การศึกษาภาวะความชุก ความรุนแรง ปัจจัย และผลที่เกิดขึ้น จากการเกิดเนื้อตาย ในผู้ป่วยที่ถูกงูเห่ากัด และงูกะปะกัด และการศึกษาป้องกันภาวะเนื้อตายที่เกิดขึ้นในสัตว์ทดลอง

นางสาว นวลน้อง วงศ์ทองคำ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาสาธารณสุขศาสตรดุษฎีบัณฑิต สาขาวิชาการพัฒนาระบบสาธารณสุข

วิทยาลัยการสาธารณสุข จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2546

ISBN 974-9599-43-08-X

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

PREVALENCE, SEVERITY, DETERMINANTS AND CONSEQUENCES OF TISSUE NECROSIS AMONG VICTIMS ENVENOMED BY Naja kaouthia (THAI COBRA) AND Calloselasma rhodostoma (MALAYAN PIT VIPER) AND ITS PREVENTION IN AN EXPERIMENTAL MODEL

Ms. Nualnong Wongtongkam

A Dissertation Submitted in Partial Fulfillment of Requirements

for the Degree of Doctor of Philosophy in Public Health

Health Systems Development Programme

College of Public Health

Chulalongkorn University

Academic Year 2003

ISBN 974-9599-43-08-X

© Chulalongkorn University

Bangkok, Thailand

Thesis Tile	PREVALENCE, SEVERITY, DETERMINANTS AND	
	CONSEQUENCES OF TISSUE NECROSIS AMONG VICTIMS	
	ENVENOMED BY Naja kaouthia (THAI COBRA) and Calloselasma	
	rhodostoma (MALAYAN PIT VIPER) AND ITS PREVENTION IN	
	AN EXPERIMENTAL MODEL	
Ву	Nualnong Wongtongkam	
Program	Doctor of Philosophy in Public Health	
	(Health Systems Development) College of Public Health	
Thesis Advisor	Professor Chitr Sitthi-amorn, M.D., Ph.D.	
Thesis Co-advisor	Professor Kavi Ratanabanangkoon, Ph.D.	
Accepted by t	the College of Public Health, Chulalongkorn University in Partial	
	quirements for the Doctoral Degree	
PriSo	Lasaure product Dean of the College of Public Health	
(Asso	ociate Professor Prida Tasanapradit, M.Sc., M.D.)	
DOCTORAL COMM	MITTEE	
	ssor Edgar J. Love, M.D., Ph.D.)	
•••••	bhiti Aitthi-amow, Thesis Advisor	
	ssor Chitr Sitthi-amorn, M.D., Ph.D.)	
Ka	y Partameter, Thesis Co-advisor	
(Profe	ssor Kavi Ratanabanangkoon, Ph.D.) Member	
	ssor Henrry Wilde, M.D.)	
	C. Podyson, Member	
(Profe	ssor Charn Pochanuggol, M.D.) Member	

(Assistance Professor Sathirakorn Pongpanich, M.A., Ph.D.)

นวลน้อง วงศ์ทองคำ : การศึกษาภาวะความชุก ความรุนแรง ปัจจัย และผลที่เกิดขึ้นจากการเกิด เนื้อตายในผู้ป่วยที่ถูกงูเห่า และงูกะปะกัด และการศึกษาการป้องกันภาวะเนื้อตายที่เกิดขึ้นในสัตว์ ทดลอง.

(PREVALENCE, SEVERITY, DETERMINANTS AND CONSEQUENCES OF TISSUE NECROSIS AMONG VICTIMS ENVENOMED BY Naja kaouthia (THAI COBRA) AND Calloselasma rhodostoma (MALAYAN PIT VIPER) AND ITS PREVENTION IN AN EXPERIMENTAL MODEL)

อาจารย์ที่ปรึกษา : ศาสตราจารย์นายแพทย์ จิตร สิทธีอมร

อาจารย์ที่ปรึกษาร่วม : ศาสตราจารย์ กวี รัตนบรรณางกูร ; 258. หน้า ISBN 974-9599-43-08-X

การถูกงูพิษกัดในประเทศไทย ยังคงเป็นปัญหาที่สำคัญทางการแพทย์โดยเฉพาะงูเห่า และ งูกะปะ ซึ่งพิษสามารถก่อให้เกิดผลทั่วร่างกายและผลเฉพาะที่ ในผู้ป่วยที่มีอาการรุนแรงอาจเสียชีวิตหรือ อาจเสียอวัยวะที่ถูกกัดอย่างถาวร หรืออาจต้องตัดอวัยวะส่วนนั้นทิ้งและก่อให้เกิดความพิการ พยาธิสภาพบริเวณที่ถูกงูกัด เกิดจากการทำงานร่วมกันของเอนไซม์ phospholipase A_2 (PLA2), ซึ่ง สามารถทำลายกล้ามเนื้อ, เอนไซม์ metalloproteinase ซึ่งทำให้เกิดภาวะเลือดออก และเอนไซม์ hyaluronidase ซึ่งช่วยทำให้พิษงูแพร่กระจายรวมทั้งสารพิษอื่น ๆ ในพิษงู

การวิจัยครั้งนี้แบ่งออกเป็น 2 ส่วน คือ ก) การศึกษาทางด้านระบาดวิทยา ทั้งส่วนการศึกษาไป ข้างหน้า และการศึกษาย้อนหลัง ในผู้ป่วยที่ถูกงูเห่า หรืองูกะปะกัด ข) การทดลองเพื่อดูประสิทธิภาพ ของตัวยับยั้งเอนไซม์ metalloproteinase และ PLA_2 โดยมีจุดมุ่งหมายเพื่อหาวิธีลดภาวะการเกิด เนื้อตายบริเวณที่ถูกกัด และลดการเกิดพิษทั่วร่างกาย

ผลการศึกษาทางด้านระบาดวิทยาพบว่า อุบัติการณ์ของการเกิดเนื้อตายบริเวณที่ถูกงูกะปะ และงูเห่ากัดสูงถึง 94.50 % และ 91.10 % ตามลำดับ โดยส่วนใหญ่จะพบภาวะเนื้อตายที่ไม่รุนแรงและ จะแสดงออก ในช่วง 12 ชั่วโมงแรกของการเข้ารับการรักษา การรักษาผู้ป่วยส่วนใหญ่เป็นการทำแผล เพื่อป้องกันและลดการติดเชื้อ มีผู้ป่วยที่ถูกงูเห่ากัด เพียง 1 รายที่ต้องถูกตัดนิ้ว

ผลการศึกษาในการทดลอง พบว่า 2 mM Na2EDTA หรือ 20 mM N-Phenylglycine สามารถ ยับยั้งผลของเอนไซม์ metalloproteinase และ PLA_2 ตามลำดับได้อย่างสมบูรณ์ ทั้งในพิษงูเห่า และพิษงู กะปะ การทดลองในสัตว์ทดลอง พบว่า Na2EDTA (93.05 ไมโครกรัม/หนู) หรือ N-phenylglycine (37.80 ไมโครกรัม/หนู) เมื่อทำการ preincubate กับพิษงูก่อนที่จะฉีดในหนู พบว่าสามารถลดการเกิด ภาวะการบวม และการเกิดเนื้อตายอันเกิดจากพิษงูได้อย่างมีนัยสำคัญทางสถิติ ส่วน 'Inhibitor mixture' ที่ประกอบด้วย N-phenylglycine (37.80 ไมโครกรัม/หนู) Na2EDTA (93.05 ไมโครกรัม/หนู) และตัว ยับยั้งเอนไซม์ hyaluronidase คือ sodium aurothiomalate (195 ไมโครกรัม/หนู) พบว่าสารผสมนี้ สามารถลดการเกิดเนื้อตายเฉพาะที่เมื่อฉีดภายในเวลา 1 ,3 และ 10 นาที หลังการฉีดพิษงู และยังพบว่า ผลของตัวยับยั้งเอนไซม์ metalloproteinse และ PLA_2 สามารถยืดระยะเวลาตายของหนูที่ฉีดพิษงูเห่า และงูกะปะ ในขนาดที่ทำให้หนูตาย ผลการทดลองนี้บ่งชี้ว่าสารผสม 'Inhibitor mixture' มีประสิทธิภาพ ดีในการลดภาวะการเกิดเนื้อตาย ถ้าฉีดทันทีที่บริเวณที่งูถูกกัด และลดความเป็นพิษที่ออกฤทธิ์ทั่ว ร่างกายของพิษงูเห่า และงูกะปะ

สาขาวิชา การพัฒนาระบบสาธารณสุข
ปีการศึกษา 2546

ลายมือซื่อนิสิต			
ลายมือชื่ออาจารย์	ที่ปรึกษา .	POT	Mng~,
ลายมือชื่ออาจารย์	ที่ปรึกษาร่	שני 🎒	Janains.

PH: 001222: MAJOR HEALTH SYSTEMS DEVELOPMENT PROGRAMME KEYWORD: TISSUE NECROSIS / SNAKE SEVERITY SCORE / 'INHIBITOR MIXTURE'

NUALNONG WONGTONGKAM: PREVALENCE, SEVERITY,
DETERMINANTS AND CONSEQUENCES OF TISSUE NECROSIS AMONG
VICTIMS ENVENOMED BY Naja kaouthia (THAI COBRA) AND Calloselasma
rhodostoma (MALAYAN PIT VIPER) AND ITS PREVENTION IN AN
EXPERIMENTAL MODEL

THESIS ADVISOR: PROFSSOR CHITR SITTHI-AMORN
THESIS CO-ADVISOR: PROFESSOR KAVI RATANABANANGKOON;
.25.8 pp. ISBN 974-9599-43-08-X.

The majority of venomous snakebites in Thailand are caused by Naja kaouthia and Calloselasma rhodostoma. The venom of these snakes induces systemic and local toxicities. In severe cases of envenomation, these local effects may lead to permanent tissue loss, disability or amputation. The local pathogenesis is mainly due to the concomitant actions of myotoxic phospholipase A_2 (PLA₂), hemorrhagic metalloproteinase, hyaluronidase and membrane active toxins.

The research work is divided into 2 parts: a) epidemiology study including prospective and retrospective studies of victims of *Calloselasma rhodostoma* and *Naja kaouthia* bites and b) experimental models carried out to find potent inhibitors of metalloproteinase and PLA₂ with the aim of using them to reduce local tissue damage and systemic symptoms caused by the venoms.

The results of epidemiology studies showed that the incidences of tissue necrosis at bite sites from *C. rhodostoma* and *N. kaouthia* were 94.50 % and 91.11 %, respectively. Most of the cases showed mild local clinical manifestation, especially at 12 hours after hospitalization. Almost all patients needed wound care to prevent or control infection. Only one case required amputation; the victim was bitten by *N. kaouthia* and required amputation of a thumb.

The experimental models revealed that 2 mM Na₂EDTA, 20 mM N-phenylglycine completely inhibited metalloproteinase and PLA₂ activities, respectively, of both venoms. In *in vivo* experiments, Na₂EDTA (93.05 μg/mouse) or N-phenylglycine (37.80 μg/mouse) when preincubated with each of the venoms, has been shown to significantly decrease local toxicity (edema and myonecrosis). An 'Inhibitor mixture' containing N-phenylglycine (37.80 μg/mouse), Na₂ EDTA (93.05 μg/mouse) and an inhibitor of hyaluronidase sodium aurothiomalate (195 μg/mouse) has been shown to significantly reduce tissue necrosis when locally injected 1,3 or 10 min after venom injection. Most metalloproteinase and PLA₂ inhibitors prolonged the survival time of mice injected with lethal doses of *N. kaouthia* or *C. rhodostoma* venom. These results indicate that the 'Inhibitor mixture' was effective if injected immediately at the bite site in reducing the local and systemic toxicities of *N. kaouthia* or *C. rhodostoma* venom.

Field of study Health Systems Development

Academic Year 2003

Student's signature Muchan Montantan Advisor's signature Condition Palaubres

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to Prof. Kavi Ratanabanangkoon. Prof. Chit Sitthi-Amorn and Prof. Henrry Wilde, for their guidance, advice and encouragement which have enabled me to carry out all my works successfully throughout this study. All the kindness and help I have received will be long remembered with gratefulness and respectfulness.

My thanks and appreciation to the members of my Thesis Committee:

Prof. Charn Pochanugool, Prof. Edgar Love and Assistance Prof. Sathirakorn

Pongpanich.

Special appreciation is expressed to Prof. Pensri Pootrakul, Thalassaemia Research Centre, Institute of Science and Technology for Research and Development, Mahidol University for her kind gift of L1 drug used in experiment, and to Assoc. Prof. Samaisukh Sophasan and Asst. Prof. Surawat Jariyawat of the Department of Physiology, Mahidol University for their advice in the animal experiments and to Prof. Prasert Sobhon of the Department of Anatomy for his kind help in slide preparation. I thank the medical doctors and nurses from 10 provincial hospitals including Lampang, Nakorn Sawan, Ratcha Buri, Nakorn Ratchasima, Lop Buri, Prachup Khiri Khun, Nakorn Si Thammarat, Surat Thani, Trang, Songkhla for the data collection.

Special thanks must be extended to Miss Srisurat Bunyasrisawat and Miss Angkana Philasopha and all members of Lab Pr. 601, Faculty of Science, Mahidol University for their courteous assistance and technical advice.

Finally, great appreciation is especially expressed to my parent, my brother and sisters for their love, understanding and encouragement throughout my study.

TABLE OF CONTENTS

Page
ABSTRACT (THAI)iv
ABSTRACT (ENGLISH)v
ACKNOWLEDGEMENT
TABLE OF CONTENTS
LIST OF TABLESxiv
LIST OF FIGURESxix
ABBREVIATION xxii
CHAPTER I: INTRODUCTION
CHAPTER II: LITERATURE REVIEW
1. General Background
2. Poisonous snakes of Thailand
2.1. Family Elapidae
2.1.1. Genus Naja, the Cobras
2.1.2. Genus Ophiophagus, the King cobra
2.1.3 Genus Bungarus 17

	2.2. Family Viperidae
	2.2.1. Subfamily Crotaline
	2.2.2. Subfamily Viperinae
	2.3. Family Colubridae
	2.3.1. Rhabdophis subministus
	2.4. Family Hydrophidae
	2.4.1. Enhydrina schistose22
3.	Epidemiology of snakebite in Thailand
4.	Snake venom
	4.1. Venom composition
	4.1.1. Toxins
	4.1.1.1. Postsynaptic Toxins
	4.1.1.2. Presynaptic neurotoxins
	4.1.1.3. Cardiotoxins
	4.1.1.4. Pharmacological action of neurtotoxins
	4.1.1.4.1. Systemic envenomations
	4.1.1.4.2. Local envenomation
	4.1.2. Enzymes
	4.1.2.1. Metalloproteinase
	4.1.2.1.1. Pharmacological actions of
	metalloproteinase 30

4.1.2.1.2. Phospholipase A ₂	40
4.1.2.2.2.1. Pharmacological actions of	
phospholipase A ₂	45
5. Antivenom treatment and problems	49
5.1. Problems of antivenom treatment	51
5.1.1. Hypersentivity	51
5.1.2. Limitation of effectiveness of antivenom	53
5.2. Contributing Factors to the severity of tissue necrosis	54
5.2.1. Misdiagnosis	54
5.2.2. Delayed treatment	54
5.2.3. Inadequate antivenoms	55
5.2.4. Tourniquets application	55
5.3. Consequences of severity of tissue necrosis	56
5.3.1. Skin graft and amputation	57
CHAPTER III: METHODOLOGY	59
Epidemiology	. 59
1. Research Design	59
2. Design Overview	59
3. Consideration of choice in study design	60
4. Prospective study	61
5. Retrospective study	63
6. Experimental study	64

X

	5.1. Determination of edema	.82
	5.2. Determination of hemorrhage	83
	5.3. Determination of myonecrosis	.84
	5.4. Determination of creatine phosphokinase activity	85
	5.5. Histological analysis	86
СНАРТЕ	R IV: MEASUREMENT	87
1.	Measurement assessments	87
2.	The assessment of clinical snake envenomation	
	and tissue necrosis	.94
3.	Sensitivity and specificity	.95
4.	Validity	96
5.	Reliability	97
6.	Credibility	.98
7.	Bias	98
8.	Classification level of treatment	.99
СНАРТЕ	RV: DATA ANALYSIS	101
1.	Questions and design study	. 101
2.	Missing data and Outlier	103
3.	Data summary	. 104
4.	Statistical test	114
5.	Interpretation	.114

	6. Problem cases
СНАР	TER VI: RESULTS
	Epidemiology study
	1. <i>C. rhodostoma</i> bites
	2. <i>N. kaouthia</i> bites
	Laboratory Experiments
	1. In vitro experiments
	1.1.Determination of inhibitory effects of metalloproteinase
	and phsopholipase A2 inhibitors on proteolytic and
	metalloproteinase activities in NK and CR venoms
	1.2.Determination of inhibitory effects of metalloproteinase and
	phospholipase A2 on Phospholipase A2 activity in NK and
	CR venom
	2. In vivo Experiments
	2.1. Effects of phospholipase A ₂ and metalloproteinase
	inhibitors on edema, hemorrhage and myonecrosis
	induced by CR venom161
	2.1.1. Pre-incubation type experiments
	2.1.2. Independent inoculation experiments
	2.2. Effects of phospholipase A ₂ and metalloproteinase
	inhibitors on edema and myonecrosis induced by
	NK venom 179

2.2.1. Pre-incubation type experiments
2.2.2. Independent inoculation exeperiments
2.3. The effects of N. kaouthia and C. rhodostoma venoms
at various doses on the survival time of mice
2.3.1. Effects of inhibitors of phospholipase A ₂ and
metalloprteinase on the survival time of mice
injected with N. kaouthia or C. rhodostoma venom194
2.4. Pathological changes of the thigh muscle induced by
C. rhodostoma venom
CHAPTER VII: CONCLUSION
1. Epidemilogy study
1.1. <i>C. rhodostoma</i> bites
1.2. N. kaouthia bites
2. Experiments study
CHAPTER VIII: DISCUSSION
REFERENCES
APPENDICES
BIOGRAPHY258
DIUUNAI II I

.

LIST OF TABLES

Table	Page
1	Classification of four snake families and sources9
2	Classification of older names used in the literature for the
	population of Asiatic cobra
3a	Phospholipase A ₂ groups utilizing a catalytic histidine
3b	Phsospholipase A ₂ groups utilizing a catalytic serine
4	The classification methods for evaluating of snakebite by Russell (1983)88
5	The classification methods for evaluating of snakebite by
	Van Mierop (1976)
6	SSS evaluation91
7	Distribution of snakebite victims among the 10 provincial hospital,
	Prospective study
8	Victims bitten by C. rhodostoma during April 2002 – June 2003,
	seasonal prevalence
9	Epidemiological data in the prospective and retrospective studies120
10	The various factors related to snakebites
11	The various factors related to treatment
12	Various factors effecting tissue necrosis; C. rhodostoma bite
	(score 0 : no tissue necrosis ; score 1-3 : having tissue necrosis)

13	Various factors effecting tissue necrosis; C. rhodostoma bite
	(score 0-1 : no tissue necrosis : score 2-3 : having tissue necrosis)126
14	Various factors effecting tissue necrosis ; C. rhodostoma bite
	(score 0-2 : no tissue necrosis ; score 3 : having tissue necrosis)127
15	The distribution of cobra bite victims among the 10 provincial hospitals
	in prospective study
16	The seasonal prevalence of cobra bites during April to June 2003
	in prospective study and 1997-2000 in retrospective study
17	The epidemiological data in the prospective and retrospective studies138
18	Factors related to <i>N. kaouthia</i> bites
19	Factors related to cobra bite treatment
20	Various factors effecting on tissue necrosis; N. kaouthia bite
	(score 0 : no tissue necrosis; score 1-3 : having tissue necrosis)142
21	Various factors effecting on tissue necrosis; N. kaouthia bite
	(score 0-1: no tissue necrosis; score 2-3: having tissue necrosis)143
22	Various factors effecting on tissue necrosis; N. kaouthia bite
	(score 0-2 : no tissue necrosis; score 3 : having tissue necrosis)144
23a	Effects of metalloproteinase inhibitors at various concentrations
	and preincubation time on the proteolytic and metalloproteinase
	activities of Naja kaouthia (NK) venom
23b	Effects of metalloproteinase inhibitors at various concentration
	and preincubation time on the proteolytic amd metalloproteinase
	activities of Calloselasma rhodostoma (CR) venom154

1.40

24a	Effects of phospholipase A ₂ inhibitors at various concentrations
	and 5 min preincubation time on the proteolytic and
	metalloproteinase activities of Naja kaouthia (NK) venom
24b	Effects of phospholipase A ₂ inhibitors at various concentrations
	and 5 min preincubation time on the proteolytic and
	metalloproteinase activities of Calloselasma rhodostoma
	(CR) venom155
25a	Effects of various phospholipase A2 inhibitors at various
	concentrations and preincubation time on the phospholipase A2
	activity of NK venom
25b	Effects of various phospholipase A2 inhibitors at various
	concentration and preincubation time on phospholipase A2 activity
	on CR venom158
26a	Effects of various metalloproteinase inhibitors at various
	concentrations and preincubation time on the phospholipase A2
	activity of NK venom
26b	Effects of various metalloproteinase inhibitors at various
	concentrations and preincubation time on the phospholipase A2
	activity of CR venom
27	Effects of various metalloproteinase inhibitors on edema induced
	by CR venom in a pre-incuabtion type experiment164
28	Effects of various phsopholipase A ₂ inhibitors on edema induced
	by CR venom in a pre-incubation type experiment166

...

29	Effects of metalloproteinase inhibitors, phospholipase A ₂ inhibitors
	and 'inhibitor mixture' on the myonecrosis induced by CR venom
	in a pre-incubation experiment
30	Effects of various metalloproteinase inhibitors and 'inhibitor
	mixture' on hemorrhage induced by CR venom in a pre-incubation
	type experiment
31	Effects of various phospholipase A2 inhibitors on the hemorrhage
	induced by CR venom in a pre-incubation type experiment
32	Effects of various enzyme inhibitors on edema induced by CR
	venom in an independent inoculation experiment
33	Effects of various enzyme inhibitors on myonecrosis induced by
	CR venom in an independent inoculation experiment
34	Effects of various enzyme inhibitors on hemorrhage induced by
	CR venom in an independent inoculation experiment
35	Effects of various metalloproteinase inhibitors on edema induced
	by NK venom in a pre-incubation type experiment
36	Effects of various phospholipase A ₂ inhibitors on edema induced
	by NK venom in a pre-incubation type experiment
37	Effects of metalloproteinase inhibitors, phospholipase A2 inhibitors
	and 'inhibitor mixture' on the myonecrosis induced by NK venom
	in a pre-incubation experiment
38	Effects of various enzyme inhibitors on edema induced by
	Naja kaouthia venom in an independent inoculation experiment189

39	Effects of various enzyme inhibitors on myonecrosis induced by
	Naja kaouthia venom in an independent inoculation experiment190
40	The survival time of mice injected with various doses of
	Calloselasma rhodostoma (CR) and Naja kaouthia venoms
41	Survival time of mice injected with Calloselasma rhodostoma (CR)
	venom in the presence and absence of various metalloproteinase
	inhibitors
42	Survival time of mice injected with Calloselasma rhodostoma (CR)
	venom in the presence and absence of various PLA ₂ inhibitors198
43	Survival time of mice injected with Naja kaouthia (NK) venom in
	the presence and absence of various metalloproteinase inhibitors200
44	Survival time of mice injected with Naja kaouthia (NK) venom in
	the presence and absence of various PLA ₂ inhibitors

LIST OF FIGURES

Figure		Page
1	Action mechanisms of snake venom factors affecting blood	
	coagulation and platelet function	.35
2	Summary of the multiple roles played by snake venom	
	metalloproteinases in the pathogenesis of local tissue damage	39
3	Mode and mechanism of action of PLA2 enzyme, dependent of on	
	on the enzymatic activity in the following way	. 42
4	Model for the anticoagulant effect of PLA ₂ enzyme	46
5	Map of Thailand showing the ten provincial locations	117
6	The level of VCT in 6 days of hospitalization (C. rhodostoma)	128
7	The level of CPK (Units/Litre)	128
8	The degree of snake clinical envenomation (C. rhodostoma)	129
9	The severity scale of envenomation evaluated by modified SSS	132
10	The incidence of tissue necrosis in victims after C. rhodostoma	
	bites in prospective and retrospective studies	133
11	The CPK level in victims (Units/Litre)	145
12	The degree of snake clinical envenomation	148
13	The severity scale of envenomation evaluated by modified SSS	149
14	Tissue necrosis after Naja kaouthia bites in prospective and	
	retrospective studies	150

15	Effects of various metalloproteinase inhibitors on edema induced	
	by CR venom	5
16	Effects of various phospholipase A ₂ inhibitors on edema induced	
	by CR venom16	7
17	The effect of EDTA, TEPA, N-phenylglycine, p-BPB, mefloquine,	
	quinine and 'Inhibitor mixture' on CPK activity induced by	
	CR venom	9
18	Effects of various metalloproteinase inhibitors on hemorrhage	
	induced by CR venom	1
19	Effects of various phospholipase A2 inhibitors on hemorrhage	
	induced by CR venom	3
20	Effects of various metalloproteinase inhibitors on edema induced	
	by NK venom	3
21	Effects of various phospholipase A2 inhibitors on edema induced	
	by NK venom18	5
22	The effect of EDTA, TEPA, N-phenylglycine, p-BPB, mefloquine,	
	quinine and 'Inhibitor mixture' on CPK activity induced by	
	NK venom18	7
23	Survival time of mice injected with varying doses on Naja kaouthia	
	(NK) (a) and Calloselasma rhodostoma (b) venoms	3
24	The effects of various metalloproteinse inhibitors on the survival	
	time of mice injected with CR venom19	17

25	The effects of various phospholipase A ₂ inhibitors on the survival	
	time of mice injected with CR venom.	199
26	The effects of various metalloproteinase inhibitors on the survival	
	time of mice injected with NK venom	201
27	The effects of various phospholipase A2 inhibitors on the survival	
	time of mice injected with NK venom	203
28a	Normal muscle cell	206
28b	Destruction of muscle cell by CR venom	206
28c	The effects of inhibitors on the pathological changes of the muscle	
	for EDTA	207
28d	The effects of inhibitors on the pathological changes of the muscle	
	for TEPA	207
28e	The effects of inhibitors on the pathological changes of the muscle	
	for N-phenylglycine	208

ABBREVIATION

NK Naja kouthia

CR Calloselasma rhodostoma

PLA₂ Phospholipase A₂

SSS Snake Severity Score

VCT Venous Clotting Time

CPK Creatine Phosphokinase

L1 Desferiprone

DFO Desferrioxamine

TEPA Tetraethylenepentamine

EDTA Ethylenediamine tetraacetic acid

p-BPB para-bromophenacyl bromide