CHAPTER 2

THEORY AND LITERATURE SURVEYS
2.1 Theory

~According to Lord Kelvin’s statement* | it describes the purposes of carrying out
experiments, namely to find out what factors have an effect in a given situafion”and
particularly to measure the magnitude of these effects. So, for example, to_compare a
number of alternative production methods, the factor(s) of interest are varied and the
effect on some characteristic of the product Is measured, . _

It is essential that in any myes,tl?atlon the “scientific Method” is employed.
Scientific method refers to certain principles of carrying out myesﬂpaﬂons_ which have
been found to be essential for valid conclusions to be drawn. It involves being ob{,ectjve
and unbiased, the onus of Proofbemg on the person putting forward a theory; quan |fy|ng
(_expressm% measurements in numbers) wherever possible and constructing “an
rigorously testing models before using them for investigation.

In the majority of situations, several factors can have an effect on the outcome.
The “classical” "approach to experimentation as used in physics and chemistry
|aboratories and in man school and chemistry laboratories is to hold all factors except one
constant, vary this factor and measure the response. This is not practical in_situation
outside faboratories either it is very uneconomic and time consuming or certain factors
cannot be controlled. For instance: : _
In industry, many factors will affect [)roducthn processes and for practical reasons
conditions” cannot be controlled so that they will not affect the production processes.
Production is essential fro the survival of the or?amzathn and so.cannot be stopped or
interfered with for the sake of an experiment. Also, for investigations into what affects
the quality of a process, the process, the process has to be maintained within very close
specification imits, so defective items cannot be produced as part of an experiment

_ The varlabllltz_pr,esent in these situations is often greater than the response that it
is hoped to defect. This is overcome by very careful planning, which bases responses on
comparisons and uses statistical method of analysis. These statistical techniques compare
the differences in responses with the variability or error in the results to see whether the
dﬁfferences are significantly greater than the erfor or whether they could have occurred by
chance.

*Kelvin, Lord . T., Popular Lecfares and Addresses, vI, pp80, Macmillan, London, 1891,

At first sight, this may seem ridiculous - the importance or relevance of factors
whose responses are maskéd by the inherent variability of the situation may_be
questioned. As an example, consider the comparison of two measuring instruments. The
precision of these instruments should be one tenth of the tolerance that they are
measuring, A sample of identified components would be masked by the variation in the
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size of component. This can be overcome, though, by looking whether at the difference
between the measurements on each component and statistically testing whether the, mean
difference is significantly different from zero. The difference between components is thus
eliminated from the medsurement of the difference experimental method cannot be used
In many situations.

Another major criticism of the classical technique is economy. Time is often
short, for example. in urgent investigations, and resources are “always limited.,
Consequently, exPerlments Which just vary one factor at a time are impractical because
theY are so wasteful. To overcome this inéfficiency, to enable the comparison of several
factors, to detect an¥ inter-actions hetween factors and to get the maximum amount of in
formation for the effect put into a experiment, statisticians have developed a series of
techniques for both conducting the experiments and analyzmq the results. These are
known under the collective title of The Statistical design and”Analysis of Experiments.

~ The method were developed in the 1920°s and 1930°s mainly by Sir R A Fisher, a
%enetmst and agricultural researcher, and his colleagues at Rothamsted Experimental
tation. They{ were concerned mainly with agriculture and b|olog1|cal experiments so
much of the ermmolo(?y used has agricultural Connotations-plots, block, treatments, efc.
However, many of die principles and te_chm(iu_es are relevant to otiier fields of
investigation, particularly technological and industrial, although the emphasis is different
because certain conditions differ. Agriculturalists have a major constraint in that they
often have to wait a whole year t0 get their results. In |ndustr¥ on the other hand
experiments can Iy be repeated within a short time. In agricultural experiments the
results are often available all at once whereas in industry the results may come in one at a
time. In industrial mvestl%atlons the experimental errors may be smallér in proportion to
die effects sought and the cost of the individual experiments may be considerable.
Therefore experimental designs which ate appropriate to agriculturé may not be very
efficient in industry.

Most industrial mvestlgatlons should be deagned and analyzed statistically
because the speed, economy and other advantages. Yet, die inefficient and unsatisfactory
classical method is used more often than not because the statistical design and analysis of
experiments is not widely understood.

The main, industrial aBpllcatmns have been in the chemical and Process industries
where the techniques have been found to yield very big dividends to the companies
concerned. In these industries the problems are frequently so complex that to study die
underl)(lng causes of all the many effects observed would involve a prohibitive amount of
work. Tn such cases empirical investigations based on statistical principles can be used to
find the optimum. conditions for oEeratmg the process. Having said this the classical
approach is sometimes appropriate. For example in laboratory work for the determination
of fundamental constants or properties of substances or other circumstances in which the
factors concerned are known to be controllable._Though even here statistical methods
rr]nay be useffl%l |tn assessing the errors involved. The studies to find out what factors do
ave some effect,
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A good experimental design is one which furnishes the required information with
the minimum of effort. The requirement of a good experimental design can be
summarized:

- The question to be answered must be correctly formulated.

- The experimental method; that is the choice of treatments, experiment imits,
re,sPonses tobe measured, etc must take account of the éarecmon required and the various
pitfalls and problems which are likely to be encountered.

- Experimental imits receiving different treatments should differ in no systematic
way_ from one another- assumptions that certain sources of variability are absent or
negligible should, as far as practicable be avoided.

- Random errors of estimation should be suitably small, and this should be
achieved with as few experimental units as possible.

- The conclusions should have a wide range of validity and application.
- The experiment should be simple in design and analysis.

.= A proper statistical analysis of the results should be possible without making
artificial assumptions.

From mathematical theory combined with much practical experience, statisticians
have developed a whole series of experimental designs whose %roi)ernes are known.,
These have been developed mainly in the areas of agriculture, biology and chemical
engmeermq. The application of these to batch and mass production has Tieen limited and
these are plenty of scope for the development of these techniques. So before applgmg a
particular design ensure that the appropriate conditions and assumptions are applicable.

2.2 What is Equipment Design?

A designed experiment is a test or series of test in which purposeful chan_%es are
made to the “input variables of a process so that we may observe and . identify
correspondm%,changes in the output response. In Figure 4, the process can be visualized
as some combination of machines, methods and people that transforms an input material
into an output product, This output product has one or more ohservable quallty
characteristics of responses, Some of the process variable ... X2, ..., ., are controllablé,
while others ... z2 ..., ., are uncontrollable.
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Controllable input factors
X. X XP

Vo

Input . Process Outputy

Z2)

_ Uncontrollable input factors
Figure 4 llustrated General Model of a Process.

The obgecnye,s ofde_3|ﬁned_exi)er|ment may include

1. Determining which variables are most nfluential on the response, y.

2. Dete_rmmmp where to set the influential x’s so that y is near the normal
requirement.

3, Dgterm!n!ng where to set the influential x’s so that variability iny is small.

4, Determmmg where to set the influential x’s that that the effects of the
uncontrollable variahles z are minimized.

Experimental design is a critically important engineering tool for improving a
manufacturing /Eroc,ess._ |t also hias extensive application in the development of
neWIFtJrocesses. pplication of these techniques early in process development can
result in

1 Improve yield. . . _

2. Reduced variability and closer conformance to nominal.

3. Reduced overall cOsts.



2.3Basic Principles. _ _ o o
The three basic principles of experimental design are replications, randomization,
and blocking.

. Replication means a repetition of die experiment. Replication has two |m?ortant
benefits. First, it allows the experimenter to obtain an estimate of the experimental error.
This estimate of error becomes a basic unit of measurement for determmm% whether
observed differences in the data are really statistically different. Second, if the sample
mean is used to estimate the effect of a factor in the experiment, the replication permits
the experimenter to obtain a more precise estimate of this effect,

~ Randomization means that the order in which the individual runs or trials of the
experiment are to be performed are randomly determined. Statistical methods require that
the observations or elrors he independently distributed random variables. Randomization
usually makes this as_sumf)tlon valid. By properly randomizing the experiment, the effects
of nuisance variable is balanced out. ~ B _ _

. Blocking is a technique used to increase the precision of an exPerlment._ This
technique is uSed in order to control or remove variability arising from nuisance
variables. A block is a Fortmn of the e,xi)enment,al material that Should be more
homogeneous than the entire set of material. Blocking involves making comparisons
among the conditions of interest in the experiment within each block.

2.4 Type of Designed Ex?erlment ; \ B _
By the number of factor, the designed experiment can be classified as single
factor experiment, factorial experiment, and"2k factorial experiment,
. Single-factor experiment is the designed experiment for testing effect of a factor,
which has more than two levels, on responses,

Factorial experiment is used to study the effects of two or more factors. The
effects of factors include a main effect and an interaction effect on the interesting
responses. This exi)enment is suitable for more than two levels of each factor.

Onlry two levels of each factor, for two. or more factors, especially in several
factors (K factorial), 2Kfactorial experiment is W|_deI?/ used to study the joint effect of the
factors on a response. The 2k design is particularly useful in the early stages of
experimental work to screen factor that does not affect an response variable out, so-called
the factor screening experiment,

_ To illustrate the concept of interaction. Suppose that both of our design factors are
(uantitative (such as temperature, pressure, time, etc.z). Then a regression model
representation of the two-factor factorial experiment could be written as

Y= po+ PiXi + P2+ pixix2+ 8
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In Figure 5, the main effect of factor A and B have on an response when factor levels (A',
A+ B+ and B') change, but there is no interaction effect

Response
A

B+
i

B*

2

| —>
A A*

Factor A
Figure 5 illustrated A Factorial Experiment without Interaction. _
Source, : Douglas L Montgomery, Design and Analysis ofExperiments, Introduction to

Factorial Design, page 171
In Figure 6, the main effect of factor A and B have on an response when factor

levels &A\ A", B+ and B) chan?e . Also there Is the interacti{on effect between factors A

and B, the two lines are not parallel.
Response
A
B-
B+
B+
i
i —>
A- A*

Factor A
Figure 6 illustrated A Factorial Experiment without Interaction. , _
gou_rce:Dou I%ls Montgomery, Design andAnalysis ofExperiments, Introduction to Factorial
esign, page
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2.5 Analysis of Variance

The method of Analysis of Variance (ANOVA) is applied to the designed
experiment to draw conclusion about the effect of factors on an response.

For example, experiment with two factors, the hypotheses about the model of
observations, which will be tested by ANOVA, are as follows.

The observations resulting from the experiment are showed in Figure ? may be
described by the model

Vijk= p+ Ti+ pj + (xp)ij + Sijk, by i= 1,2 s ... .
j= 1z bb

k = 1,2 , e 3

where p is the overall mean effect, Tiis the effect of the ith level of the row factor A, F]ls
the effect of the j th level of column factor B, ( )I] is the effect of the interaction
between Tiand pj, and sijkis a random error component. Both factors are assumed to be
fixed, and treatment effects are defined as deviations from the overall mean, so

=0 and YjP, =0. Similarly, the interaction effects are fixed and are defined such

7=1

that ~ ( Q)y = ~ ()L = 0. Since, there are replicates of the experiment, there are
1=1 7=1

abn total observations.

Factor B
1 I b
yin,yii2, yi2iyi22, yibi,yib2>
1 ooyiln .yin vense) yibn
Ym,y22> Y221,y222, y2bl, yi2h21
2 (XX y21n 00000 y22 000005 y2bn
Factor A
a yaii,yai2, Ya2lly a22, yabl,yab2i
¢« yah eobynn . yabn

Figure 7illustrated General Arrangement for a two-factor Factorial De3|9
%ource Dougll?gc Montgomery, Design andAnalysis o fExperiments, Introduction o Factorial
esign, page
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In the factorial experiment, both row and column factors or treatment, A and B,
are ofequal interest. So the hypotheses about the equality of row treatment effects will be
tested.

Ho: Ti= == ... =Ta = 0
Hi : atleaseone Ti * 0

And the hypotheses about the equality of column treatment effects will be tested

b = 0

Ho : Pi=P2= =;’\0

Hi  atlease on'e”Pj
Finally, the hypotheses about interaction effect will also be tested.

Ho: ()] = 0 for all 1]
Hio:gtl)egaseone (P ¢

These hypotheses are tested using ANOVA of the fixed effects model by
computing sum ofsquares, mean squares, and ratio of mean squares (F0) as follows.

The total sum ofsquares, mean squares is completed as usual by

:ti tyV abn

y - 1t i yek

The sum ofsquare for the main effects are

3/ f)ﬁ U abn

SSp =7 t/j" abn

The sum of squares for the interaction effect is
-SSa-SSb

The sum of squares of error is

SSE= SST—5Sa ™ SSh -SSab
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Source of Sum of Degrees of Mean Square Fo
Variation Squares Freedom
A treatments SSa al MSa= S
B treatment i e
réatments SSh - _ T
] MS=e> =T
Interaction SSab a-1)(b- P _mse
Moab- 2 $58-1) "~ wse
Error SSe ab(n-I) MSE- SSE
ab(n- )

Total abn-1

Table 3 The Ana%&s ofVarlance Table for the Two Factor.

%ource Dougllaa(‘h ontgomery, Design andAnalysis ofExperiments, Introduction to Factorial
esign, page 18

And Fovi,v. can be obtained from the table of percentage points of the F distribution, a is
the signification level, and V] and Vzare die degrees of freedom.

In table3, we would reject Ho if Fo of A treatments is more than Fu s.. a<n->we conclude
that factor A significantly affects an response. In the same way, wé would reject Ho if Fo
of B treatments is more than Fa>-iab(n-i),we conclude that factor B significantly affects an
response.

And we would reject HO of FO of interaction is more than Fa, (a-1)(b-1), ab(n-I), we
conclude thatthere is an interaction effect between the two factor on an response.

2.6 Model Adequacy Checking

As the analysis of variance assumes that the model errors are normally and independently
distributed with the same variance in each factor level, abbreviated NID(0, a2), these
assumptions can be checked by examining the residuals. A residual is defined as the
difference between the actual observation and the value that would be obtained from a
least-squares fit of the underlying analysis of variance model to the sample data. For
example, the residuals for the two-factorial model are

eijk= Yijk-jijk or
Cijk= yijk - Y ijk

The normality assumption can be checked by construction a normal probability plot of
the residuals, plotting residuals ranked in ascending order (k) versus their cumulative
probability points Pk —(k-0.5)/n, is number ofall observations in the experiment.

To check the assumption of equal variance, at each factor level, plot the residuals
against the factor level and the fitted values, and then compare the spread in the residuals.
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2.7 Duncan’s Multiple Range Test

A procedure iswidely used for comparing individual means of either factor, either
the row averages or the column averages, when using the fixed effects models.

For example, two-factor factorial experiment, Rp in the equation below are used
to compare with difference between two means.

Rp= ra(pd) vyij forp=2,3.... ,aorb

From Duncan’s table of significant ranges, obtain the value ra(p,/), forp=2,3 ,....sa or
b, where a is the significance level and f is the number of degrees of freedom for error,
Syi.= Mg .and n replicates.

2.8 Choice of number of replicates

Operating characteristic curve can be used to find the number of replicates for the
designed experiment, for the two-factor factorial experiment, using the following
formula.

W naD?
2bo?

where id the number of replicates, a levels of factor A, b levels of factor B,D is the
difference in mean, a is standard deviation, Vi=b-1, and .- ab(n-I). Using & resulting
from trials of ,a, .and -in the operating characteristic curve leads to p risk that could
be acceptable to select the number of replicates.

2.9 Guideline for Designing Experiments

Montgomery (1991) gives an outline ofthe recommended procedure as follows.

2.9.1 Recognition of and Statement of the problem

In practice, it is often difficult to realize that a problem requiring formal designed
experiments exists, so it may not be easy to develop a clear and generally accepted
statement of the problem. However, it is absolutely essential to fully develop all ideas
about the problem and about the specific objectives of the experiment.

A clear statement of the problem and the objectives of the experiment often
contribute substantially to better process understanding and eventual solution of the
problem.
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2.9.2 Choice of Factor and levels

The experimenter must choose tile factor to be varied in the experiment, the range
over which these factors will be varied, and the specific levels at which runs will be
made. Process knowledge including practical experience and theoretical understanding is
required to do this. This step determines type of experiment whether single-factor
experiment or factorial experiment or - kfactorial experiment.

2.9.3 Selection of the Response Variable

Inn selecting the response variable, the experimenter should be certain that the
variable really provides useful information about the process under study. Most often the
average or standard deviation (or both) of the measured characteristic will be the response
variable.

2.9.4 Choice of Experience Design

Choice if design involves consideration of number of replicates, selection of a
suitable run order for the experimental trials, and whether or nor blocking or other
randomization restrictions are involved.

2.9.5 Performing the experiment

When running the experiment, it is vital to carefully monitor the process to ensure
that everything is being done according to plan. Errors Error in experimental procedure at
this stage will usually destroy experimental validity. Up-front planning is crucial to
success. It is easy to underestimate the logistical and planning aspects of running a
designed experiment in a complex manufacturing environment.

2.9.6 Data Analysis

Statistical methods should be used to analyze the data so that results and
conclusions are objective rather than judgment. If the experiment has been designed
correctly and if it has been performed according to the design, then the type of statistical
methods required is not elaborate. Many excellent software package are available to assist
in the data analysis, and simple graphical methods play an important role in data
interpretation. Residual analysis and model validity checking are also important.

2.9.7 Conclusions and Recommendations

Once the data have been analyzed, the experiment must draw practical
conclusions about the results and recommend a course of action, Graphical methods are
often useful in this stage, particularly in presenting the results to other. Follow-up runs
and confirmation testing should also be performed to validate the conclusions from the
experiment.
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2.10 Literature Surveys

Literature Survey

Factorial designs are most efficient for the this type of experiment. The several factors is
to conduct a factorial experiment. This is an experimental strategy in which factors are
varied together, instead of one at a time. The factorial experimental design concept is
extremely important for studying C02 cleaner implementation factors.

Douglas c. Montgomery, 2001, Design and Analysis of Experiments, Fifth edition,
JOHN WILLY & SONS, INC.

Advancing Applications in Contamination Control, address Cleaning with C02 and Dry
[ce Particles, cleaning is one of the most important steps in the manufacturing of
semiconductors. As the devices grow smaller, their sensitivity to dust, bacteria, and
certain gasses Simply blowing air or nitrogen across a surface will remove the larger
particles (5 microns), but these days we are concerned about particles as small as 0.1
micron.

Site: http://www.a2c2.com

CleanTech (2001), address Carbon dioxide (C02) can be used in three distinct states in
precision cleaning applications: in liquid form, where C02 acts to perform surface
cleaning and degreasing; as a gas, which is ejected as "snow™ from specialised nozzles;
and in a "super critical" form for chemical extraction cleaning.
Site: http://www.precisioncleanmgweb.com/tech _carbod.cfm

Using Solid-state C02 in Critical cleaning (2001), addresses Carbon dioxide (C02)
snow cleaning is, for some manufactures, a prominent entry on their list of viable
alternatives to current ODC-based operations/ Over the past several years, there has been
considerable investigation into the effectiveness of the technology. Users in several high-
tech markets are taking advantage of the unique surface cleaning capabilities of C02
snow to improve to existing cleaning standards* In fact, progressive design improvement
and process optimizations have earned this relatively new cleaning method a position on
the production line of some major microdevice manufactures world-wide. This article
explores the science of snow cleaning and offers some case reports based on a patented
C02 snow cleaning technology, which uses a thermally ionized gas (TIG) snow-or TIG-
snow.

Site: http:/lwww.precisioncleaningweb.com/article_index.cfm?article=322

IDEMA (2002), address knowledge precision cleaning for Data Storage Components. As
head/disk flying heights continue to shrink, even trace amounts of contaminants become
unacceptable. As a result, cleaning of components is becoming increasingly critical. This
course provides a thorough examination of the technologies, the equipment, the
techniques, the options, and the trade-offs for precision cleaning in disk drive industry,
http://www.IDEMA.org.com


http://www.a2c2.com
http://www.precisioncleanmgweb.com/tech_carbod.cfm
http://www.precisioncleaningweb.com/article_index.cfm?article=322
http://www.IDEMA.org.com
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