
CHAPTER 2
PROCESS MODELING

2.1 Introduction
This chapter contains a brief introduction to modeling the dynamic behavior of 
processes. The best model that can reliably represent each red process is developed 
from the difference proper approach. Thus, many several theories are used and applied 
to develop the process models of the system, and computational basis approach are also 
presented.

2.2 Process m odeling
A model is nothing more than a mathematical abstraction of a red process. The 
equation or set of equations that comprise a model are at best an approximation to the 
true process. Hence, the model cannot incorporate all of the features, both macroscopic 
and microscopic, of the red process. The engineer normally must seek a compromise 
involving the cost of obtaining the model, this is, the time and effort required to obtain 
and verify it. These considerations are related to the level of physicd and chem icd 
detail in the model and the expected benefits to be derived from its use. The 
necessarily model accuracy is intertwined in this compromise and the dtim ate use of 
the model influences how accurate it needs to be.

A dynamic system can be conceptually described as in Figure 2.1. The 
system is driven by input variables น(t) and disturbances d(t). The น(t) can be 
controlled but the d(t) cannot be controlled. The output y(t) signals are variables which 
provide useful information about the system. It depends on input values, disturbance 
values, and the dynamic behavior of the system or the relation between input, 
disturbance, and output variables. In chem icd processes, the relation between input, 
disturbance, and output variables is very important in several activities such as
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predicting the future output y(t) that corresponding with current input น(t) or 
disturbance d(t), planning and design because it is the basic knowledge for process 
planning, process optimization, and control system design.

Disturbance d(t) 

1 r
System

Input น(t) Output y(t)

Figure 2.1 A dynamic system with input น(t), output y(t) 
and disturbance d(t), where t denotes time

The following examples of dynamic system s illustrate the need for mathematical 
models.
Example 2.1 A stirred tank

Consider the stirred tank shown in Figure 2.2. The reactant concentration in 
each flow can vary. The flow Fj and F2 can be controlled with valves. The signals Fj(t) 
and F2(t) are the inputs to the system. The output flow F(t) and the concentration c(t) 
in the tank constitute the output variables. The input concentration Cj(t) and c2(t) 
cannot be controlled and are viewed as disturbances.

Suppose we want to design a regulator which acts on the flow Fj(t) and Fjt) 
using the measurements of F(t) and c(t). The purpose of the regulator is to ensure that 
F(t) and c(t) remain as constant is possible even if the concentrations c 1(t) and c2(t) vary 
considerably. For such a design we need some form of mathematical model which 
describes how the input, the output and the disturbances are related.

c(t) = function(Fj 1 F2, c  1,c2) (2.1)
F(t) = function(F, 1 F2, c 1,c2) (2.2)
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Figure 2.2 A stirred tank

Ln many cases, the primary aim of modeling is to aid in design. In other cases 
the knowledge of a model can itself be the purpose, as for if the models can explain 
measured data satisfactorily, they might also be used to explain and understand the 
observed phenomena. In more general sense, modeling is used in many branches of 
science as an aid to describe and understand reality. Also in such a case the purpose 
of modeling is to gain insight into and knowledge of the dynamic behavior of the 
system, an example is a large space structure, where the dynamic behavior cannot be 
deduced by studying structure on earth, because of gravitational and atmospheric 
effects. For examples like this, the modeling must be based on theory and priori 
knowledge, since experimental data are not available.

Mathematical models can be helpful in process analysis and control in the 
following ways :

1. To improve understanding of process.
Process models can be analyzed or used in a computer simulation of the 
process to investigate process behavior without the expense and, perhaps, 
without the unexpected hazards of operating the real process. This 
approach is necessary when it is not feasible to perform dynamic 
experiments in the plant or before the plant is actually constructed.



11

2. To train plant operating personal
Plant operators can be trained to operate a complex process and to deal 
with emergency situations by use of a process simulator. By interfacing a 
process simulator to standard process control equipment, a realistic 
environment can be created for operator training without the cost or 
exposure to dangerous conditions that might exist in a real plant situation.

3. To design the control strategy and select controller setting for a new  
process or new system
A process model allows altemative control strategies to be evaluated, for 
example, the section of the variables that are to be measured(controlled) and 
those that are to be manipulated. Moreover, a dynamic model of the 
process may be used to develop appropriate controller settings, either via 
computer simulation or by direct analysis of the dynamic model. Prior to 
start-up of a new process it is desirable to have reasonable estim ates of the 
controller settings. For some operating processes it may not be feasible to 
perform experiments that would lead to better controller setting

4. To design control law.
Advance control techniques use the process model as base of control law. 
Such techniques are called model-based control or model-predictive control.

5. To optimize process operating conditions.
In most processing plants there is an incentive to adjust operating 
conditions periodically so that the plant maximizes profits or minimizes 
costs. For example, blending operations for production of gasoline, fuel oil, 
and jet fuel in a refinery need to be modified in response to changes in the 
physical properties of the crude oil feed-stock, market conditions, and 
product inventory capacity. A steady-state model of the process and 
appropriate economic information can be used to determine the most 
profitable process condition, as in supervision control.
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2.2.1 Types of model
The models of dynamic systems can be of many kinds, including the following :

1. Mental1 intuitive or verbal model. For example, this is the form of model we 
use when driving a car (turning the wheel causes the car to turn, pushing 
the brake decreases the speed, etc.)

2. Graphs and tables. In some application, the models of systems are 
presented in graphical and tubular forms. For example, a bode plot of a 
servo system  is a typical example of a model in a graphical form. The step 
responses, i.e. the output of a process excited with a step as input, is 
another type of model in graphical form.

3. Mathematical models, a mathematical equation or a set of mathematical 
equations that can represent the relation between input and output of the 
system. Although graphs may also be regarded as mathematical models. 
Mathematical models of dynamic systems are useful in many areas and 
applications. Mathematical models are useful because they are very well 
suited to the analysis, prediction and design of dynamic systems. They can 
provide a description of a physical phenomenon or a process, and can be 
used as a tool for the design of a regular or a filter.

The mathematical model can be typed into two types as follow
1. Empirical model or system identification.

System identification is the field of modeling dynamic system from 
experimental data or plant data. This is an experimental approach. Some 
experiments are performed on the system, a model is then fitted to the 
recorded data by assigning suitable numerical values to its parameters.

2. Theoretical model.
This is an analytic approach. Basic laws from physics, chemistry, or 
thermodynamic (such as Newton' ร laws, material and energy balance 
equations, reaction rate equations) are used to describe the dynamic 
behavior of a phenomenon or a process.
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A comparison can be made of these two modeling approaches : theoretical 
model and system identification. In many cases the processes are so complex that they 
are not possible to obtain reasonable models using only physical insight ( using first 
principles e.g. balance equations ). In such cases one is forced to use identification 
techniques. It often happens that a model based on physical insight contains a number 
of unknown parameters even if the structure is derived from physical laws. 
Identification methods can be applied to estimate the unknown parameters. The 
models obtained by system identification have the following properties, in contrast to 
models based solely on theoretical model:

•  The system  identification approach have limited validity. The models are 
valid for a certain working point such as: a certain type of input, a certain 
process, a certain parameter or constant parameter of process, and etc.

•  The system  identification models give little physical insight, become in 
most cases the parameters of the model have no direct physical meaning. 
The parameters are used only as tools to give a good description of the 
system ’ ร overall behavior or macro behavior.

•  The system  identification models are relatively easy to construct and use.
Identification is not a foolproof methodology that can be used without the

interaction from the user. The reasons for this include :
•  An appropriate model structure must be found. This can be difficult 

problem, in particular if complex process and the dynamics of the system  
nonlinear.

•  There are certainly no perfect data in red life. The fact that the recorded 
data are disturbed by noise must be taken into consideration.

•  The process may vary with the time, which can cause problems if an 
attempt is made to describe it with a time-invariant model.

•  It may be difficult or impossible to measure some variables or signals that 
are of central importance for the model.
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Mathematical models of the dynamic systems can be classified in various 
ways. The ways of classification dynamic models include the following:

1. Single input, single output (SISO) models-multivariable (MIMO) m odels, the 
type of model that is classified by using a number of input and output 
variables. SISO models refer to processes where a description is given of 
the influence of one input on one output. When more variables are involved 
a multivariable model results. All of these models, MISO, SIMO, and MIMO 
are the multivariable models. It should be noted that multi input, single 
output (MISO) models or single input, multi output (SIMO) models are in 
most cases as easy to derive as SISO models. The MIMO models are more 
difficult to determine than SISO models.

2. Linear models-nonlinear models. A model is linear if the output depends 
linearly on the input and possible disturbances ; otherwise it is nonlinear.

3. Parametric models-nonparametric models, the type of model that is 
classified by using the characteristic of parameters of models. A parametric 
model is described by set of parameters.

4. Time invariant models-time varying models. Time invariant models are 
certainly the more common. For time varying models special identification 
methods are needed. In such cases where a model has parameters that 
change with time, one often speaks about tracking or real-time 
identification when estimating the parameters.

5. Time domain models-frequency domain models. Typical examples of time 
domain models are differential and difference equations, while a spectral 
density and a bode plot are examples of frequency domain models.

6. Discrete time models-continuous time models. A discrete time model 
describes the relation between inputs and outputs at discrete time points. 
It will be assumed that these points are equidistant and the time between 
two points will be used as time unit. Continuous time models or analog 
models, the models which are based on analogies between processes in
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different areas. For example, a mechanical and electrical oscillator can be 
describe by the same second-order linear differential equation, but the 
coefficients will have different physical interpretation. Analog computers 
are based on such principles : differential equations constituting a model of 
some system  are solved by using an analog equivalent of electrical network. 
The voltages at various points in this network are recorded as functions of 
time and give the solution to the differential equations.

7. Lumped models-distributed parameter models. Lumped models are 
described by or based on a finite number of ordinary differential or 
difference equations. If the number of equations is infinite or the model is 
based on partial differential equations, then it is called a distributed 
parameter model.

8. Deterministic models-stochastic models. For a deterministic model the 
output can be exactly calculated as soon as the input signal is known. In 
contrast, a stochastic model contains random terms that make such an 
exact calculation impossible. The random terms can be seen as description 
of disturbances.

Model can be classified in other ways. For example :
•  Physical models, which are mostly laboratory-scale units that have the same 

essential characteristics as the (full-scale) processes they model.
•  Theoretical models developed using the principles of chemistry and physics.
•  Empirical models obtained from a mathematical (statistical) analysis of 

process operating data.
•  Semiempirical models that are a compromise between theoretical models 

and empirical models, with one or more parameters to be evaluated from 
plant data.

In the last classification, certain theoretical model parameters such as reaction 
rate coefficients, heat transfer coefficients, and similar fundamental relations usually
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must be evaluated from physical experiments or from process operating data. Such 
semiempirical models do have several inherent advantages. They often can be 
extrapolated over a wider range of operating conditions than purely empirical models 
which are usually accurate over a very limited range. Semiemprical models also provide 
the capability to infer how unmeasured or numerable process variables vary as the 
process operating condition change.

2.3 General m odeling principles
Mathematical models of chemical processes invariably consist of one or more differential 
equations (ordinary differential equations(ODE) and/or partial differential equations 
(PDE)) often combined with one or more algebraic relation. The dynamic model can be 
obtained from the application of unsteady-state conservation relations, usually material 
and energy balances. Force-momentum balances are employed less often. For process 
with transport system s, such balances should be considered. Algebraic equations in 
process model can arise from thermodynamic and transport relations. For example, heat 
transfer coefficient may be a function of fluid velocity (flow rate) equation. The basic 
equations that are usually involved in the mathematical models are:
The fundamental law for mass conservation that can be written as

[rate of mass accumulation] = [rate of mass in]-[rate of mass out] (2.3)

If the reactions occur in processes, a mass conservation equations can be written as

[rate of mass accumulation] = [rate of mass in]-[rate of mass out]+
[ rate of mass generation] (2.4)

The rate of mass generations usually derive from reaction rate equations.

[rate of reaction] = Function(K, concentration of reactants and/or products) (2.5)
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For simple example:

[rate of reaction] = K[Reactant1]n[ReactantJm (2.6)

The general law for energy conservation that can be written as

[rate of energy accumulation] = [rate of energy in by flow or convection]-
[rate of energy out by flow or convection]+
[net rate of heat addition to system] (2.7)

2.4 D egrees of freedom  in m odeling
To use a mathematical model for process simulation, must ensure that the model 
equations provide a unique relation among all inputs and outputs. This requirement is 
analogous to the requirement for a set of linear ฟgebraic equations to have a unique 
solution, which is that the number of variables must equal the number of independent 
equations. It is easy to make a similar evalนation for a large, complicated steady-state 
or dynamic model. However, for such a system of equations to have a unique solution, 
the number of unknown variables must equal the number of independent model 
equations. An equivalent way of stating this condition is to require that the degree of 
freedom be zero, that is

Nf = N v-Ne = 0 (2.8)
Where

Nf = the degrees of freedom
Nv = the total number of variables (unspecified inputs plus outputs)
Ne = the number of independent equations 

Hence, a degree of freedom analysis separates modeling problems into three categories.
1. NF = 0 : exactly determined process. If N  1, = 0, then the number of 

equations is equal to the number of process variables and the set of 
equations has a unique solution.
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2. NF> 0 : underdetermined process. For NF > 0, then Nv > NE 1 so there are 
more process variables than equations. Consequently, the NE equations 
have an infinite number of solutions since NF process variables can be 
specified arbitrarily.

3. Nf < 0 : overdetermined process. For NF < 0, there are fewer process 
variables than equations and consequently the set of equations has no 
solution.

Note that NF = 0 is only satisfactory case. If Np > 0, then sufficient inputs 
have not been identified. If Np < 0, then additional independent model equations must 
be developed.

For SPEEDUP, the model can be easily checked by checking the number of 
equations and the unknown variables :

•  counting the number of variables in the type section {NV).
•  counting the number of input stream variables (M).
•  counting the number of equations {NE).
The SPEEDUP model will solve if

NS = NV  - ( M  + N E ) (2.9)
NS is the number of set variables that should expect to set for a simulation. 

For NS = 0, the solution of the model can be solved.

2.5 Summary
All of the presented subject in this chapter are the basic knowledge for an application 
of process modeling. The different process modeling approach is proper with each 
process or system. The consideration for selecting the approach is depend on the 
knowledge and the contained data of the process. The details of an application is 
presented in chapter 5 and 6 that an area of application and the SPEEDUP background 
is presented in appendix c . The next chapter maintains in an area of theories. It is 
covered in the data reconciliation subject.
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