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CHAPTER 1
INTRODUCTION

In this chapter, we collect basic concepts and state the results of earlier works that
are related to our work in this thesis.

An algebraic differential equation, abbreviated ADFE, is an equation of the form

F(s, fif 0 fP)=0
where v € NU {0}, F(T1,...,T,42) € C[T1,...,T,2], and f is a function of s. If

f satisfies an ADE, then it is said to be differentially algebraic.

Example 1.1. The function f(s) = se® is differentially algebraic, because it sat-

isfies an ADE
F(f.f f)=f =2f +f=0.

Throughout, by a Dirichlet series, we mean a convergent series of the form

©o(s) :Zaie_kis; a; €C, ag £ 0, i €R, Ag <A <X <---, lim \; = o0.
l:0 71— 00

(1.1)
Here a; is called a coefficient and \; is called an exponent of the series. If a; are
nonzero for infinitely many i, we call p(s) an infinite Dirichlet series. The following

theorem gives the domain of convergence of the convergent Dirichlet series.

Theorem 1.2. [/, Theorem 1.10] If a Dirichlet series converges at the point zy =
To+1yo, then it converges at every point of the half-plane Re(z )= x > xq. Moreover,

the convergence is uniform in every angle |arg(z — z0)| < § — 0§, where § > 0.

The next theorem provides the uniqueness for Dirichlet series.



Theorem 1.3. [6, Lemma 8.13] If a Dirichlet series ¢(s), convergent in a half-
plane Re(s) > xo(xg € R), has infinitely many roots s1,sq, ..., lying in an angle
larg s| < § — € (where € > 0) and tending to oo, then ag = ay = ... = 0 and the

function p(s) vanishes identically.

From the latter theorem, it follows that if a convergent Dirichlet series i ae N
as in (1.1) equals to zero, then we get ag =a; = ... =0. =

In 1920, Ostrowski, [5], proved the following results revealing astonishing prop-
erties of the exponents and coefficients of a Dirichlet series satisfying an ADE.

I. ([5, Theorem 6]) If a convergent Dirichlet series ¢(s) satisfies an ADE, then
there exists ¢ € N such that for each j > 4, the exponent \; can be written as an
integral linear combination of Ag, A1, ..., ;1.

II. ([5, Theorem 8]) If a convergent Dirichlet series o(s) satisfies an ADE,
then there exists a finite number of coefficients ag, aq,...,a, such that all other
coefficients ay, with h > k, can be expressed as rational functions with rational
coefficients in ag, aq, ..., a.

Our first objective here is to investigate a Dirichlet series satisfying a linear

algebraic differential equation,
F(f.f .o, f™)y =c+bof +bif + - +bof™ =0,

where n € N and ¢, by, ...,b, € C.

Next, we consider a nonlinear algebraic differential equation of the form
F(f,f"):=f"+Bf*+Cf' + D=0, (12)

where B(# 0), C, D are polynomials with complex coefficients, and k > ¢ are
positive integers. Such equation is called a generalized Riccati differential equa-
tion because the equation (1.2) with £ = 2 and ¢ = 1 is the well-known Riccati

differential equation. Moreover, the Riccati differential equation relates to the



second-order linear equation,
u +pu 4+ qu=0 (1.3)

where p, ¢ are complex polynomials and u is a function of s. If we assume that
u is a solution of (1.3) and replace v = % in (1.3), we get the Riccati differential
equation,

v + v+ pu4q=0. (1.4)

Hence, if we find a solution of (1.4), saying v(s), we get that u(s) = Cel ()45,
which C' is a constant, is a solution of (1.3).

Based on Ostrowski’s method, we aim to refine his results on the coefficients and
exponents of Dirichlet series solutions. We divide our results, shown in Chapter

II, into two cases.

e For the case of / = 1, we determine the exact Dirichlet series solution of
(1.2), and prove that all exponents can be writen as a linear combination of

the smallest nonzero exponent.

e For the case of £ = 3 and ¢ = 2, we show that convergent Dirichlet series

solutions of (1.2) are plentiful.

In the rest of this thesis, we consider a power series,

kazk, with f, € C,
k=0

that satisfies some ADE.
In 1935, K. Popken [3, Theorem 16] proved an interesting theorem yielding
bounds on the coefficients of power series solutions. His theorem states that if a

power series

00

k
E sz ;
k=0



where f;, € C satisfies an ADE, then there exist two positive constants v; and 7,

such that
| fr] < (kD)™

for all £ € N. In Chapter III, we aim to derive bounds for the coefficients of a

power series satisfying:

(i) a linear differential equation

F(f,f)=f"+Bf+C=0,

where B(# 0), C are polynomials with complex coefficients,

(ii) a Riccati differential equation

F(f,f)=f"+Bf*+Cf+D=0,

where B(# 0), C, D are polynomials with complex coefficients.



CHAPTER 11
DIRICHLET SERIES SOLUTIONS

In this chapter, we consider Dirichlet series satisfying Linear differential equations

and generalized Riccati equations.

2.1 Linear differential equations

In this section, we investigate properties of the coefficients and exponents of a

Dirichlet series satisfying a linear differential equation of the form
F(f, f oo ™) =ctbof +bif +- -+ b f =0, (2.1)

where n € N, and ¢, by, ...,b, € C, b, # 0.

Theorem 2.1. Assume that a convergent Dirichlet series o(s) as in (1.1), with

Ao > 0, is a solution of the linear differential equation (2.1). Then

k k-1

where k < n and all \; are real roots of the polynomial
bo — b1I + bQI‘Q — b3$3 —|— te + (—1)nbnl'n = 0

Proof. We split our proof into two cases according to the value of c.

Case ¢ # 0. Substituting ¢(s) in (2.1), we have

c+ bO Z aie_/\is — bl Z )\iaie_’\is —+ 4 (—1)nbn Z )\?aie_)‘is =0 (22)
1=0 1=0 =0



If Ao = 0, then by comparing the coefficients in (2.2), we get

C—f-b()ao:o

c
From the first equation, since ¢ # 0, by # 0, we get ag = 5 Since A1, Ao, ...
0
are real numbers, the previous equations imply that A;, Ag, ... are real roots of the
polynomial

bo — bz + box® — bga® + - 4 (—1)"bz™ = 0,

which has atmost n real roots. Therefore there are finitely many \;, so

k
. & —A\is
©o(s) ——b—o—i-Zaie :

i=1

for some k € N. If Ay > 0, then by comparing the coefficients in (2.2), because all
terms except the first term ¢ on the left hand side are exponential functions, we
get ¢ = 0 a contradiction.

Case ¢ = 0. By comparing the coefficients in (2.2), we get

bo — biAo + baAg — b3Ag + -+ + (—1)"b, Ay =

bo — D11 + o] — b3AT + - + (= 1)"b, A} = 0

Since Ag, A1, ... are real numbers, their are all real roots of the polynomial
bo — b1$ + b21’2 — b3$3 + -4 (—1)nbnl‘n = 0.

k-1
Finally, we get (s) = > a;e™* similar to the previous case. O
i=0



2.2 Generalized Riccati equations

We now consider a Dirichlet series solution of a generalized Riccati differential

equation of the form

F(f,f)=f"+Bff+Cf'+D=0,

where B(# 0), C, D are complex constants, and k > (¢ are positive integers.

Spliting into two cases, we will first consider such differential equation with ¢ =1,

and then with ¢ = 2 and £k = 3. We show that there are more than one class

of convergent Dirichlet series solutions. To prove our result, we recall now the

theorem [2, Theorem 3.7] about the expansion of multinomial.

Proposition 2.2. Let n and r be positive integers and let x;, i =

real numbers. Then

n ¢ n k1 _k
(@1 + @y 4o )" = Z (kfl,kz,...,kr)xll%rz‘“
kitkot:+kr=n
where the summation is taken over all k; = 0,1,....n,(i = 1,2,...
kit ket 4k =nand (kl,k;...,kr) = kllkg!--%,llkn'

Let

) { —2X —nAsyk
Xn+1:(ao+a16 ¥+ aqe 1S+"'+an6”15),

Applying the multinomail expansion, we obtain

1,2,...,7r, be

ky
z,",

,1), such that

k n
Xntl = Z <k‘1, ko, ... 7kn+1>a§1 (a1€_>‘18)k2 e (ane_m\ls)k +1 7

ki+ko+-+knt1=k

_ ( k >6Lk1 ak2 . akn+1e*(k2+2k3+---+nkn+1)>\18
- 0“1 n .
2 R

ki1+ko+-+kny1=k



Set t, = k1. We get

Xn+1 = E < k )agoa/tll Ce at"6_(t1+2t2+"'+nt")>\15
n .
tottr ek N0 1 T

As the result, the coefficient of the term with exponent (n 4 1)A; in xp,41 is

k
Z af)oail . -afl".
to, ... tn

t0+"'+tn:k
t1+2to+-+ntp=n+1

Proposition 2.3. If a finite Dirichlet series ¢(s) = >, a;e i satisfies (1.2),
then p(s) = ag is the only solution of (1.2) with Bak + Ca§+ D = 0.

Proof. If \g = 0, then ¢(s) = ag + >, a;e " and (1.2) becomes

0=— Z a\e N+ B (ag + a,»e_’\is> +C (ao + Z aie_)‘is> )

=1 i=1 i=1

For n > 1, since k > /¢, equating the terms with the highest exponent we get
Bake " = () yielding B = 0, which is a contradiction. Hence, the only solution
is (s) = ag with Baf + Caf + D = 0.

If A\g # 0, then for n > 0, equating the terms with the highest exponent in
(1.2), we get BaFe "¢ = () yielding B = 0, which is a contradiction. O

The above result deals with finite Dirichlet series. Throughout the rest of the
thesis, we shall consider only infinite Dirichlet series.

The following procedure is very important to the proofs of results in this chapter
because we often use this method whenever we want to compare the exponents of
a Dirichlet series satisfiying (1.2).

For n € N, rewrite the infinite Dirichlet series (1.1) as

n—1 00
o(s) = Z aie M + Z aie” M = @1 ,(8) + Pon(s).

=0



By Taylor series expansion of F'(¢1, + ¢an, 90/1,71 + 90/271) and (1.2), we get

0= F(('D7 (10,) = F((pl,n + P2,n, Spll,n + QDIZ,n)

OF (P10 010) o+ OF(Q10,901 )
o1 20,

(B PE i) (050 O F (P10, 71 )
21 82(,01771 k! akSOLn

= F(Q1,010) + 020 (kB + LCOTH + 5,

= F(p1n, 010) + (@z,n

%” {k: Boi 24+ 00— 1)Cpi 2} + -+ o5, B.
For brevity, let

A, = oy (k;ng + ECap ) + gogn
= a,e '\ {k:B(aoe_A“S)k_1 + f(](aoe_k“s)é_l} — \ane s

+ terms with higher exponents (2.3)
and
902n 1—2 k
2 _2%8 Nosyk=2 | —Aosyl—2
= In® o {k(k — 1)B(age %) = + £(£ — 1)C(age™ %) }
+ terms with higher exponents.
Thus

0=F(p,¢) = F(prn, 1) + An + Ey. (2.4)

Since our approach involves equating exponents, the term F),, can then be ignored

because the exponent in its first term (i.e., the term of least exponent) is

min {2)\71 + )\0(]{? - 2), 2)\n + )\0(6 - 2)}
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while the exponent of the first term of A,, is
min {\, + Ao(k — 1), Ap + Xo(£ — 1), A}
Comparing these two qualities: if Ay > 0, we obtain that

min {2\, + Ao(k — 2), 2\, + Ao(€ — 2)} = 2X, + Ao(£ — 2)
> A+ Ao(—1), A — Ao >0

on the other hand, if \y < 0, we obtain that

min {2, + Ao(k — 2), 220 + Ao(£= 2)} = 27, + Ao(k — 2)
>)\n+)\0(k‘—1), >\n_>\0>0
— min D+ Aok — 1), A+ Ao(f — 1), An).

Furthermore, if the first term of A, is nonzero, then F(p1 ,, cplln) must contain a
term whose exponent is the same as that of A,. If \y = 0, then the first term of
A, is

(kBay =t +£Caf™ — \p)ane " (2.5)

If A\g > 0, then the first term of A, is
(C = Ap)age™ if£=1, and — Mpane ™ if £ > 1. (2.6)
If A\g < 0, then the first term of A, is

kBayak=te=Gntk=1)ro)

The number ¢ appearing in (1.2) is closely related to Ay, as seen in the next lemma.

Lemma 2.4. Assume that an infinite Dirichlet series p(s) as in (1.1) satisfies
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(1.2). If £ > 2, then Ao = 0, while \g > 0 if £ = 1.

Proof. Taking n =1 in (2.4), i.e.,
0o

@(S) = (]J(]e*/\os—l—z aie*Az‘s’ F(Qpl,lv S0/1,1> = _)\anef/\os_i_Balgefk/\os_i_Caéefe)\os_FD.
i=1

For the case ¢ > 2, comparing the exponents in (2.4), we see that either the
coefficient of the first term of A; is zero, or there is a term in F(y1,1, ¢} ;) having
the same exponent as the first term of Aj.

If A\p > 0, then the expression F'(¢y 1, g0/1,1) contains a nonzero term with expo-

nent \o; that is —Agage %, but
Al = —)\16L1€7>\15

starts with a term with exponent \;. Thus the term —\gape *°* must vanish away,
i.e., Ao = 0, which is a contradiction.

If \p <0, then

l{/\o <)\1+(]€—1)>\0 < /\1+(€—1))\0 <)\1,

A1t(k—1)Xo

and so the first nonzero term of A; is af 'a;kBe )s_ by replacing (2.3)

—kXos 50 it must

with n = 1, while the first nonzero term of F(¢1,1,¢),) is Bage
vanish and then implies that B = 0 which is again a contradiction.
Therefore, \g = 0.

We next treat the case £ < 2, i.e., £ =1. If \y <0, then the first term of A; is

(C — A\p)are ™* and

F(p11,011) = (C = Xo)age ™ + Bage ™ 4 D.
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Comparing the first term, since kAg < A9 < A1, by (2.4), we get
Baée‘“os =0,

so it implies that B = 0 which is a contradiction. Therefore Ay > 0 O

Lemma 2.4 tells us that the least exponent, A\g, in an infinite Dirichlet series
satisfying (1.2) is a nonnegative real number.

We proceed now to obtain information about the coefficients B, C, D in (1.2).

Lemma 2.5. If an infinite Dirichlet series p(s) as in (1.1) satisfies (1.2), then

the three polynomials B,C, D are complex constants.

Proof. We need only consider the two possibilities: Ay = 0 and A\g > 0.
Case \g = 0. With n = 1in (2.4), i.e., writing (s) = ag + >_;5; a;e”*, we see
that the first term of A, is (kBak * + £Cal™" — \)aie %, and

F(p11, 9011,1) — Baf + Cal + D.
Comparing the coefficients in (2.4), we have
Baj+Cay+D =0 and kBal™' +(Cal™ -\ =0. (2.7)
Next, with n = 2 in (2.4), i.e., ¢(s) = ag + are”™* + 37, ae™*, the first term

in Ay is

(kBab™' 4+ (Cal™ — \y)age™** # 0,

because by the latter of (2.7), if the first term in Ay is zero, we get A\; = Ay which

contradicts to the definition of our Dirichlet series, and then
F(p12, 30/172) = —Mae ™ + Blag + are”*)* + Clag + aje™*)" + D.

The coefficient of the term e =2} in (¢ 5, gp'm) is (B( )ag K202 + C( )af (=2 a?) e,
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If Ay # 21, then the coefficient of the term e=2*1% in F'(ip; o, gplm) is zero because

the first term in As has the exponent A; | i.e.,

k 14
B (2) ag%al 4+ C (2) ab~2a? = 0. (2.8)

Using the latter of (2.7) and (2.8), we deduce that B and C' are complex constants,
and using the former of (2.7) again we have that D is also a complex constant.
If Ay = 2);, then the coefficient of the term with exponent 2\; in F(p12, ¢ 5)

and the term with exponent s in A5 add up to zero, i.e.,
K\ ks o €\ o 2 k—1 -1
B 5 )@ "0 +C 5 )% 01 + (kBag ~ + leay — Ao)ag = 0. (2.9)

Again using (2.7) and (2.9), we deduce that B,C, D € C.
Case \o > 0. With n = 1in (2.4), i.e., ¢(s) = age™** + 3,5, a;e”**, Lemma 2.4
yields ¢ = 1. In this case the first term of A; is (C'— \;)a;e %, and

F(p11,1,1) = (C = AoJage ™ + Bage ™ + D.

Comparing the coefficients in (2.4), we have D = 0 and C = )y € C. Thus,
(C — A)aie™* £0, and so A\; = kXg and B = (k — 1)\a1a5" € C. O

From Lemma 2.5, throughout the rest of the thesis, we assume that B(

0),C, D are complex numbers.

2.2.1 Thecase/=1

In this section we treat the case £ = 1 and & > 2 in (1.2), i.e., the differential

equation takes the form

F(f,fY=f"+Bff+Cf+D=0; B(#0),C,DcC. (2.10)
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Theorem 2.6. Assume that an infinite Dirichlet series ¢(s) as in (1.1) satisfies

(2.10).

(i) For \g =0, letc; =1, ¢co = (g)/)\l, and forn > 3, let (n — 1)A\ic, be

Z (CIO,...k’qn_l) (M)q2 <W)qn—l'

Q+q1++gn-1=k
@1 +2q2+-+(n—1)gn-1=n

Ifc, 0 (n > 3), then Bak + Cag+ D = 0, \, = kBai™' + C, and for

_ _ k—n_n k _ ok
n > 2, we have A\, = n\; and a, = Bepay "af, where (qo .... qn71) = e

(i) For \g >0, let dy = 1/(k — 1)C, and for n > 2, let

_ dl k t1 tn—1
dp = > (to,...,tn_l)(Bdl) (Bd,_p)mt.

tot+t1++tn_1=k
to+kti+-+((n—1)k—(n—2))tn_1=nk—(n—1)
(2.11)
Then D =0, \g = C, and for n > 1, we have A, = (nk — (n — 1))C and

a, = Bdnagkf("fl).

Proof. (i) Since A\g = 0, using (2.5), the first term of A, is
(EBaf™ + C — A\p)aze .

Taking n = 1 in (2.4), ie., @(s) = ao + Y ;51 ;e ™, the first term of A; is
(kBa§ ™" + C — M)are™*, and F(p11,¢,,) = Baf + Cag + D. Comparing the
coefficients in (2.4), we get Bak + Cag+ D =0and \; = kBal ™ +C, i.e.,

AN —C

0#4#B=——.
7 ka'g_l

Taking n = 2 in (2.4), i.e., ©(s) = ag + a;e M + Do a;e™ NS = 19 + @a, the
first term of Ay is (A — Ao)aze *2* # 0. The term with exponent 2)\; in

F(p1., <p/172) = —Mare ™ + B(ag + are ) + Clag + are™*) + D,
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is (g) Ba2a2e=?*15 #£ (0. Comparing the coefficients in (2.4), we get Ay = 2)\; and
k k=2 2
()\1 — )\2)0,2 + 9 Bao a; = 07

_ k
and so ay = 802a’5 za%a where ¢y = (2)/)‘1'

Taking n = 3 in (2.4), i.e.,

A Y\ Y
o(s) = ag + are” " + age” " + g ae” " =13+ a3,
i>3

the first term of Az is (A\; — A3)aze™** # 0. Replacing A\, = 2); and using the

multinomial expansion, the term with exponent 3\; in

F(p13, 90'173) = —Aare ™M~ Myage ™ + Blag + aje” ™ + age2)*

+ Cl(ag + are7 s 4+ a2€_/\28) + D,

has coefficient equal to

B E ( & ) fogtigtz — B E ( k ) to t1 ()‘1_0 k—2 2)t2
an a1 a = an a —F)CoQ a
to,tr,ta) O L2 totita) Ot \ ket t 00 !

to+t1+ta=k to+ti+ta=k
t1+2t2=3 t1+2t2=3
to
k CQ()\l - C)

_ k—3 3 __ k-3 3
=B E (t - ) W w= B2Xiczay °ay # 0.

tottrtta=k 071772

t1+2t2=3

Equating these terms, we get A3 = 3\; and (A} — A\3)az + 2BAiczak2ad = 0,
i.e., a3 = Besaf2a}. Continuing inductively, assume A\, = n)\; (n > 1) and
a, = Bcnalg_”a?. Writing

n

Pls) =D aie ™+ Y e = 01 (8) + 92 (s),

=0 i>n+1

we see that the first term of A,,; is (A1 — A\up1)aniie *1° # 0. Replacing

A, = nA; and using the multinomial expansion, the coefficient of the term with



16

exponent (n + 1)\ in F(o1n41, (:Oll,n—&-l) is

k
B aloalt ... gln
Z (to,...,tn) 0 "

t0+"'+tn:k
t1+-+ntp=n+1

k 02()‘1_0) k— 2 Cn()\l—C) k—n _n n
= 3 (0 ) () (M

to+-+tn=Fk
t1+-Fntp=n+1

_ k 02()‘1_0) & Cn()‘l_C) " n+1 k—(n+1)
0 2 () () ()

to++tn=Fk
t1+-Fntp=n+1

= nB)\lana?Halg*(nH) £ 0.

Comparing the coefficients in (2.4), we get A,y = (n+ 1)A; and

. k—(n+1
ie., apyr = Bepyrab gt

(ii) We assume for the time being that d,, # 0 for all n € N. Using Lemma 2.4,
we get A\g > 0. Since \g > 0, from (2.6), the first term of A, is (C' — \,)a,e "%,
Taking n =1 in (2.4), i.e.,

o(s) = ape * + Z ae M,

i>1

the first term of A; is (C'— \;)a;e™*, and
F(p11,011) = (C = Xo)age ™ + Bage ™ + D.

Comparing the coefficients in (2.4), we get D = 0, C' = Ao > 0. Since (C'—\;)a; #
0, we have

A\ = k)Xo = kC, and Bak + (C — \)a; =0,

i.e., a; = Bdyak, where d; = 1/(k — 1)C.
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Taking n = 2 in (2.4), i.e.,

“A “A iy
o(s) = ape™ "% + ae” M + E ae” " = 19+ P29,
i>2

the first term of Ay is (C' — X\g)aze 2% # 0. The term with exponent (2k — 1))\ in

F(p1., <p/172) = —Xoage * — \jareM* + B(age % + aje” )"

+ C(age™° + a;e%) + D,

which is the right term after the one with exponent kA, has the coefficient equal

to

. k
B2 (to t)aéﬂatll:B 2 (t )aéo(Bdlaé)tl
’ k

t
to+t1=k to+t1= 0
to+kt1=2k—1 to+kt1=2k—1

AN (t’“ )(Bdl)“a%k‘l

t
to+t1 =k 0,01
to+kt1=2k—1

2dy o
= B'Zi‘l—agk !

= B2(k — 1)CdyaZ*~ # 0.
Comparing these terms, we get Ay = (2k — 1)\ and
(C — \p)ag + 2(k — 1)dyCBad* ™ = 0,
ie., ap = Bdgagkfl. To carry out the induction step, assume that
A = (nk—(n—1))C and a, = Bdnagk_(n_l).
Writing ¢(s) = ©1.n41(8) + p2.n+1(s), we see that the first term of A, is

(C - >‘n+1)an-~—1€_)\n+1S #0,
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and

n n k n
Fp1n41, 90,1,n+1) = - Z Niae N5+ (Z aie_ki‘S) + Z a;e N 4+ D
‘ i=0

=0
= _()\ane—Cs I )\nane—(nk—(n—l))cs)
k
+ ((ZQG_CS + ale—kC’s + a2€—(2k—1)Cs 4t ane—(nk—(n—l))cs)

+ aoe—C’s + ale—sz + aze—(Zk—l)Cs 4ot ane—(nk—(n—l))c’s + D.

Then the term with exponent ((n + 1)k —n)C in F(p1 41, 90/1,n+1) following the

term with exponent (nk — (n — 1))C has coefficient equal to

k
B ato...at"
Z (to,...,tn> Q n

tottit++tn=k
to+kt1-+(nk—(n—1))tn=(n+1)k—n

k o
= B Z (t(), . ,tn) (Bdl)tl e (Bdn>tna(() +1)k

t0+“‘+tn:k
to+--+(nk—(n—1))thn=(n+1)k—n

= (n+ 1)(k — 1)Cdy 1 Bal " £ 0.
Comparing these terms, we get A\, = ((n+ 1)k —n)C and

(C = Mg1)angr + (n+ 1) (k — l)C'dnHBaé”H)k_" =0,

i.e., apyr = Bdn+1a(()”+1)k_”. There remains to verify that d,, # 0 for all n € N.

This follows immediately from d; = 1/(k — 1)C and the following claim.
Claim. We have
1
dy=—-B"'d'D, (n>2),
n

where all D,,’s are positive real numbers.

Proof of Claim. Note first that dy = 4 (, * |)Bd; = 1Bd?D, with D, = k, ie.,

the claim holds for n = 2.
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Note that the second condition in the summation of (2.11) can be transfered to

because

nk—(n—1)=ty+kty+---+((n—1k—(n—2))t,_1,
nk—(n—1)—k=ty+kt; +2k—Dta+---+((n—1)k — (n—2))tn1
—(to+t1 4+ +tn1),
m=1)k=1)=k(t1+2ta+---+n—=1t,1) — (to+2t34+ -+ (n—2)t,—1)
—(t1+ta+ -+ tha)
=k(ty+2ty+-+(n—1)t, 1) — (1 +2ta+ -+ (n—1)t, 1)

= (k—1)(ty 4 2ts 4 -+ (n — Dtn_y).

Suppose that d,, = %B”_ld?Dn for all natural numbers n > 2, where all D,, are

positive real numbers. Hence, by (2.12) and the induction hypothesis, we have

dy
dpy1 =
RS Z ( o

tot+ti++tn=Fk

(Bdy)™ -+ (Bd,)'™"

t14+2to+-+ntp=n
oy
n+1 ,%
to+t1+-+tn=k

= dl Z BthL +tndt1 Bd%DQ " . Bnild?Dn "
n+1 ,tn 2 n

t0+t1++tn:k

t tn
tr+%2+ +ntn %23 2. . %22
2 n
t0+t1++tn:k
t1+2to+-+ntp=n
t14+2to+-+ntp=n

Bd}*D,
2% Hntl £ 0.

t1+2to+-+ntp=n
_ Braptt > k Dy\"”
 on+1 to, ... tn 2
n—+1

)
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Applying Lemma 2.5 and the case £k = 2 in (2.10) of Theorem 2.6, which

corresponds to the classical Riccati equation, lead to:

Corollary 2.7. Assume that an infinite Dirichlet series ©(s), as in (1.1), satisfies
the Riccati equation:

f'+Bf*+Cf+D=0.

(Z) [f)\() = O, then QO(S) = a0+)\16;‘11+)\—13al with ag = ()\1—0)/23, 02—)\% =4BD
and |Baje 15/ | < 1.
(i4) If \g > 0, then D =0, Ay = C, and ¢(s) = =2 with |Bage°*/C| < 1.

CeCs—agB

Proof. (i) When A\ = 0, from the proof of Theorem 2.6(i), we get B = (A —C)/2a,
and Ba2 + Cag+ D =0, i.e.,

ap = (M — C)/2B and C? — X3 = 4BD.

Since ¢y = 1/, c3 = Bag/A?, assuming ¢, 1 = (Bag)" 3 /N2, we see that

o = 1 Z ( 2 ) (CQ()\l—O))qQ.H (Cn_l()\l—0>>qn1
(=DM S D 2 2
q1+--- +(n l)qn 1=Nn
1 ( 2 ) (23a0>q2 ((BCL())TL_SQB(Z())
— e — Qn—1
on 2 N e ) R i
qi+-+(n—1)gn_1=n
B 1 ( 2 ) (Bao)q2 ((Bao)n—2>%1
—_— < — LIS T
(77/ - 1))\ qo+- +Qn 1=2 qo, - -+, qn-1 )\1 /\1
@+t (n—1)gn_1=n
o 1 < 2 ) (Bao)” 2
(n B 1))\1 q1+-- +Qn 1=2 EAERRRRE (] )\711_2
a1t +(n—1)gn—1=n
Since > (q17--~72¢In71) =n—1,

g1t t+gn-1=2
qi++(n—1)gn—1=n
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It is easy to check that ¢, # 0 for all n € N. Then, from the Theorem 2.6 (i), we

have A\, = n\; and

n— n n—1
—BCn 2—n ar B(BCL) > g a’l (Bal) a

e AT BN

for all n € N. Substituting a, = (Bai/A\)" " a1 into o(s), we get

o0
) BCLl —iAis a1>\1
:E a;e Z—a0+g ae :&O+)\MS—B'
e — a
i=0 1 1

(i) When )¢ > 0, since d; = 1/C, dy = B/C?, assuming that d,,_; = B"2/C"" !,
by Theorem 2.6 (ii), we get

_ 1 2 t1 tn—1
e BID D (N IO LT

t0+“‘+tn—1:2
t1+~~+(n—1)tn,1:n—1

Ly 2\ (BY (B
N nC J/ to, -5 tn_1 C cr—1

t0+“'+tn—1—2
t1+"'+(n71)tn71:n‘“1

Bn—l
pr— Cn .

Using Theorem 2.6 again, we have
= Bd,ai™ = (B/C)"ag*! and \, = (n 4+ 1)C

for all n € NU {0}, and so
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2.2.2 Thecase/(=2 k=3

In this section we treat the case k = 3, ¢ = 2 of (1.2), i.e., the differential equation

takes the form
F(f,f)=f"+Bf+Cf’+D=0; B(#0),C,DeC. (2.13)

We show that for D = 0, the equation (2.13) has a unique infinite Dirichlet series
solution, while for D # 0, there generally are more than one infinite Dirichlet series

solutions.

Theorem 2.8. If an infinite Dirichlet series o(s) as in (1.1) satisfies
f'"+BfP+Cf*=0; B(#0),CeC,

then Bag + C = 0, \g = 0, Ay = Ba? and for n > 2, we have \, = n)\y, a, =

caat/al ™t where ¢; = 1 and (n— 1)c, for alln > 2 are the coefficient of x™ in the

expansion of
(14 x4+ cx® + -+ ez D e + o2 + - + cporz™ Y.
Proof. From (2.3), we have
An = 020(3BgE , +20010) + o
By Lemma 2.4, we know that \g = 0. From (2.5), the first term of A4, is
(3Ba2 +2Cag — \p)ane "
Taking n = 1 in (2.4), i.e., p(s) = ag + Y_;51 a;e” %, the first term of A; is

(3Baj + 2Cag — A)aje M,



and

F(p11, 90,1,1) = Baj + Caj.

Comparing terms, we get A\; = 3Ba? + 2Cay and Ba3 + Ca = 0. Thus,

Bag+ C =0and \; = Bag.
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Next, taking n = 2 in (2.4), i.e., o(s) = ao + are™™% 4+ 3., a;e7° = @1 5(s) +

©22(s). In this case the first term of Ay is (A; — Ag)age 2% # 0. The term with

exponent 2\; in F(p12,¢1,) = —Miare ' + Blag + a1e™*)? + Clag + are™1%)?

is 3Baga? + Ca? = 2Baga? # 0. Comparing these terms, we get Ay = 2)\; and

()\1 — )\2)&2 + QBCLQCL% = 0. ThllS,

2Baga?  2a2  cya?
g = ——-—r=—=—1

A1 Qg Qo ’

where ¢, is the coefficient of 22 in the expansion of (1 + ¢;z)%(c;z).

For n € N, assume that
A = nA; and a,, = c,a}/al ™,
where (n — 1)¢, is the coefficient of 2™ of
(14 x4+ ca® + - 4 cp12™ D2 (erw + coa® + -+ 2™ h).
Writing ¢(s) = ¢©1.n41(8) + p2.n+1(s), the first term of A, is

()\1 - >\n+1)an+1€7)\n+15 7é 0.

The term with exponent (n + 1)A; in F(01541, 91 pp1) 1

3 2
B Z (t07.__’tn)a60a§1”.af"bn_FC Z <q07._.’qn>agoa({1“'

to+-+tn=3 o+ +qn=2
t1+-+ntp=n+1 q1+-+ngn=n+1

n
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n+1

_ 3 (P t 2 q2 q Bay
o 2 (t07---7tn)c2 T T 2. <q07---in)c2 B
to+-+tn=3 qo+-+qn=2 0
t1+-+ntp=n+1 q1+-+ngn=n+1
+1
_. QBQ?
. ag_g .

In the second sum, we must have gg = 0, which shows that the second sum is less

than the case ty = 1 in the first sum, and this implies that () > 0. Consequently,
)\n+1 = (n + 1))\1 and ()\1 — )\nJrl)CLnJrl + QBa]l%H/ag*2 = O’

ie.,

tpi1 = QBay ™ fnhiag™ = Qayt! /nag,

because of \; = Ba?. Since @ is the coefficient of 2! in the expansion (1+ ¢z +
") — (T4 + o) =1+ ar+ -+ cpz™)(az + - -+ ™),

putting nc, 1 = Q, we get @, = 107 /al, as desired. O

We next solve (2.13) with D # 0. We show that it generally has more than
one infinite Dirichlet series solutions; one such solution is given explicitly in the

following theorem.

Theorem 2.9. The infinite Dirichlet series p(s) = ag + > a;e ™ with
i=1

M = 3Bag + 20, ay = —C/3B, Bal + Caj+ D =0

and

Mo = (20— DAy, an — (B—a%)n_l (2<” - 1))a1 (neN)

4)\1 n—1

satisfies the differrential equation
f'+Bff+Cf+D=0 (B(#0),C,D(#0)cC) (2.14)

provided that | Baje 1% /4| < 1/4.



25

Proof. Setting Y = Ba?e~?¢/4)\; and assuming |Y| < 1/4, we have

C & (Ba2\"'2(i-1) : C  aje ™
_ _ = =1 —(2i—1)A\1s _ _ 1—
i 3B+i:1 (4)‘1> ( i—1 )ale 3B+v1—4Y

It is easy to check that this infinite Dirichlet series satisfies (2.13). O]

To find another possible infinite Dirichlet series solution of (2.13), we begin

with:

Theorem 2.10. The infinite Dirichlet series ¢(s) = ao+ ;51 a;e™ ™, as in (1.1),

with
M =0 <\ =3Bal +2Cag, A\, =n)\ (n>2) (2.15)
3Bag + C)a?
Bal+Cai+D =0, ay= %Eﬂ (2.16)
1

and the remaining coefficients recursively determined by

1 2
Qi1 :n—>\1 Z (3Bag + C) (ql,.._,qn)a({la?'“a%

Q1 +-+qn=2
qi1+-+ngn=n+1

3
+ Z (th”"tn)aila?..-a% (n > 3)7 (217)

t1+“‘+tn:3
t1+--+ntp=n+1

satisfies the differential equation (2.14).

Proof. By Lemma 2.4, we have \g = 0. From (2.5), the first term of A, is
(3Ba2 + 2Cag — Ap)ane "M%,
For n = 1, using similar arguments as in the proof of Theorem 2.8, we get
0 < A\ = 3Bag + 2Cay, Baj+ Cai + D = 0.

For n = 2, using (2.15), the first term of Ay is —Ajaze *2%, while the term with
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exponent 2)\; in F(cpljg,cplm) is 3Baga? + Ca?. Comparing these terms, we get
as as given in (2.16). Proceeding by induction from ¢(s) = ¢1.,11(5) + @2.n+1(9),
using (2.15), we see that the first term of A, is —nAja, e~ "M while the

coefficient of the term with exponent (n 4+ 1)A; in F(01541, 91 np1) 1

3 P 2
B Z <t0’”'7tn)aooal1...a2n +C Z <q0’”.7qn>agoat111...a;11n

to+-+tn=3 g0t +qn=2
t1+-+ntp=n+1 q+-+ngn=n+1

3 2
QL+ gn=2 17 q1y---,4n di,-.-,qn

q1+-+ngn=n+1

3
> (tl,...,tn)a?”'agﬂ’ (qo=0and o =0or1)

t1++tn=3
t1+-+ntn=n+1

= X (BBa+0O)(, 2 )al e+ X (2 )ap--aly

Qi =2 b1+ tn=3
Q1+ ngn=n+1 t1F bty =n+1
Comparing the terms, (2.17) follows. O

Using Theorem 2.10, another solution of (2.13) is now easily constructed.

Corollary 2.11. Adopting the notation of Theorem 2.10, if |3Bag+ C| < 1, and
lai| = % < A1, then for |e™*| < 1/4 the corresponding Dirichlet series (1.1)
converges and satisfies (2.14) .

Proof. We first show that |a,| < (2(7?:11)) % = (2(::11)) |ai|. This is trivial for n = 1.

Using Theorem 2.10, (2.17), and the induction hypothesis, we get

1

2
an S a | ... anQn
|@n1] e ) (q17---7Qn)| 1] ||

qi+-+gn=2
q1+-+ngn=n+1

1 3
— E B B,
+ n)\1 ’ |(t1,. .. ,tn)|a1| |a |

t1+"'+tn:3
t1+-+ntp=n+1
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s X (0l e (07 DY)

q1+-+qn=2
q1+-+ngn=n+1

: "L)‘l 2, 1B (tl, . 3 7tn) Jag | (2ay]) - - ((2(:_—11)> |a1’)t"

t1++tn=3
t1+-Fntp=n+1

ST YT | ) I G

1t +qn=2
q1+--+ngn=n+1

1 3 2(1)\ " 2(n — 1)\
S B t 3
+n)\1 Z | ‘(tl,...,tn>|a1‘ ( 1 > n—1 o

t1+“‘+tn:3
t1+-+ntp=n+1

(
xS ()

q1 ++Qn:2
q1+-+ngn=n+1

N 4ay | 3 (t 3 t )(2(;))” ~ (2(n_—11)>t"7

t1+"'+tn:3
t14++ntp,=n+1

. . 4
using |a;|* < a1 and |a;]? < |a1\|§|)\1,

< % Z (q1,..2.,Qn)2q2 e (2(::11))% + Z 4<t1,.?.,tn)2t2 T (2(7::1))%

q1++qn=2 ti++tn=3
q1+-+ngn=n+1 t1+-+ntp=n+1

Observe that the term > ( : )(2(11))q2 x (z(n:f))qn is the coeflicient

q1y--+5G:
Qttgn=2 =
q1+--+ngn=n+1
2

of 2" ! in the expansion (1 +2r+ -+ (2("_1))33”_1) which is also the coefficient

n—1

of 2! in the expansion

2
(Z ( gj— 1 )> le) =14, [(convergent when |z| <1/4)

J=0

Similarly, the term > (t 3 )(2(11))t2--~ (2(::11))t" is the coefficient of
t1-€-1++7§fln::713+1

"=2 in the expansion (1 — 4z)~%/3.

T
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(n—2)!

(e (5 )
_ gn <3.5...(2n_1) B (n—l)!Q”‘2_3-5---(2n—3)(n—1))

Note that (27?) _ % (2n—2 + M)

n! n! n!

3‘5"'<2"—3><2n—1—<n—1>>—%)

(
:_(3,5...(2n_3)n_2.4...(2n—4)(2n—2).%)

:5{3.5...(%_3)n—2-4---(2n—4)(n—1)}20,

so 2 <2n_2 + %) < (*) It follows that

|@nt1| < |a1|2n_n (2"_2 + 3(5>(‘7;L‘_(227;!_ 3)) < %(?)

The corresponding Dirichlet series solution thus converges as the following ma-

jorization shows

lp(s)l =

o0
E a;e s
=0

B 4|67)\15|
| B/ 1 —4fe]

- 2(‘7_1) 4 (- S||,—A1s
<> e e

e

(provided that |e™ 1| < 1/4).



CHAPTER I11
POWER SERIES SOLUTIONS

In this chapter, we provide an upper bound for the coefficients of a power series,
(e.)

f= kazk where f, € C (3.1)
k=0

which satisfies:

(i) a linear differential equation; F'(f, f') = f'+ Bf + C = 0, where B(# 0), C

are polynomials with complex coefficients,

(i) a Riccati differential equation; F(f, f') = f'+ Bf*+ Cf + D = 0, where
B(#0), C, D are polynomials with complex coefficients.

The proofs of our results in both cases, depend directly on the following Lemma,

quoted from [3].

Lemma 3.1. [3/ Let h > 1 and N > 0 be any two integers, and let wo,wr, ..., wy

be N + 1 power series with real or complex coefficients. Then

d\" w(/\o) w()‘l) w()\N)
(%) (wowr « - - wy ) = A Z )(\)u ;' )Z\V'
AoAL Ay 0 AL N:
where the summation taken over all ordered systems of integers Ao, \1, ..., An such

that
)\020,)\120,...,)\]\[20 and )\0+)\1+"‘+)\N:h

It is clear that this lemma also holds for h = 0.
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3.1 Linear differential equations

A linear differential equation that we are interested to study in this part is an ADE

of the form

Flz,f,fY=f +Bf+C=0, (3.2)

where B = By+ Biz+ ...+ B,z*, and C = Cy + C1z+ - - - + Oy 2" are polynomials

with complex coefficients.

Theorem 3.2. Assume that a power series f = > oo frz" satisfies (3.2). Let

m = max{s,t}. Then for each k > m + 3, there exist constants Cy,Cy such that

C
Bl < G

Proof. Fixed k > m + 1, by Lemma 3.1,

0= (£) Perf= () ¢ nivo

f (1) ok Z B()\o)f(h)

I\q!
V% Sy AotAq!

FED = R 3 B (2) f*) .

Aol !

Ao+ 1=k

Replacing z = 0 again in (3.3), we get

(k + )Y frga| = &!

Z By fa

Ao+A1=k
= k!l Bofi + Bifr—1+ -+ Bs fr_s]
k
<kAY I
k—s
k
< KA 1 max |fi,
s k—s<i<k

where A = max{|By|,...,|Bs|}
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Thus we get |fri1] < A (%) max{| fr_s|, [ fx—st1l, -, |fxl|}, so

s+ 1

fi] <A ( ) max{|fe—s—1], [fosl, ..., | fr-1|} for each k = m + 2.

If we define ft,_s11,- -, ftms1 to be the real numbers such that

|fm—s+1| S e‘umiﬁlu R |fm+1| S e#erl

and for each ¢ > m + 2, p; = In(A(s + 1)) — In(3) + max -, then we claim
i—s—1<j<i—

that | fi| < et* k>m+ 2.
For k =m + 2,

|fm+2‘ S eln( A’r(r.:j-—zl) ma‘x{lf'mferl|,..4,‘fm+1|})

A(s+1 -
S eln( 7(719+2) max{e“m s+1’“.7el"m+1}) = 6:“‘m+2.

Next, we assume that |fi| < e#*, for all &£ > m + 2. Then

| fopa| < (Bt moxllfimcliaalfil}) < (2G5 max{ehos,eth}) _ pupts,

so we get the claim.

Let fx,...,fr, be all nonzero elements in {fm_si1,..., fms1}. Setting |fy,| =
e b= g =0forallie{m—s+1,...,m+1}\{\,..., )}, and
pi =In(A(s+1)) —In(i) + max  p; for each i > m+ 2 (3.4)

i—s—1<j<i—1

then we also get |fi| < et* k> m + 2.

Since p = In(A(s + 1)) —In(k) + max  p; and ey = In(A(s + 1)) —
k—s—1<j<k—1
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In(k +1 ;

n(k+1)+ max p;,
=1 b + ma a for each k > m + 2
AV e N BN - Al =mTe

(3.5)

Then there exists v such that k —s <~y < k and i m<ax<k f; = p. We observe that

- > —s—1<~v—-1<k—-
k—s—r?%xgk—l’% > py,k—s5s—-1<y—-1<k—-1
= fy—1 Ty — iy

==mhax, ek fy-1)-

Thus max — max C < Uy — 1 < MAaX Up— s — g1, - - - — 1t
k:—sgjgkzu] ke—s—1<i<k—1 M = oy — Hy—1 > {ﬂk s Mk—s—1, y Mg — [k 1}

Hence, (3.5) becomes

k
M1 — bk = 1n (k——l—l) + max{ s — fr_s-1,- -, 1k — k—1}, for all & >m + 2.

(3.6)

Let ¢ = max{tm—st2 — tm—si1s- - lmi2 — fms1 t- Next, we claim that

fi— k-1 < I (2E2) +max{ i —sy2—tm—s41, - - -, lmt2— Hm1} for each k > m+3.
For k = m + 3, by (3.6),

m - Mm <1 m—s m—s+1y -5 Mm - Mm
fm+3 u+2_n(m+3)+ma>¢{u +2 = Mm—st1s - fmt2 = fmt1 }

(z5)

Assume that pu, — pg— 1<ln( )+q,k>m+3
Then pip41 — p < In (k_+1> + max{fth—s — fh—s—15- -5 [k — fo—1} < In (k—il) +4q.

Hence,

kE—1
e — pe—1 < 1In (T) + g, for each &k > m + 3.
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Then

Ml — Pmt2 = Pk — Pk—1 + -1 — Pk—2 -+ 3 — Um+2

i (D) g m () g (2 4
=\ T \k-1) M1 m+3) 1

:m(mT”)ﬂk—m—z)q,

so pu, < In (2) + (k — m — 2)q + funso. From (3.4),

fmrz = In(A(s+ 1)) — In(m + 2) + max{ftm—si1,- - st
=In(A(s+ 1)) =In(m + 2) + max{0,In | fy,|,...,In|f,[}.

Hence,
A(s+1 o
5 < e < A0 D a1 L I ()
for each k > m + 3. Setting Cy = A(s+ 1) max{1,|f\,|,.... [/, |} and Co = €9, we
get
Cl b
| fel < —klcéj g

for each &k > m + 3.

]
3.2 Riccati differential equations
A Riccati differential equation, an ADE of the form
F(z,f,f)=f +Bff+Cf+ D=0, (3.7)

where B = By+Biz+...+B;2*,C = Cy+Ciz+---+Cy2t, and D = Dy + Dy z +

-+ 4+ D,,z" are polynomials with complex coefficients.

Theorem 3.3. Assume that a power series f = 1+ > oo, fxz" satisfies (3.7).
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Then for each k € N,

|fk|§(§) (k+2);(k+1),

where A = max{|Bo|,...,|Bs|,|Col, ..., |Ct, | Dol ..., |Duwl}

Proof. Replacing z = 0 in (3.7), we get f1 + Bof2 + cofo + Do = 0, and then
|f1l = |Bofg + Cofo+ Do| = |Bo + Co + Dy| < 3A.

Fixed k > 0, by Lemma 3.1,

d\" , d\"* 4

B(o) (A1) £(X2) (7o) ()
= fED 4R Y (2)f 7] +EOY ) + DM (),

Aol A 1s! vy !
Ao+ A1 +HAo=Fk 0/ A2 otk 0N

B(Ao)(z)f(h)f(h) C(%)(Z)f('h)
[FE] = |t Z ! t k! Z ﬁJFD(k)(Z) '
Nothiraemk  AOATAR! o=k O
(3.8)
Replacing z = 0 again in (3.8), we get
<k+1)!|fk+1‘ = k! Z B/\Of)\lf)\2+ Z C’Yof’Yl—i_Dk )
Aot+A1+A2=k Yo+y1=k
1
| fr1] < PR ( S BBl D) 1CIE + |Dk’> -
Ao+A1+Ae=k Yo+v1=k
Let A = max{|Bol,...,|Bs|,|Col, ..., |Ct|,|Dols- .., |Dwl} Then

Ao+ +Ae=k Yo+11=Fk

|fk+1\§k%1< Yoo bl X |f71\+1>

Sk%-l( Z 1+ Z 1+1> max{/\ max |f>\1||f>\2|7 max |f71|’1}'

Xo+A1+A2=k Yo+n=k otAitAe=k vot71=k



Next, we claim that

1} = )
max{ wmax [fu[lfs|, max |fp,[1} = max |fy [/l
Since max |f,,| = |f;| for some 0 < j <k,

Yo+m=k

max  [fullfel = [follfil (o=k—=17)

Ao+A1+Ae=
= m > = 1
70+%)ik|f’71| = |f0| )

and our claim is proved. Then we get

A
< — 1
’fk+l‘ B ]i]—'—l ( Z 1+ Z 1+ > A0+r)\??-§2:k‘f)\l”f)\2”

Ao+A1+A2=k Yo+v1=Fk

A ((k+2
:_(( % )+/<;+1+1)A max | fllfl,

k 1 2 o+ A1+ o=k

1 ((k+1)(k+4)+2)

k

+ =+

aopmax [l

2

Hence, we can conclude that for each k > 1,

omax Sl

il < A ((k’—i— 12)]({:k;—|—2)>

= Aak )\o+/\{2§§=k*1 |f>\1||f)\2|7

(k+1) (k+2

where oy, = = ) Next, we define p9 = In |fo|, and for j > 1,

=InA+Ino; .
pj=nA+ine + —max o+,
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(3.9)

(3.10)

We claim now that |fi| < e/* for all k£ > 1. For k =1, (3.9) and (3.10) imply

In A+1 1 1
nAtmart max | (Inlf 0 )

|fil <e

In A+In g + max
20

+)\1+)\2:0{HA1 g}

=e = el
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Suppose for induction that fp_; < e#*-1. From (3.9), the induction hypothesis, and
(3.10)

In A+Inaj+ 1{1n|f)\1|—|—1n|f)\2|} < In A+Inaj+ I{MM—HA}Q}
_ <e _

max
Ag+A1+Ao=3

Hl<e o = e,

Now we have
pr=mA+nap+ max o {uy + )
and
presr =ImA+Inog s +  max {gg, + foy }-
oo+o1+o2=Fk
Thus,
e =In () 4 max {to, + s} —  max  {ur, ) (3.11)
Hi1 = Ha O oo+o1+o2=k g T He Ao+A1+Ae=k—1 Hx T Hxa g '

Let 7y, m € NU {0} and 7y € N be such that =y + m + 7 = k, and

max  {fig, + floy } = fry + Hirs-

oo+oi1+o2=Fk

Then
> _ —
)\o-i-)\?ﬁl—%\)g(:k—l{ﬂ)\l C ) M)Q} .y + Hry—1, Ty + T+ (WQ 1) k 1
= fny + fry—1 + Py — Py

= max k{,uol + Mog} - {Mﬁz - :u7r2—1}7

oot+o1+02=

SO

_ < _
oomax  {pioy o} = max - {pg o} S {my — -1}

< max{py — fo, - .-, ik — fe—1}-



The last inequality is true bacause of 1 < my < k. Hence, (3.11) becomes

Qf+1
prk1 — p < In (
ay

) +max{p — fo, - . -, fk — Hk—1}-

Next, we claim that pgyq — pr < Inagyr — Inag + pp — po.

We prove this claim by induction. For k = 1, using (3.12), we get

po — 1 <Inap —Inay + py — po.
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(3.12)

Suppose that pp —pr—1 < Inag—Inag + g — . We need to show that pgq — e <

In gy — Inag + pg — po. Using (3.12), we obtain

Prr1 — pe < Iy — Inag + max{py — po, ..., flx — ple—1}-

Applying the induction hypothesis yields

M1 — e < Inagp —Inag

+ max{p; — po, Ine — Inag + g — po, ..., Inay —Inag + py —

It is easy to see that a4, is an increasing function of variable k, then

M1 — pe < Inagy —Inag + g — po,

as desired. Then

M — p1 = e — Hk—1 + fHr—1 — Hr—2 + 0+ flo — [
<(Inag —Inag + g — po) + (Inag_y —Inag + pg — po)
+ o+ (Inag —Inay + py — o)

=In(og---ag) + (k—1) (1 — o) — (K — 1) Ina;.

fo}-
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Because of pg = In|fy| =0,

pe < In(oy--an) + kpy — klnag + Inay
=In(ag - 1)+ kpy — klnay. (3.13)

Using (3.10), we get

=InA+1 =InA+1 )
p = In +na1+xo+lﬂi§2:0{M1+m2} nA+Ina

Thus, (3.13) becomes
e <In(oy---aq) + kln A.

Finally, we get

k
e#k = (Oék-"'Oél)Ak :AkHan
n=1

_Akﬁ(n+2)(n+1)

2n
A(k+2) 3(k+1)---2
26!
(A) (k4 2)! k+1)
5 :

Therefore,

k !
|fk|§<§> (“2);“1), for all k € N.
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