
C H A PTER  IV
APPLICATION OF QUANTUM  BROW NIAN MOTION  

ON A VO RTEX ESCA PIN G  O UT OF  
A M ETASTABLE POTENTIAL

4.1 MAGNUS FORCE ON VORTEX AND HAMILTONIAN OF THE PROBLEM
"Magnus force" or sometimes called “lift force" has been discovered for a very long 

time ago within the domain of classical hydrodynamics. This force occurs and acts on a 
body when a body with a flow circulation around it moves through a fluid (Kutta-Joukowski 
theorem). For example, when rotating the cylinder clockwise in the fluid which initially has 
a uniform flow from left to right, the cylinder then feels the Magnus force acts in the 
upward direction (see fig. 4.1). This comes from the fact that the velocity at the top is 
greater than at the bottom of the cylinder which implies due to the Bernoulli's equation that 
the pressure at the top is lesser than at the bottom of the cylinder which again implies that 
the force acting at the top is lesser than at the bottom and the net force is in the upward 
direction because of the symmetry of the cylinder.
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Fig. 4.1 : Magnus force on the rotating cylinder (see ref. [25]).
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Fig. 4.2 : The vortex flow which its center called a “vortex" (see ref. [25]).

From classical hydrodynamics, this force can be computed exactly by various 
methods such as the method using theorem of Blasius [22], The Magnus force per unit 
length of a cylinder can be written in the form

Fu = pKxV (4.1)
where p  is the fluid density, V  is the velocity of the cylinder relative to the (uniform flow) 
velocity of the fluid, and K  is the circulation vector of magnitude K,

K  =  i v . d l  (4.2)

1where V is the velocity field of the fluid and c  is any close path containing the cylinder, 
directed parallel to the axis that is perpendicular to the plane of flow with the right-hand 
rule.

“Vortex" in classical hydrodynamics is defined as a center of the vortex flow 
defining as the flow that each stream line has a symmetry about the center i.e., the fluid 
flows in a circular path with its speed  depending only on the distance from the center (see 
fig. 4.2). Moreover, if the flow is irrotation (as assumed in this section), the speed  of the 
fluid must be proportional to 1.//• where /• is the distance from the vortex. เท real nature, 
the vortex is not exactly a point but it forms the “core" of some radius. This core radius is
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of the order of distance V at which the speed is of the order of the sound velocity. From 
fig. 4.2, one can think that the vortex flow is similar to the flow around the cylinder which 
has the radius close to zero and the vortex line (the line which has the vorticity (v  X v) as 
its tangent vector) it self is similar to this zero radius cylinder. From eq. (4.1 ), one can see 
that the Magnus force on the cylinder is independent of its radius. By these reasons, one 
may ask the question: can the vortex or vortex line feel the Magnus force of the form in eq. 
(4.1) if it moves through a fluid like in the case of cylinder in fig. 4.1? The answer is that it 
does provided that it can actually move through a fluid or, เท other words, move with 
respect to the fluid. For the perfect fluid (incompressible, invicid, and barotropic fluid) เท a 
conservative force field such as gravity, the Flelmholtz vortex equation [23] and Kelvin’s 
circulation theorem [23] tell us that if the two dimensional flows which initially have the 
vortex at some points, then the vorticity at those points will remain the same as they flow in 
the course of time and they also move with the same velocity of the uniform flow (velocity 
far away from these vortices). เท other words, the vortex lines in a perfect fluid move with 
the fluid or are “frozen" into the fluid if the fluid is in a conservative force field. Flence, in 
our case of irrotational vortex flow (we have only one vortex line which is the straight line 
perpendicular to the flow plane which passes through the center of the vortex flow), It it IS 

in the conservative force fields, then the vortex line moves with the fluid which implies that 
the relative velocity between vortex and fluid must be equal to zero and so, from eq. (4.1), 
the Magnus force on a vortex does not appear. Flowever, the non conservative forces 
usually arise in the real nature such as the friction so one can guess that the vortex in real 
nature should feel the Magnus force. The derivation of Magnus force on vortex, without 
using the analogy of vortex line with rotating cylinder as we have discussed above, has 
been shown excellently by Sonin [24], His idea is that he supposes the vortex to move with 
constant velocity, which is not equal to the velocity of the uniform flow, by the influences of 
some external forces acting on the vortex line. เท order to keep the vortex in a motion 
which has constant velocity, he found that the resultant external force per unit length of a 
vortex line must be in balance with the force which is in the same form of the Magnus 
force, eq. (4.1). From this derivation, one can conclude that the vortex, once moving with 
respect to the fluid, must feel the Magnus force of the form in eq. (4.1).
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The vortex can also occur in both superfluids and superconductors. The main 
difference between these vortices and vortex in plain fluid is that the circulation in the case 
of superfluids or superconductors is, instead of being continuous as in plain fluid, 
quantized and taking the values of [25]

K = i v - d f  = —  ;« = 0,1,2,... (4.3)
'  m

where m  is the atomic mass, and h  is the Plank’s constant. The first experiment to 
demonstrate that circulation is quantized in superfluid (He II) was that of Vinen (1961). 
There is a close similarity between vortices in superfluids and super conductors: in both 
cases they consist of particle currents circulation round a cylindrical core. On the other 
hand, there are important distinctions to be drawn, the most obvious one is that vortices in 
superconductors are coupled to the applied magnetic field, whereas a magnetic field has 
no influence on superfluid vortices. Note that the vortices in superfluid are very easily 
formed e.g., by rotating a cylindrical bucket containing He II, one vortex can be created 
by the rotation which only has the angular velocity of the order 1 o'3 sec’1 [25].

By analogy with the Magnus force in classical hydrodynamics, one may expect 
that a vortex in both superfluids and superconductors should also feel the Magnus force 
which is of the form in eq. (4.1 ) provided that the magnitude of circulation vector obeys the 
quantization rule (4.3). Although this above conclusion about the Magnus force on vortex 
in superfluids and superconductors is made by the analogy with the Magnus force in 
classical hydrodynamics, the Magnus force on vortex in superfluids and superconductors 
which is in the form as in eq. (4.1), has been derived based on quantum theory by many 
authors [26], [27], Moreover, the experimental point of view of the Magnus force has been 
described in many papers such as in ref. [30]. เท real nature such as in rotating He II, it 
contains a regular array of vortex lines all having the smallest possible circulation h / m  

(which implies that the total number of lines at that instant is at maximum) because the 
circulation must occur in such a way that it minimizes the free energy [25]. So, in the real 
nature situation, when inserting eq. (4.43), taken พ = 1, into eq. (4.1), we obtain the 
Magnus force acting on a vortex line in superfluid in the form

F u  = q v p s h d z x ( r - v J (4.4)
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where qv -  + l( -1 )  stands for the vorticity paralle ling (antiparalleling) to the unit vector z 
เท the z  direction, p s is the superflu id atom number density, r is the vortex velocity in two 

d im ensions { x - y  plane). vs is the uniform superfluid ve locity (velocity of superflu id far 

from vortex), and d  is the thickness of the sam ple (it is equal to the length of a vortex 

line). Sim ilarly, the M agnus force acting on a vortex line in superconductor is in the form

F„ = ( r - M (4.5)

where p  3 is the superfluid electron num ber density with the factor 1/2 counting for the 

C oope r pairing.

From eq. (4.4) or eq. (4.5), one can see that the M agnus force acting on a vortex is 

sim ilar to the Lorentz force acting on an electron which is confined in the x - y  plane

under the magnetic field B app ly ing in z  direction. This Lorentz force is in the form

F l  = — e r  x B = eBz x r  (4.6)

where e is the electron charge.

From this similarity, it is the conven ience for someone to im agine the motion of a vortex 

under the M agnus force as the motion of an electron under the well-known Lorentz force. 

Note that the Magnus force on a vortex will occu r if there exists the relative ve locity r  -  V 3 

while the Lorentz force on electron will occu r if there exists the magnetic field B .
The vortex motion is an important behavior in many physica l situation such as the 

flow of the supercurrent in superconductors. The motion of the vortices is the main 

m echanism  for electrical resistance because  if the vortices are free to move, then the 

supercurrent will flow with difficulty but, on the other hand, if the vortices are pinned or 

trapped, then the suppercurrent will flow more easily  and the resistivity is reduced. Hence, 

the behavior of pinned vortices is one of the interesting problem . เท real situation, we can ’t 

com plete ly  trap the vortices i.e., the vortices can, by some means, leave the trap. เท other 

words, the pinning potential c a n ’t be a stable potential but it is a “metastable potential". เท 
many physica l situations, the pinning of vortices will occu r from the “d isorder effect" but 

this effect can also p roduce the dissipation on vortices. เท general, both pinning and 

dissipation effects frequently o ccu r in real life situation.
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Now, in our problem , we shall study the general problem  of one vortex which is 

pinned in the metastable potential and treating everything in the sam ple except this vortex 

as the environment causing  the d issipation on this vortex. As in section 3.4, we will model 

this environment like in the Caldeira-Leggett model. S ince a vodex core is very small i.e., it 

is much sm aller than the length sca le in most case  studies, a vortex can then be regarded 

as a point particle. By these above d iscussions and eq. (4.5), the Ham iltonian of the 

system of a vortex of finite mass M  in superconductor plus its environment can be 

genera lly written as

2 M + < - t ) + z I A, I
2m.. ■ + — m 0'~ ๆ “ ■'

c rเ!«
m  น (o: (4.7)

This Ham iltonian has been used to study the tunneling of a quantized vortex, with specia l 

attention pa id  to the effects of pinning and dissipation, by P.Ao and D.J. Thonless [19], 

The meaning of each term in eq. (4.7) is as follows. The vector potential A 1 which has the

property that V  X  A -  hp^dz/2 1 com es from the vortex velocity dependent part (W D P ) of 

the Magnus force eq. (4.5) while the potential due to the superfluid ve locity dependent 

part (SFVDP) of the Magnus force is absorbed in the vortex potential r ( r ) .  The last term, 

as in Ca lde ira  -  Leggett model, describes the environment consisting of the set of 

uncoupled harm onic oscillator linearly coupling with the vortex. By following P.Ao and D.J. 

Thouless [19], the gauge of vector potential will be chosen (it is easy to show that the 

(Euclidean) action is in dependent of the cho ice of gauge) so that the vector potential is in 

the form

Â = ^ p,d{y,0 , o) (4.8)

and the vortex potential v (r )  which allows an extensive analytical study is in the form

v(rY-=y M+\ k *- พ.9)
The potential v ( y )  consists of the contribution from the SFVDP M agnus force (this means 

that we “a ssum e” the superflu id velocity vs or supercurrent is a long the X direction) and 

the pinning potential in y  direction, which has a metastable point chosen at y  -  0 . The 

second term in eq. (4.9) is the pinning potential in X direction which is approxim ated by



51

the harmonic potential, and kx should be determ ined experimentally. Although eq. (4.7) 

with the vector potential (4.8) is derived in the case of vortex in superconductor, the 

Hamiltonian for vortex in superflu id or for electron in magnetic field can be written in the 

same form because  the Lorentz force and Magnus force in both superflu id and 

superconductor are in the same form. Hence, from eqs. (4.4)—(4.6) and (4.9), the 

Hamiltonian (4.7) can be genera lly written as

H = 2 M + ^ y + y ( y ) + ' L 1 Pa\~ 1 2
2  ทา .  2

Hu (4.10)

with the vector potential in the form

Â = ^ { y A 0 )  (4.11)

where the frequency dim ensional parameter Q = qvhpsd /2M  for a vortex in 

superconducto r, Q. = qvhpsd / M  for a vortex in superfluid, and Q. = eB/M for electron 

in magnetic field provided that qv in both eqs. (4.10) and (4.11) are rep laced by electron 

charge e. Note that in the case  of electron in magnetic field, the metastable potential y (y )  
consists of the contribution from pinning potential in y  direction only since it doesn ’t need 

its velocity relative to something in the sam ple (in fact, it must have relative ve locity with 

respect to the source of m agnetic field) in order to produce the Lorentz force on it as in the 

case  of M agnus force in both superflu ids and superconductors, (see eqs. (4.4) and (4.5)).
Now, let us summerize the problem  that we want to deal with. Our problem  is to 

study the vortex (electron) moving in the infinite two dimensional plane, and having, for 

superflu ids or superconductors, the superfluid velocity vf or supercurrent along the X 

direction, which is influenced by the Magnus force (Lorentz force), the pinning potential, 

and the environment. เท the Hamiltonian of the problem (4.10), the Magnus force (Lorentz 

force) is described  by the vector potential À 1 the environment is described  by  the last 

term in eq. (4.10), the pinning potential in X direction is described  by the harmonic 

potential kxx 2 / 2 , and the pinning potential in y  d irection is contained in the m etastable 

potential v {y )  which is chosen so that the metastable point is at y  -  0 . S ince the vortex 

(electron) potential v{y)  is the metastable potential in y  direction, the vortex (electron) 

must have some chances to e scape  out of this potential in y  direction by both quantum
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4.2 THE ESCAPE RATE FORMULA [16], [36]
The theory of rate coeffic ients has a long tradition in physics, chem istry and 

b io logy since the days of Arrhenius. H.A. Kram er’s article of 1940 [28] represents a 

cornerstone in the quantitative analysis of thermally activated rate processes. An excellent 

review which covers extensive know ledge in this field is in ref. [37],

เท this section, we assum e that the system in question can be v isua lized as a 

particle of m ass M  describ ing  by coordinate y  moving in a metastable potential v (y )  
while coup led with the environment. The metastable potential v{} ’) has a single 

m etastable minimum at a point which we choose at the origin of y . The bottom of the 

metastable potential is chosen to lie at zero i.e., F(o) = 0 . We assum e that the potential 

v (y )  is fairly smooth and has the general form dep icted  in fig. 4.3 i.e., a metastable 

quadratic-p lus-cub ic potential well. S ince  v (y )  is a m etastable potential of the form 

dep icted  in fig. 4.3, a particle confined to the metastable region will ultimately e scape  to 

the region of lower potential on the other s ide of the barrier.

m e c h a n i c a l  t u n n e l i n g  a n d  t h e r m a l  h o p p i n g .  เท o u r  p r o b l e m s ,  w e  wi l l  s p e c i f i c a l l y  s t u d y  o n

t h i s  b e h a v i o r  o f  v o r t e x  s o  t h e  o t h e r  s e c t i o n s  i n  t h i s  c h a p t e r  w i l l  b e  d e a l i n g  w i t h  t h e  s t u d y  o f

t h e  b e h a v i o r  o f  a  v o r t e x  ( e l e c t r o n )  e s c a p i n g  o u t  o f  a  m e t a s t a b l e  p o t e n t i a l .

A F(y)

Fig. 4.3 : A  m etastable “quadra tic -p lu s-cub ic" potential well.
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Fig. 4.4 : The inverted potential ~v(y).
Naturally, the concept of metastability only makes sense when the barrier is large 

enough that the decay time of the metastable state is very long comparing to all the other 
characteristic time scales of the system dynamics e.g., the correlation time of the noise 
and the time scales a>~1 and cob' related to the curvature of the potential at the 
metastable minimum and at the barrier top. This situation is called the "weak 
metastability". It requires that the barrier height Vb is by far the largest energy relevant to 
the problem.

vb »  kBr  , Vb »  hco 0 (4.12)
Ftere, CO0 is the frequency of small oscillation around the metastable minimum

<ช0 = ( V " ( o ) / M f 21 .(4.13)
where V ”(o) is the curvature of v{y) at y  = 0 1 
and the barrier frequency

(4.14)
where v { y b) is the curvature of v{y) at y = yb,
characterizes the width of the parabolic top of the barrier hindering the decay process, 
see fig. 4.3. It represents the frequency of small oscillation around the minimum of the 
inverted potential -v(y), see fig. 4.4.

From fig. 4.3, it is clear that the particle escapes out of the metastable potential by 
thermal hopping at high temperature while the quantum mechanical tunneling effect will 
be more incorporated in the escape process as the temperature is lower. The temperature
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T0 , where the change of dominating mechanism of the escape process form thermal 
activation to quantum tunneling is roughly to occur, is called the “crossover temperature” 
(it will be discussed in more details in sections 4.4 and 4.5). Various ranges of escape 
process are depicted in fig. 4.5

Quantum
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Quantum

Corrections

Thermal

Hopping

> r
Fig. 4.5 : Dominant escape mechanism depicted schematically as a function of 

temperature.
Our study of the decay of a metastable state in thermal equilibrium with 

environment will be based on thermodynamic method pioneered by Langer [29] in 1967. 
His procedure of analytic continuation leads to an imaginary part of the free energy of the 
metastable state which then is interpreted in the same way as the imaginary part of a 
resonance energy in quantum field theory. His rate formula is formulated by analogy with 
the zero temperature formula. First consider the zero temperature formula. Let !//(/) be the 
ground state wave function with complex ground state energy E0 =£ + i<7 . Then the 
decay probability k per unit time is determined from |y/(/)j2 = e ''เ^(o)j: = e~k'\y/(o)j2 as

k (4.15)
By analogy with this formula, the thermodynamic rate is given by

k = -y lm F ,  for T <T0, (4.16)
where F  is the free energy. Note that the rate formula (4.16) can be used only for T <T0. 
However, Affleck [31] has shown that the rate formula above T0 can be calculated by 
means of the modified formula

k = -^-— ImF, for T>T0,
M o

(4.17)
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where /30 = \/kBT0 is the inverse crossover temperature.
An explicit calculation by Affleck [31] for an undamped system has demonstrated 

that Langer's method yields the same result as a Boltzmann average of energy dependent 
decay rates. Morover, also the effects of frequency-dependent damping [32] as well as 
quantum corrections to thermally activated decay calculated by dynamical method [33] 
are reproduced quantitatively by the Langer’s thermodynamic method. Since Langer's 
approach is a thermodynamic method, it cannot account for effect related to 
nonequilibrium occupation of states in the well. This means that Langer's method gives the 
correct result for the decay rate whenever nonequilibrium effects within the metastable 
well can be neglected. This is the case when the environmental coupling is strong enough 
to maintain thermal equilibrium within the metastable well. เท case of very weak 
environmental coupling of friction (this IS the case where Langer’s method can’t be used), 
the influence of the environment IS not strong enough to maintain thermal equilibrium in the 
well. The escape over the barrier leads to a depletion of the Boltzmann distribution in an 
energy region of width kBT just below the barrier top and the escape is limited by energy 
diffusion from the lower to the higher states in the well [34], However, this weak coupling 
region characterizing by y <(0hK 11T/l'h [16] is very small in particular for system with 
high barrier e.g., the system with the requirement of weak metastability. While เท the 
absence of a fully dynamical justification of the approach which its range of validity is not 
exactly known [35], it is highly suggestive that Langer’s method gives the correct result for 
the decay rate whenever nonequilibrium effects within the metastable well are neglected.

Now, we have the escape rate formulae (4.16) and (4.17). From these equations, it 
is clear that our problem now hinges on finding the imaginary part of free energy. เท 
section 4.4, we will find the imaginary part of free energy of a vortex and then, by using 
these escape rate formulae, find the escape rate formula for a vortex escaping out of the 
metastable potential v{y ) in y direction.

4.3 EFFECTIVE ONE-DIMENSIONAL REDUCED PARTITION FUNCTION
From Hamiltonian of the problem (4.10), one can view a vortex as the Brownian 

particle moving under the influence of its environment. From section 3.6, we have known 
that the reduced description on Brownian particle can be found by tracing out all of the
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environmental degrees of freedom. Notice that our problem of vortex is in two dimensions 
but we are interested in y  direction only, since the metastable potential depends on 
coordinate y  only which means that the escaping behavior can occur only in y  direction. 
By these reasons, one should treat only y  coordinate of a vortex as a coordinate of the 
Brownian particle (system) and leave out other degrees of freedom, which are X degrees 
of freedom of vortex itself and all of the environmental degrees of freedom, as the 
constitution of the environment. So, in our problem, it is clear that the elimination of 
environmental coordinates is more complicated than in section 3.6 sine the r  degree of 
freedom couples linearly with the y  degree of freedom via its velocity instead of 
coordinate like the coupling between J’and (j 11 degree of freedom.

Now, by using the same method as เท section 3.6, we will find, the effective one­
dimensional reduced partition function. From eqs. (4.10) and (4.11), the corresponding 
Euclidean action is in the form

ร E = + iMQxy+ v (y )  + ^ k  y
(4.18)

where r  = (x,_y,0) and qn = ( < / ; ) , o). As in eq. (3.72), after integrating the (normalized) 
density matrix of the universe, K(y",x\q'-,y',x',q'),with respect to </'and x ', we have 
from eq. (4.18) the effective one-dimensional reduced density matrix, similar to eq. (3.73), 
in the form

where

with

p i y ' y ) = z d ' j£>>’(r)exp(- ร !  [>’F H [y ] ; z d =v(Okv
z

z  zz'RZjX,R (4.19)

M  ’= z i  I£>.v(r)exp(- J j , (4.20)

F E[x]=ZR'$DNq*(T)Gx p ( -S l[ x y ] / t i ) ,D Nq*(T) = Dqï(T)...Dq*N(T),
T =fe.x. ■■ y N)

( 4 . 2 1 )
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with
s L k r \ = S n [ r \ + s f [ y r \

F E [}’] = Z R § D Nq y (r)exp(- ร 1RA [)■ ', ({' ]fti) ; D \ f  (r) = Dq- (r). /)(/', (r),
จิ-'' = (‘/i' -  ><7.v)

(4.22)
with

s t ,lx r ]= .s t lr l+ s ,H v .< /'J
and

ร ร ผ -= |^ พ 1 > : + | ' 0 ' ) ^

■ v.t H = l( jM r+l*,.v:|/r
.ร,,E [)’, x] = / M o j  x jx /r

5R b v]= j z ^ f c 2 + <°lCL : )^r

S|R f e i = | i ^ (ฝ'2 + <»iฝ

^ . 4 ^ r ] = î z [ - c x - 4 ^ V

(4.23)
Here z  is the partition function of the universe, ZR is expressed by eq. (3.76) 

representing the partition function normalizes F E[x] or F E[y], so that / ;E [x ]= l or 
F E[y ]= l  when the coupling is switched off i.e., 5’,E[x,^Aj= 0  or ■ ร'E [y, qy J = 0 , ZXR is 
the partition function (which will be determined later) normalizes F E[y], so that 
F E M = 1  when the coupling is switched off i.e., 5,E[i-,x] and Zd 1 which is related with 
other partition functions by Zd = z / Z RZXR is the effective one-dimensional reduced 
partition function normalizes the reduced density operator p[p{y \y ")  = (y'\p\yn)) 1 so 
that Trp -  1. Note that in eq. (4.19) we have two influence functionals, F E [y] which has
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already been calculated (see eq. (3.81)) describing the pure influence from harmonic bath 
and F ' [y] describing the influence from both harmonic bath and X degree of freedom of 
a vortex (see eq. (4.20)) . The influence functional ,FE[y] appears in eq. (4.19) because 
of the fact that we treat X degree of freedom of a vortex as one of the degree of freedom
of the environment. Notice that the influence functional F u \y\ can be computed exactly 
since everything in the path integration is Gaussian. Inserting eq. (3.81) into eq. (4.20) and 
using the definition of ร!/, M  in eq. (4.20) together with eq. (4.23), we obtain

17-)x(r)exp(- ร  ̂1 [)’, x]/h)FE [x] = J> A)x(r)exp j -  y- I dโ{^Mi'1 + ^-kxx2 + iMQxy

+ 2 พ dTÜT'K \ T -  r l)[ ^ ) - ^ ' ) ] 2 (4.24)

This path integration can be evaluated by various methods but the most convenient one is, 
perhaps, the Fourier series method. This method gives both prefactor and exponential 
term simultaneously. Since the path integration here runs over all periodic path with period 
บ = pi] taken by the coordinate x(r), the coordinate x(r) can then be represented by 
Fourier series,

*(r) = Y jX»e' " T ; vท= 2"n /u  (4.25)
and the functional measure can be defined by

พ r)=  f . เ ไ โ  f f rff c ไ ^ 1ร ,'yJ m j Jmบ [ .น . l?n;MUvl ) (4 26)

Note that this functional measure is applicable to general action [5]. From eqs. (4.25) and 
(4.26) 1 it is clear that eq. (4.24) can be easily evaluated if one knows the Fourier series 
representation of Al(r). So, first considering eq. (3.82). Notice that

cosh(<y|r|-£//2])
- r f c ;

CO
sinh {coil/2) T n=_00 vn +  CO coT n=_00 coT n=_aj CO + vn

When inserting the above equation into eq. (3.82), Ar(jf|) can then be written in the form
7 7 ( j r |) = / / :£ ( r ) : - A : ( r ) (4.27)
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where P = (]/n)j j(co)/codco <5(z):= = '£ 1ร (t -  ทบ) is a (!)-function
0 ท=-oc  ห=-00

periodically repeated at time โ = ±ทบ , and

(4.28)

From eq. (4.27), the nonlocal term (the fourth term) in the exponent of the integrand in eq. 
(4.24) can be written in the form

{ บ didr'K^T -  r'|Jr(r)- x(r')]2 = “  j \k(z  -  r 'K r ) - r ( r ' f  dzdz

= JJ"^(r -  z')x(z)x(z')jz'dz (4.29)

To arrive at this result, we have used the fact that, from eq. (4.28),

I k(z -  z')dz = Jk(z -  z')dz -0 .
0  (J

เท our problem, we want only the reduced partition

function which can be obtained if one knows the diagonal part of the reduced density 
matrix i.e., p(y',y'). By this reason, y{z) can be represented by Fourier series,

>’(0= z  y«e"'mT*v* = l n x l u  (4.30)
When inserting eq. (4.29) into eq. (4.24) and using eqs. (4.25) 1 (4.28), and (4.30), we

บ
obtain, by using the orthogonality relation Jen”re~'Vmrdr = US 11 m 1 the exponent of the

0
integrand of eq. (4.24) in the form

บ  V  I I -  [ / M Q  V  _  , ,  2 , ,- ^ z  ฝ * ' » !  £ z  Vn>'nX n „ = M v ; + k x + Ç, (4.31)

Substituting (4.31 ) for the exponent of the integrand of eq. (4.24) and using eq. (4.26), one 
get (see Appendix B)

j>Z)x(r)exp (-  ร1 [y, x ] / 7 ? ) f e  [ x ]  ะ
1

Uo)x
M v ;

M v ] +M(o] +  £ 1

e x p kr ( 4 . 3 2 )

where a>l =kx/M
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From eqs. (4.32) and (4.20), it is clear that F E[y] is in the form
f  UM-Qr * v :  'F !F [>'] = e?exp I % , | :

n=l y ท
while

Z.X.R = 11(0
M v:

(4.33)

X  1 V

(4.34)M v l+ M œ ;+ Ç j
Notice that F E[>] in eq. (4.33) is expressed เท term of the Fourier coefficient y 11. To 
express it as a functional of j-'(r), first considering the exponent of eq. (4.33) (reminded 
that y (r )is  represented by Fourier series (4.30)),

UM2ท 2 x F  I',; 1 1 ; _  UM20 2 ^  v;, 2—1. K ท — o + 2—1 .. }  "fi «ที Yn 2 h 1, .1. Y 1,
M 2Q 2 

2 ท r Wr'Jr (4.35)
ท — — Cf' Y  ท II IIท - - ^  y n 0  Q

Note that to arrive this result, we have used the relations y_n =y*„, v_„ = -V ,11 and 
Y-n = Yn- By usin9 the relations T’(r)>'(F) = (>': (r) + / ( r ' ) - [ y ( r ) - ^ ( r ' ) ] 2)/2 , V,1 = 0 1

and je n'"Te~n"'rdT = US, 1 m and recalling the definition of yn in eq. (4.31), eq. (4.35)
0

becomes
u m 2q 2 M  v :  . 1; 1 Ÿ r  1 / 1 r / \ 1 A13f M 2n 2 xF M v ] e " -Z r - K  = - i j  p r W r K r ) - f -  T M tทีที/,, 2/j • * t น n ,M vn +

( r - r l  X

(4.36)
*  ที ที  Y n  ■ '  2 P l  น น ... ........................................I  F  " « พ + ^ 7

To change this formula to another form (the form used in ref. [19]), first noticing that

0 ะ= J J: d(r -  z'):{\{t) -){(')]- dr'dr
Recalling the definition of : ^(r): in eq. (4.27) and multiplying both sides of this equation 
by -M O.2/Ah , the result is

0 = Jd r'd r lb )-  v(F)]2 f > " Mr')

Adding eq. (4.36) with eq. (4.37), one obtains 
UM2Q2 xF  V H : = - ^ - J7 g(T - r - 'Iv ( r ) -y(z')\ciT'dz

where
, \ M 2ท2 ^  g(T) = 2-12 บ

Mg>Î+Çh
n - - c o y Mv; +Mco; +4n

(4.37)

(4.38)

( 4 . 3 9 )



(4.40)

I n s e r t i n g  e q .  ( 4 . 3 9 )  i n t o  e q .  ( 4 . 3 3 ) ,  w e  o b t a i n

F  E [).’]=  exp i I  - r')b;(0- y (r ')Y d r 'd z

Inserting eqs. (4.40) and (3.81) into eq. (4.19) and using eq. (4.23), the diagonal part of
the effective one-dimensional reduced density matrix (4.19) can be written in the form

p iy \y ')= ^ i J Dy(r)exp(- S ’;1. [>>]/*) (4.41)

where the effective action 1ร’eEfl.[>’] is given by the expression

'ร?r b ’h  M y- + v { y ) d r  + 2 j " j M r ~ r l)+ F(r “ ๙)L;(0 - y { * ' ) Y  d r'c/r (4.42)
From eq. (4.41 )1 it is clear that the effective one-dimensional reduced partition function can 
be written as

z d = I  /วฺ)’(r)exp(- .ร;!11- \y]/h) (4.43)
From ref. [19], g(r) defined by eq. (4.39) is called the "anomalous damping kernel'’ and 
K ( t ) ,  which is called the damping kernel in chapter III, will be now called the “normal 
damping kernel” in order to make it different from the anomalous damping kernel. Now, we 
already have reduced the original two-dimensional system to the effective one­
dimensional system described by coordinate y  1 and the thermodynamics reduced 
description is now contained in the reduced partition function (4.43). The dissipative effect 
from harmonic bath is effectively contained in both normal and anomalous damping 
kennel while the dissipative effect from X degree of freedom of a vortex is effectively 
contained in anomalous damping kernel only.

4.4 THE ESCAPE RATE FORMULA OF A VORTEX
เท this section we will study the behavior of a vortex escaping out of the metastable 

potential v ( y )  of the form depicted in fig. 4.3. The quantity which will be used to study 
this behavior is the escape rate k which has been discussed in section 4.2. The escape 
rate formula is divided into two regions, T <T0 and T >T0. From eqs. (4.16) and (4.17) 1 
it is clear that these formulae can be obtained if one knows the free energy. Since the
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escape process occurs in y  direction only, the free energy which we have to calculate 
must be related, by the relation in eq. (2.3), with the effective one-dimensional reduced 
partition function (4.43). Now, our problem is hinging on evaluating the functional integral 
in eq. (4.43). As mentioned in section 4.2, weak metastability requires that the barrier 
height Vb obeys eq. (4.12). Hence, the functional integral (4.43) can be evaluated in the 
“semiclassical approximation” since the dominant contributions come from the region in 
function space around the stationary points of action. From eqs. (4.42), when substituting 
eq. (4.27) for K^T -  r 'l)  in eq. (4.42) and using the variational principle i.e., 
ร ร 'a- [>’6.] = 0 , one can see that the classical path yc( r )  obeys the equation of motion

- Mÿc + v '(yc) + 2 jb(r - T ' ) - k ( r -  r')][yc(r)- y c = 0 (4.44)
with the periodic boundary condition _yc(o) = yc(u)-

เท the absence of dissipation (from both harmonic bath and X degree of freedom) 
i.e., g (r) = k ( r )= 0  1 eq. (4.44) describes the motion เท the inverted potential ~v[y). It is 
clear from the inspection of fig. 4.4 that there are three solutions for yc(T) where the 
periodic boundary condition is concerned. First, the trivial periodic solution 7(r) = yh,
where the particle sits just in the minimum of the inverted potential, second, another trivial 
periodic solutionyc(r )=  0 where the particle sits at the maximum of the inverted potential, 
third, the periodic solution yc(r) = yB(r) bouncing back and forth in the potential well of 
the inverted potential. For this reason, this trajectory is frequently called the “bounce”. 
However, the bounce trajectory yB(r) can only occur when the temperature is low 
enough, so that the period บ = (3h is long enough to admit a bounce solution yB{r). เท 
the absence of dissipation, the smallest period that admits a bounce solution must be 
equal to the period of small oscillation about yh in the inverted potential i.e., บ = 2ทเ(0๖ . 
We denote the corresponding temperature to this period by T0 so ro = hœbl2Tckü . เท the 
presence of dissipation, it is clear from eq. (4.44) that the trivial solutions yc{ r ) -  0 ancl 
} ’c(T) = }*b are not effected by dissipation since the nonlocal term (the third term of eq. 
(4.44) is equal to zero while the bounce solution is affected by dissipation described by
the nonlocal term.
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It is now important that the action รB = -S’efl. [)/g ] of the bounce is smaller than the 
action (3hVb of the trivial path yc{T) = }'h- Hence below T0, the functional integral (4.43) is 
dominated by the bounce and from eqs. (4.45) and (4.61) one can conclude that T0 here 
is the temperature where the change of dominating mechanism of the escape process 
from thermal activation to quantum tunneling is roughly to occurs. This means that (as 
mentioned in section 4.2) T0 here, which is the temperature where the bounce trajectory 
begins to be the dominant path of the functional integral (4.43), is the crossover 
temperature. เท the presence of dissipation, one may guess that the smallest period that 
admits a bounce solution must be greater than 2n/coh because the particle dissipates its 
energy while bouncing back and forth in the well. So, in the presence of dissipation, one 
can think as if there is no dissipation but (!)k, instead, decrease which implies that the 
crossover temperature should be decreased in the presence of dissipation. We will 
discuss about the crossover temperature in more details in section 4.5. For T < 7’,, the 
escape rate can be written as [16], [36]

K = / qmexp (~SB/ift) (4.45)

where /  is the quantum-mechanical prefacter
Note that 1ร’g will be calculated if one knows the bounce trajectory y 13 (r). From 

eq. (4.44), one can see that yB{j)  IS the solution of the nonlinear integro-differential 
equation with periodic boundary condition which is very difficult to solve. I think that, now, 
no one can completely determine the action รB. By this reason, we will deal with the 
escape rate in the region where T > 7], (the quantum correction region, see fig. 4.5) which 
the exact expression can be found. Although we are interested in the case of T > ไ]1 
where the escape process is dominated by thermally activation, the tunneling behavior of 
a vortex can be roughly known from the quantum correction factor (it will be discussed 
later). Now, we will calculate the escape rate in the temperature region T > 7],. As I have 
discussed above, since yc(r) for T > T0 consists of two constant paths y X T ) ~  0 and 
y X T) -  )>b ’ the functional integral (4.43) can be written as

* z ? +zr = I+เ^
V

(4.46)
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where
z ‘a) = <f/)>’(r)exp (- ร^0' \y]/h) (4.47)

and
Y-T = <f/d)’(r)exp (- ร*ท' [)']//>) (4.48)

where i ’eLn' [)’] and s f f f  [)’] are the semiclassical effective action about y = 0 and 
y  -  } ' b  respectively.

เท order to evaluate the path integrations (4.47) and (4.48), it is again convenient to 
use the Fourier series method. By this reason, we should first find the effective action 
ร^1- '[>>] and ร'}{ [>’] in terms of, the Fourier coefficient y n. When substituting eq. (4.27) 
for ^ (jr -r 'l)  in eq. (4.42) and using eqs. (4.28), (4.30) and (4.39), after using the

บ
orthogonality relation j V ‘"r๙"''”'’ÜT = บ8nn1 1 we obtainนุ

S i C v )~ I , E n zMv;V „ + 7 7  +   -----7 7 ------------------
M  M v ~ n + M c o ~  +  £ 11

+ \y(y)ch (4.49)

From eqs. (4.28) and (3.67), one can see that £11 must be related with the Laplace 
transform of the retarded friction (see eqs. (3.45) and (3.60)) by

Zn=M k |r ( k |)  (4'5°)
Substituting eq. (4.50) for £n in eq. (4.49), we get

S^y) = ̂ l K \ y ^ \v {>¥ r  :A .= v ; + k k , ( k | )  (4.51)

where

Yu (x)= y(x) + —---- (4-52)X + (ง'x + XY\X)
Note that Ym (x), where the subscript M  on Ym denotes the abbreviated name of 
Magnus force, reduces to y (x) when the Magnus force is absent i.e., Ym Y as 
Q —>0.From eq. (4.51), develop v(y) in a Taylor series around y  = 0 and y = yb and 
keep only the first and second terms of the series, we then get the semiclassical action in 
the form (see Appendix C)

S T พ “ Aร’1 y l+  M u f / y y ;A':'=v; +<8; + ^ (v.) (4.53)
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and
ร E (beff ' b ] = n u + ^ A t,y ; + M u j ;*!'\y.\: -X ' = v : - o > ! + v . f M  พ.54)

Now, we will divide the situations into two cases, (0X * 0 and cox = 0 .
Case 1 (cox *  o):

This is the case where we have the pinning potential เท X direction. เท this case, It 
is clear from eq. (4.52) that V 0yh1 (v 0) = 0 which implies that /tj'1' = col and = - (o l. 
When inserting eq. (4.53) into eq. (4.47) and using the functional measure (4.26) (here the 
variable xn must be replaced by y 11), we obtain, after some integration procedures similar 
to eq. (B.3) in Appendix B when Q = 0 and V11 is replaced by ■1') 1 the reduced partition 
function Z j'! in the form

7 (0) _ 1 r r  v n
^0 Fr 11=1 ''-11

Similarly, when inserting eq. (4.54) into eq. (4.48), Zjb) can be written as

(4.55)

z<b| = M
2 nlJh

( ] พ ) - 1Je Jy 1,vn ÿ ๙ "• (4.56)

From eq. (4.56), it is suprising that the divergent integral over >’1, appears. It appears 
since 4 * 1 = -col 's “negative". The divergence is related to the fact that the action for the 
trajectory y c{T) -  Zfc is a saddle point in function space with the unstable direction along 
>’1,. เท fact, this should not be a surprise since we are trying to evaluate the free energy of 
an unstable system. Langer [29] was the first who explained that the functional integral 
can still be defined by distorting the integration contour of the variable >’0 into the upper 
half of the complex plane along the direction of steepest descent. This leads to a positive 
imaginary part of the quantity Zjb) in the form

ImZ<b) = 2(0 b บ
f  00 2 X

1 1  ;(MV"=T'ร, y (4.57)

From eq. (4.12), it is clear that e~̂  is an exponentially small factor which is contained iเก
z*b|. Flence, eq. (4.46) can be written, by a negligible error, in the form
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Z, = z<°'12(1.,/2<01
(4.58)

From eq. (2.3), the free energy must be related with the reduced partition function Zd by 
F  = - ( l /p)\ท Zd. When inserting Zd from eq. (4.58) into this expression, we obtain

f  = - l l n z r -  l £p  z f
Since z*"1 is real, see eq. (4.55), the imaginary part of the free energy expressed above 
can be written as

lm/' =  - ( / % ' ; ' )  hmZ. (b)‘d (4.59)
Inserting eqs. (4.57) and (4.55) into eq. (4.59), we get

4 if- 3(บ)A
, 5 ‘Vn=i ''■ท y

Now, insert eq. (4.60) into eq. (4.17), we then get the escape rate formula of a vortex in the 
form

Im F = —๙ O f - /»■ ; (4.60)

co.i -n
±n

where the factor

p (OR .’ R ~ 2n _ 2nkBf (1

(4.61;

(4.62)

describes the effect of recrossings of the barrier top in the moderate to large damping 
region and the quantum-mechanical enhancement factor or quantum correction factor

_ r~r ■̂ท „r~T v îi + (0l + vnïM (vท )
q๓ ~  n=i ^  _ „=1 v ; -a>l + vnf M(v „) (4.63)

describes the quantum effect on escape process. The leading quantum corrections have 
a rather simple origin. The escape is enhanced in two different ways by quantum 
fluctuations. First, they increase the average energy in the well. Second, when a particle is 
thermally excited almost to the barrier top, they allow for tunneling through the remaining 
small barrier. Both effects lead to an effective reduction of the barrier. Note that in the 
classical limit ( r  »  T0), where the factor cqm approaches unity the escape rate formula 
(4.61) reduces to the classical escape rate formula. The dissipation effect on the rate is 
contained in the frequency C 0 R which is related with the crossover temperature 7’, by 
<j)R = (2nkB/îi)T0 (it will be discussed in more detail in section 4.5).
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Case 2 (cox = o) :
This is the case where we have no pinning potential in X  direction. เท this case, it 

is clear from eqs. (4.52), (4.50) and (4.28) that

K,r.u{K,)=ท 2/ + (2 Mn ) j \ / ((ฆ) (ฆ ’daทุ *0
which imply, by eqs. (4.53) and (4.54), that

£ '  = 0) ; + Q21 1 + (2  j{co)j(û’d(oทุ ร (ฆ;
and

t ] = - a + (2AT/t )[ , / ((ฆ)/(ฆV  (ฆ
0

Now, in this case, we will “assume" that A**1 = -(ฆ^, < 0 (the case where A-!*1 > 0 
will be discussed in section 4.7) where

c0b.u (o:
1 + A m da

> 0 (4.64)
Kin *1 CO

Here the subscript M  on (ฆ,w  and (ฆM, denotes the abbreviated name of Magnus force. 
Based on this assumption, following the same procedure in ea sel, we finally get the 
escape rate formula of a vortex, denoted by K for this case, in the form

K = ̂ , pc<1me (4.65)
where p is defined here, by analogy with p in the rate expression (4.61) in case 1 where 
(0X ^ 0 , by

p -  (0m(°R (4.66)

Now, we have two escape rate formulae of a vortex corresponding to two cases, 
K for û)x *  0 and K for (0x = 0 . เท both cases, the quantum effect on escape process 
is contained in quantum correction factor cqm . On the other hand, for cox 0 , the factor 
p contains the effects implicitly from both environment (characterized by y  ((ฆ) or y) and 
X  degree of freedom of a vortex (characterized by Magnus force described by Q ) via 
00R (See eqs. (4.52) and (4.70)) while, for û)x = 0 , both effects are contained implicitly in 
p via C0R and are also contained explicitly in p via CO0M and (0bM .
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4.5 CROSSOVER TEMPERATURE AND ITS IMPORTANT THEOREMS
From fig. 4.4, it is clear that, slightly below T0, the bounce trajectory is just 

represented by a harmonic oscillator about yh with the frequency 
(0R = 2ท/บ 11 = 2ท ; -  27rkBT0 ;h . Hence the bounce yB(r) can be written as

y B ( r )  =  y h + £ C 0s ( ( 0r t )  (4.67)
where £ is an infinitesimal amplitude i .e . ,o ( f2)=  0. From eqs. (4.28) and (4.39), it is easy 
to show that

f?พ - * ( A = ~  ./•; M<o; +4„
01. ^  ท • ท AA- A A - e  A Art- ( 4 -6 8 )2U ,1-..,,, M v n +M(Ox + £ 11 MD.

substituting y 13(r) from eq. (4.67) for yc{r) in eq. (4.44) and using eqs. (4.50) and (4.68) 
(when บ is replaced by บ0), one can linearize the equation of motion (4.44), since 
o(<c: )=  0, and get (see Appendix อ)

K4(o\ +V'{yb) + MQr -MQ} (ol +(0ry(q) 11) (01j{ c
a l  + (o; + (01j{(0 R ) ท 2

r ( v R )
> £ c o s ( c o r t ) = 0

(4.69)
When equating the quantity in { } with zero and substituting -M(ù\ for V (y h), we get

Mr +(OrYs,{(Or)=(oI  (4.70)
where ys1 has already been defined in eq. (4.52)

Since C0R relates with crossover temperature T0 by (0R -  2nkBT0/h 1 T0 can be 
obtained via C 0 R which is the solution of eq. (4.70). เท general, the solution of eq. (4.70) 
should be more than one. But in the physical situation, the crossover temperature, which 
we confine it to have only positive value i.e., T0 > 0 (since the absolute temperature must 
be greater than zero), should have only one or equivalently the positive solution of eq. 
(4.70) i.e., C0R where C0R > 0 should be unique. This comes from the fact that the 
crossover temperature is the temperature where the change of dominating mechanism of 
the escape process from thermal activation to quantum tunneling is roughly to occur, and 
once this change has occurred it should not reoccur again. Another interesting question is 
that “is it possible that the crossover temperature does not exist, or equivalently is it
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possible that eq. (4.70) has กอ solution?” To prove about the uniqueness of the solution of 
eq. (4.70) and to answer this question, we should consider the following theorems. 
However, before considering these theorems, I had to construct two lemmas as follows: 
Lemma 1. Let f  : R 0 (= [o, cc))-> R  be the continuous increasing function. Let (7 G R be 
any constant. Then 3!(thereexists a unique)x0 G R 0such that X 2 + / (*■ 0) = a if and only 
if lim /(.v)<<7.
Proof.

Let g(x) = a -  X2. Then x0 must obey the relation g(x0)= f  (*0). It is clear that 
g(x) is a continuous decreasing function on R () which has the maximum value equal to 
a at x = 0. Suppose that lim / (x) > a . Since / (x) is a continuous increasing function 
on R 0,,g-(.r)^ / (x)V xg  R 0 (see fig. 4.6). This statement equivalents to 3x0 g R 0 such 
that g (x 0) = / (x0)=> lim / (x) < a . Claim that 3x0 G  R 0 such that g(x0) = / (x0) => x(l 
is unique. Let X, and X;, obey the equation g{x)~ / (x). Then < 7-x2 = / (x ,) and 
<7-x:2 = / (x2) which imply that X,2 - X 2 ะะ / (^2 )~  f ( x\ ) - is clear that if X, ^ x21 then 
we always get the contradiction since / (x) is a continuous increasing function on R 0 . 
So, we have the claim. Hence, 3!x0 G  R 0 such that £(*0) = / ( * o ) 1̂  / (x )<  a .

Now, suppose that l im / ( x ) < a .  Since / (x) is a continuous increasing function 
on R 0,lim / (x)<  a => 3x0 G R 0 such that g(x0) = / (x0) => 3!x. G  R 0 such that
g(xo )= f(xo) (see fig 4.6).

□

Fig. 4.6 : Intersection between the increasing and decreasing function.
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Lemma 2. x^A/(x)is a continuous increasing function on R * .
Proof.

From eqs. (4.28) and (4.50), it is clear that xy(x) can be written as
\_  2 x : Ç j(co)^'ท1') = 77"  J 7 , 2  z\J(0Mn J1 co\co + X J (4.71)

เท the physical point of view, any integrations over CO concerning the spectral function 
j{co) are always the convergent integrals which imply that xy(x) in eq. (4.71 ) is a 
continuous function which imply again, from eq. (4.52), that xyhf(x) is a continuous 
function. Next, from eq. (4.71 ), it is easy to show that

d , „/ \N_ 4x 'r co/(co)
dx

and

d_
dx

ท 2X 2
Q 2

+ CO2 + xy(x)

ๆ 2 , 4x' f j(o>) J2.VO) : + " - - r - d c o
M x  1, co{co2 +  X2)2

> 0  V x e R ;
X2 +C02 +;•ะutv

From eqs. (4.72), (4.73), and (4.52), one can conclude that
d

(4.72)

(4.73)

—  (x;/w (x))> 0 Vx G R (, (equality hold at X = 0 only) (4.74) dx

Now let us consider the following theorems.
Theorem 1 (Uniqueness). If 6)x ^0, then the unique crossover temperature T0 always 
exists.
Proof.

From eq. (4.70), T0 can be obtained via coR where C0R is the positive root of the 
equation X 2 + xyM(x )- CO2. From eq. (4.52), it is clear that lim xyM( x )  = 0 < a>l. Now, 
from lemmas 1 and 2 , we have the theorem.

□

Theorem 2 (Non-existence). If cox = 0 1 then the criterion for the non-existence of

crossover temperature T0 is given by Q 

criterion is violated, then the unique crossover temperature T0 still exists.

1 + (2/M ^)| J  {(ง)!(ง2 dco
0

> a>l. If this
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Proof.

From eq. (4.52), it is clear that lim xyM (x) = O r j  1 + (2/Mtt)̂  J (co)/^2 dû)

Now, from lemmas 1 and 2,

O r , 1 + (2  M/c)Jj(co) (O2dû)
0

> col => X2 4- xyM (x ) * CO; V x  € R *

This means that there exists no C0R or equivalently 7), within this criterion. On the other

hand, if this criterion is violated i.e., n :/ + (2 /M7r)jj(co) (o'dû)
0

<0)1 then, from

lemmas 1 and 2, 3!x0 G R 1', such that X2 + x„7 a/ (a'1.1) = col which means that there exists 
the unique (0R or equivalently T„.

□

Now, we can conclude in this section that the crossover temperature can be 
obtained via (0R which is the only one positive root of eq. (4.70). Moreover, from theorems 
1 and 2, we found that the pinning potential in X direction characterizing by (ช 1. is a very 
important quantity because if (0X *  0 1 then the crossover temperature always exists but if 
Û) 1= 0 1 then there exists no crossover temperature for the strong enough Magnus force 
characterized by Q (see the non-existence criterion in theorem 2 ). เท other words, if we 
have the pinning potential in X direction, then the change of dominating mechanism of the 
escape process from thermal activation to quantum tunneling will occur at some 
temperature, which is called crossover temperature. On the other hand, if we don’t have 
that pinning potential in X direction, this change will not occur because of the strong 
enough-Magnus force. From theorem 2, it is worth to note that the dissipation 
characterized by spectral function d(co) tends to suppress the Magnus force within the 
sense of the non-existence criterion.

4.6 DISSIPATION AND MAGNUS FORCE EFFECTS ON THE CROSSOVER 
TEMPERATURE

S i n c e  t h e  c r o s s o v e r  t e m p e r a t u r e  i s  t h e  t e m p e r a t u r e  w h e r e  t h e  c h a n g e  o f

d o m i n a t i n g  m e c h a n i s m  o f  t h e  e s c a p e  p r o c e s s  f r o m  t h e r m a l  a c t i v a t i o n  t o  q u a n t u m
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tunneling is roughly to occur, one of the interesting questions is that how this transition 
depends on dissipation and the Magnus force strength provided that the crossover 
temperature exist. At first sight, one may guess that if the dissipation or Magnus force 
strength increases, then the smallest period that admit a bounce solution will increase 
which implies that the crossover temperature will decrease. This guess, however, is not 
totally right. To investigate about the dependence of dissipation and the Magnus force on 
crossover temperature or equivalently ๓R , we should first make a reasonable assumption 
that the spectral function can be written in the form J (๓) -  ญ่{(o) where  ๆ is the only one 
parameter characterizing the dissipation strength and j  (๓) is any function depends on 
specific damping model. There are many examples of spectral function, as discussed เท 
the end of section 3.6, corresponding to this form such as eq. (3.89) for the Ohmic 
damping case, eq. (3.90) for the Drude-regularized damping case, and eq. (3.91 ) for more 
general damping case. Now, based on this assumption, eq. (4.70) can be written as

0 .-๓ 1
+ ๆ ® r Y„ (® « )+ — r  ะ , / \

<°R + < o ; +ๆ<0 R?„ K )
= ๓ 2 , / X 2๓ .. r ไ (๓ )d  ๓

โ ; Y;/ y°R ) = T7^~ j ' -f 2 ' ะ -M n  f1 ๓ {๓  +  ๓ ;
.(4.75)

// \  R /  .......... II ' " * i i  )

From eq. (4.75), we can define ๓R as an implicit function of ไ]. When implicitly 
differentiating both side of eq. (4.75) with respect to  ๆ (denoted by the symbol “ ' “), we 
get

2(๓1 + ๓;. + ๆ ๓Ry ,1 (๓R))ช,,๓'R -  ๓1 (๓1 + ไ]๓ ,/,1 {๓R ))
t e  + ๆ ท  R ï n M )  + q :

It is easy to show that

t e  + r 7a>Krv M )  = K

t e  + < ° l + ไ า(0ท9ท M l 1
=  0

(4.76)

2(0 R +?7^ t e r , K ) ) +  0>r y M r )  (4-77)

Inserting eq. (4.77) into eq. (4.76) and using the fact that, from eq. (4.75), 
O r ๓ ; เ { ๓ I  + ๓ 1  + ไ]๓R r ,1{๓R ) )  = ๓; -  ๓ 1  - ไ]๓K y ,1(๓R ) 1 we obtain

< 1  2 û)r +ๆ -£ ^ (v r Y M r ) )  [2 t e  +77®Ry , K ) ) + t e  - ^ 2)]+2û ;Rn 2 |

= -<yR Y  ๆ(®R )[2(^« + ทa R Yn (®« )) + t e  -  (0l  )]

(4.78)
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From eq. (4.78) it is clear that if cox > 1061 then co'R < 0\/ไ] e R ,+1 since (0R > 0,y (coช ุ)> 0 
(see eq. (4.75)), and d(coRy 11(coR))/d(งR > 0  (See eq. (4.71)) for all 77 > 0 . เท other words, 
C0R is a decreasing function of ไ] on Rp if cox >(0h. On the other hand, if CO 1. <cob, then 
C0R has the relative extremum at ฦ -  7]0 defined by the relation co'R (?7„ ) = 0 . It is clear form 
eq. (4.78) that the points ?/„ can be found by solving the transcendental equation

๓1 -  co; = 2 (col + ๆ 0)rY,1 (a>R )) 
or equivalently(by using eq. (4.75))

col + col = 2D.2 col
col +to; + ’l/o Rÿn(û)K) (4.79)

where ( 0 R -  C 0 K ( ใ ]  11 ) can be obtained via eq. (4.75) when 7 ] is replaced by ไ ]11.

Although those relative extremum of coR appear when cox <coh,coR is always a 
decreasing function of ไ] for large ไ] limit. This comes from the fact that, for ไ] »  0 eq. 
(4.75) is approximately reduced to ไ] (0Ry ,1(coR)= col which implies that 
co'R = -coRyn(coR)/ไ]d[coRy 11 (coR))/dcoR < 0  V 77. By using eq. (4.72), the definition of y 11 
in eq. (4.75), and the fact that CO 11 —> O' as ไ] —» 0 0  (see eq. (4.75)), this inequality tells US 
that co'R —> 0~ as 77 —> X  . Notice that when (0X < (0h 1 (0X can be either zero or non-zero. 
If it is not equal to zero, then nothing we have to worry about but if cox = 0 ,  then the 
dissipation strength ไ] may be restricted by the criterion for the non-existence of crossover

temperature i.e., + ไ]{2 'Mn)^j(co)t co'dco
()

> a l . From this criterion, it is clear that

the restriction on ไ] appears when Q > cob only, because the criterion is violated for all ไ] 
if D<cob. If D>cob, then ไ] must be restricted in the range {ไ]c,x>), where ไ]0 > 0

{ไ]c ะ= 0 when D = û)b only) obeys the equation

since, for ไ] < ไ]0, the criterion is fulfilled which implies that the crossover temperature is
not exist. Moreover, from eq. (4.75), it is clear that C0R —> 0 +as ไ] -»  *ๆ0 and from eq.
(4.79) (with (0X = 0 ) , one can prove that ไ]0 > ไ]0 (see Appendix E).

From all of the above results, since the crossover temperature T0 is proportional to 
a>R 1 the graph between T0(ไ])/T0{ไ] = o), in the case where CO 1. A 0 and cox = 0 with the 
condition D<cob 1 and dissipation strength 77 can be generally depicted in fig. 4.7 and
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the graph between 7^(77) (it can not be normalized since T0(  ๆ= ๆ c) -  0 ) and dissipation 
strength  ๆ can be generally depicted in fig. 4.8 as follows:

T 0 (> l) /T 0 (1,  = 0 )

Fig. 4.7 : The nomalized crossover temperature T0(t])/T0(  ๆ-  0 ) is shown for general
damping as a function of dissipation strength 7] in the case where COx & 0 
and cox = 0 with the condition n  < a>6 .

Fig. 4.8 : The crossover temperature T0 (ๆ) is shown for general damping as a function 
of dissipation strength  ๆ in the case where cox = 0 with the condition Q > coh.

Ftowever, we do not prove here whether there exists the points ๆ0 obtained from 
eg. (4.79) or not and if they exist, we don't know that they are the points corresponding to
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the maximum or minimum of (งR 1 and also do not prove whether these points are only one 
or not. Moreover, we can not prove by the use of eq. (4.78) that what the value of co'R 
when 77 —> 0 or 77 —X ifc is .By this reason, the graph in fig. 4.8 and the graph in fig. 4.7 
corresponding to the case where 0 < ax < (งh or ax = 0 with the condition ท  < (งh is not 
completely used. However, they are completely used if one can prove that there exists a 
unique //,1 which is the positive root of eq. (4.79).

Similar to the technique used for the variable 7 7 , if we define (0R as an implicit 
function of ท  (it characterizes the Magnus force strength) via eq. (4.75), we also get 

d
K \  12 ( 0  R + ~ -  f a r M ) [2 f e  +  (0r 9{u r  ))+  [c°l -  O il)]+  2<yfl ท 2 2 Q a l

M
(4.80)

where (ป้'R here denotes the differentiation of (0R with respect to ท.
From eq. (4.80), by the same reasons in previous case, it is clear that if 0)x > (งh, 

then (ง'R <0 VQe  R|j which imply that (งR is a decreasing function of ท on Rg but, for 
(ง x < (ง h, it is not sure whether (ง'R < 0 o r  not. However, we can still prove that (ง'R is 
always less than or equal to zero by considering eq. (4.80) as foil๐พร: suppose that there 
exists set ร  ç  R* such that (ง'R > 0 V f i € ร. Since, from eq. (4.75), we know that 

+coRy((งR)~ (ง1 -0 .2(ง1/{(ง1+(ง1+û)Ry((งR)) and Q(0r —» (งx0)b as Q ^ o o  
which imply by the use of eq. (4.80) that (ง'R —X 0' as Q —X 00or Q —X cr , there exists at 
least e(o,oc)such that (ง'R(nj 1")=  r^(Qj,:,)=  0 but, from eq. (4.80), (ง'R -  0 at
Q = 0 only. This leads to the contradiction and hence (ง'R < o v n  G  R,) (the equality hold 
at ท  = 0 only). Moreover, form eq. (4.75), it is clear that (งR -X 0 + as Q -> 00. As in the 
previous case of variable 77, if (งv = 0 ,  then the Magnus force strength Q must be 
restricted in the range [0,Q C] by the criterion for the non-existence of crossover

temperature where Q c. obeys the equation ท : , + J {(ง) (ง'da
0

= co:

Moreover, from eq. (4.75), it is clear that aR —X 0+ as ท —X ท^. By the same proof 
mentioned in the previous case of variable 77, since aR —X 0" as ท —X 0 + and aR —X 0 + 
as ท -X ท “ 1 we can conclude that aR < 0 V Q e (0 , ท 6.) and aR = 0 at ท  = 0. 
Unfortunately, we can not prove by the use of eq. (4.80) that what is the value of aR when
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ท  —> Q~ since the right hand side and { } in the left hand side of eq. (4.80) are both 
equal to zero.

From the above discussion, since the crossover temperature T() is proportional to 
C0R , the graph between T0 (Q)/T0 (n  = 0)and the Magnus force strength Q can be 
generally depicted in figs. 4.9 and 4.10 as follows:

Fig. 4.9 : The normalized crossover temperature T0 ( n ) /T() ( o  = o) is shown for general 
damping as a function of Magnus force strength Q in the case where cox *  0.

Fig. 4.10 : The normalized crossover temperature 7ü(Q )/70(Q = o) is shown for general 
damping as a function of Magnus force strength Q in the case where CO.1.=  0 .
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From figs. (4.7), (4.8), (4.9), and (4.10), we can conclude in this section that the 
parameter cox characterizing the pinning potential in X direction may affect the 
ทาonotonically decreasing behavior of Tn on dissipation strength when (ง x <coh only while 
it can not affect this behavior of 7j, on dissipation strength when COx > coh and Magnus 
force strength for all value of cox. When (ง x -  0 , these behaviors still unchanged but, due 
to the criterion for the non-existence of 7), 1 the dissipation strength is restricted by the 
lower bound 7]. > 0  if fit > (0h while the Magnus fore strength is always restricted by the 
upper bound Q. 1 > 0. Moreover, when looking at the whole trend of these behaviors, one 
can conclude that if the dissipation or Magnus force strength is stronger, then the region 
of the temperature where the decay is dominated by quantum tunneling is thinner which 
imply that the temperature region where the decay is dominated by thermally activation is 
broader. Note that if the dissipation or Magnus force strength go to infinity, then the decay 
is totally dominated by thermal activation.

4.7 LOCALIZATION OF A VORTEX
From previous section, it has been known that, for cox T 0, the quantum tunneling 

always occurs since the crossover temperature always exists. This means that a vortex is 
not localized in the well for T < Tu i.e., it escapes out of metastable well by quantum 
tunneling mechanism describing by the escape rate formula (4.45). Moreover, for cox * 0 
and T > T10, a vortex also escapes out of a metastable well dominated by thermally 
activated decay mechanism described by the escape rate formula (4.61). Hence in the 
case where (0X*  0, a vortex is not localized in the well for the whole range of 
temperature. On the other hand, for cox = 0 , it the Magnus force characterized by Q is 
strong enough so that it fulfills the criterion in theorem 2, then the crossover temperature 
does not exist which implies that a vortex can not escape out of the well by quantum 
tunneling mechanism. One can guess at first sight that a vortex can escape out of the well 
by thermal activation mechanism for the whole temperate range. This guess is false! It 
comes from the fact that if the criterion in theorem 2 is fulfilled, then the assumption in eq. 
(4.64) is wrong which implies that there is no divergent integral in the reduced partition 
function z ^  (see eq. (4.56), because z (0fc) is now positive, and then make z ^  finite and 
real. The finite value of reduced partition function zff) implies that the reduced partition



7 8

function Zd -  z f ] + Zdb) (see eq. (4.46)) is also finite since Zd(l) is finite (See eq. (4.55)). 
The finite value of reduced partition function Zd indicates that a vortex must be localized 
in the well. Since this conclusion of the localization of a vortex has no restriction on 
temperature, this conclusion must be true for the whole range of temperature. However, for 
cox = 0 , if the Magnus force is not strong enough so that the non-existence criterion in 
theorem 2 is violated, then a vortex is not localized in the well, as the assumption (4.64) is 
fulfilled so is negative, i.e., it can escape out of the well by both quantum tunneling 
and thermal hopping but, in this case where Ct)x ะ: 0, we have to use the escape rate 
formula (4.65), instead of (4.61), for T > 7’,.

Now, let us summarize this section. If ผ v t 0,  then a vortex is not always 
localized in the well at any temperature. On the other hand, if <j)x = 0 then the localization 
criterion at any temperature, which is the same as the criterion for the non-existence of 
crossover temperature, is in the form

Recall the definition of D. from eq. (4.11). เท the cas of a vortex in superconductor, this 
criterion can be written in the form

It IS worthwhile to point out that according to eq. (4.82) a large Magnus force inhibits 
vortex escaping while a large vortex mass favors vortex escaping. Note that when the 
dissipation is absent i.e., 0, the formula (4.82) reduces to the localization criterion
in the case of no pinning and dissipation at zero temperature given by P.Ao and
D.J.Thouless [19].

4.8 EFFECTIVE MASS OF A VORTEX AND ITS INTERPRETATION
From eq. (4.81), the localization criterion in the absence of dissipation can be 

written as

(4.81)

(4.82)

(4.83)



7 9

where MO is the mass independent parameter e.g., MO = hpsd /2  for a vortex in 
superconduction (see eq. (4.11)). Comparing eq. (4.83) with eq. (4.81), in the presence of 
dissipation, we can define the “effective mass’ of a vortex M * in the sense of localization 
criterion by

Comparing eq. (4.85) with eq. (4.83), the effective mass of a vortex can be 
described as follows: a vortex in contact with the environment which is localized in the 
pinning potential for sufficiently strong Magnus force behaves as if it is effectively not in 
contact with the environment any more but Its mass must be effectively changed to fhe 
new bigger one called effective mass. This effective mass is equal to the original mass 
plus the extra mass originated from the environment since it depends on the spectral 
function. เท other words, when a vortex in contact with the environment decides to escape  
out of the pinning potential, it behaves as if it is effectively free from the environment but its 
original mass must be changed to the effective one. Note that this extra mass (second 
term in the right hand side of eq. (4.84) is proportional to the effective mass of a vortex 
given by J.H.Han, P.Ao, and X.M.Zhu[18].

It is worth to note that since our definition of the effective mass of a vortex does not 
come directly from the dynamical approach (it is defined via the localization criterion), we 
don't know whether the coordinate of an effectively undamped vortex (a vortex which is 
effectively free from the environment) of mass M * is identical with the coordinate f  of the 
original damped vortex or not. However, some conclusions can be made by first 
introducing new coordinates q'a and new masses pa for the bath oscillator [39],

(4.84)

so that the localization criterion (4.81) can be written as

(4.85)

(4.86)
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From eq. (4.86), the Hamiltonian (4.7) can be written as

(4.87)
We can see that the model Hamiltonian (4.7), in fact, describes a vortex of mass M  with 
many masses f ja affected with springs to its coordinate 7 . With the substitution (4.86) 
the spectral function of the environmental coupling ./(<y), which has been defined in eq. 
(3.62), take the form [16]

From eq. (4.88), it is clear that the total mass attached with springs to vortex’s coordinate 
r  can be written as

From this point of view, from eqs. (4.87) and (4.89), our effective mass M ' of vortex (4.84) 
is, in fact, equal to the total mass of the system which is composed of a vortex of mass M  
with many masses j-i 11 attached with springs to its coordinate. Since, our problem is in the 
infinite two dimensional plane and the whole system (vortex plus environment) is in the 
thermal equilibrium, the environment will move randomly in such a way that the average of 
the center of mass coordinate of the system described by Hamiltonian (4.87) coincide with 
the average of the coordinate of a vortex at all time. Hence, the center of mass itself can 
be viewed as a vortex since it feels the Magnus force. By this reason, the whole system 
can be viewed as one undamped vortex, which has its mass equals to the total mass of 
the system, described by the center of mass coordinate. Since this vortex is an undamped 
vortex, the localization criterion which we have to use for this undamped vortex is the 
localization criterion (4.83). This localization criterion is now identical with the criterion 
(4.85) since the mass of this undamped vortex is equal to the mass of the whole system 
which is equal to our effective mass of vortex. By the above discussion, one can conclude 
that the damped vortex of mass M  can be effectively viewed as an undamped vortex of 
mass M 'within the sense of the localization criterion, and the coordinate of the 
undamped vortex is identical to the coordinate of an original damped vortex which is also 
identical to the center of mass coordinate of the system described by Hamiltonian (4.87)

J (๓ )  =  \  ร ุ่ Ma -  (Oa ) (4.88)

(4.89)
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(this Hamiltonian actually describes our original problem since the physical behavior is 
independent of the choice of coordinate one used). However, if the system is confined in 
the “finite plane”, then this conclusion will be true only for the case of sufficiently weak

A'

environmental coupling so that ix  «  M . This come from the fact that when
น=1

« M  1 the center of mass coordinates of the system will approximately coincide
a  I

with the original coordinates of a damped vortex, even when a vortex is located near the 
edges of the plane.
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