การดีคลอริเนชั่นของสารเฮกซะคลอโรเบนซีนที่ปนเปื้อนในตะกอนดินภายใต้สภาวะไร้ออกซิเจน

นางสาวปริญญ์ดา ถึงมี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาการจัดการสิ่งแวดล้อม สหสาขาวิชาการจัดการสิ่งแวดล้อม บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2545 ISBN 974-17-2631-7 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ANAEROBIC DECHLORINATION OF HEXACHLOROBENZENE IN CONTAMINATED SEDIMENT

Miss Parinda Tungmee

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Environmental Management
Inter-Departmental Program in Environmental Management
Graduate School
Chulalongkorn University
Academic Year 2002
ISBN 974-17-2631-7

Thesis Title	Anaerobic dechlorination of hexachlorobenzene in				
	contaminated sediment				
Ву	Miss Parinda Tungmee				
Field of Study	Environmental Management				
Thesis Advisor	Saroch Boonyakitsombut, Ph.D.				
Thesis Co-advisor	Professor Michael K Stenstrom, Ph.D.				
Accepted by	the Graduate School, Chulalongkorn University in Partial				
Fulfillment of the Requirem	ents for the Master 's Degree				
Suchado	Huavaerdours Dean of Graduate School				
(Prof	essor Suchada Kiranandana, Ph.D.)				
THESIS COMMITTEE					
	6 Ow Chairman				
(Assi	stant Professor Sutha Khaodhiar, Ph.D.)				
	Grah Poorynlitelt Thesis Advisor				
(Sa	roch Boonyakitsombut, Ph.D.)				
	A Det Member				
(Asse	ociate Professor Amorn Petsom, Ph.D.)				
(I	Ekawan Luepromchai, Ph.D.)				

ปริญญ์ดา ถึงมี : การดีคลอริเนชั่นของสารเฮกซะคลอโรเบนซีนที่ปนเปื้อนในตะกอนดิน ภายใต้สภาวะไร้ออกซิเจน. (ANAEROBIC DECHLORINATION OF HEXACHLOROBENZENE IN CONTAMINATED SEDIMENT)

อ. ที่ปรึกษา : ดร.สาโรช บุญยกิจสมบัติ,อ.ที่ปรึกษาร่วม : Prof. Michael K Stenstrom 58 หน้า. ISBN 974-17-2631-7.

เฮกซะคลอโรเบนซินเป็นสารมลพิษที่ตกค้างยาวนานซึ่งมีการพบการปนเปื้อนในตะกอน ดินจากคลองหัวลำพูที่ตั้งอยู่บริเวณข้างนิคมอุตสาหกรรมบางปู ประเทศไทย งานวิจัยนี้ศึกษาการ กำจัดสารเฮกซะคลอโรเบนซีนที่ปนเปื้อนในดินตะกอนโดยใช้จุลินทรีย์ภายใต้สภาวะไร้ออกซิเจน วัตถุประสงค์ของงานวิจัยเน้นที่การเพิ่มอัตราการดีคลอริเนชั่นด้วยการศึกษาบทบาทของชนิดของ แหล่งคาร์บอนและพลังงานแก่จุลินทรีย์และปริมาณของจุลินทรีย์ที่ใช้ต่อปริมาณตะกอนดินที่ปน เปื้อน การทดลองจัดทำขึ้นในหลอดฉีดยาขนาด 20 มิลลิลิตร บรรจุตะกอนดินที่ปนเปื้อนสารเฮก ซะคลอโรเบนซีน และจุลินทรีย์ที่บดละเอียดจากระบบบำบัดน้ำเสียแบบ ยูเอเอสบี ซึ่งยังไม่เคย ผ่านการสัมผัสกับสารที่ศึกษานี้มาก่อน โดยรวมกันได้ 10 กรัม และใส่สารละลายของสารอาหารที่ จำเป็นต่อการทำงานของแบคทีเรียในสภาวะไร้อากาศ การทดลองได้ดำเนินการในช่วง 9 สัปดาห์ และทำการเก็บตัวอย่างเพื่อวิเคราะห์สารเฮกซะคลอโรเบนซีนที่เหลือทุกๆ 2 สัปดาห์ ผลการ วิเคราะห์จะนำสมการอันดับ 1 มาอธิบายเพื่อสามารถนำค่าคงที่มาเปรียบเทียบลักษณะการลด ลงของสารเฮกซะคลอโรเบนซีน

จากผลการวิเคราะห์ในชุดควบคุมไม่พบการลดลงของเฮกซะคลอโรเบนซีนอย่างมีนัย สำคัญ จุลินทรีย์ที่ใช้ทดลองมีความสามารถทำให้เกิดการดีคลอริเนชั่นโดยจากการทดลองได้ค่า อัตราการดีคลอริเนชั่นอยู่ในช่วง 0.028 ถึง 0.143 วัน กลูโคสให้ค่าอัตราดีคลอริเนชั่นสูงสุด คือ 0.143 วัน ทั้งนี้พบว่าบทบาทของการเติมแหล่งคาร์บอนและ พลังงานให้แก่ระบบส่งผลให้ค่า อัตราการดีคลอริเนชั่นอาจเพิ่มขึ้นถึง 5.18 เท่า ส่วนปริมาณจุลินทรีย์ต่อตะกอนดินที่เพิ่มขึ้นส่งผล ให้ค่าอัตราการดีคลอริเนชั่นอาจเพิ่มขึ้น 2.16 เท่า ดังนั้นการเติมแหล่งคาร์บอนและพลังงานและ ปริมาณของจุลินทรีย์ต่อตะกอนดินมีผลต่อการเกิดการดีคลอริเนชั่นในสภาวะไร้ออกซิเจนของสาร เสกซะคลอโรเบนซีน

สหสาขาวิชา	การจัดการสิ่งแวดล้ะ	อมลายมือชื่อนิสิต	range	mg.	
สาขาวิชา	.การจัดการสิ่งแวดล้อ	มลายมือชื่ออาจาร	ย์ที่ปรึกษา	op dicusor	
ปีการศึกษา	2545	ลายมือชื่ออาจาร	ย์ที่ปรึกษาร่วม		•••

##4489422420: MAJOR ENVIRONMENTAL MANAGEMENT

KEY WORD: HEXACHLOROBENZENE / DECHLORINATION

PARINDA TUNGMEE: ANAEROBIC DECHLORINATION OF

HEXACHLOROBENZENE IN CONTAMINATED SEDIMENT.

THESIS ADVISOR: SAROCH BOONYAKITSOMBUT, Ph.D.

THESIS CO-ADVISOR: PROF.MICHAEL K STENSTROM, Ph.D, 58 pp.

ISBN 974-17-2631-7.

Hexachlorobenzene (HCB) is persistent organic pollutant that was found in the sediment from the canal near Bang Poo Industrial Estate, Thailand. Microbial anaerobic dechlorination was investigated to remove HCB from contaminated sediment. The objective of this study was to accelerate the dechlorination rate of HCB by examine the role of various types of carbon-source supplementation and the role of sludge to contaminated sediment quantity. The dechlorination was demonstrated in twenty-ml syringe under anaerobic condition containing HCB-contaminated sediment and homogenized granular sludge from anaerobic digestion, which was maintained at total of ten grams (dry weight of sediment and wet weight of homogenized granular sludge), and ten ml of nutrient media. The experiments were conducted for nine weeks and samples were analyzed every two weeks.

The decreasing of HCB at designated time was fitted with first-order equation in order to obtain the comparable dechlorination rate. No significant decreasing of HCB was observed in control set. The dechlorination rate was observed in the range of 0.028 to 0.143 day⁻¹, which glucose provided the highest dechlorination rate as 0.143 day⁻¹. It was found that the rate of dechlorination was increased 5.18 times when carbon-source was added. It was 2.16 times increasing in dechlorination rate when higher sludge to sediment ratio was used. The combined role of carbon source supplementation and sludge to sediment ratio resulted in increasing dechlorination rate of 5.59 times. These results implied that both carbon-source and sludge quantity affect the microbial dechlorination of hexachlorobenzene.

Inter-departmentEn	vironmental Mana	igementStudent's sign	ature Parinda Tu	ngmee
Field of studyEnv	ronmental Manage	ementAdvisor's sign	ature Inh Boownhi	M
		Co-advisor's si		

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to my thesis advisor, Dr. Saroch Boonyakitsombut, who always provide me the useful guidance, suggestion, encouragement and understanding and also patiently practise my technical skill during the whole research. Gratefully thanks to Prof. Dr. Michael K Stenstrom, my co-advisor and Prof. I-Ming Chen, Taiwan for all his kind assistance.

I would like to acknowledge to laboratory staffs and officers from National Research Center-Environmental and Hazardous Waste Management, Chulalongkron University and Environmental Engineering Department at King Mongkut's University of Technology Thonburi.

Thanks to all my friends and my lovely family for their wholehearted understanding, encouragement, and patient support throughout my entire study.

CONTENTS

1	Pages
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH.	. v
ACKNOWLEDGMENTS	vi
CONTENTS	vii
LIST OF FIGURES	. x
LIST OF TABLES	. xi
NOMENCLATURES	xii
CHAPTER 1 INTRODUCTION.	. 1
1.1 Statement of Problem	1
1.2 Objectives	3
1.3 Scopes of the Study	4
1.4 Methodology	5
CHAPTER 2 THEORETICAL BACKGROUND AND LITERATURE	
REVIEW	6
2.1 Hexachlorobenzene's Property	6
2.2 Anaerobic Degradation Process	6
2.3 Dechlorination	8
2.3.1 Physiology of Biodegradative Microorganisms	11
2.3.2 Dechlorination by Halorespiring Microorganisms	12
2.3.3 Mechanism of Anaerobic Dechlorination	13
2.4 Literature Review	16
CHAPTER 3 METHODOLOGY	. 22
3.1 Materials and Apparatus	22
3.1.1 Sediment Sample	22

CONTENTS (Cont.)

				Pages
		3.1.2	Granular Sludge Seed	22
		3.1.3	Reactor	23
		3.1.4	Nutrient media	23
		3.1.5	Chemicals	24
		3.1.6	Gas Chromatography	24
	3.2 Ex	perime	ntal Designs	25
		3.2.1	The Role of Carbon-Source Supplementation	25
		3.2.2	The Role of Sludge:Sediment Ratio with and	
			without Carbon-Source	26
		3.2.3	Control Condition	26
	3.3 Tir	ne of S	ampling	27
	3.4 Ex	traction	Method	28
	3.5 GC	C-Analy	rsis	28
СНАБ	PTER 4	RESU	LTS AND DISCUSSIONS	29
	4.1 Th	e Role	of Carbon-Source Supplementation	29
	4.2 Th	e Role	of Sludge:Sediment Ratio	34
	4.3 Th	e Comb	pined Role of C-Source Supplementation and	
	Slı	idge to	Sediment Ratio	35
	4.4 To	tal Gas	and Methane Production	36
	4.5 Th	e Reco	very of HCB from Sediment Slurry	38
	4.6 Po	ssible N	Mechanisms	40
СНАН	PTER 5	CONC	CLUSIONS AND SUGGESTIONS FOR FUTURE WOR	RK 42
	5.1 Co	nclusio	n	42
	5.2 Su	ggestio	n for Future Work	42

REFERENCES	44
APPENDICES	48
BIOGRAPHY	58

LIST OF FIGURES

	Pag	ges
2.1	Schematic diagram of the patterns of carbon flow in anaerobic degradation	7
2.2	Mechanism of reductive dechlorination of chlorinated benzenes	8
2.3	Steps in the process of biodegradation of PCE by reductive dechlorination	13
2.4	Proposed pathway for HCB dechlorination by anaerobic microbial	
	Community	16
3.1	Dried-ground and sieved sediment sample	22
3.2	Homogenized granular sludge	23
3.3	Test-tube (syringe)	23
3.4	Diagram of the role of carbon-source supplementation experiment	25
3.5	Diagram of the role of sludge to sediment ratio experiment	26
3.6	Diagram of control condition	26
3.7	One set of experiment, five times of sampling with triplicates each	27
3.8	The elevation of septum cause by gas production in test-tube	28
4.1	HCB concentration in control set with and without yeast extract	29
4.2	HCB concentration from glucose supplementation set	31
4.3	HCB concentration from lactate supplementation set	32
4.4	HCB concentration from ethanol supplementation set	32
4.5	HCB concentration from formate supplementation set	32
4.6	HCB concentration from the combination of acetate, butyrate and	
	propionate supplementation set	33
4.7	HCB concentration from 20:80 sludge to sediment with and	
	without glucose supplementation set	34
4.8	HCB concentration from 20:80 and 50:50 sludge to sediment with and	
	without glucose supplementation set	34
4.9	The combination role of substrate and sludge quantity	35
4.10	Total gas production from the experiment	37
4.11	%HCB removal couple with methane production at final set of experiment	38
4 12	Possible mechanisms which can cause the decreasing of HCB	40

LIST OF TABLES

	I	Pages
1.1	Experimental designs	5
2.1	Chemical-specific factors which influence the biodegradation	
	of recalcitrant compounds	9
2.2	Environmental-specific factors	10
2.3	Abbreviations, chemical names and chlorine to carbon ratios of	
	common alkyl and aryl halides contaminants	11
3.1	Composition of inorganic nutrient media for anaerobic studies	24
4.1	Summary of the first-order rate constant and correlation efficient	
	of HCB test in different carbon source supplementation	30
4.2	Recovery efficiency of HCB using for extraction from different matrix	39

NOMENCLATURES

COD = chemical oxygen demand

DCB = dichlorobenzene

EPA = environmental protection agency

HCB = hexachlorobenzene

Kow = octanol-water partition coefficient

PCBs = polychlorinated biphenyls

POPs = persistent organic pollutants

ppm = part per million

TTCB = tetrachlorobenzene

TCB = trichlorobenzene

UASB = upflow anaerobic sludge blanket