
CHAPTER 3
DATA RECONCILIATION

3.1 Introduction
Process measurements are taken in an industrial plants for the purpose of evaluating 
process control or process performance. However, not all variables needed are generally 
measured, because of technical unfeasibility or cost. Furthermore, the measurements 
often contain random and possibly gross enors as a result of miscalibration or failure of 
the measuring instruments. Also, the data dose not obey the laws of conservation. The 
approach that used to reduce the enor of the measured data called “data reconciliation" 
is presented in this chapter.

3.2 Data reconciliation
Process data is m e foundation upon which process knowledge, evaluation of process 
performance and all control system  are based. These functions include production 
planning, operation scheduling, waste treatment scheduling as well as the more familias 
process control. From above information, mean a correct process data is very important 
but infact the measured process data inherently contain inaccurate information since 
the measurements are obtained with imperfect instruments. The relationship between 
a measured value and correct value can be represented by :

y = Y  + e  (3.1)
Where

y  = measured value 
y = correct value 
e = measurement value

Most measurement systems in an industrial have the same basis problem. The
key features of the problems are :
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1. All measurement are subject to errors. These errors corrupt the individual 
measurements and cause the measured values collectively to be consistent in the sense 
of discrepancies in energy and material balance closure. The flawed-measured value 
can contain any of several types of enor such as :

1.1. Small random enors
T hese errors are commonly assum ed to be independently, normally 
distributed  w ith zero mean and expected  value of the errors is also 
zero.

1.2. Systematic biases
T hese enors occur w hen m easurem ent d evices provide consistently 
erroneous values, either high or low. In this case, the expected value of 
the enors is not zero. Biases may arise from sources such as inconect 
installation or calibration of the measurement device.

1.3. Gross enors
T hese enors are usually caused by non-random events. In this case, 
th e m easurem ent bear little or no relation to th e true value of the 
desired property. Gross enors can be subdivided into measurement- 
related enors such as malfunctioning sensors and process-related enors 
such as process leaks.

2. Not all process variables are measured for reasons of cost, inconvenience or 
technical unfeasibility.

3. Redundancy, in general, means providing two or more process variable 
measurements, computers, sensors, pumps, valves and so on, that are design for the 
same function. Redundant measurement means obtaining the same process 
information with two or more measurements. Redundant measurement can typical into 
two type.

First, spatially redundant, measurements are spatially redundant if there are 
more than enough data to completely define the process model by a result of 
conservation relationship and the interconnectedness of a process network.
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Second, temporally redundant, measurements are temporally redundant if the 
process conditions were truly at a steady state, more measurements are available than 
need.

Dynamic models comprised of algebraic and differential equations provide both 
spatial and temporal redundancy.

A simplified view  of techniques used to process measurement data can be 
divided into three basic steps as shown in Figure 3.1.

measurements model

estimates

Figure 3.1 Steps for processing measurement data

1. Variable classification, the first step that is involved determining which 
variables are observable or unobservable and redundant or underdetermined. 
Variables which are undeterminable are not available for improvement.

2. Gross error detection, the second step that is the step for identifying and 
removing all gross errors. Gross error detection must be performed prior to 
data reconciliation step because if a measurement containing a gross error
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were allowed Into the reconciliation scheme, the resulting variable estimates 
would contain significant errors, with the entering gross error accounted for 
in some or perhaps all of the estimates.

3. Data reconciliation and Coaptation, the third or final step that is used to 
improve process knowledge from process measurement data. This step 
obtains consistent estim ates which satisfy all of the specified model 
equations while staying as close as possible to the actual measurement. 
Coaptation step estim ates all unmeasured but observable variables that can 
be treated simultaneously with measured data reconciliation.

The first to propose a data reconciliation ฟgorithms in the chemical 
engineering literature w as a ฟgorithm that based on a minimal least squares 
adjustment of the measurements subject to a number of reconciliation equations. This 
ฟgorithm did not even model gross or system atic errors (Kuehn and Davidson, 1961). 
And the next research pointed this out, and developed an ฟgorithm that incorporated a 
mechanism to detect gross error (Ripps, 1965). Since, many algorithms for gross errors 
detection had been suggested. Data reconciliation techniques could be divided in six 
classes (Himmelblav, 1988).

1. Techniques based on the least squares principle (maximum likelihood) 
represented the largest group. These techniques were also called Gauss- 
Markov estim ates if the w eights correspond to the inverse of the variance of 
each response. Techniques based on the least squares principle were most 
frequently reported on, most thoroughly tested and best known. In the 
simple terms, one could say that they minimize a sum of squares of 
measurement corrections, usually with step to detect system atic errors and 
replace them by rectification or reconstruction. Attention would be focused 
on this type of technique become it was the most widely used and studied.

2. Some techniques based on mathematical programming, in a more general 
way than least squares application as specified in (1), were proposed as 
well. For instance, the technique that based on the linear sets of
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reconciliation equations (Marro et. ฟ., 1981). In some researches suggested 
the ฟgorithms that based on The Lagrange multipliers (e.g. : Iordache et. 
al., 1985, and Serth et. al., 1986).

3. Techniques based on Kalman filtering were used, especially for quasi steady 
state system s (e.g. ะ Stanley and Mah, 1977, and Stanley, 1982). A quasi 
steady state variable was defined as a variable that could change only very 
slowly, or had an occasiond sharp transition in between the two steady 
state vdues.

4. Techniques based sensitivity coefficients were used, minimizing the 
sensitivity of the reconciled measurements for potentid errors (Vaclavek et. 
al., 1979).

5. A method of data reconciliation based on data from which gross errors were 
removed, using an intenral andysis (Himmelblav, 1988). The advantage of 
this method was that no assumption had to be made about the statistical 
distribution of the random measurement errors. A disadvantage was that 
intenral andysis was not very well known among engineers, the major 
practitioners of data reconciliation.

6. Some methods were based on an artificid intelligence principles. These 
methods only pertained to very specific reconciliation methods, and were of 
no general interest.

It was important to stress that many of the published reconciliation dgorithms 
did not take constraints into account. This could lead to unrealistic results, thus, the 
constraint data reconciliation were developed in many different approaches.

An extensive andysis of data reconciliation with solution in matrix form for 
linear constraints, including unmeasured flows and products of measured flows and 
measured concentrations was presented (Swenker et. al., 1964). The constraint 
equations might be written as :

B1 ( x ' +  a )+  B2 ( d f +  b )+  Pv =  0 (3.2)



2 4

where, x' and ๕  were the vector of measured species, a and ๖ were the corresponding 
vector of adjustments.

A method to handle data reconciliation in a decomposed schem e, with out 
iteration based on the assumption that every plants could be divided into a number of 
departments, w ith measurement vector น. for the i* department. The departments were 
connected with streams V and the reconciliation equations within the departments as 
well as for the interconnecting streams, were linear (Marro et. ฟ., 19811 This data 
reconciliation problem was formulated by the following equations ะ

min ( z ๆ*พi 1ๆ + ç VJ0ç ) (3.3)

subject to :
D0(v+ç) = 0 (3.4)
B  f a +ฦ1)-+ D /v+ç) = 0 ,  พ = ไ....N  (3.5)

This technique did not reduce the amount of calculations. It suggested a 
technique for spreading the computational time and reducing the amount of data that 
had to be transferred. The quasi steady state data reconciliation w as presented in the 
sense of spreading the computational time (Stanley, 1982).

The other applications of the data reconciliation problem are: A dynamic on-line 
estimation ฟgorithm for reconciling process variables that involved a recursive solution 
technique in weighted least squares (Darouach and Zasadyinski, 1991), a method to 
incorporate bounds in data reconciliation that the bounds on process variables were 
directly incorporated as constraints (Narasimhan and Haukumar, 1993), a case study of 
data reconciliation in Kultin ammonia plant (Nugrah et. ฟ., 1993), and an application of 
data reconciliation to an industrid pyrolysis reactor that developed around simplified 
mass and energy bdances (Weiss et. ฟ., 1996). The data reconciliation ฟgorithm that 
produced for the acetylene hydrogenation process in this thesis is the one of the 
applications of the data reconciliation problem.
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3.3 Dynam ic data reconciliation problem formulation
The general nonlinear dynamic data reconciliation (NDDR) forrmilation can be written 
as:

rnin<b[Y;y;a|y L J

subject to
d y (  t  )

f l d t : y ( t ) 1  =  0
h [ y  ( t  )]  = 0
g l y (  t ) l  0

y ( t ) L <  y (  t)
Where

(j) = objective function equation 
Y = discrete measurement 
y  = estimate function 
y  = lower limit of y 
y  = upper limit of y 
cr -  measurement noise standard deviation 
f  = differential equation constraints 
h = algebraic equality constraints
g  = inequality constraints including simple upper and lower bounds

(A)

(3.6)

The nonlinear dynamic data reconciliation (NDDR) approach is composed with 
several steps :

1. Obtain process measurements over tc-HAt < t c.
2. Estimate y(t) that minimize <p over tc-HAt < t 0
3. Save only y(t) at time t0 .
4. Move to the next calculation time : tc ---- > t+ A t = tc+J
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5. Repeat step 1-3 at next time over, t^j-HAt < t tc+,
6. Repeat step 4

As shown in Figure 3.2, only data measurements within the horizon will be 
reconciled during the nonlinear dynamic data reconciliation run.

Figure 3.2 History horizon for NDDR

The objective function can be rewritten in the form of the Weighted Least-Squares 
(WLS) formulation :

*  [ r . y ; ° h  -  rfv-'[y, -  r , ]  (3.7)
or

[ y - y j y - ' [ y - y ]  (3.8)
Where

y  j  = the estimated vdue of estimation equation at time t. 
y  = the measured vdue at time t  
tc = the current time 
At = tim e step size 
H -  the history horizon time
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V  = the variance-covariance matrix

The concept of data reconciliation is to : minimize (j) or minimize the sum of errors 
between measured values and reconciled values by using the W eighted Least-Squares 
Estimation.

* = \ [ y - r j r - ‘[ y - r ]  (3.9)

from ( A  +  B ) t =  A T + B T obtain

%  =  \  {2y T y~' -  2Kr(F -')r } = 0 (3.10)

y TV ~ 1 - Y T (V ~ 1 f  = 0  (3.11)

T _ Y T (V ~ 1 )T
y  =  — — —  (3.12)

(3.13)

(3.14)

(3.15)

y =
/  T  — J T  \  T‘ Y (V  y
V  V y

For example: If

al Y. + a 2
blY2 + ๖2

v  = CT, 0
0 CT, (3.16)
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1 ~a\Yx + a 2 - ¥1าเ O’, 0 -1 alYx + a 2 - Y }
2 b\Y2 + b 2 - ¥2 0 <J2 b\Y2 + b 2 - ¥2 (3.17)

(3.18)

Minimize (f) by adjusting the a l, a2, b l, and ๖2 parameter. The proper value of a l, a2. 
b l, and b2 can be found by solving the following equations:

^  =  ^ - ( 2 ( a l -  l)i;! +  2a2Yt)  = 0 (3.19)

Z l  % 1 ( ^ 1 - 1 ) ^ ^ )  = 0 (3.20)

^ = i ( 2 ( M - i ) r , ! + 2 4 2 i; )= 0 (3.21)

^ 2  =  ^ 2 ( ผ + 2 i 2 > = 0 (3.22)

For the constraint problems, the Lagrange Multiplier method is involved for solving the 
problems. The procedure of using the Lagrange Multiplier is adding the constraints into 
the objective equation, thus, (f) becomes (f) + พ h(y(t)) or

new  (f) = U y,พ) = <p+ พ h(y(t)) (3.23)

The proper value of parameter of the estimation equation can be found by solving the 
following equations:

j ± r ± ( 2(<,1- พ+2.215)-0 (3.24)
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4 r z  = - ( 2 ( a l  - 1 )Y, + 2ฝ2ิ) = 0 (3.25)d a l  cr,

- ^ -  = — (2 (M -1 )r22 + 2 b lY 2) = 0 (3.26)๕๐1 cr,

(3.27)

(3.28)

£  = ^ (2<M-l)r! + 2i2) =0 

£ ^ « ' »  - °

3.4 Sum m ary.
The reviews and theories of the data reconciliation approach that are presented in this 
chapter gives the basic understanding of the data reconciliation approach. The 
understandind will be used to apply with the acetylene hydrogenation process. The 
developed dynamic data reconciliation of the acetylene hydrogenation process is 
presented in chapter next chapter 7. Anyway, the next chapter presents the Dynamic 
Matrix Control theory.
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