CHAPTER 3

THEORETICAL CONSIDERATIONS

The section discusses how the Layered Stabilized Flow Model is developed. All
relevant equations are presented and the derivation of the solution is fully described.
The information required to build the model is enumerated and the calculation method
IS clearly established.

31 The Layered Stabilized Flow Model

El-Banbi and Wattenbarger[l’z] proposed the Layered Stabilized Flow Model

(LSFM) as an alternative procedure to estimate the original gas in place (OGIP) in a
commingled gas reservoir. The authors wrote two papers on the analysis of
commingled gas reservoirs and were published in 1996 and 1997. The first paper
basically presents the approach using simulated and actual data for tight gas reservoirs
(reservoirs with permeability ranging from 0.1 to 10 md) producing against a constant
flowing bottomhole pressure. Also, the model ignored the effect of non-Darcy flow.
The second paper is an extension of the first study whereby the effects of variation in
the flowing hottomhole pressure and non-Darcy flow were considered. The results
from the model showed good OGIP estimate of each component layer of the
commingled reservoir.

The technique combines the material balance equation and the productivity
index equation (stabilized flow equation) to come up with a moel rate equation for
each layer in the commingled reservoir system. When stabilized flow is reached in a
commingled system, each layer can be characterized by its OGIP and its flow
coefficient, Jg. The LSFM basically calculates the “model production rate” for each
layer and sums up these layer rates to calculate the “total model production rate” for
the commingled reservoir at a given time step. This total model production rate over
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time (model forecast) is then matched to the actual production rate history using
multi-variable non-linear regression analysis.

The method is simple and requires only the flow rate and flowing bottom hole
pressure (puf) history as well as the initial reservoir pressure and gas properties of a
given well. The method shows excellent results for moderate to high permeability
reservoirs even with long shut-ins and considerable variations in the p (the model
accounts for cross-flow between layers during shut-in periods).

311 The Layered Stabilized Flow Model for Single-Layered Reservoir

In order to formulate the model equations for multi-layered reservoirs, a single
layer reservoir is examined first. In this section, the equations to model a single-layer
reservoir are developed.

The two equations describing stabilized flow for single-layer gas reservoirs are
the material balance (MB) equation and the productivity index equation. These two
equations were used by EI-Banhi and Wattenbarger to arrive at the layered stabilized
flow equation.

The material balance equation for a single-layer gas reservoir is given by.
2)(2){1252
& U[‘ o] 1)
The gas productivity index equation or the gas flow solution is given by:

o= T} =ilp ) 52)

The real gas pseudo-pressure is defined hy:

il 83
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Due to the large magnitude and the awkward unit of pseudo-pressures, the use of
normalized pseudo-pressures is preferred to simplify the flow equation. Normalized

pseudo-pressure™10" is defined as:

_p s BT
Pon =P, + 5 ,szp (34)

The advantage of using the normalized pseudo-pressure is that it has the unit of
pressure and that liquid well test equations can be used for gas flow equations.

Hence, the simplified gas flow equation (Eq 3.2) becomes:

99 =Jg{pm - ppm) (35)

In addition, the relation between the gas flow rate and cumulative gas production is
given by:

G = Jog(nat (36a)

Or in finite terms:

Gp= X ATA (3.6h)

where the subscripts / andj are time indices.

The simplified form of the gas flow equation (Eq. 3.5) requires the pressure terms to
be expressed as normalized pseudo-pressures. Therefore, we need to convert the
pressure terms from the material balance equation (Eg. 3.1) to normalized pseudo-
pressure terms o we can directly use them in Eq. 3.5.

Solving forp from Eg. 31

pl 1p,GT (3])
=7 16
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From observations, the plot of the normalized pseudo-pressure Versus pressure shows
a linear relationship at high pressure values.

Ppn=kp (3.8)
where k is a proportionality constant,

Substitutingppnforp in Eq. 3.7:

Ppon _ Zpm  ZPpn,Gp
Kok 2KG (3.5%)

Al the k terms cancel out and Eg. 3.9a can be simplified into

_ Ppm  ZPpnjGp
Ppn-=zi Z,6 (39b)

By combining Eqs. 3.5, 3.6b and 3.9b, the change of production rate through time can
be related to the change of the average reservoir pressure through time. If the initial
reservoir pressure, the initial gas properties, and the production and pressure history
are known, the three equations can be solved simultangously to determine the original
gas in place G and the productivity incex Jg.

Substituting the value ofepn from Eq. 3.90 and 6p from Eq. 3.6b to Eq. 3.5, Eq. 35
becomes:

pm |
76 D (3.10)

Simplifying Eq. 3.10, we obtain;



20

Crsgemzng e JgPpnizp PP NK (3.108)
yA¢

7.6 JgPpﬂW/j

JOPIZZ G -J gPme,ZJP A y o J gDAG

N |
1, G + JQPPNIZIZA 1] (3.11)

Eq. 3.11 represents the “model production rate” for the stabilized flow in a
single-layer reservoir. All pressure terms are expressed as normalized pseudo-
pressures. Note that the derived equation does not have the average reservoir pressure
term pj. Elimination of this variable 1s the advantage of using the LSFM model
equation. In most cases, measurement of the average reservoir pressure can he
estimated from production logging but these type of surveys are not practically done
in a frequent interval to get a close estimate of the average layer pressure. Also, the
average reservoir pressure that can be measured in pressure surveys may not represent
the true value because of crossflow between layers as discussed previously.

By initially assuming G and Jg, the model production rate can now be calculated
from Eq. 311 and subsequently history matched or “calibrated” with the actual
production of the well. Matching is done through curve fitting using non-linear least
square regression analysis.

312 The Layered stabilized Flow Model for Multi-Layered Reservoirs

The individual layer performance from the single layer model can now be used
to compute for the total reservoir performance of a multi-layered system. After
solving each layer’s model production rate at time t, the total model production rate
for the whole commingled reservoir is simply the sum of the individual layer rate at
fime tj,
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In equation form:
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where the subscript k refers to the layer index.

For commingled reservoirs of two or more layers, Eq. 3.13 introduces an
additional unknown parameter to solve the model production rate. This is Gpk, or the
cumulative production of each layer before time ¢ (i.e. the second term in the
equation) defined as;

(3.14)

Gpk =- yuvikAt,

Gpk’ is the cumulative production for each layer from the start of production
until the start of the calibration period. For a single-layered reservoir, Gp*is known,
l.e., the cumulative production from the layer. This is not the case for multi-layered
reservoirs. Although the total Gp’ for the commingled reservoir is known, the
contribution from each sand layer is unknown. Hence, Gpk'is an additional unknown
parameter in the calculation of the model production rate.

Thus, Gpk’, like G and Jg, s also initially assumed for each layer. Once an
estimate of Gpk* is made for each layer, the cumulative production through each time
step in the calibration period can now be calculated. To illustrate how to calculate
Gpk ', consider Layer 1in a multi-layered reservoir;
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1 Assume Gpli "aty = 1 (cumulative production from time O until start of calibration

period)

2. Aty =2 (next time step).

cov - GpU +qlLuAt2

Where
At2=12
and
J\Ppm2 2W\G\ ~ JgPpm\2 2\Gp\0 ~ Jg\Ppnwillzi\ G\
2 G\ +JgPpni2 2 A\
3. Aty=3:
Gptt —Gpn +q 12At2
Where
and
JO\Pp  2122\G\ ~ JgPpni\2 22\GpU —J g\P pnf2121\ G]
reee 2 6, +JgPpmnzlZ2At2

4, Do the same untily =

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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Thus Gp G and Jg of each layer are the unknown parameters that are assumed

and used in the model production rate to match the actual production rate for
reservoirs with more than one layer. The number of unknown parameters is, therefore,
equal to 3n.

32 LSFM Data Requirements

The information required in order to build and run the model are outlined below:

L

Initial static reservoir pressure of the individual reservoirs in the well. Possible

sources of these pressure measurements include:

() known pore pressure gradients for the gas field:

() Repeat Formation Tester (RFT) pressure measurements made after drilling but
before completion of the well

2. Temperature of the individual reservoirs in the well
3. Gas PVT properties such as gas specific gravity (y), gas density ip), real gas

deviation factor (z), formation volume factor (Bg) and gas viscosity (fig) for
calculating normalized pseudo-pressures
Production history of the well, which includes:
(a) flowrate of gas, water and condensate versus time
(b) flowing bottom hole pressure measurements versus time
(c) In the absence of flowing hottom hole pressure measurements, flowing tubing
head pressure measurements versus time and the following well completion
information for multi-phase flow correlation:
I tubing size and estimated roughness
1 components of the well completion and their depths
I well trajectory including measured depth of the well versus true vertical
depth
(d) record of periods during which the well was shut-in
Layer information such as depth of each sand and their perforation intervals
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6. Other information such as estimates of reservoir areas from seismic data, porosity,
permeability and water saturation, which will be of use for validating the OGIP
calculated by the model

3.3 LSFM Assumptions and Limitations

In applying the Layered Stabilized Flow Model, the following assumptions were
mage;

(@) Average fluid properties are used for the calculation of the normalized pseudo-
pressures of the layers of the commingled reservoir system unless the PVT
properties of each layer are defined.

(b) The productivity index Jg is constant during the production period.

(c) There isno pressure loss in the tubing occuring between layers.

34 LSFM Calculation Method

From the required data and information outlined above, the Layered Stabilized
Flow Model (LSFM) Program is constructed for modeling multi-layered gas
reservoirs.  The program is a spreadsheet program created in Microsoft Excel. The
model has three main elements or modules: the production data table, the normalized
pseudo-pressures table and the LSFM program.

34.1 Production Data Table

The production data input table contains all the pertinent information about the
well production history: gas, water and condensate rates, flowing pressures and
temperatures, and the absolute and relative flow periods of the well. A “calibration
period” is normally selected from the production history where the model is matched.
This calibration period should exclude transient production rate data.
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34.2 The Normalized Pseudo-pressure Table

The normalized pseudo-pressure table module in the LSFM program allows
calculation and conversion of gas pressures to normalized pseudo-pressures. This is
done through interpolation of the normalized pseudo-pressure values provided in the
table.

As given in Eq 3.4, the normalized pseudo-pressure is:

P-4>

where the subscripts i on /u and z refers to the evaluation of these parameters at the
initial pressure i, the references pressure.

Integration of Eq. 34 can be done numerically through a spreadsheet table
calculation. Using numerical integration, equation (3.4) can be simplified into:

integral
PPPP — T (3.21)
VPZJ,
where the “integral” is defined as:
integral = Vo) (0j-pj-i) (3.22)

From Eq. 34, Eq. 3.21 and Eq. 3.22, the calculation of the normalized pseudo-
pressures requires the gas deviation factor z and the gas viscosity p at each pressure.
Therefore, the normalized pseudo-pressure component of the LSFM program has two
other sub-components: the z-factor calculator and the fluid property calculator.
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To calculate gas deviation factors, the Dranchuk and Abu-Kassem
correlation®1" was used. The Dranchuk and Abu-Kassem correlation is an empirical

equation for determining the z-factor. It was chosen for ease of calculation since it can
be incorporated readily in the LSFM program. The correlation is an 11-constant
empirical equation given by:

7= x4 A,
ot TRy
f A ?HMMWA* r |
ot S i 42

+AL0(1 + Allp 2)A rexp{-A]lpE)+ 1.0
where pris expressed as:

or 0-VPpr (324)

LTpr

The pseudo-reduced and pseudo-critical pressures and temperatures are defined as
follows:

(325)

; 326)

ppe= 706 517 - 11% (3.27)

7A=187 +3307-7.15 (3.29)



21

Eq. 3.23 is implicit in z and must be solved iteratively by the Newton-Rhapson
technique. The 11-empirical constants were determined from non-linear regression

on 1,500 data points from the Standing and Katz z-factor chart"2"

The 11 constants in the Dranchuk and Abu-Kassem Correlation are;

A .
A2 .
A3 .
A .
ab .
A6 .
al -
Ay -
A9 .
Al0
An .

0.3265,

-1.0700,
-0.5339,

0.01569,

-0.05165,

0.5475,

-0.7361,

0.1844,
0.1056,
0.6134, and
0.7210

To calculate gas viscosities, the Lee et a | correlation was used. The Lee et al.

correlation is a semi-empirical equation for calculating gas viscosity. The viscosity
equation is given by:

Where

\v-
0 exp x| B¢ 329)
uz2.4]

¢ (9.4-10.02AK)y
= (209+19M K+ t) (330)
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Y- 24-02T (331)
X =3.5+[97ﬁ]+0.01/wg (332)
Ms =28.97yqg (3.33)

34.3 The Layered Stabilized Flow Model Program

The Layered Stabilized Flow Model Program calculates each layer’s flow rate
using Eqg. 3.9 by initially assuming values of ¢ px’, sk and sgk for each layer and then
calculating the total flow rate by summing up the layer rates of the entire commingled
system (refer to Eq. 3.13). Calculation of the total flow rate is done for each time step.

In order to get the correct values of epk ¢« and sk, the model rates are history
matched with the actual production rates using non-linear least square regression
analysis. Non-linear least square regression analysis is a multivariable optimization
technigue commonly used to infer unknown parameters of a given model function by
comparing and minimizing the difference hetween the model function and the actual
measurements.

3431 Non-linear Regression Analysis

In general terms, non-linear regression is a mathematical procedure whereby
model parameters are determined through minimization of the difference between the
calculated model response and the actual measurement. In the least squares approach,
an objective function e is set such that the sum of the squares of the difference
between the actual measurement (total actual rate) and the model function (total
model rate) is minimized:
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(3.34)
where
it = objective function
[ = model function
x = Independent variable
y = dependent variable
6 = model parameters

The objective function E can be approximated as a quadratic relationship by taking a
2nd order Taylor Series expansion of the function. This quadratic approximation, E*,
Is defined as:

gE
0%) do.

& Y. ool d2E
+EZZ((),—H,X& el)dOA (3.35)

=] k=1

where the subscriptsj and k refer to the unknown parameters and the superscript 0in 0
refers to the initial guesses for the unknown parameters. The use of the 2rd order
approximation or Eq. 3.35 is known as the Newton” Method.

|f we define a vector of 1 order partial derivatives as,

oE
. {g,}={£

} (336)

a vector of increments in the independent variables as Q0

66=6-0° (337)
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and a matrix of 2rdorder partial derivatives of the function as,

& 0 (339)

this allows Eq. 3.35 to be written in the following matrix form as:

E' = E\e0+{0d)Tg +2{ ) H{se) (3.39)

where g is the gradient of the objective function (known as the Jacobian) and H is the
Hessian matrix.

Taking the first derivative of £ with respect to the unknown parameters, we obtain
from Eq 3.34:
OF (340)

And the second derivative is defined by:

(%n*.i_l df a *h-f(/\)]/\ (341)

In order to minimize E*, its derivative with respect to 80 must be zero:

(342)

From Eq 3.39, we obtain
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=g+ H{48) (3.43)

Thus, by equating Eq. 3.42 and Eq. 343, we obtain;
50=~H"g (3.44)

Note that 80 obtained from Eq 3.4 is from E* which is used to approximate the
true objective function . Therefore, so should be solved iteratively until E* is very
close toE or 6 isapproximately equal to 6.

In summary, the objective is to find so that ensures £ is a minimum value. This
will allow the determination of o (model parameters) which for a quadratic surface
will be the optimum values 0*. For general non-lingar function, the minimum of
will not be obtained in one iteration, hence solving for 0 is normally modified as a
recursive formula where:

(3.45)
00 =0kH-0 k
And the new solution to the unknown model parameters is
8ki] =0k +06 (3'46)

Here 6 k+l represents the new solution vector to the unknown parameters and the final
(or optimum) solutions are obtained when a set of termination or convergence criteria
Is satisfied.

The Newton’s method requires the Hessian matrix to be positive definite, i.e., all
the diagonal terms in the Hessian matrix are positive. In order to ensure positive
definiteness of the Hessian matrix, Gauss-Newton method can be used. In this
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method, the second derivatives of the function are set to zero. However, even with the
application of the Gauss-Newton method, the Hessian matrix may still be ill

conditioned. Levenberg and Marquardt"14* proposed an algorithm that forces the

Hessian matrix to be positive-definite by introducing a small constant to the diagonal
elements of the Hessian matrix. This method is known as the Gauss-Marguardt
Algorithm.

In general, the Gauss-Marquardt algorithm is summarized in Figure 3.1

Set k=0, B*=1000

L A

Calculate g(0)

:
G DB >

NO

56° = -[H(0%+ 1T g(8")
(0"""y = (8%)+ 50"

gx =2p*

B* =pB¥4, k=k+1 |

Figure 3.1: Gauss-Marquardt algorithm.
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The algorithm starts by introducing a positive constant p large enough to make
the Hessian matrix positive definite when it is not. For the first iteration (k=0), an
initial value of 1000 is used for p and is multiplied by an identity matrix 1 to modify
the Hessian matrix. The vector of increments of the model parameters 59 is then
solved using Eq.3.44 using the modified Hessian matrix. The new solution to the
unknown model parameters 9 k+I is then determined. The first condition to be satisfied
Is that the model function with the new solution vector should be smaller than the
previous one. If so, the value of p can be reduced (by a quarter). This new p can be
used in the new iteration following the same procedure until the second condition, the
termination or convergence criteria for the Jacobian ¢(9) Is satisfied. If the first
condition is not satisfied, the initially assumed p is doubled and 59 is again solved
until both conditions for the model function and the termination criteria are achieved.

Initially, the values of the convergence and termination criteria, dG, dJg and
dGp’ (the difference between the values of the quessed parameters in the two
successive iterations), are set to be 5% of the guessed values for G, Jgand Gp . Further
refinement is done by reducing the values of dG, dJg and dGp’ to less than 5%
depending on the actual data used to match the model equation.

3432 Non-linear Regression Equation for the Layered Stabilized Flow Model

Applying the principle of non-linear least squares regression analysis to the
Layered Stabilized Flow Model, the objective function E can be represented as:

E= Z(‘]r; _f({)"/)}’ (347)
The model function/ as defined earlier in Eq. 3.13 Is:
fj-\ \
JgkPikzikzjkGk - J kPikzikzjk zhygk 1 | Jgipwffatk Gk
fledj)=qi =£ 21k Gk + Jgkp the ikejkat] (3.48)

Y /
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The gradient vector (Jacobian) is:

(349)

{ OF } -8
20,),, ;
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And the Hessian matrix Is;

i, (g (91/ e i Wl e 350)

Simplifying with the Gauss-Newton Method,

d&’%g - (351)

The final form of the Hessian matrix is given in Eg. 3.50:

Car By e Bl Ydfit : of ~ 5 5 o df
006, &0, € .cidC, Mac @), ' Hac @ ac, By ricceon

V df df
7Adea y

f df df_

an aC.

f df df_
asx dC,

v df ar

id G ﬂlac,

v df ar [ af df

UdG pk dGk dG 1k

(352)

All the partial derivatives are solved using numerical differentiation (finite-
difference approximation), e.g., for the partial derivative of/ with respect to G 1,

&3, 1 f g %)-/(gf‘) (3.53)

Where
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f(GI°) = model function evaluated at 1% less of the quessed value of Gi (other
unknown parameters held constant at their guessed value)
f(G|2 = model function evaluated at 1% more of the guessed value of Gi (other
unknown parameters held constant at their guessed value)
G|° = Gldecreased by 1% from its quessed value
GJ2 = G| increased by 1% from its guessed value

3.5 LSFM Procedure for Calculating Original Gas In Place
The algorithm for calculating the OGIP is outlined below:

1. Determine the following reservoir and fluid properties for each layer:
a) initial reservoir pressure
b) initial reservoir temperature
¢) gas specific gravity

2. Setup the production history table with the following required information:
a) Date when initial production starts
The production start date is an important information in order to get the
correct total cumulative production from all layers from the start of production
to the start of the calibration period. From this total initial cumulative
production, the initial cumulative production from each layer can then be
estimated.
b) Production data at each time step that provides the following information:
I Date of measurement
The date at which the production data is taken gives the duration or time
period in which the well flows at that given rate. This information is used
for the calculation of cumulative production from each layer at each time
step in the calibration period.
I Choke setting
I Flowing temperature at the surface
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I Flowing pressures, either tubing head or bottomhole flowing pressures. If
flowing pressures are given in terms of surface pressures, any multi-phase
flow calculator can be used for pressure loss calculation to get the flowing
bottomhole pressure

I (as rates

I Condensate and/or water rates
In the absence of measured flowing bottomhole pressure, the condensate
and/or water rates together with the flowing temperature and tubing head
pressure are used to calculate the flowing bottomhole pressure using an
appropriate multi-phase flow correlation. For the bottomhole pressue
calculation, this research used the “Prosper Module™ of the Petroleum
Experts Program Suite for the calculation of the flowing bottomhole
Pressures.

3. Setup the normalized pseudo-pressure table for each layer. This will require
the calculation of the z-factors and viscosities at each pressure.

4. Perform the history matching using the Layered Stabilized Flow Model
Program.

The algorithm for history matching using the Layered Stabilized Flow Model
Program is presented in the schematic flow chart in Fig. 3.2,



Make initial estimate of
parameters: Gy, Ji and Gy’

'

Calculate the gas properties
for each layer (z, p)

l

Calculate normalized
pseudo-pressures for each
layer

Solve each layer model <
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L

Sum up flowrates
from all layers to get

model rate
Optimization using
Gauss-Marquardt
Solve model rate at each algorithm
time step i

no

Match
data
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Figure 3.2: Algorithm for the layered stabilized flow model program.
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