NOVEL ELECTROSPUN SILICA FIBRES FROM SILATRANE

Mr. Thammasit Vongsetskul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with Case Western Reserve University, The University of Michigan, The University of Oklahoma, and Institut Français du Pétrole 2004

ISBN 974-9651-67-7

Thesis Title:Novel Electrspun Silica Fibres from SilatraneBy:Mr. Thammasit VongsetskulProgram:Polymer ScienceThesis Advisors:Asst. Prof. Pitt Supaphol
Assoc. Prof. Sujitra Wongkasemjit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science

K. Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Asst. Prof. Pitt Supaphol) 120 (Assoc. Prof. Sujitra Wongkasemjit) fanit Nithitanakul)

R. Ratthapol

(Dr. Ratthapol Rangkupan)

ABSTRACT

4572023063: POLYMER SCIENCE Thammasit Vongsetskul: Novel Electrospun Silica Fibres from Silatrane Thesis Advisors: Asst. Prof. Pitt Supaphol and Assoc. Prof. Sujitra Wongkasemjit, 128 pp. ISBN 123-123-123-2
Keywords: Electrospinning / Silica fibres / Silatrane

Very fine polyvinylalcohol/silatrane composite fibres were successfully prepared using an electrospinning process. These fine composite fibres were converted to silica fibres, with the aim of producing silica fibres having a high surface area to mass ratio. The effects of applied potential, silatrane concentration, and calcination temperature on the morphology of the resulting fibres were investigated. It was found that the number of conjoined fibres increased with increasing silatrane concentration and applied potential, while the morphology of the obtained silica fibres was hardly affected by changes in the calcination temperature. It was also found that the obtained silica fibres were amorphous with the diameter ranging between 250 and 600 nm, and the diameter was found to decrease with decreasing applied potential.

บทคัดย่อ

ธรรมสิทธิ์ วงศ์เศรษฐสกุล : เส้นใยซิลิกาขนาดเล็กชนิดใหม่จากไซลาเทรน (Novel Electrospun Silica Fibres from Silatrane) อ. ที่ปรึกษา: ผศ. ดร. พิชญ์ ศุภผล และ รศ. ดร. สุจิ ตรา วงศ์เกษมจิตต์, 128 หน้า ISBN 123-123-123-2

เส้นใยเชิงประกอบระหว่างพอลิไวนิลแอลกอฮอล์กับไซลาเทรนถูกผลิตขึ้นโดยวิธีการ ปั่นเส้นใยแบบใช้ไฟฟ้าสถิตเป็นตัวขับเคลื่อน ต่อมาเส้นใยเหล่านี้ได้ถูกเปลี่ยนเป็นเส้นใยซิลิกา โดยมีจุดประสงค์ในการผลิตเส้นใยซิลิกาที่มีพื้นที่ผิวสัมผัสต่อมวลสูง จากการศึกษาพบว่าปริมาณ ศักย์ไฟฟ้า และความเข้มข้นของไซลาเทรนแปรผันตามตรงกับจำนวนเส้นใยที่ติดเข้าด้วยกัน ใน ขณะที่อุณหภูมิในการเผาเส้นใยเชิงประกอบแทบจะไม่มีผลต่อสัณฐานของเส้นใยซิลิกา จาก กระบวนการเผาเส้นใยเชิงประกอบเป็นเส้นใยซิลิกานั้นพบว่าเส้นผ่านศูนย์กลางของเส้นใยมีค่าอยู่ ในช่วง 250-600 นาโนเมตรและซิลิกาที่ได้มีวัฏภาคแบบอสัณฐาน

ACKNOWLEDGEMENTS

The author would like to express his sincere thank to al instructors who have taught the invaluable knowledge to him especially Asst. Prof. Pitt Supaphol and Assoc. Prof. Sujitra Wongkasemjit, his advisors, and Dr. Ratthaapol Rangkupan who always advise and suggest throughout this thesis work.

Special thank is extended to his entire friends at the Petroleum and Petrochemical College, Chulalongkorn University for their help, suggestions and encouragement. Furthermore, he would like acknowledge his thank for all Ph.D. Students for their kindly help, useful suggestion and interesting idea to carry on his thesis work, especially Mrs. Chidchanok Mit-uppatham, Mrs. Sujinda Jitjaicham, Mr. Phairat Phiriyawirut, and Miss Noppawan Pornthammachai. In addition, cordial and sincere thank is also extended to all members and staff at the Petroleum and Petrochemical College, particularly, Ms. Jintana Chumnunmanoonthum, Ms. Pastra Somboonthanate, and Mr. Sorapong On-ngurn for providing the valuable equipment, instrument training, utilisation, and superb inventions.

The author is grateful for the partial scholarship and partial funding of the thesis work provided by the Development and Promotion of Science and Technology Talented Project and Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Finally, the sincerest appreciation is expressed to his family for the love, care, understanding and encouragement throughout his life.

TABLE OF CONTENTS

11

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	viii
List of Figures	ix
List of Scheme	xx

CHAPT	ER	PAGE
Ι	INTRODUCTION	1
	1.1 Background	1
	1.2 Objectives	10

II LITERATURE REVIEW

III	EXPERIMENTAL	20
	3.1 Materials	20

3.1 Materials	20
3.2 Characterisation Instruments	20
3.2.1 Thermogravimetric Analyser	20
3.2.2 Fourier Transform Infrared Spectro-	
photometre	21
3.2.3 Scanning Electron Microscope	21
3.2.4 Wide-angle X-ray Diffractometre	21
3.3 Electrospinning Apparatus	22
3.4 Calcination Apparatus	23
3.5 Procedure	23
3.5.1 Silatrane Synthesis	23

3.5.2 Spinning of the PVA/silatrane

		Composite Fibres	24
	3.5.3	Calcination of the PVA/silatrane	
		Composite Fibres	24
	3.5.3	Characterisation of the PVA/silatrane	
		Composite Fibres and the Calcined Silica	
		Fibres	24
IV	RESULT	S AND DISCUSSION	25
	4.1 Synth	esis of Silatrane Precursors	25
	4.2 Chara	acterisation	25
	4.2.1	Characetrisation of Silatrane Precursors	25
		4.2.1.1 Fourier transform infrared	
		spectrophotometre	25
		4.2.1.2 Thermogravimetric analyser	27
	4.2.2	Characterisation of Electrospun Silica Fibres	28
		4.2.2.1 X-ray diffraction	28
		4.2.2.2 Fourier transform infrared	
		spectrophotometre	70
		4.2.2.3 Scanning electron microscope	113
V	CONCLU	SIONS	125
	REFEREN	ICES	126
	CURRICU	JLUM VITAE	128

LIST OF TABLES

TABLE		PAGE
4.1	Assignment of infrared spectra of the products	26
4.2	Assignment of infrared spectra of the PVA/silatrane	
	composite fibres	112
4.3	Assignment of infrared spectra of the calcined fibres	
	and pure silica	112

LIST OF FIGURES

FIGURE		PAGE	
1.1	Schematic drawing of an electrospinning set-up	4	
4.1	FTIR spectrum of obtained silatrane precursors	26	
4.2	TGA result of obtained silatrane precursors	27	
4.3	XRD pattern of precalcined fibres obtained from 10 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 11.25 kV	28	
4.4	XRD pattern of precalcined fibres obtained from 10 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 15 kV	29	
4.5	XRD pattern of precalcined fibres obtained from 10 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 18.75 kV	30	
4.6	XRD pattern of precalcined fibres obtained from 10 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 22.50 kV	31	
4.7	XRD pattern of precalcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 11.25 kV	32	
4.8	XRD pattern of precalcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 15 kV	33	
4.9	XRD pattern of precalcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 18.75 kV	34	
4.10	XRD pattern of precalcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 22.50 kV	35	
4.11	XRD pattern of calcined fibres obtained from 10 wt%		

	of silatrane in 6 wt% PVA solution using an applied	
	potential of 11.25 kV, and a calcination temperature	
	of 500°C	36
4.12	2 XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 15 kV, and a calcination temperature	
	of 500°C	37
4.13	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 18.75 kV, and a calcination temperature	
	of 500°C	38
4.14	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 22.50 kV, and a calcination temperature	
	of 500°C	39
4.15	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 11.25 kV, and a calcination temperature	
	of 600°C	40
4.16	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 15 kV, and a calcination temperature	
	of 600°C	41
4.17	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 18.75 kV, and a calcination temperature	
	of 600°C	42
4.18	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 22.50 kV, and a calcination temperature	
	of 600°C	43

4.19	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 11.25 kV, and a calcination temperature	
	of 700°C	44
4.20	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 15 kV, and a calcination temperature	
	of 700°C	45
4.21	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 18.75 kV, and a calcination temperature	
	of 700°C	46
4.22	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 22.50 kV, and a calcination temperature	
	of 700°C	47
4.23	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 11.25 kV, and a calcination temperature	
	of 800°C	48
4.24	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 15 kV, and a calcination temperature	
	of 800°C	49
4.25	XRD pattern of calcined fibres obtained from 10 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 18.75 kV, and a calcination temperature	
	of 800°C	50
4.26	XRD pattern of calcined fibres obtained from 10 wt%	

xi

of silatrane in 6 wt% PVA solution using an applied

	potential of 22.50 kV, and a calcination temperature		
	of 800°C	51	
4.27	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 11.25 kV, and a calcination temperature		
	of 500°C	52	
4.28	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 15 kV, and a calcination temperature		
	of 500°C	53	
4.29	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 18.75 kV, and a calcination temperature		
	of 500°C	54	
4.30	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 22.50 kV, and a calcination temperature		
	of 500°C	55	
4.31	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 11.25 kV, and a calcination temperature		
	of 600°C	56	
4.32	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 15 kV, and a calcination temperature		
	of 600°C	57	
4.33	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 18.75 kV, and a calcination temperature		
	of 600°C	58	
4.34	XRD pattern of calcined fibres obtained from 11.76 wt%		

xii

	of silatrane in 6 wt% PVA solution using an applied		
	potential of 22.50 kV, and a calcination temperature		
	of 600°C	59	
4.35	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 11.25 kV, and a calcination temperature		
	of 700°C	60	
4.36	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 15 kV, and a calcination temperature		
	of 700°C	61	
4.37	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 18.75 kV, and a calcination temperature		
	of 700°C	62	
4.38	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 22.50 kV, and a calcination temperature		
	of 700°C	63	
4.39	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 11.25 kV, and a calcination temperature		
	of 800°C	64	
4.40	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 15 kV, and a calcination temperature		
	of 800°C	65	
4.41	XRD pattern of calcined fibres obtained from 11.76 wt%		
	of silatrane in 6 wt% PVA solution using an applied		
	potential of 18.75 kV, and a calcination temperature		
	of 800°C	66	

4.42	XRD pattern of calcined fibres obtained from 11.76 wt%	
	of silatrane in 6 wt% PVA solution using an applied	
	potential of 22.50 kV, and a calcination temperature	
	of 800°C	67
4.43	XRD pattern of silatrane complexes	68
4.44	XRD pattern of pure silica	69
4.45	FTIR spectrum of pure silica	70
4.46	FTIR spectrum of precalcined fibres obtained from	
	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 11.25 kV	71
4.47	FTIR spectrum of precalcined fibres obtained from	
	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 11.25 kV	72
4.48	FTIR spectrum of precalcined fibres obtained from	
	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 15 kV	73
4.49	FTIR spectrum of precalcined fibres obtained from	
	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 15 kV	74
4.50	FTIR spectrum of precalcined fibres obtained from	
	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 18.75 kV	75
4.51	FTIR spectrum of precalcined fibres obtained from	
	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 18.75 kV	76
4.52	FTIR spectrum of precalcined fibres obtained from	
	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 22.50 kV	7 7
4.53	FTIR spectrum of precalcined fibres obtained from	
	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 22.50 kV	78

4.54 FTIR spectrum of calcined fibres obtained from

	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 11.25 kV, and a calcination	
	temperature of 500°C	79
4.55	FTIR spectrum of calcined fibres obtained from	
	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 15 kV, and a calcination	
	temperature of 500°C	80
4.56	FTIR spectrum of calcined fibres obtained from	
	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 18.75 kV, and a calcination	
	temperature of 500°C	81
4.57	FTIR spectrum of calcined fibres obtained from	
	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 22.50 kV, and a calcination	
	temperature of 500°C	82
4.58	FTIR spectrum of calcined fibres obtained from	
	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 11.25 kV, and a calcination	
	temperature of 600°C	83
4.59	FTIR spectrum of calcined fibres obtained from	
	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 15 kV, and a calcination	
	temperature of 600°C	84
4.60	FTIR spectrum of calcined fibres obtained from	
	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 18.75 kV, and a calcination	
	temperature of 600°C	85
4.61	FTIR spectrum of calcined fibres obtained from	
	10 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 22.50 kV, and a calcination	
	temperature of 600°C	86

xv

4.62	FTIR spectrum of calcined fibres obtained from		
	10 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 11.25 kV, and a calcination		
	temperature of 500°C	87	
4.63	FTIR spectrum of calcined fibres obtained from		
	10 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 15 kV, and a calcination		
	temperature of 700°C	88	
4.64	FTIR spectrum of calcined fibres obtained from		
	10 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 18.75 kV, and a calcination		
	temperature of 700°C	89	
4.65	FTIR spectrum of calcined fibres obtained from		
	10 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 22.50 kV, and a calcination		
	temperature of 700°C	90	
4.66	FTIR spectrum of calcined fibres obtained from		
	10 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 11.25 kV, and a calcination		
	temperature of 800°C	91	
4.67	FTIR spectrum of calcined fibres obtained from		
	10 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 15 kV, and a calcination		
	temperature of 800°C	92	
4.68	FTIR spectrum of calcined fibres obtained from		
	10 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 18.75 kV, and a calcination		
	temperature of 800°C	93	
4.69	FTIR spectrum of calcined fibres obtained from		
	10 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 22.50 kV, and a calcination		

	temperature of 800°C		94
4.70	FTIR spectrum of calcined fibres obtained from	131	
	11.76 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 11.25 kV, and a calcination		
	temperature of 500°C		95
4.71	FTIR spectrum of calcined fibres obtained from		
	11.76 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 15 kV, and a calcination		
	temperature of 500°C		96
4.72	FTIR spectrum of calcined fibres obtained from		
	11.76 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 18.75 kV, and a calcination		
	temperature of 500°C		97
4.73	FTIR spectrum of calcined fibres obtained from		
	11.76 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 22.50 kV, and a calcination		
	temperature of 500°C		98
4.74	FTIR spectrum of calcined fibres obtained from		
	11.76 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 11.25 kV, and a calcination		
	temperature of 600°C		99
4.75	FTIR spectrum of calcined fibres obtained from		
	11.76 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 15 kV, and a calcination		
	temperature of 600°C		100
4.76	FTIR spectrum of calcined fibres obtained from		
	11.76 wt% of silatrane in 6 wt% PVA solution using an		
	applied potential of 18.75 kV, and a calcination		
	temperature of 600°C		101
4.77	FTIR spectrum of calcined fibres obtained from		
	11.76 wt% of silatrane in 6 wt% PVA solution using an		

	applied potential of 22.50 kV, and a calcination	
	temperature of 600°C	102
4.78	FTIR spectrum of calcined fibres obtained from	
	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 11.25 kV, and a calcination	
	temperature of 700°C	103
4.79	FTIR spectrum of calcined fibres obtained from	
	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 15 kV, and a calcination	
	temperature of 700°C	104
4.80	FTIR spectrum of calcined fibres obtained from	
	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 18.75 kV, and a calcination	
	temperature of 700°C	105
4.81	FTIR spectrum of calcined fibres obtained from	
	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 22.50 kV, and a calcination	
	temperature of 700°C	106
4.82	FTIR spectrum of calcined fibres obtained from	
	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 11.25 kV, and a calcination	
	temperature of 800°C	107
4.83	FTIR spectrum of calcined fibres obtained from	
	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 15 kV, and a calcination	
	temperature of 800°C	108
4.84	FTIR spectrum of calcined fibres obtained from	
	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 18.75 kV, and a calcination	
	temperature of 800°C	109
4.85	FTIR spectrum of calcined fibres obtained from	

	11.76 wt% of silatrane in 6 wt% PVA solution using an	
	applied potential of 22.50 kV, and a calcination	
	temperature of 800°C	110
4.86	FTIR spectrum of PVA	111
4.87	SEM micrographs of obtained PVA/silatrane composite	
	fibres derived from 10 wt % silatrane spinning solution	
	at various applied voltages	113
4.88	SEM micrographs of obtained PVA/silatrane composite	
	fibres derived from 11.76 wt % silatrane spinning solution	
	at various applied voltages	114
4.89	SEM micrographs of calcined silica fibres derived from	
	10 wt % silatrane spinning solution at 11.25 kV	115
4.90	SEM micrographs of calcined silica fibres derived from	
	10 wt % silatrane spinning solution at 15.00 kV	116
4.91	SEM micrographs of calcined silica fibres derived from	
	10 wt % silatrane spinning solution at 18.75 kV	117
4.92	SEM micrographs of calcined silica fibres derived from	
	10 wt % silatrane spinning solution at 22.50 kV	118
4.93	SEM micrographs of calcined silica fibres derived from	
	11.76 wt % silatrane spinning solution at 11.25 kV	119
4.94	SEM micrographs of calcined silica fibres derived from	
	11.76 wt % silatrane spinning solution at 15.00 kV	120
4.95	SEM micrographs of calcined silica fibres derived from	
	11.76 wt % silatrane spinning solution at 18.75 kV	121
4.96	SEM micrographs of calcined silica fibres derived from	
	11.76 wt % silatrane spinning solution at 22.50 kV	122

LIST OF SCHEME

SCHEME

PAGE

1.1	Scheme of reactions in gelation step	8
2.1	First synthesised silatrane complexes	14
2.2	Structures of tri- and tetracatechol-substituted silitrane	
	comp!exes	15
2.3	Synthesis of highly reactive pentacoordinate silicates	16
2.4	Forms of pentacoordinate silicates	16
2.5	Structure of hexacoordinate silicate complexes	17
2.6	Formation of tetracoordinate spirosilicate	17
2.7	Structures of Silatrane complexes in the presence and	
	absence of TETA	18
2.8	Structures of ethylene glycoxylsilatrane	18
3.1	Scheme of an electrospinning set-up	22