelvin's
circulation theorem [23] tell us that if the two dimensional flows which initially have the
vortex at some points, then the vorticity at those points will remain the same as they flow in
the course of time and they also move with the same velocity of the uniform flow (velocity
far away from these vortices).  other words, the vortex lines in a perfect fluid move with
the fluid or are “frozen" into the fluid if the fluid is in a conservative force field. Flence, in
our case of irrotational vortex flow (we have only one vortex line which is the straight line
perpendicular to the flow plane which passes through the center of the vortex flow), it s
in the conservative force fields, then the vortex line moves with the fluid which implies that
the relative velocity between vortex and fluid must be equal to zero and so, from eq. (4.1),
the Magnus force on a vortex does not appear. Flowever, the non conservative forces
usually arise in the real nature such as the friction so one can guess that the vortex in real
nature should feel the Magnus force. The derivation of Magnus force on vortex, without
using the analogy of vortex ling with rotating cylinder as we have discussed above, has
been shown excellently by Sonin [24], His idea is that he supposes the vortex to move with
constant velocity, which is not equal to the velocity of the uniform flow, by the influences of
some external forces acting on the vortex line.  order to keep the vortex in a motion
which has constant velocity, he found that the resultant external force per unit length of a
vortex line must be in balance with the force which is in the same form of the Magnus
force, eq. (4.1). From this derivation, one can conclude that the vortex, once moving with
respect to the fluid, must feel the Magnus force of the form ineq. (4.1).
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The vortex can also occur in both superfluids and superconductors. The main
difference between these vortices and vortex in plain fluid is that the circulation in the case
of superfluids or superconductors is, instead of being continuous as in plain fluid,
quantized and taking the values of [25]

K=iv-df =—  «=012,. (43)

where n is the atomic mass, and n is the Plank’s constant. The first experiment to
demonstrate that circulation is quantized in superfluid (He 1I) was that of Vinen (1961).
There is a close similarity between vortices in superfluids and super conductors: in both
cases they consist of particle currents circulation round a cylindrical core. On the other
hand, there are important distinctions to be drawn, the most obvious one is that vortices in
superconductors are coupled to the applied magnetic field, whereas a magnetic field has
no influence on superfluid vortices. Note that the vortices in superfluid are very easily
formed e.g., by rotating a cylindrical bucket containing He I, one vortex can be created
by the rotation which only has the angular velocity of the order 10'3sec’1[25].

By analogy with the Magnus force in classical hydrodynamics, one may expect
that a vortex in both superfluids and superconductors should also feel the Magnus force
which is of the form ineq. (4.1) provided that the magnitude of circulation vector obeys the
quantization rule (4.3). Although this above conclusion about the Magnus force on vortex
in superfluids and superconductors is made by the analogy with the Magnus force in
classical hydrodynamics, the Magnus force on vortex in superfluids and superconductors
which is in the form as in eq. (4.1), has been derived based on quantum theory by many
authors [26], [27], Moreover, the experimental point of view of the Magnus force has been
described in many papers such as in ref. [30).  real nature such as in rotating He I, it
contains a reqular array of vortex lines all having the smallest possible circulation n/m
(which implies that the total number of lines at that instant is at maximum) because the
circulation must occur in such a way that it minimizes the free energy [25]. So, in the real
nature situation, when inserting eq. (4.43), taken =1, into eq. (4.1), we obtain the
Magnus force acting on a vortex ling in superfluid in the form

Fu:qvpshdzx(r-vJ (44)
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where qV = +1(-1) stands for the vorticity paralleling (antiparalleling) to the unit vector A

the L direction, pS is the superfluid atom number density, [ is the vortex velocity in two
dimensions {X'y plane). VS is the uniform superfluid velocity (velocity of superfluid far
from vortex), and d is the thickness of the sample (it is equal to the length of a vortex

line). Similarly, the Magnus force acting on a vortex line in superconductor is in the form

Fn - ( r-M (4.5)

where p3 is the superfluid electron number density with the factor 1/2 counting for the
Cooper pairing.

From eq. (4.4) or eq. (4.5), one can see that the Magnus force acting on a vortex is
similar to the Lorentz force acting on an electron which is confined in the X'y plane

under the magnetic field B applying in z direction. This Lorentz force is in the form

Fi1 =—er x B=eBxr (4.6)
where €is the electron charge.
From this similarity, it is the convenience for someone to imagine the motion of a vortex
under the Magnus force as the motion of an electron under the well-known Lorentz force.
Note that the Magnus force on a vortex will occur if there exists the relative velocity [ - V3
while the Lorentz force on electron will occur if there exists the magnetic field B .

The vortex motion is an important behavior in many physical situation such as the
flow of the supercurrent in superconductors. The motion of the vortices is the main
mechanism for electrical resistance because if the vortices are free to move, then the
supercurrent will flow with difficulty but, on the other hand, if the vortices are pinned or
trapped, then the suppercurrent will flow more easily and the resistivity is reduced. Hence,
the behavior of pinned vortices is one of the interesting problem. real situation, we can't
completely trap the vortices i.e., the vortices can, by some means, leave the trap. other
words, the pinning potential can’t be a stable potential but it is a “metastable potential”.
many physical situations, the pinning of vortices will occur from the “disorder effect” but
this effect can also produce the dissipation on vortices. general, both pinning and

dissipation effects frequently occur in real life situation.
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Now, in our problem, we shall study the general problem of one vortex which is
pinned in the metastable potential and treating everything in the sample except this vortex
as the environment causing the dissipation on this vortex. As in section 3.4, we will model
this environment like in the Caldeira-Leggett model. Since a vodex core is very small i.e., it
is much smaller than the length scale in most case studies, a vortex can then be regarded
as a point particle. By these above discussions and eq. (4.5), the Hamiltonian of the
system of a vortex of finite mass M in superconductor plus its environment can be

generally written as

oo -t)+Z |A1 | I+ —m“O'in !(( 4.7

cr
M 2m. . (0

This Hamiltonian has been used to study the tunneling of a quantized vortex, with special
attention paid to the effects of pinning and dissipation, by P.Ao and D.J. Thonless [19],
The meaning of each term in eq. (4.7) is as follows. The vector potential A 1which has the
property that V X A - hp"dZ/Z lcomes from the vortex velocity dependent part (WDP) of
the Magnus force eq. (4.5) while the potential due to the superfluid velocity dependent
part (SFVDP) of the Magnus force is absorbed in the vortex potential r(r). The last term,
as in Caldeira - Leggett model, describes the environment consisting of the set of
uncoupled harmonic oscillator linearly coupling with the vortex. By following P.Ao and D.J.
Thouless [19], the gauge of vector potential will be chosen (it is easy to show that the
(Euclidean) action is in dependent of the choice of gauge) so that the vector potential is in

the form
A=~p.d{y,0,0) 4.8)

and the vortex potential V(r) which allows an extensive analytical study is in the form

v(ry-=y M+\ k *- 9

The potential V(Yy) consists of the contribution from the SFVDP Magnus force (this means
that we “assume” the superfluid velocity vs or supercurrent is along the Xdirection) and
the pinning potential in y direction, which has a metastable point chosen at y = 0 .The

second term in eq. (4.9) is the pinning potential in X direction which is approximated by
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the harmonic potential, and kX should be determined experimentally. Although eq. (4.7)
with the vector potential (4.8) is derived in the case of vortex in superconductor, the
Hamiltonian for vortex in superfluid or for electron in magnetic field can be written in the
same form because the Lorentz force and Magnus force in both superfluid and
superconductor are in the same form. Hence, from eqs. (4.4)—«4.6) and (4.9), the

Hamiltonian (4.7) can be generally written as

(4.10)

_ , P~ 1 2
1= oM Fhyy(y)+L DT TH
with the vector potential in the form

A="{yA0) (4.11)

where the frequency dimensional parameter Q: QVhpngZM for a vortex in
superconductor, Q = QVhde/M for a vortex in superfluid, and Q = eB/M for electron
in magnetic field provided that qV in both egs. (410) and (411) are replaced by electron
charge e. Note that in the case of electron in magnetic field, the metastable potential y(Y)
consists of the contribution from pinning potential in y direction only since itdoesn’t need
its velocity relative to something in the sample (in fact, it must have relative velocity with
respect to the source of magnetic field) in order to produce the Lorentz force on it as in the
case of Magnus force in both superfluids and superconductors, (see eqs. (44) and (45))

Now, let us summerize the problem that we want to deal with. Our problem is to
study the vortex (electron) moving in the infinite two dimensional plane, and having, for
superfluids or superconductors, the superfluid velocity vf or supercurrent along the X
direction, which is influenced by the Magnus force (Lorentz force), the pinning potential,
and the environment. the Hamiltonian of the problem (4.10), the Magnus force (Lorentz
force) is described by the vector potential Althe environment is described by the last
term in eq. (4.10), the pinning potential in Xdirection is described by the harmonic
potential kXX2/2 and the pinning potential in ydirection is contained in the metastable
potential V{y) which is chosen so that the metastable point is at y = 0. Since the vortex
(electron) potential V{Y) is the metastable potential in y direction, the vortex (electron)

must have some chances to escape out of this potential in ydirection by both quantum
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mechanical tunneling and thermal hopping. our problems, we will specifically study on
this behavior of vortex so the other sections in this chapter will be dealing with the study of

the hehavior of a vortex (electron) escaping out of a metastable potential.

4.2 THE ESCAPE RATE FORMULA [16], [36]

The theory of rate coefficients has a long tradition in physics, chemistry and
biology since the days of Arrhenius. H.A. Kramer’s article of 1940 [28] represents a
cornerstone in the quantitative analysis of thermally activated rate processes. An excellent
review which covers extensive knowledge in this field is in ref. [37],

this section, we assume that the system in question can be visualized as a
particle of mass M describing by coordinate Ymoving in a metastable potential V(y)
while coupled with the environment. The metastable potential V{},) has a single
metastable minimum at a point which we choose at the origin of y . The bottom of the
metastable potential is chosen to lie at zero i.e., F(0) =0. We assume that the potential
V(Y) is fairly smooth and has the general form depicted in fig. 4.3 i.e., a metastable
guadratic-plus-cubic potential well. Since V(y) is a metastable potential of the form
depicted in fig. 4.3, a particle confined to the metastable region will ultimately escape to

the region of lower potential on the other side of the barrier.

AHY)

Yy

Fig. 4.3 : A metastable “quadratic-plus-cubic" potential well.
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Fig. 4.4  The inverted potential ~V(y).

Naturally, the concept of metastability only makes sense when the barrier is large
enough that the decay time of the metastable state is very long comparing to all the other
characteristic time scales of the system dynamics e.g., the correlation time of the noise
and the time scales a1 and o' related to the curvature of the potential at the
metastable minimum and at the barrier top. This situation is called the "weak
metastability". It requires that the barrier height o is by far the largest energy relevant to
the problem,

vby kB, Vb» hood (4.12)
Ftere, (€0 is the frequency of small oscillation around the metastable minimum
<0=(vr(o)mi2l (4.13)

where V"(0) is the curvature of v{y) aty =01
and the barrier frequency
(4.14)

where v{y D) is the curvature of v{y) at y =yb,
characterizes the width of the parabolic top of the barrier hindering the decay process,
see fig. 4.3. It represents the frequency of small oscillation around the minimum of the
inverted potential -\(Y), see fig. 4.4

From fig. 4.3, itis clear that the particle escapes out of the metastable potential by
thermal hopping at high temperature while the quantum mechanical tunneling effect will
be more incorporated in the escape process as the temperature is lower. The temperature
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10, where the change of dominating mechanism of the escape process form thermal
activation to quantum tunneling is roughly to occur, is called the “crossover temperature”
(it will be discussed in more details in sections 4.4 and 4.5). Various ranges of escape
process are depicted infig. 4.5

r

Quantum Quantum Thermal
Tunneling O Corrections Hopping
V
e
L >
0 F r
Fig. 4.5 : Dominant escape mechanism depicted schematically as a function of
temperature.

Our study of the decay of a metastable state in thermal equilibrium with
environment will be based on thermodynamic method pioneered by Langer [29] in 1967.
His procedure of analytic continuation leads to an imaginary part of the free energy of the
metastable state which then is interpreted in the same way as the imaginary part of a
resonance energy in quantum field theory. His rate formula is formulated by analogy with
the zero temperature formula. First consider the zero temperature formula. Let '/(/) be the
ground state wave function with complex ground state energy EO=£ +i<7. Then the
decay probability K per unit time is determined from |y/()j2=e " ~0)j: = eK\y/(0)j2 as

k= _fg ImE,. (415)
By analogy with this formula, the thermodynamic rate is given by
k=-ylmF, for T<T0, (4.16)

where F is the free energy. Note that the rate formula (4.16) can be used only for T <T0.
However, Affleck [31] has shown that the rate formula above TO can be calculated by
means of the modified formula

k:-/\l\;l_o ImF, for T>TO, (4.17)
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where /30 =\/kBIO is the inverse crossover temperature.

An explicit calculation by Affleck [31] for an undamped system has demonstrated
that Langer's method yields the same result as a Boltzmann average of energy dependent
decay rates. Morover, also the effects of frequency-dependent damping [32] as well as
quantum corrections to thermally activated decay calculated by dynamical method [33]
are reproduced quantitatively by the Langer’s thermodynamic method. Since Langer's
approach is a thermodynamic method, it cannot account for effect related to
nonequilibrium occupation of states in the well. This means that Langer's method gives the
correct result for the decay rate whenever nonequilibrium effects within the metastable
well can be neglected. This is the case when the environmental coupling is strong enough
to maintain thermal equilibrium within the metastable well. ~ case of very weak
environmental coupling of friction (this is the case where Langer’s method can’t be used),
the influence of the environment is not strong enough to maintain thermal equilibrium in the
well. The escape over the barrier leads to a depletion of the Boltzmann distribution in an
energy region of width kBT just below the barrier top and the escape is limited by energy
diffusion from the lower to the higher states in the well [34], However, this weak coupling
region characterizing by y <(ohKII'/I'h [16] is very small in particular for system with
high barrier e.g., the system with the requirement of weak metastability. While  the
absence of a fully dynamical justification of the approach which its range of validity is not
exactly known [35], it is highly suggestive that Langer’s method gives the correct result for
the decay rate whenever nonequilibrium effects within the metastable well are neglected.

Now, we have the escape rate formulae (4.16) and (4.17). From these equations, it
is clear that our problem now hinges on finding the imaginary part of free energy.
section 4.4, we will find the imaginary part of free energy of a vortex and then, by using
these escape rate formulae, find the escape rate formula for a vortex escaping out of the
metastable potential v{y) iny direction.

4.3 EFFECTIVE ONE-DIMENSIONAL REDUCED PARTITION FUNCTION
From Hamiltonian of the problem (4.10), one can view a vortex as the Brownian

particle moving under the influence of its environment. From section 3.6, we have known
that the reduced description on Brownian particle can be found by tracing out all of the
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environmental degrees of freedom. Notice that our problem of vortex is in two dimensions
but we are interested in Y direction only, since the metastable potential depends on
coordinate Y only which means that the escaping behavior can occur only in Y direction.
By these reasons, one should treat only Y coordinate of a vortex as a coordinate of the
Brownian particle (system) and leave out other degrees of freedom, which are X degrees
of freedom of vortex itself and all of the environmental degrees of freedom, as the
constitution of the environment. So, in our problem, it is clear that the elimination of
environmental coordinates is more complicated than in section 3.6 sine the r degree of
freedom couples linearly with the Y degree of freedom via its velocity instead of
coordinate like the coupling between J'and (Jdegree of freedom.

Now, by using the same method as  section 3.6, we will find, the effective one-
dimensional reduced partition function. From eqs. (4.10) and (4.11), the corresponding
Euclidean action is in the form

‘= HIMQxy+ v(y) + Ky
I (4.18)

]

where I = (x,_y,0) and qn=(</;),0). Asineq. (3.72), after integrating the (normalized)
density matrix of the universe, K(y",x\q"-y',x',q'),with respect to </and X', we have
from eq. (4.18) the effective one-dimensional reduced density matrix, similar to eq. (3.73),
in the form

] (=1 : / l 0 |- ('.u r
+ Z : I"u l‘/u ! - ; I”u (i)u (ltl -
o | o= “

m,@,

Z
y' =z4" gJE>>'(r)exp(- ! >' zd = 419
piy'y) \(&/() p( BF Hy] ; RER (4.19)

where
M=z i IE>v(r)exp(-J], (4.20)
with

F E[x]=ZREDNg*(T)Gp (-SI[xy]/ti),D Ng¥(T) =Dqi(T)...Dg*N(T),
T =fexmnyN)

(4.21)
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with
sLkr\=Sn[r\+sf[yr\

FE[}]=ZREDNqy(r)exp(- BAD,({']ft) ;D\ (r)=Dq- (r). N(I' (1)

M=l <)
(422)

with
st,Ixr]=stlrl+s,Hv .</"]
and

=N 1> +]00)A
IH = (M r*,.vi|fr
LEDWX]E /M o xixse
BRoVI=jz A fc 2+<IC )N
Rfei=z| i~ ( 2+
A 4Ar]l=lz[-cx-4A7V

(4.23)

Here Z is the partition function of the universe, ZR is expressed by eq. (3.76)
representing the partition function normalizes F E[x] or FE[y], so that /;E[x]=] or
FE[y]=I when the coupling is switched off i, 5E[x,*A=0 or 1 E[y,qyJ=0, Z)XR is
the partition function (which will be determined later) normalizes F E[y], so that
F EM =1 when the coupling is switched off i.e., 5,E[i-x] and Zd which is related with
other partition functions by Zd=z/ZRZXRis the effective one-dimensional reduced

partition function normalizes the reduced density operator p[pfy\y") =(y"\plyn)1so
that Trp - 1 Note that ineq. (4.19) we have two influence functionals, F E[y] which has
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already been calculated (see eq. (3.81)) describing the pure influence from harmonic bath
and F'[y] describing the influence from both harmonic bath and X degree of freedom of
a vortex (see eq. (4.20)) . The influence functional ,FE[y] appears ineq. (4.19) because
of the fact that we treat X degree of freedom of a vortex as one of the degree of freedom
of the environment. Notice that the influence functional F uly\ can be computed exactly
since everything in the path integration is Gaussian. Inserting eq. (3.81) into eq. (4.20) and
using the definition of !/, M ineq. (4.20) together with eq. (4.23), we obtain

17-)x(r)exp(- )’ x]/n)FEX] = PAX(Nexpj - y- 1d {AMi'1+ Akx2+IMQxy

£ qTUTK\T- £l)[A)-A1)]2 (4.24

This path integration can be evaluated by various methods but the most convenient one s,
perhaps, the Fourier series method. This method gives hoth prefactor and exponential
term simultaneously. Since the path integration here runs over al periodic path with period

=pi] taken by the coordinate x(r), the coordinate X(r) can then be represented by
Fourier series,

*)=Y|X%e"T;v =2nlu (4.25)
and the functional measure can be defined by

) NEE e “bnton) 4

Note that this functional measure is applicable to general action [5]. From eqs. (4.25) and
(4.26) litis clear that eq. (4.24) can be easily evaluated if one knows the Fourier series
representation of Al(r). So, first considering eq. (3.82). Notice that

cosh(<y|r|-£/12]) (9]
sinh{coil2) - Fregvn+ © oled  lEdo +vn
When inserting the above equation into eq. (3.82), Ar(jf]) can then be written in the form
17(jr)=11£(r):-Ax(r) (4.27)
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where P =(]/n)jj(co)lcodco  <5(z):= i ':Eml (t- ) is a (!}function

periodically repeated attime =z and

(4.29)

From eq. (4.27), the nonlocal term (the fourth term) in the exponent of the integrand in eg.
(4.24) can be written in the form

{didrk~T-1r'Ir(r)-x(r)]2=« J\k(z- r'Kr)-r(r'f dzdz

= JI"Nr- Z)X(2)x(2)jz'dz (4.29)
To arrive at this result, we have used the fact that, from eq. (4.28),
1k(z- Z)dz =Jk(z- Z)dz-0. = our problem, we want only the reduced partition

function which can be obtained if one knows the diagonal part of the reduced density
matrix i.e, P(y',y'). By this reason, Y{z) can be represented by Fourier series,

5(0: L yee"ntvt = Inxlu (4.30)
When inserting eq. (4.29) into eq. (4.24) and using eqs. (4.25) 1(4.28), and (4.30), we

obtain, by using the orthogonality relation \(])en”refJ\mdr = USImt the exponent of the
integrand of eq. (4.24) in the form
Ay Ay UMQY v CEMVAHk+G (43D

Substituting (4.31) for the exponent of the integrand of eq. (4.24) and using eq. (4.26), one
get (see Appendix B)

PO L[ v (o2 Mv;

Uo)x  Mv] +M(o] +£1
exp r (4.32)
where & =kx/M
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From eqs. (4.32) and (4.20), itis clear that F E[y] is in the form

rj=a MY (03
Yy
while
Mv: | (434

2R =10, Mvl+Mee;+Cj
Notice that F E[>] in eq. (4.33) is expressed  term of the Fourier coefficient Y1l To
express it as a functional of j-'(r), first considering the exponent of eq. (4.33) (reminded
that y(r)is represented by Fourier series (4.30)),

UM? g UMZO )

o)

M 2Q2 rwrir  (4.35)
2 = Yn u e
Note that to arrive this result, we have used the relations y n=y*, v, =-V 1 and

Y-n =Yn By using the relations T(r)>'(F) = % (r) +/(r")-[y(r)-~(r")]2)/2, V1=01
and Je n"Ten"rdT =US,Im and recalling the definition of yn in eq. (4.31), eq. (4.35)

becomes

um*2q2% rjml - Zi_lY*rpl/lW/ r kABf M Zf rjj:lw\l\;l v![t- " 436

To change this formula to another form (the form used in ref. [19]), first noticing that
0=JXd(r- z'):{\{t)-){(")]-drdr
Recalling the definition of : ~(r): ineq. (4.27) and multiplying both sides of this equation
by -MOQ.2Ah , the result is
0= Jdrdrlb)-vEp  f>o M) (4.37)
Adding eq. (4.36) with eq. (4.37), one obtains
UMRZ:s vy a7 g1 v ()-y(2)\eiTdz (439)

where

| M2 27 Mgl
9(="2 2L Mv: +Mco] +4n 439



Inserting eq. (4.39) into eq. (4.33), we obtain

FEDI=exp 11 -10i(0- y(ryvara: (4.40)

Inserting eqs. (4.40) and (3.81) into eq. (4.19) and using eq. (4.23), the diagonal part of
the effective one-dimensional reduced density matrix (4.19) can be written in the form

piyly’)="1 - JDy(r)exp(- S1[>J7) (441)

where the effective action &[> is given by the expression

Ton My tgyer oM~ Re® (04 o TOr (44

From eq. (4.41)1itis clear that the effective one-dimensional reduced partition function can
be written as

zd=1/)(r)exp(- . 2\y]h) (4.43)
From ref. [19], g(r) defined by eq. (4.39) is called the "anomalous damping kernel” and
K (t), which is called the damping kernel in chapter Ill, will be now called the “normal
damping kernel”in order to make it different from the anomalous damping kernel. Now, we
already have reduced the original two-dimensional system to the effective one-
dimensional system described by coordinate y 1and the thermodynamics reduced
description is now contained in the reduced partition function (4.43). The dissipative effect
from harmonic bath is effectively contained in both normal and anomalous damping
kennel while the dissipative effect from X degree of freedom of a vortex is effectively
contained in anomalous damping kernel only.

4.4 THE ESCAPE RATE FORMULA OF A VORTEX
this section we will study the behavior of a vortex escaping out of the metastable

potential v(y) of the form depicted in fig. 4.3. The quantity which will be used to study
this behavior is the escape rate k which has been discussed in section 4.2. The escape
rate formula is divided into two regions, T <TOand T >T0. From eqs. (4.16) and (4.17) 1
it is clear that these formulae can be obtained if one knows the free energy. Since the
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escape process occurs in Y direction only, the free energy which we have to calculate
must be related, by the relation in eq. (2.3), with the effective one-dimensional reduced
partition function (a.43). Now, our problem is hinging on evaluating the functional integral
N eq. 4.43). As mentioned in section 4.2, weak metastability requires that the barrier
height Vbobeys eq. a.12). Hence, the functional integral (a.43) can be evaluated in the
“semiclassical approximation” since the dominant contributions come from the region in
function space around the stationary points of action. From eqs. (a.42), when substituting
eg. (a2n) for K°T- 1y in eq. 42 and using the variational principle ie.,
‘aP>6] = 0, one can see that the classical path y(r) obeys the equation of motion

M tegO0(r-T k- Ne(r)-y¢ - =0 (44

with the periodic boundary condition _ye(o) = yC{U)-

the absence of dissipation (from hoth harmonic bath and Xdegree of freedom)
ie, g(r) =k(r)=0 leq. (4.44) describes the motion the inverted potential ~V[y). Itis
clear from the inspection of fig. 4.4 that there are three solutions for yO(T) where the
periodic boundary condition is concerned. First, the trivial periodic solution 7r)=yh,
where the particle sits just in the minimum of the inverted potential, second, another trivial
periodic solutiony Q(r)= 0 where the particle sits at the maximum of the inverted potential,
third, the periodic solution y(r)=YB(r) bouncing back and forth in the potential well of
the inverted potential. For this reason, this trajectory is frequently called the “bounce”
However, the bounce trajectory YB(r) can only occur when the temperature is low
enough, so that the period = (3nis long enough to admit a bounce solution Yy BYr).
the absence of dissipation, the smallest period that admits a bounce solution must be
equal to the period of small oscillation about yhin the inverted potential ie, =2 (o .
We denote the corresponding temperature to this period by T0so ro = hoebl2Tckii.  the
presence of dissipation, it is clear from eq. (4.44) that the trivial solutions y¢{r)- 0 ancl
}e(T) =} are not effected by dissipation since the nonlocal term (the third term of eg.
(4.44) is equal to zero while the bounce solution is affected by dissipation described by
the nonlocal term.
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Itis now important that the action B =-Sd.[)/g] of the bounce is smaller than the
action (3nVhof the trivial path y¢{T) =Fh- Hence below T0, the functional integral (a.a3) is
dominated by the bounce and from eqs. (4.4s) and a.e1y one can conclude that TO here
is the temperature where the change of dominating mechanism of the escape process
from thermal activation to quantum tunneling is roughly to occurs. This means that (as
mentioned in section 4.2y TO here, which is the temperature where the bounce trajectory
begins to be the dominant path of the functional integral (s.43), is the crossover
temperature.  the presence of dissipation, one may guess that the smallest period that
admits a bounce solution must be greater than 2n/coh because the particle dissipates its
energy while bouncing back and forth in the well. So, in the presence of dissipation, one
can think as if there is no dissipation but (Jk, instead, decrease which implies that the
crossover temperature should be decreased in the presence of dissipation. We will
discuss about the crossover temperature in more details in section 4.5. For T <7, the
escape rate can be written as riej, [3e]

K = /qmexp ("ﬁt) (4.45)
where |/ is the quantum-mechanical prefacter

Note that 1'g will be calculated if one knows the bounce trajectory Y Br). From
eq. (4.44), one can see that YB{]) IS the solution of the nonlingar integro-differential
equation with periodic boundary condition which is very difficult to solve. Ithink that, now,
no one can completely determine the action  B. By this reason, we will deal with the
escape rate in the region where T >7], (the quantum correction region, see fig. 4.s) which
the exact expression can be found. Although we are interested in the case of T> |1
where the escape process is dominated by thermally activation, the tunneling behavior of
a vortex can be roughly known from the quantum correction factor (it will be discussed
later). Now, we will calculate the escape rate in the temperature region T >7],. As | have
discussed above, since yc(r) for T> TO consists of two constant paths y x 1)~ 0 and
yXT)- Pb’the functional integral (4.43) can be written as

*Z?'I'Zr: |+ A (4.46)

\"
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where

29 = prjexp(- "0ly]h) (4.47)
and

Y-T=<drexp(- * *[P) (449)
where 1t )] and st [)] are the semiclassical effective action about Yy =0 and
y =y respectively.

order to evaluate the path integrations (4.47) and (4.48), it is again convenient to

use the Fourier series method. By this reason, we should first find the effective action
Mi> and {7 interms of, the Fourier coefficient Y n. When substituting eq. (4.27)
for A(jr-r'l) ineq. (442) and using eqs. (4.28), (4.30) and (4.39), after using the

orthogonality relation jV “t "0t = smllwe obtain

siCV)~ s P rygeh 49

Mv~n +Mco~ +£1
From egs. (4.28) and (3.67), one can see that £1 must be related with the Laplace

transform of the retarded friction (see egs. (3.45) and (3.60)) by
Zn=Mk |r(k|) (4'5°)
Substituting eq. (4.50) for £n'in eq. (4.49), we get

SAY)=ATK Ny A W{>¥r A=y +kk, (k) (45

where

Yu (x)=y(x) %3y
Note that Ym(X), where the subscript M on vm denotes the abbreviated name of
Magnus force, reduces to y(x) when the Magnus force is absent ie, Ym Y as
Q —0.From eq. (4.51), develop v(y) ina Taylor series around y =0 and y =yband
keep only the first and second terms of the series, we then get the semiclassical action in
the form (see Appendix C)

ST AYHM uflyy A=V + ~ (v) @)
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and
B'h]=nu+ Aty +Muj*y\-X=vi-0>T+v.fM 54

Now, we will divide the situations into two cases, (0X* 0 and X =0.
Case 1(0x* o):

This is the case where we have the pinning potential X direction.  this case, I
is clear from eq. (4.52) that VOyML(v0) =0 which implies that 't =col and  =-(ol.
When inserting eq. (4.53) into eq. (4.47) and using the functional measure (4.26) (here the
variable Xnmust be replaced by y 1), we obtain, after some integration procedures similar
to eq. (B.3) in Appendix Bwhen Q=0 and VLis replaced by )1the reduced partition
function Zj'!in the form

7 (d 0 o s WO
rof = ™1 (459)

Similarly, when inserting eq. (4.54) into eq. (4.48), Zjh) can be written as

<t = zrl:fthVny (be ) ol (4.56)

From eq. (4.56), it is suprising that the divergent integral over >7 appears. K appears
since 4*1=-col 's “negative”. The divergence is related to the fact that the action for the
trajectory yc{T)- Zt is a saddle point in function space with the unstable direction along
>, fact, this should not be a surprise since we are trying to evaluate the free energy of
an unstable system. Langer [29] was the first who explained that the functional integral
can still be defined by distorting the integration contour of the variable >0 into the upper
half of the complex plane along the direction of steepest descent. This leads to a positive

imaginary part of the quantity Zjh) in the form
f@ 2X

O \eeriMy
From eg. (4.12), itis clear that &~ is an exponentially small factor which is contained i
Z*)). Flence, eq. (4.46) can be written, by a negligible error, in the form

ImZ<t) = ) (4.57)
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14
7 =2 (456)

From eq. (2.3), the free energy must be related with the reduced partition function Zd by
F =-(I/p)\ Zd. When inserting Zdfrom eq. (4.58) into this expression, we obtain

f=-Wnzr-bf
Since z*"1is real, see eq. (4.55), the imaginary part of the free energy expressed above
can be written as

I = ) hmZ:§) (4.59)
Inserting eqs. (4.57) and (4.55) into eq. 459 ), we get

ImF = — @3 A ; (4,60)

Now, insert eq. (4.60) into eq. (4.17), we then get the escape rate formula of a vortex in the
form

ﬁ]i gl (461;
where the factor
; Ropo i 48

describes the effect of recrossings of the barrier top in the moderate to large damping
region and the quantum-mechanical enhancement factor or quantum correction factor

A TV O +vniMv ) (4.63)
g ~m N _ =y -a>] +vnf M(v,)

describes the quantum effect on escape process. The leading quantum corrections have
a rather simple origin. The escape is enhanced in two different ways by quantum
fluctuations. First, they increase the average energy in the well. Second, when a particle is
thermally excited almost to the barrier top, they allow for tunneling through the remaining
small barrier. Both effects lead to an effective reduction of the barrier. Note that in the
classical limit (r » T0), where the factor cqnapproaches unity the escape rate formula
(4.61) reduces to the classical escape rate formula. The dissipation effect on the rate is
contained in the frequency cor which is related with the crossover temperature 7', by
JR = (2nkBIii)TO (it will be discussed in more detail in section 4.5).
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Case 2(0x =0):
This is the case where we have no pinning potential in x direction.  this case, it
IS clear from eqs. (4.52), (4.50) and (4.28) that

KrufK)= 2 +eMmju(()('da *0
which imply, by eqgs. (4.53) and (4.54), that

£'=0;+02 lte feoj(lrdo (;
and

t ]=-a FRATIILI )V

Now, in this case, we will “assume” that A*1=-( 7, <0 (the case where A*>0
will be discussed in section 4.7) where

Oy (0 >0
Ly, o

Here the subscript M on (w and ( M denotes the abbreviated name of Magnus force.
Based on this assumption, following the same procedure in easel, we finally get the
escape rate formula of a vortex, denoted by K for this case, in the form

(4.64)

K=" e (4.65)

where p is defined here, by analogy with P in the rate expression (4.61) in case 1where
X~ 0, by

p- Om(°R (4.66)

Now, we have two escape rate formulae of a vortex corresponding to two cases,
K for ()x* 0 and K for 0x=0.  hoth cases, the quantum effect on escape process
IS contained in quantum correction factor cgn. On the other hand, for @X 0, the factor
P contains the effects implicitly from both environment (characterized by y (( )or ) and
« degree of freedom of a vortex (characterized by Magnus force described by Q) via
aR (See eqs. (4.52) and (4.70)) while, for G)x=0, both effects are contained implicitly in
p via GRand are also contained explicitly in p via @M and (0cM.
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45 CROSSOVER TEMPERATURE AND ITS IMPORTANT THEOREMS

From fig. 4.4, it is clear that, slightly below TO, the bounce trajectory is just
represented by a harmonic oscillator about yh with the frequency
OR=2 /[ 1=2 ; - ZMBT0:h. Hence the bounce YB(r) can be written as

yB(r)=yh+sc Os((Ort) (4.67)
where £ is an infinitesimal amplitude i.e.,0(f2)= 0. From eqs. (4.28) and (4.39), it is easy

to show that
cin - _ M<o; +4,,
- (AZom 4, * fAn+OX+EL MAE (459
substituting y Br) from eq. (4.67) for yc{r) ineq. (4.44) and using eqs. (4.50) and (4.68)
(when s replaced by 0), one can lingarize the equation of motion (4.44), since
0(<c:)= 0, and get (see Appendix )

KA\ +V{yB) +MQr MO} al(‘j'(g(ﬂry(ﬁ)( A BR) =0
(459)

When equating the quantity in { }with zero and substituting -M(U\ for V (yh), we get

Mr HOrYs{(Or)=(d (4.70)
where Sl has already been defined in eq. (4.52)

Since GR relates with crossover temperature T0 by (R- 2nkBTO/h 170 can be
obtained via cor Which is the solution of eq. (4.70).  general, the solution of eq. (4.70)
should be more than one. But in the physical situation, the crossover temperature, which
we confine it to have only positive value i, TO> 0 (since the absolute temperature must
be greater than zero), should have only one or equivalently the positive solution of eq.
(4.70) ie, @R where ©R>0 should be unique. This comes from the fact that the
crossover temperature is the temperature where the change of dominating mechanism of
the escape process from thermal activation to quantum tunneling is roughly to occur, and
once this change has occurred it should not reoccur again. Another interesting question is
that “is it possible that the crossover temperature does not exist, or equivalently is it
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possible that eq. (4.70) has  solution?”To prove about the uniqueness of the solution of
eq. (4.70) and to answer this question, we should consider the following theorems.
However, before considering these theorems, Ihad to construct two lemmas as follows:
Lemma 1 Let f :RO(=[0,cc))->R be the continuous increasing function. Let 7GR be
any constant. Then 3!(thereexists a unique)x0 GROsuch that x2 +/ (10)=a ifand only
if lim/(.v)<<T.
Proof.

Let g(x)=a- X2. Then X0 must obey the relation g(x0)=f (*0). Itis clear that
g(x) is a continuous decreasing function on R{ which has the maximum value equal to
a at x=0. Suppose that lim/ (x) >a.Since / (x) is a continuous increasing function
on RO,g-(N™/ (x)Vxg RO(see fig. 4.6). This statement equivalents to 3x0g R0 such
that g(x0)=/ (x0)=>lim/ (x) <a . Claim that 3x0< RO such that g(x0) =/ (x0)=>x(
is unique. Let X and X, obey the equation QfX)~/ (x). Then <7-x2=/ (x,) and
<7-x2=/ (x2) which imply that X2-X2 / (2 )~f(X\)- s clear that if X ~ x21then
we always get the contradiction since / (x) is a continuous increasing function on RO.
S0, we have the claim. Hence, 3!x0< RO such that £(*0)=/(*0) [/ (x)<a.

Now, suppose that lim /(x)<a. Since / (x) is a continuous increasing function

on ROJim/ (x)<a=>3x0GRO such that g(x0)=/ (x0)=>3!x. < RO such that
g(xo)="f(xa) (see fig 4.6).

/
i Y

0 Xy

Fig. 4.6 : Intersection between the increasing and decreasing function.
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Lemma 2. x™A/(x)is a continuous increasing function on R*,
Proof,
From eqs. (4.28) and (4.50), |t is clear that Xy )can be written as

-l

the physical point of view, any integrations over (Dconcerning the spectral function
j{co) are always the convergent integrals which imply that Xy(X) ineq. (4.71)is a
continuous function which imply again, from eq. (4.52), that Xyhf(x) is a continuous
function. Next, from eq. (4.71), itis easy to show that
c(zljx W 4x T oof(co) 47

and
Q2 2VO)'2 4X f 0-> r-dco

d 2X2 cof{co 2)2
v o VXeR; (473
ox o+ @+ xy(x l I

Y X2+(I)2’ W

From eqs. (4.72), (4.73), and (4.52), ecan conclude that
—%((x;/w(x))> 0 VxGR( (equality hold at X=0 only)  (4.74)

Now let us consider the following theorems.
Theorem 1 (Uniqueness). If G)x 0, then the unique crossover temperature TO always

exists.
Proof.
From eq. (4.70), TOcan be obtained via GRwhere GR is the positive root of the

equation x2 +XyM(x)- G2. From eq. (4.52), itis clear that lim XyMx) = 0<a>l. Now,
from lemmas 1 and 2, we have the theorem.

0
Theorem 2 (Non-existence). If cox =04 then the criterion for the non-existence of

crossover temperature T0 is given by Q  1+(2 M")|J{ (o >a>l. If this

criterion is violated, then the unique crossover temperature TO still exists.
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Proof.
From eq. (452), it is clear that limxyM(x)= O rj 1+ (2/Mt}J (co)/"2x)
Now, from lemmas 1and 2,
or, 1+ Mic)j(co) (QI0) > ool =>X24 xyMx) * @ vx € R*
This means that there exists (r)10 or Or equivalently 7), within this criterion. On the other

hand, if this criterion is violated ie, n:/ +(2/M7r)jj(co) (0'dd) <O)1 then, from
0

lemmas 1and 2, 3'x0 GRY such that X2+ x,,7d (a1) = cdl which means that there exists
the unique (oR or equivalently T,.

Now, we can conclude in this section that the crossover temperature can be
obtained via (oR which is the only one positive root of eq. (4.70). Moreover, from theorems
Land 2, we found that the pinning potential in X direction characterizing by ( 1is a very
important quantity because if (0X* o 2then the crossover temperature always exists but if
01:0 1then there exists no crossover temperature for the strong enough Magnus force
characterized by Q (see the non-existence criterion in theorem 2).  other words, if we
have the pinning potential in X direction, then the change of dominating mechanism of the
escape process from thermal activation to quantum tunneling will occur at some
temperature, which is called crossover temperature. On the other hand, if we don't have
that pinning potential in X direction, this change will not occur because of the strong
enough-Magnus force. From theorem 2, it is worth to note that the dissipation
characterized by spectral function d(c0) tends to suppress the Magnus force within the
sense of the non-existence criterion.

4.6 DISSIPATION AND MAGNUS FORCE EFFECTS ON THE CROSSOVER
TEMPERATURE

Since the crossover temperature is the temperature where the change of

dominating mechanism of the escape process from thermal activation to quantum
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tunneling is roughly to occur, one of the interesting questions is that how this transition
depends on dissipation and the Magnus force strength provided that the crossover
temperature exist. At first sight, one may guess that if the dissipation or Magnus force
strength increases, then the smallest period that admit a bounce solution will increase
which implies that the crossover temperature will decrease. This guess, however, is not
totally right. To investigate about the dependence of dissipation and the Magnus force on
crossover temperature or equivalently R, we should first make a reasonable assumption
that the spectral function can be written in the form J( )-  {(0) where is the only one
parameter characterizing the dissipation strength and | ( ) is any function depends on
specific damping model. There are many examples of spectral function, as discussed
the end of section 3.6, corresponding to this form such as eq. (3.89) for the Ohmic
damping case, eq. (3.90) for the Drude-reqularized damping case, and eq. (3.91) for more
general damping case. Now, based on this assumption, eg. (4.70) can be written as

+ OOy, (®«)+ % % Z;Y’/y"Rf W" j ﬁd (A.15)

°R +<0; + <0R71/K R)/ ..........
From eq. (4.75), we can define R as an implicit function of ] When |mpl|(:|t|y

differentiating both side of eq. (4.75) with respect to  (denoted by the symbol “ * ), we
get
(1t 5+ Ru(R) R 1(1+] LA R)
te + RinM ) +q:
te +<°l+ (09 M 11

(4.76)
Itis easy to show that
te +ria>KrvM ) = K 2(0R+?7/\ te r,K )) + O>ryM r) (4-77)

Inserting eq. (4.77) into eq. (4.76) and using the fact that, from eq. (4.75),
or {1+ 1+ ]reafry= - 1-] kya( R)Iwe obtain

<1 20)rt+ £ " (vrY M r)) 2te +77®Ry ,K ))+ te -~ 2)]+20;Rn2]|

= -<yRY (BR)i2¢« + aRM@«)+te - (0l)
(4.78)
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From eq. (4.78) itis clear that if 0X> 10e2 then GR<OV ] € Rasince GR>0,y (00 )> 0
(see eq. (4.75)), and d(coRy2oR))/d( R>0 (See eq. (4.71)) forall > 0. other words,
GR is a decreasing function of ] on Rp if QX >(oh. On the other hand, if G <cob, then
@R has the relative extremum at - 70defined by the relation @R(%,)=0. Itis clear form
eq. (4.78) that the points 7, can be found by solving the transcendental equation
1- 00 =2(cd + OrY1aR)

or equivalently(by using eq. (4.75))
o +to;293|2ngyn(a)K) 479
where (o= - cox(11) can be obtained via eq. (4.75) when 7 is replaced by ju

Although those relative extremum of GR appear when X <COh,COR is always a
decreasing function of ] for large ] limit This comes from the fact that, for |» 0 eg.
(4.75) is approximately reduced to  JoRyi(R)=cd which implies that
@R = -coRyn(oR)/ JdcoRy (eR))/dcoR <0 V77 By using eq. (4.72), the definition of y1
ineq. (4.75), and the fact that coll—0' as | —.. (see eq. (4.75)), this inequality tells U
that @R—0~ as #—>x . Notice that when (OX<(On. (OXcan be either zero or non-zero,
If it is not equal to zero, then nothing we have to worry about but if @X=0, then the
dissipation strength | may be restricted by the criterion for the non-gxistence of crossover

col +col =

.
temperature i.e., Q/ 14 J2'Mn)?j(co)tco'dco > al . From this criterion, itis clear that
L 0

the restriction on ] appears when Q > adonly, because the criterion is violated for all ]
if D<cob. If D>cob, then | must be restricted in the range {]cx>), where ]0>0

£

{]c=0when D =0)bonly) obeys the equation QZ/ {1 +n, M) jo) wdo |= ;.

0

since, for ] < ]0, the criterion is fulfilled which impligs that the crossover temperature is
not exist. Moreover, from eg. (4.75), it is clear that @R —0+as ]-» *0and from eg.
(4.79) (with (0X=0), one can prove that 30> ]0(see Appendix E).

From all of the above results, since the crossover temperature T0 is proportional to
@Ruthe graph between TO( 1)/T0{]1=0), in the case where WL AQ and QX =0 with the
condition D<cob.and dissipation strength = can be generally depicted in fig. 4.7 and
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the graph between 77(z)(it can not be normalized since TO( = C)- o) and dissipation
strength  can be generally depicted infig. 4.8 as follows:

To>Nmo( = 0)
A

0<w, <w,orew, =0(Q<w,)

0 o 1}
Fig. 4.7 - The nomalized crossover temperature TO[d)/TO( - o) is shown for general

damping as a function of dissipation strength 7 in the case where G &0
and o= 0 with the condition n < a%.

Fig. 4.8 - The crossover temperature TO( ) is shown for general damping as a function
of dissipation strength in the case where Q= o with the condition Q > ah.

Ftowever, we do not prove here whether there exists the points 0 obtained from
eg. (4.79) or not and if they exist, we don't know that they are the points corresponding to
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the maximum or minimum of ( R1and also do not prove whether these points are only one
or not. Moreover, we can not prove by the use of eq. (4.78) that what the value of @R
when z—>0 or »—Xifcis By this reason, the graph in fig. 4.8 and the graph in fig. 4.7
corresponding to the case where 0 <ax <( hor ax=0 with the condition < ( h'is not
completely used. However, they are completely used if one can prove that there exists a
unique //,Lwhich is the positive root of eq. (4.79).

Similar to the technique used for the variable .., if we define (oR as an implicit
function of (it characterizes the Magnus force strength) via eq. (4.75), we also get

10 - ~d-fa Cu ) Rfe +(Or0{ur ) [c°1 - Oil)+ 2y 2 Z%Aa'

(4.80)

where ('R here denotes the differentiation of (oR with respect to
From eq. (4.80), by the same reasons in previous case, it is clear that if 9x>( h,
then (‘R<OVQe R|j which imply that ( R is a decreasing function of  on Ry but, for
( x<('h,itis not sure whether ('R<0or not. However, we can still prove that (R is
always less than or equal to zero by considering eq. (4.80) as foil : suppose that there
exists set ¢ R*such that (R>0Vfi€ . Since, from eq. (4.75), we know that
ooRy((R)~ (1 1-0.4 1A 1+( 1+0)RY((R)) and Qlor (b as Qoo
which imply by the use of eq. (4.80) that ('R—X0" as Q —Xooor Q —Xcr , there exists at
least e(0,0¢)such that ('RnjI)= r\(Qj.:,)= 0 but, from eq. (4.80), (R- 0 at
Q=0 only. This leads to the contradiction and hence (R<ovn ¢ R) (the equality hold
at =0 only). Moreover, form eq. (4.75), itis clear that ( R-X 0+as Q -> oo. As in the
previous case of variable -7, if (v=0, then the Magnus force strength Q must be
restricted in the range [0,QQ by the criterion for the non-existence of crossover

temperature where Qc obeys the equation .+ J()('da =au
0

Moreover, from eq. (4.75), it is clear that aR—X0+ as —X . By the same proof
mentioned in the previous case of variable 77, since aR—X0" as  —X0+and aR—X0+
as X “lwe can conclude that aR<0VQe (o, 6) and aR=0 at =0.
Unfortunately, we can not prove by the use of eq. (4.80) that what is the value of aR when
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—>Q~ since the right hand side and { } in the left hand side of eq. (4.80) are hoth
equal to zero.

From the above discussion, since the crossover temperature T{ is proportional to

or . the graph between TO(Q)/TO(n = 0)and the Magnus force strength Q can be
generally depicted infigs. 4.9 and 4.10 as follows:

L 70 (Q)/ 75 (Q=0)

) -

0 Q
Fig. 4.9 : The normalized crossover temperature TO(n)/T)(o = o) is shown for general
damping as a function of Magnus force strength Q in the case where QX* 0.
" T,(Q)/7,(2=0)

>
0 Q Q

Fig. 4.10 : The normalized crossover temperature 7a(Q)/70(Q = 0) is shown for general
damping as a function of Magnus force strength Q in the case where coa= o.
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From figs. (4.7), (4.8), (4.9), and (4.10), we can conclude in this section that the
parameter QXcharacterizing the pinning potential in Xdirection may affect the
onotonically decreasing behavior of Tnon dissipation strength when ( X <coh only while
it can not affect this behavior of 7j, on dissipation strength when @ > ah and Magnus
force strength for all value of . When ( X- 0, these behaviors still unchanged but, due
to the criterion for the non-existence of 7), Lthe dissipation strength is restricted by the
lower bound 7]. >0 if fit> (oh while the Magnus fore strength is always restricted by the
upper bound Q1>0. Moreover, when looking at the whole trend of these behaviors, one
can conclude that if the dissipation or Magnus force strength is stronger, then the region
of the temperature where the decay is dominated by quantum tunneling is thinner which
imply that the temperature region where the decay is dominated by thermally activation is
broader. Note that if the dissipation or Magnus force strength go to infinity, then the decay
is totally dominated by thermal activation.

4.7 LOCALIZATION OF A VORTEX
From previous section, it has been known that, for QX T 0, the quantum tunneling

always occurs since the crossover temperature always exists. This means that a vortex is
not localized in the well for T<Tu i, it escapes out of metastable well by quantum
tunneling mechanism describing by the escape rate formula (4.45). Moreover, for GX* 0
and T>TA, a vortex also escapes out of a metastable well dominated by thermally
activated decay mechanism described by the escape rate formula (4.61). Hence in the
case where (0X* 0, a vortex is not localized in the well for the whole range of
temperature. On the other hand, for X =0, it the Magnus force characterized by Q is
strong enough so that it fulfills the criterion in theorem 2, then the crossover temperature
does not exist which implies that a vortex can not escape out of the well by quantum
tunneling mechanism. One can guess at first sight that a vortex can escape out of the well
by thermal activation mechanism for the whole temperate range. This guess is false! It
comes from the fact that if the criterion in theorem 2 is fulfilled, then the assumption in eq.
(4.64) is wrong which implies that there is no divergent integral in the reduced partition
function z” (see eq. (4.56), because z(® is now positive, and then make z~ finite and
real. The finite value of reduced partition function zff) implies that the reduced partition
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function Zd- z f]+ Zdy) (see eq. (4.46)) is also finite since Zd) is finite (See eq. (4.55)).
The finite value of reduced partition function Zd indicates that a vortex must be localized
in the well. Since this conclusion of the localization of a vortex has no restriction on
temperature, this conclusion must be true for the whole range of temperature. However, for
ax =0, if the Magnus force is not strong enough so that the non-existence criterion in
theorem 2 is violated, then a vortex is not localized in the well, as the assumption (4.64) is
fulfilled so IS negative, i.e., it can escape out of the well by both quantum tunneling
and thermal hopping but, in this case where QX :0, we have to use the escape rate
formula (4.65), instead of (4.61), for T > 7.,

Now, let us summarize this section. f vt 0, then a vortex is not always
localized in the well at any temperature. On the other hand, if x=0 then the localization
criterion at any temperature, which is the same as the criterion for the non-existence of
crossover temperature, is in the form

Q° -.
N j/(“) — >0 (4.81)

Mn
Recall the definition of D. from eq. (4.11).  the cas of a vortex in superconductor, this

criterion can be written in the form

~(odi2) _fr (482)

M + 2 I /((i))a'a)
Ty @

dw

It 1s worthwhile to point out that according to eq. (4.82) a large Magnus force inhibits
vortex escaping while a large vortex mass favors vortex escaping. Note that when the
dissipation is absent i.., 0, the formula (4.82) reduces to the localization criterion
in the case of no pinning and dissipation at zero temperature given by P.Ao and
D.J.Thouless [19].

48 EFFECTIVE MASS OF A VORTEX AND ITS INTERPRETATION
From eq. (4.81), the localization criterion in the absence of dissipation can be

written as

W9 ) (489
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where MO is the mass independent parameter e.g., MO =hpsd/2 for a vortex in
superconduction (see eq. (4.11)). Comparing eq. (4.83) with eq. (4.81), in the presence of
dissipation, we can define the “effective mass’ of a vortex M * in the sense of localization
criterion by

. 2 tJ()
— A/ + — 3 '
M =M += j o (4.84)

so that the localization criterion (4.81) can be written as

MQ) .
o > |/ ()_,,) (485)

Comparing eq. (4.85) with eq. (4.83), the effective mass of a vortex can be
described as follows: a vortex in contact with the environment which is localized in the
pinning potential for sufficiently strong Magnus force behaves as if it is effectively not in
contact with the environment any more but Its mass must be effectively changed to fhe
new bigger one called effective mass. This effective mass is equal to the original mass
plus the extra mass originated from the environment since it depends on the spectral
function.  other words, when a vortex in contact with the environment decides to escape
out of the pinning potential, it behaves as if it is effectively free from the environment but its
original mass must be changed to the effective one. Note that this extra mass (second
term in the right hand side of eq. (4.84) is proportional to the effective mass of a vortex
given by J.H.Han, P.Ao, and X.M.Zhu[18].

It is worth to note that since our definition of the effective mass of a vortex does not
come directly from the dynamical approach (it is defined via the localization criterion), we
don't know whether the coordinate of an effectively undamped vortex (a vortex which is
effectively free from the environment) of mass M * is identical with the coordinate f of the
original damped vortex or not. However, some conclusions can he made by first
introducing new coordinates ga and new masses pa for the bath oscillator [39)],

., _m0%g,

7 _
(4.86)
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From eq. (4.86), the Hamiltonian (4.7) can be written as

- N2 : ] & o7 SN
e W‘P_(I"A(r) +1 (r)+ EUZ;‘/UU [‘l(,\ + @), ](/U -F (487)
We can see that the model Hamiltonian (4.7), in fact, describes a vortex of mass M with
many masses f|a affected with springs to its coordinate 7. With the substitution (4.86)

the spectral function of the environmental coupling ./(<y), which has been defined in eq.
(3.62), take the form [16]

J(H=\ M (@ (4.88)
From eq. (4.88), it is clear that the total mass attached with springs to vortex’s coordinate
[ can be written as

i//” = ;I—/—(ﬂ) do (4.89)

Ao

From this point of view, from eqs. (4.87) and (4.89), our effective mass M " of vortex (4.84)
is, in fact, equal to the total mass of the system which is composed of a vortex of mass M

with many masses -1 attached with springs to its coordinate. Since, our problem is in the
infinite two dimensional plane and the whole system (vortex plus environment) is in the
thermal equilibrium, the environment will move randomly in such a way that the average of
the center of mass coordinate of the system described by Hamiltonian (4.87) coincide with
the average of the coordinate of a vortex at all time. Hence, the center of mass itself can
be viewed as a vortex since it feels the Magnus force. By this reason, the whole system
can be viewed as one undamped vortex, which has its mass equals to the total mass of
the system, described by the center of mass coordinate. Since this vortex is an undamped
vortex, the localization criterion which we have to use for this undamped vortex is the
localization criterion (4.83). This localization criterion is now identical with the criterion
(4.85) since the mass of this undamped vortex is equal to the mass of the whole system
which is equal to our effective mass of vortex. By the above discussion, one can conclude
that the damped vortex of mass M can be effectively viewed as an undamped vortex of
mass M ‘within the sense of the localization criterion, and the coordinate of the
undamped vortex is identical to the coordinate of an original damped vortex which is also
identical to the center of mass coordinate of the system described by Hamiltonian (4.87)
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(this Hamiltonian actually describes our original problem since the physical behavior is
independent of the choice of coordinate one used). However, if the system is confined in
the “finite plane”, then this conclusion will be true only for the case of sufficiently weak

environmental coupling so that I‘X « M. This come from the fact that when
=1

« M 1the center of mass coordinates of the system will approximately coincide

with the original coordinates of a damped vortex, even when a vortex is located near the
edges of the plane.
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