การสังเคราะห์อนุพันธ์เอไมค์ของวัลโปรอิก แอซิค

นางสาวลือลักษณ์ ล้อมลิ้ม

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเคมี ภาควิชาเภสัชเคมี บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2541 ISBN 974-331-345-1

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

SYNTHESIS OF AMIDE DERIVATIVES OF VALPROIC ACID

Miss Luelak Lomlim

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Pharmacy in Pharmaceutical Chemistry

Department of Pharmaceutical Chemistry

Graduate School

Chulalongkorn University

Academic Year 1998

ISBN 974-331-345-1

Thesis Title	Synthesis of amide derivatives of valproic acid
Ву	Miss Luelak Lomlim
Department	Pharmaceutical Chemistry
Thesis Advisor	Assistant Professor Chamnan Patarapanich, Ph.D.
Thesis Co-advisor	Instructor Anong Teeravanichapong, Ph.D.
Accepted by	the Graduate School, Chulalongkorn University in Partial
Fulfillment of the Rec	quirements for the Master's Degree
Sagar	Dean of Graduate School
(Profes	ssor Supawat Chutivongse, M.D.)
Thesis committee	
\$	The Alarys Chairman
(Assoc	iate Professor Phensri Thongnopnua, Ph.D.)
a	Thesis Advisor
(Assist	ant Professor Chamnan Patarapanich, Ph.D.)
2	Anny Snibon' Thesis Co-advisor
	ctor Anong Teeravanichapong, Ph.D.)
В	Member
(Associ	ate Professor Boonardt Saisorn, M.Sc. in Pharm.)
Dar	awan Panyavutti Member
(Associ	ate Professor Darawan Tanyavutti, M.Sc. in Pharm.)

ลือลักษณ์ ล้อมลิ้ม: การสังเคราะห์อนุพันธ์เอไมด์ของวัลโปรอิก แอซิค (SYNTHESIS OF AMIDE DERIVATIVES OF VALPROIC ACID) อ.ที่ปรึกษา: ผส.คร. ชำนาญ กัตรพานิช, อ.ที่ปรึกษาร่วม: คร. อนงค์ ตีระวนิชพงศ์, 210 หน้า. ISBN 974-331-345-1.

การวิจัชนี้เป็นการศึกษากระบวนการสังเคราะห์อนุพันธ์เอใมด์ของวัลโปรอิก แอชิค ซึ่งคาคว่ามีฤทธิ์ต้านการชัก

การสังเคราะห์เอ็น-(2-โพรพิลเพนตาโนอิล)-แอล-โพรลีนทำโดยใช้2-โพรพิลเพนตาโนอิล คลอไรค์ทำปฏิกิริยากับกรค อะมิโนในสารละลาย 10% โซเดียม ไฮครอกไซค์ การเครียมเอ็น-(2-โพรพิลเพนตาโนอิล)-แอล-โพรลีน เอธิล เอสเทอร์, เอ็น-(2-โพรพิลเพนตาโนอิล)-คีแอล-เซอรีน เอธิล เอสเทอร์ และ เอ็น-(2-โพรพิลเพนตาโนอิล)-คีแอล-เซอรีน เอธิล เอสเทอร์ และ เอ็น-(2-โพรพิลเพนตาโนอิล)-ไกลซีน เอธิล เอสเทอร์อาศัยปฏิกิริยาการเกิดเอสเทอร์ของกรคอะมิโนกับอัลกอฮอล์ที่เหมาะสม แล้วนำเกลือไฮโคร คลอไรค์ของเอสเทอร์ที่เครียมใต้มาทำปฏิกิริยากับ2-โพรพิลเพนตาโนอิล คลอไรค์ สารประกอบเอ็น-(2-โพรพิลเพนตาโนอิล)-คีแอล-เซอรีน เมธิล เอสเทอร์ การสังเคราะห์ เอ็น-(2-โพรพิลเพนตาโนอิล)-เดล-เซอรีน เมธิล เอสเทอร์ การสังเคราะห์ เอ็น-(2-โพรพิลเพนตาโนอิล)-แอล-โพรลีน เบนซิลเอไมด์ และ เอ็น-(2-โพรพิลเพนตาโนอิล)-คีแอล-เซอรีน เบนซิลเอไมด์ และ เอ็น-(2-โพรพิลเพนตาโนอิล)-ไกลซีน เบนซิลเอไมด์ทำโดยใช้อนุพันธ์เอ็น-(2-โพรพิลเพนตาโนอิล)ของกรคอะมิโนทำปฏิกิริยากับเบนซิลเอมีน โดยมีเอ็น,เอ็น'-โคไซโคลเฮกซิลคาร์โบใคอิไมด์เป็นสารจับคู่

การสังเคราะห์เอ็น-ใชครอกซีเมธิล-2-โพรพิลเพนตาไมค์อาศัยปฏิกิริยาการเกิดเอไมค์ของ 2-โพรพิลเพนตาโนอิล คลอไรด์ โดยใช้สารละลายแอมโมเนียเข้มข้นได้เป็น 2-โพรพิลเพนตาไมค์ นำสารที่ได้ไปทำปฏิกิริยากับ 37% ฟอร์มัลดีไฮด์โดยเติมโพแทสเซียม คาร์บอร์เนต การสังเคราะห์เอ็น-อะเซทอกซีเมธิล-2-โพรพิลเพนตาไมค์ทำโดยปฏิกิริยาเติมหมู่เอชิลของเอ็น-ไฮครอกซีเมธิล-2-โพรพิล เพนตาไมค์โดยใช้อะซีติก แอนไฮไตรค์และไพริดีน การสังเคราะห์เอ็น-เมธอกซีเมธิล-2-โพรพิลเพนตาไมค์ทำโดยปฏิกิริยาเติมหมู่ อัลคิลบนอะตอมในโตรเจนของ 2-โพรพิลเพนตาไมค์ด้วยเมธอกซีเมธิล คลอไรด์โดยใช้โซเดียมไฮไตรค์เป็นค่าง

การพิสูจน์เอกลักษณ์ของสารที่สังเคราะห์อาศัยเทคนิคทางอินฟราเรค สเปกโตรเมทรี, โปรตอน-1 และ คาร์บอน-13 นิวเคลียร์แมกเนติก เรโซแนนซ์ สเปกโตรเมทรี แมสสเปกโตรเมทรี และ การวิเคราะห์องค์ประกอบธาตุ

ภาควิชา	เภสัชเคมี	ลายมือชื่อนิสิต	กงณ์ ผู้สมลับ
สาขาวิชา		ลายมือชื่ออาจารย์ที่ปรึกษา	アラー
ปีการศึกษา	2541	ลายมือชื่ออาจารย์ที่ปรึกษาร่ว	11 On orl

3971517533: MAJOR PHARMACEUTICAL CHEMISTRY
KEY WORD: SYNTHESIS/ AMIDE/ VALPROIC ACID/ ANTICONVULSANT
LUELAK LOMLIM: SYNTHESIS OF AMIDE DERIVATIVES OF VALPROIC ACID. THESIS
ADVISOR: ASSIST. PROF. CHAMNAN PATARAPANICH, Ph.D. THESIS CO-ADVISOR:
INSTRUCTOR ANONG TEERAVANICHAPONG, Ph.D. 210 pp. ISBN 974-331-345-1.

This investigation was to study the synthetic route of amide derivatives of valproic acid, which were expected to possess anticonvulsant activity.

The formation of N-(2-propylpentanoyl)-L-proline proceeded by reacting 2-propylpentanoyl chloride with amino acid in 10% sodium hydroxide solution. The synthetic route of N-(2-propylpentanoyl)-L-proline ethyl ester, N-(2-propylpentanoyl)-DL-serine ethyl ester, and N-(2-propylpentanoyl)-glycine ethyl ester involved esterification of the amino acid with the corresponding alcohol in the presence of thionyl chloride, then followed by the acylation with 2-propylpentanoyl chloride in the presence of triethylamine. The synthetic route of N-(2-propylpentanoyl)-L-proline benzylamide, N-(2-propylpentanoyl)-DL-serine benzylamide, and N-(2-propylpentanoyl)-glycine benzylamide involved coupling of the N-(2-propylpentanoyl)-amino acid with benzylamine in the presence of N,N -dicyclohexylcarbodiimide. The synthetic route of N-(2-propylpentanoyl)-DL-serine involved basic hydrolysis of N-(2-propylpentanoyl)-DL-serine methyl ester.

The synthetic route of N-hydroxymethyl-2-propylpentamide involved amidation of 2-propylpentanoyl chloride by concentrated ammonia solution to yield 2-propylpentamide, followed by the reaction with 37% formaldehyde in the presence of potassium carbonate. The synthesis of N-acetoxymethyl-2-propylpentamide involved acetylation of N-hydroxymethyl-2-propylpentamide with acetic anhydride. The synthetic route of N-methoxymethyl-2-propylpentamide involved N-alkylation of N-2-propylpentamide with methoxymethyl chloride using sodium hydride as a base.

The structures of the synthesized compounds were confirmed by infrared spectrometry, proton-1, and carbon-13 nuclear magnetic resonance spectrometry, mass spectrometry, and elemental analysis techniques.

ภาควิชา	เภสัชเคมี	ลายมือชื่อนิสิต อื่อลำจง ล้อมลิ้ม
สาขาวิชา	เภสัชเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา 🦟 🕰
ปีการศึกษา	2541	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม 🕝 🔊

ACKNOWLEDGEMENTS

My sincere gratitude is expressed to my thesis advisor, Assistant Professor Dr. Chamnan Patarapanich, for his valuable advice, continual guidance, kindness, understanding, and encouragement throughout the courses of my graduate study.

I would like to acknowledge my gratefulness to my thesis co-advisor,

Dr. Anong Teeravanichapong for her helpful guidance and valuable advice.

My thankfulness is also expressed to Associate Professor Dr. Phensri Thongnopnua, head of the Department of Pharmaceutical Chemistry, for her hospitality, and providing facilities.

I am thankful to the members of my thesis committee for their valuable suggestion and discussion.

My thanks are also extended to all staff members of the Department of Pharmaceutical Chemistry and the scientists of the Scientific and Technological Research Equipment Center, Chulalongkorn University.

I am indepted to all my friends for their encouragement.

Acknowledgement is also made to the Graduate School of Chulalongkorn University for granting a partial financial support.

Finally, I would like to express deep gratitude to my beloved parents, brother, and sister for everything.

CONTENTS

	pag	,e
THAI ABST	TRACTi	v
ENGLISH A	ABSTRACT	V
ACKNOWL	LEDGEMENTS	/i
LIST OF FIG	GURESvi	ii
CHAPTER		
I.	INTRODUCTION	1
II.	HISTORY2	7
III.	EXPERIMENTS5	4
IV.	RESULTS AND DISCUSSION15	3
V.	CONCLUSION	1
REFERENC	EES	3
VITA		0

LIST OF FIGURES

	Pag	;e
Figure 1.	Chemical structures of some antiepileptic drugs	10
Figure 2.	Some anticonvulsant agents acting at sodium channelsl	4
Figure 3.	Chemical structures of some competitive and noncompetitive NMDA receptor antagonists	6
Figure 4.	Chemical structures of anticonvulsant agents acting at inhibitory synaptic processes	18
Figure 5.	Chemical structures of antiepileptic drugs under development1	9
Figure 6.	Chemical structures of some derivatives of valproic acid having anticonvulsant activity	1
Figure 7.	Chemical structures of target compounds in this research	2
Figure 8.	Structural units present in many anticonvulsants	3
Figure 9.	General structure of functionalized amino acid	3
Figure 10.	Chemical structures of target compounds in this research	4
Figure 11.	The synthetic approach of target compounds in this research	5
Figure 12	Chemical structures of some derivatives and prodrugs of valproic acid 3	s o

Page
Figure 13. The mechanisms of coupling with N,N'-dicyclohexylcarbodiimide40
Figure 14. The mechanism of N-acylation of amine
Figure 15. The mechanism of O-acylation of alcohol
Figure 16. Mechanisms of ester hydrolysis50
Figure 17. Mechanisms of addition of amide to aldehyde
Figure 18. The IR spectrum (KBr) of N-(2-propylpentanoyl)-L-proline80
Figure 19. The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-L-proline in CDCl ₃
Figure 20. The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-L-proline in CDCl ₃ (Enlarged scale)
Figure 21. The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-L-proline in CDCl ₃ (Enlarged scale)
Figure 22. The ¹³ C-NMR spectrum of N-(2-propylpentanoyl)-L-proline in CDCl ₃ 84
Figure 23. The CH-COSY spectrum of N-(2-propylpentanoyl)-L-proline in CDCl ₃ 85

Page
Figure 24. The CH-COSY spectrum of N-(2-propylpentanoyl)-L-proline
in CDCl ₃ (Enlarged scale)86
Figure 25. The mass spectrum of N-(2-propylpentanoyl)-L-proline87
Figure 26. The IR spectrum (Neat) of L-proline ethyl ester hydrochloride88
Figure 27. The IR spectrum (Neat) of N-(2-propylpentanoyl)-L-proline
ethyl ester89
Figure 28. The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-L-proline
ethyl ester in CDCl ₃ 90
Figure 29. The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-L-proline
ethyl ester in CDCl ₃ (Enlarged scale)91
Figure 30. The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-L-proline
ethyl ester in CDCl ₃ (Enlarged scale)92
Figure 31. The ¹³ C-NMR spectrum of N-(2-propylpentanoyl)-L-proline
ethyl ester in CDCl ₃
Figure 32. The CH-COSY spectrum of N-(2-propylpentanoyl)-L-proline
ethyl ester in CDCl ₃
Figure 33. The CH-COSY spectrum of N-(2-propylpentanoyl)-L-proline
ethyl ester in CDCl ₃ (Enlarged scale)95
,

	Pag	ge
Figure 34.	The mass spectrum of N-(2-propylpentanoyl)-L-proline	
e	ethyl ester	96
Figure 35.	The IR spectrum (Neat) of N-(2-propylpentanoyl)-L-proline	
b	penzylamide9	07 -
Figure 36. 7	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-L-proline	
ł	benzylamide in CDCl ₃ 9	8
Figure 37. 7	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-L-proline	
b	penzylamide in CDCl ₃ (Enlarged scale)9	9
Figure 38. T	The H-NMR spectrum of N-(2-propylpentanoyl)-L-proline	
	penzylamide in CDCl ₃ (Enlarged scale)	0
	The ¹³ C-NMR spectrum of N-(2-propylpentanoyl)-L-proline	1
	The CH-COSY spectrum of N-(2-propylpentanoyl)-L-proline	1
b	penzylamide in CDCl ₃ 10	2
	he CH-COSY spectrum of N-(2-propylpentanoyl)-L-proline	
	enzylamide in CDCl ₃ (Enlarged scale)10	
Figure 42. Tl	he mass spectrum of N-(2-propylpentanoyl)-L-proline benzylamide10	4

	Page
Figure 43.	The IR spectrum (Nujol, mull) of DL-serine methyl ester hydrochloride
Figure 44.	The IR spectrum (KBr) of N-(2-propylpentanoyl)-DL-serine methyl ester
Figure 45.	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-DL-serine methyl ester in CDCl ₃
Figure 46.	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-DL-serine methyl ester in CDCl ₃ (Show peaks in Hz)
Figure 47.	The ¹³ C-NMR spectrum of N-(2-propylpentanoyl)-DL-serine methyl ester in CDCl ₃
Figure 48.	The mass spectrum of N-(2-propylpentanoyl)-DL-serine methyl ester
Figure 49.	The IR spectrum (KBr) of N-(2-propylpen(anoyl)-DL-serine111
Figure 50.	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-DL-serine in DMSO-d ₆
Figure 51.	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-DL-serine in DMSO-d ₆ show peak in Hz)113

	Page
Figure 52.	The ¹³ C-NMR spectrum of N-(2-propylpentanoyl)-DL-serine in DMSO-d ₆
Figure 53.	The DEPT 135 spectrum of N-(2-propylpentanoyl)-DL-serine in DMSO-d ₆
Figure 54.	The mass spectrum of N-(2-propylpentanoyl)-DL-serine116
Figure 55.	The IR spectrum (Nujol, mull) of DL-serine ethyl ester hydrochloride
Figure 56.	The IR spectrum (KBr) of N-(2-propylpentanoyl)-DL-serine ethyl ester
Figure 57.	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-DL-serine methyl ester in CDCl ₃
Figure 58.	The ¹ H-NMI spectrum of N-(2-propylpentanoyl)-DL-serine ethyl ester in CDCl ₃ (Show peaks in Hz)
Figure 59.	The ¹³ C-NMI; spectrum of N-(2-propylpentanoyl)-DL-serine methyl ester n CDCl ₃
	The mass spectrum of N-(2-propylpentanoyl)-DL-serine methyl ester

	Page
Figure 61.	The IR spectrum (KBr) of N-(2-propylpentanoyl)-DL-serine benzylamide
Figure 62.	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-DL-serine benzylamide in CDCl ₃
Figure 63.	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-DL-serine benzylamide in CDCl ₃ (Show peaks in Hz)
Figure 64.	The ¹³ C-NMR spectrum of N-(2-propylpentanoyl)-DL-serine benzylamide in CDCl ₃
Figure 65.	The DEPT 135 spectrum of N-(2-propylpentanoyl)-DL-serine benzylamide in CDCl ₃
Figure 66.	The HMQC spectrum of N-(2-propylpentanoyl)-DL-serine benzylamide in CDCl ₃
Figure 67.	The mass spectrum of N-(2-propylpentanoyl)-DL-serine benz vlamide
Figure 68.	The !R spectrum (Nujol, mull) of glycine ethyl ester hydrochloride130
Figure 69.	The IR spectrum (KBr) of N-(2-propylpentanoyl)-glycine ethy ester

	Page
Figure 70.	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-glycine ethyl ester in CDCl ₃
Figure 71.	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-glycine ethyl ester in CDCl ₃ (Show peaks in Hz)
Figure 72.	The ¹³ C-NMR spectrum of N-(2-propylpentanoyl)-glycine ethyl ester in CDCl ₃
Figure 73.	The mass spectrum of N-(2-propylpentanoyl)-glycine ethyl ester
Figure 74.	The IR spectrum (KBr) of N-(2-propylpentanoyl)-glycine benzylamide
Figure 75.	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-glycine benzylamide in CDCl ₃
Figure 76.	The ¹ H-NMR spectrum of N-(2-propylpentanoyl)-glycine benzylamide in CDCl ₃ (Show peaks in Hz)
Figure 77.	The ¹³ C-NMR spectrum of N-(2-propylpentanoyl)-glycine benzylamide in CDCl ₃
_	The DEPT 135 spectrum of N-(2-propylpentanoyl)-glycine benzylamide in CDCl ₃ 140

	Page
Figure 79.	The mass spectrum of N-(2-propylpentanoyl)-glycine
	benzylamide141
Figure 80.	The IR spectrum (KBr) of 2-propylpentamide
Figure 81.	The IR spectrum (KBr) of N-hydroxymethyl-2-propylpentamide143
Figure 82.	The 1H-NMR spectrum of N-hydroxymethyl-2-propylpentamide
	in CDCl ₃ 144
Figure 83.	The ¹³ C-NMR spectrum of N-hydroxymethyl-2-propylpentamide145
Figure 84.	The mass spectrum of N-hydroxymethyl-2-propylpentamide146
Figure 85.	The IR spectrum (KBr) of N-acetoxymethyl-2-propylpentamide147
Figure 86.	The ¹ H-NMR spectrum of N-acetoxymethyl-2-propylpentamide in CDCl ₃
Figure 87.	The IR spectrum (KBr) of N-methoxymethyl-2-propylpentamide149
	The ¹ H-NMR spectrum of N-methoxymethyl-2-propylpentamide
	in CDCl ₃
Figure 89. 7	The ¹³ C-NMR spectrum of N-methoxymethyl-2-propylpentamide151
Figure 90.	The mass spectrum of N-methoxymethyl-2-propylpentamide152

	Page
Figure 91.	Assignment of carbon atoms on DL-proline157
Figure 92.	Mass fragmentation N-(2-propylpentanoyl)-L-proline159
Figure 93.	Mass fragmentation of N-(2-propylpentanoyl)-L-proline ethyl ester163
Figure 94.	The formation of by-products from the coupling with N,N'-dicyclohexylcarbodiimide
Figure 95.	Mass fragmentation of N-(2-propylpentanoyl)-L-proline benzylamide167
Figure 96.	Mass fragmentation of N-(2-propylpentanoyl)-DL-serine methyl ester
Figure 97.	Mass fragmentation of N-(2-propylpentanoyl)-DL-serine174
Figure 98	Mass fragmentation of N-(2-propylpentanoyl)-DL-serine eethyl ester
Figure 99.	Mass fragmentation of N-(2-propylpentanoyl)-DL-serine benzylamide
_	Mass fragmentation of N-(2-propylpentanoyl)-glycine ethyl ester
	Mass fragmentation of N-(2-propylpentanoyl)-glycine benzylamide

	F	Page
Figure 102.	Proposed mechanism of formation of the alkylidene bisamide derivative	⁄e
	in acid-catalyzed reaction	189
Figure 103.	Mass fragmentation of N-hydroxymethyl-2-propylpentamide	.191
Figure 104.	¹ H-NMR spectrum of decomposed product of N-acetoxymethyl-	
4.	2-propylpentamide	94
Figure 105.	Mechanism of decomposition of N-acetoxymethyl-2-propylpentamide.	196
Figure 106.	Mechanism of formation of N-methoxymethyl-2-propylpentamide	198
Figure 107.	Mass fragmentation of N-methoxymethyl-2-propylpentamide	.199