

nonn

A peer-to-peer protocol for prioritized software updates on Wireless Sensor Networks

Mr. Natchanon Nuntanirund

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering in Computer Engineering

Department of Computer Engineering
FACULTY OF ENGINEERING

Chulalongkorn University
Academic Year 2019

Copyright of Chulalongkorn University

โปรโตคอลเพียร์ทูเพียร์ส ำหรับกำรปรับปรุงซอฟตแ์วร์ไร้สำยแบบหลำยระดบัควำมส ำคญับน
เครือข่ำยเซ็นเซอร์ไร้สำย

นำยณฐัชนน นนัทนิรันดร์

วิทยำนิพนธ์น้ีเป็นส่วนหน่ึงของกำรศึกษำตำมหลกัสูตรปริญญำวิศวกรรมศำสตรมหำบณัฑิต
สำขำวิชำวิศวกรรมคอมพิวเตอร์ ภำควิชำวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศำสตร์ จุฬำลงกรณ์มหำวิทยำลยั
ปีกำรศึกษำ 2562

ลิขสิทธ์ิของจุฬำลงกรณ์มหำวิทยำลยั

Thesis Title A peer-to-peer protocol for prioritized software updates on

Wireless Sensor Networks
By Mr. Natchanon Nuntanirund
Field of Study Computer Engineering
Thesis Advisor Assistant Professor NATAWUT NUPAIROJ, Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in Partial
Fulfillment of the Requirement for the Master of Engineering

Dean of the FACULTY OF
ENGINEERING

 (Professor SUPOT TEACHAVORASINSKUN, Ph.D.)

THESIS COMMITTEE

Chairman
 (Associate Professor KRERK PIROMSOPA, Ph.D.)

Thesis Advisor
 (Assistant Professor NATAWUT NUPAIROJ, Ph.D.)

Examiner
 (Associate Professor KULTIDA ROJVIBOONCHAI, Ph.D.)

External Examiner
 (Assistant Professor Putchong Uthayopas, Ph.D.)

 iii

ABSTRACT (THAI) ณฐัชนน นนัทนิรันดร์ : โปรโตคอลเพียร์ทูเพียร์ส ำหรับกำรปรับปรุงซอฟตแ์วร์ไร้สำย

แบบหลำยระดบัควำมส ำคญับนเครือข่ำยเซ็นเซอร์ไร้สำย. (A peer-to-peer protocol
for prioritized software updates on Wireless Sensor Networks) อ.ท่ีปรึกษำหลกั : ผศ.
ดร.ณัฐวุฒิ หนูไพโรจน์

กำรปรับปรุงซอฟต์แวร์เป็นส่ิงส ำคัญส ำหรับอุปกรณ์ในเครือข่ำยเซ็นเซอร์ไร้สำย

ส ำหรับกำรเพิ่มควำมสำมำรถใหม่ ปรับปรุงประสิทธิภำพ หรืออุดช่องโหว่ควำมปลอดภยั แต่
เน่ืองจำกอุปกรณ์ท่ีติดตั้งใช้งำนอยู่บำงอุปกรณ์ไม่สำมำรถเข้ำถึงได้โดยตรง โปรโตคอลกำร
กระจำยขอ้มูลจึงถูกใช้ในกำรกระจำยขอ้มูลซอฟต์แวร์เขำ้ไปให้กบัอุปกรณ์เหล่ำนั้น อย่ำงไรก็
ตำมกำรปรับปรุงซอฟต์แวร์แต่ละคร้ังอำจมีควำมส ำคัญท่ีแตกต่ำงกัน เช่น กำรปรับปรุง
ซอฟต์แวร์เพื่อเพิ่มควำมสำมำรถเพียงเล็กนอ้ยอำจไม่จ ำเป็นตอ้งไดรั้บกำรปรับปรุงอย่ำงเร่งด่วน
เม่ือเทียบกบักำรปรับปรุงซอฟต์แวร์เพื่อกำรอุดช่องโหว่ร้ำยแรง งำนวิจยัน้ีน ำเสนอโปรโตคอล
กำรกระจำยข้อมูลซ่ึงทนต่อควำมผิดพร่องและสำมำรถปรับแต่งเพื่อแลกเปล่ียนระหว่ำงกำร
บริโภคพลังงำนและควำมเร็วได้ โดยน ำแนวคิดต่ำง ๆ จำกโปรโตคอลบิตทอร์เรนต์มำ
ประยกุตใ์ช ้เช่น กำรจบัมือ, กำรแบ่งส่วนรับส่ง, และ Choking Algorithm เป็นตน้

สำขำวิชำ วิศวกรรมคอมพิวเตอร์ ลำยมือช่ือนิสิต ..
ปีกำรศึกษำ 2562 ลำยมือช่ือ อ.ท่ีปรึกษำหลกั

 iv

ABSTRACT (ENGLISH) # # 5970430921 : MAJOR COMPUTER ENGINEERING

KEYWORD: Wireless Sensor Networks, Data Dissemination, BitTorrent, Software updating
 Natchanon Nuntanirund : A peer-to-peer protocol for prioritized software updates on

Wireless Sensor Networks. Advisor: Asst. Prof. NATAWUT NUPAIROJ, Ph.D.

Software updating is essential for devices in wireless sensor networks for adding new
features, improving performance, or patching vulnerabilities. But since some deployed devices
are unable to be accessed directly, data dissemination protocol is used for distributing the
update to those devices. However, each software updating may have different priority, for
instance, an update that adds an optional feature does not have to be applied as fast as an
update that patches severe vulnerabilities. This research presents a reliable data dissemination
protocol which is configurable for energy-speed trade-off deriving some concepts from
BitTorrent such as Handshaking, Segmented File Transfer, and Choking Algorithm.

Field of Study: Computer Engineering Student's Signature
Academic Year: 2019 Advisor's Signature

 v

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

I would like to express my appreciation to my advisor, Asst. Prof. Natawut Nupairoj, for
his help and guidance that kept me constantly engaged with my research. Without his support, this
research would not have been possible.

The Scholarship from the Graduate School, Chulalongkorn University to commemorate
72nd Anniversary of his Majesty King Bhumibol Adulyadej is gratefully acknowledged.

Finally, I would like to thank my friends and family for believing in me through the
difficult times.

Natchanon Nuntanirund

TABLE OF CONTENTS

 Page
 ... iii

ABSTRACT (THAI)... iii

 ... iv

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS .. vi

List of figures .. ix

1 INTRODUCTION ... 1

 Motivations ... 1

 Objectives .. 2

 Scope of Work ... 2

 Research Procedure ... 2

 Expected Benefits .. 2

 Published Paper ... 2

2 TECHNICAL BACKGROUNDS AND RELATED WORKS ... 3

 Technical Backgrounds ... 3

2.1.1 6LoWPAN .. 3

2.1.2 IPv6 Routing Protocol for LLNs (RPL) ... 4

2.1.3 IEEE 802.15.4 ... 6

2.1.4 BitTorrent .. 7

 Related Works ... 8

 vii

2.2.1 IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks (MPL) 8

2.2.2 Stateless Multicast RPL Forwarding (SMRF) .. 9

2.2.3 Enhanced Stateless Multicast RPL Forwarding (ESMRF) 11

2.2.4 TinyTorrents ... 13

3 PROPOSED ALGORITHM .. 14

 Definitions ... 14

 Algorithm .. 18

3.2.1 Normal Mode .. 18

3.2.2 Leecher Mode ... 18

3.2.3 Endgame Mode ... 20

3.2.4 Seeder Mode ... 21

3.2.5 Periodic Tasks ... 21

 Differences between our algorithm and BitTorrent .. 22

3.3.1 Peer list 22

3.3.2 Choking Algorithm ... 22

3.3.3 Integrity Verification .. 22

4 EVALUATION AND DISCUSSION ... 23

 Evaluation Setup ... 23

 Result and Discussion ... 24

4.2.1 Comparison with multicast ... 25

4.2.2 Trade-off ... 26

4.2.3 Intermittent Failures .. 29

4.2.4 Communication Overhead .. 31

4.2.5 Code size ... 32

 viii

4.2.6 Implementation Challenges .. 32

5 CONCLUSION .. 33

REFERENCES ... 34

VITA ... 37

List of figures

 Page
Figure 1 6LoWPAN Logo .. 3

Figure 2 An RPL network creating its topology ... 4

Figure 3 6LoWPAN over IEEE 802.15.4 protocol stack .. 6

Figure 4 BitTorrent Logo .. 7

Figure 5 Graphs showing packet delivery ratio of multicast forwarding with MPL at increasing
distance from source with different sending interval [11] .. 9

Figure 6 A flowchart showing operation of SMRF .. 10

Figure 7 Graph showing transmissions end-to-end delay and packet delivery ratio comparison of
multicast forwarding with MPL (TM) and SMRF using different configurations over
ContikiMAC ... 11

Figure 8 A flowchart showing operation of ESMRF .. 12

Figure 9 Graph showing comparison of Average Network Delay and Network Delivery Ratio in
random topologies between ESMRF, MPL (TM), and SMRF ... 12

Figure 10 An overview of a TinyTorrents deployment .. 13

Figure 11 Demonstration of communication between node i and node j 16

Figure 12 Transition between operating modes .. 18

Figure 13 Screenshot of Cooja Network Simulator running a simulation of our algorithm on a 30-
node random topology .. 24

Figure 14 Code size comparison between Blink, Ping, and Surge applications which are compiled
into different formats [16] ... 24

Figure 15 Graph showing comparison of average time used in the disseminations using our
algorithm, ESMRF, and MPL as number of nodes increasing ... 25

 x

Figure 16 Graph showing comparison of average power consumption per node in the
disseminations using our algorithm, ESMRF, and MPL as number of nodes increasing............... 26

Figure 17 Graph showing comparison of average time used to in the disseminations with different
Ts values as number of nodes increasing .. 27

Figure 18 Graph showing comparison of average power consumed per node in the disseminations
with different Ts values as number of nodes increasing ... 28

Figure 19 Graph showing trendlines of average early off time percentage 29

Figure 20 Graph showing comparison of average time used in the disseminations using our
algorithm with multiple rates of intermittent faults as number of nodes increasing....................... 30

Figure 21 Graph showing comparison of average power consumption per node in the
disseminations using our algorithm with multiple rates of intermittent faults as number of nodes
increasing .. 30

1 INTRODUCTION

 Motivations
 Firmware updating is essential for any devices such as personal computers, smartphones,

and even small devices in wireless sensor networks. It always aims to make the devices work at
their best by adding new features, improving performance, replacing outdated components, and
patching vulnerabilities. The update process on personal computers or smartphones may be
relatively easy because the update can be downloaded directly from the Internet but it may be
more complicated on deployed devices in wireless sensor networks since they may unable to
download the update directly from the internet.

Data Dissemination is a core component of firmware updating in wireless sensor
networks. Since the architecture of wireless sensor networks is distributed, the dissemination will
be forwarding the data from one node to another until all nodes receive it. This behavior allows it
to be categorized as peer-to-peer communication. Deluge [1] and MNP [2] was data
dissemination protocols in wireless sensor networks in the early days before standardized network
protocols such as 6LoWPAN [3] or LoRA [4] become more popular. These standardized
protocols provide multicast communication methods for data dissemination out of the box, but
they do not guarantee packet delivery while firmware updating requires reliable communication.
Also, different firmware updates have different purposes and priorities, for instance, an update
that adds an optional feature does not have to be applied as fast as an update that patches severe
vulnerabilities. Thus, enabling energy-speed trade-off.

Instead of disseminating the data with multicast communication methods, one of the most
popular data sharing protocols over a peer-to-peer networks is BitTorrent [5]. It distributes each
part of the data over the network and make it available to be downloaded from multiple sources,
thus enabling parallel downloading. This leads to faster downloading and higher scalability
compared to traditional multicast communication methods.

This research introduces a decentralized energy-speed trade-off configurable peer-to-peer
data dissemination algorithm for wireless sensor networks that adopted several features from
BitTorrent for being highly scalable and efficient such as Handshaking and Have Messages for
exchanging possession information among nodes, Segmented File Transfer to enable parallel

 2

downloading, Choking Algorithm to limit resources usage while uploading, Optimistic
Unchoking to improve data distribution in the network, and Endgame mode to accelerate the
download process.

 Objectives
To develop a reliable peer-to-peer protocol for software updating in distributed wireless

sensor networks which enables software updating in different purposes and priorities

 Scope of Work
1. This research developed using 6LoWPAN over IEEE 802.15.4 protocol on Contiki-NG
2. This research developed using Storing Mode of RPL Routing Protocol
3. All nodes in this research are Zolertia Z1 boards
4. This research simulated using Cooja Network Simulator

 Research Procedure
1. Study of related works
2. Analysis of research problems and possible solutions
3. Development of the proposed solution
4. Experiment and evaluation
5. Result Conclusion
6. Writing of research papers and thesis

 Expected Benefits

A reliable peer-to-peer protocol for software updating in distributed wireless sensor
networks which enables software updating in different purposes and priorities

 Published Paper
High Performance Peer-to-peer Data Dissemination for Decentralized Wireless Sensor

Networks Firmware Updating. Published at 2020 2nd International Electronics Communication
Conference (IECC). Held on 8-10 July 2020 in NTU@one-north Executive Centre, Singapore.

 3

2 TECHNICAL BACKGROUNDS AND RELATED WORKS
In the section, we are going to discuss about technical backgrounds of the technologies

used in this research including 6LoWPAN, RPL, and BitTorrent. We will also discuss about
multicast communication modes in 6LoWPAN as they are mechanisms to disseminate the data
over RPL networks which are related to our work.

 Technical Backgrounds6LoWPAN

Figure 1 6LoWPAN Logo

6LoWPAN (IPv6 over Low-Power Wireless Personal Area Network) (RFC4919) [3] is a

protocol for adapting IPv6 packets to be able to be sent wirelessly over IEEE 802.15.4. The
devices in a 6LoWPAN network will be assigned IPv6 addresses to enable them accessible to
each other and to the Internet.

6LoWPAN is an open standard by Internet Engineering Task Force (IETF) initially defined
as a protocol for sending packets wirelessly over IEEE 802.15.4 at 2.4GHz but later has been
improved to be able to work with sub-1GHz protocols such as Bluetooth Smart, Power Line
Control (PLC), and Low-Power Wi-Fi.

To adapt IPv6 packets to be able to be sent over IEEE 802.15.4, 6LoWPAN will perform 3
tasks as follows.

1. Header compression
8-byte UDP Header and 40-byte IPv6 Header will be compressed by removing redundant

information to reduce the packet size. Even 6LoWPAN also supports TCP protocol, but TCP
Headers will not be compressed.

2. Fragmentation and reassembly

 4

IEEE 802.15.4 allows maximum 127-byte frame size for each transmission but Maximum
Transmission Unit (MTU) of IPv6 is 1280 bytes. Thus, requiring packet fragmentation before
sending and reassembly on receiving.

3. Stateless auto configuration
A device in a 6LoWPAN network will create an IPv6 address for itself without waiting for

an assignment from its router. There is also a mechanic that prevents 6LoWPAN devices from
creating duplicates IPv6 addresses called Duplicate Address Detection (DAD).

6LoWPAN supports AES-128 encryption over IEEE 802.15.4 and supports Transport
Layer Security (TLS) and Data Transport Layer Security (DTLS) over TCP and UDP,
respectively. However, TLS and DTLS uses intensive computation so it may require
microcontrollers that supports hardware-accelerated encryption.

2.1.2 IPv6 Routing Protocol for LLNs (RPL)

Figure 2 An RPL network creating its topology

Reference: https://doi.org/10.1016/j.comnet.2016.03.018

RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks) (RFC6550) [6] is a
routing protocol for wireless networks that consist of low-power devices and lossy
communications, optimized for sending data to one mutual sink.

RPL will create a topology of a network in Directed Acyclic Graph (DAG) which contains
states of nodes in the network and costs of accessing each node. The states of each node may
contain its workload, residual energy, latency, or reliability which will be calculated as its cost for
forwarding a packet through it.

 5

There can be multiple sinks in an RPL network. For routing to each sink, Destination
Oriented Directed Acyclic Graph (DODAG) will be created from the DAG. A DODAG will
contain RPLInstanceID to identify which RPL network it belongs to, DODAGID to identify to
DODAG itself, DODAGVersionNumber to control the version of the DODAG, and ranks for
each node in the DODAG to perform routing. For updating the information of a DODAG, each
node will broadcast a DODAG Information Option (DIO) message to exchange information of
the DODAG among themselves while the communication flow is controlled by Trickle Algorithm
[7] to prevent redundant transmissions. The root of the network will be the first to broadcast DIO
message and set the rank of itself to be 1. When a node received DIO message, it will update its
rank corresponding to the received information and select its parent node which has lower rank to
forward its packets to. A node can send DODAG Information Solicitation (DIS) to request a DIO
message and Destination Advertisement Object (DAO) to its parent to request DODAG rebuild.

RPL supports 2 modes of operation: Non-Storing and Storing. In Non-Storing mode, each
node will be able to send packets only to the root of the network. If a node in Non-Storing mode
wants to send a packet to another node, the packet must be forwarded by the root. In Storing
mode, each node will have its own routing table to store routing information to other nodes
nearby. Thus, enabling them to be able to communicate with each other without sending to the
root first but requiring more memory usage.

 6

2.1.3 IEEE 802.15.4

Figure 3 6LoWPAN over IEEE 802.15.4 protocol stack

Reference: https://www.doi.org/10.1145/2523501.2523502

IEEE 802.15.4 [8] is a standard for low-rate wireless personal area networks (LR-
WPANs) containing standard for physical layer and medium access control for LR-WPANs.
IEEE 802.15.4 is developed and maintained by IEEE 802.15 working group. It is the basis of
ZigBee, 6LoWPAN, and Thread protocol.

IEEE 802.15.4 is designed to provide low-data rate and low-power communication to
embedded devices. It offers 250 kbit/s transfer rate at 10-meter communication, but it can be
configured to 20, 40, and 100 kbit/s rate for lower power consumption.

In the physical layer (PHY), IEEE 802.15.4 defines how RF (Radio frequency)
transceiver perform signal transmissions and receptions. It can operate on one of three unlicensed
frequency bands in each region including 868.0-868.6 MHz in Europe, 902-928 MHz in North
America, and 2400-2483.5 MHz worldwide.

In the medium access control layer (MAC), IEEE 802.15.4 manages access to the
physical channel, validate data frames and guarantees time slots.

 7

There is no standard defined for higher layers in IEEE 802.15.4 but there are many other
specifications that built on top of it including ZigBee or 6LoWPAN which are supported by many
operating systems such as RIOT OS, TinyOS, Contiki-OS, and Zephyr OS.

2.1.4 BitTorrent

Figure 4 BitTorrent Logo

BitTorrent [5] is a peer-to-peer data sharing protocol. Instead of downloading data from a

single server, BitTorrent allows users to have parts of the data and share among themselves. This
provides scalability to the system. Thus, the increasing number of users will not reduce the
performance but may improve it instead. Several features of BitTorrent which we adopted for this
research are described below.

1. Handshaking and Have Messages
In order for peer A to know which pieces can be requested from peer B, peer A and peer

B will exchange handshakes and Have messages containing Bitfield of their possession
information.

2. Segmented File Transfer
The data that is to be shared in a BitTorrent will be divided into pieces. These pieces will

be distributed over the network to ensure high availability and to make each peer to be able to
download multiple pieces from multiple sources simultaneously as known as parallel
downloading.

3. Rarest First Piece Selection
A peer will select and download the rarest visible pieces to improve data redundancy and

reduce the chance of some pieces missing from the network.
4. Choking

 8

A peer chokes another peer to refuse to upload to it and unchokes to start upload to it
again. This is to prevent a peer to upload to too many peers at the same time, a peer will unchoke
and upload to its top uploaders in return for their previous uploads as tit-for-tat.

5. Endgame Mode
When a peer is only few pieces away from completion, it will request for the missing

pieces from multiple sources ignoring the fact that the pieces may currently be downloading. This
is to quickly turn itself to a seeder and become more efficient uploader.

6. Optimistic Unchoking
A newly connected peer will not have anything to upload. Thus, will not able to download

anything because of the choking addressed above. For optimistic unchoking, a peer will randomly
unchoke one peer that want a piece from it and give the peer the piece it wants ignoring its upload
rate.

 Related Works
2.2.1 IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks (MPL)
MPL (RFC7731) [9] is a multicast communication protocol designed to enable multicast

communication for IPv6 without creating a special topology. MPL supports 2 modes: 1. using
Trickle Algorithm [7] to control the flow of communication and 2. using classic flooding.

A research [10] states that using Trickle Algorithm to control the flow of communication
has lower rate of packet loss in lossy networks which is more suitable for wireless sensor
networks that using classic flooding.

 9

Figure 5 Graphs showing packet delivery ratio of multicast forwarding with MPL at increasing

distance from source with different sending interval [11]

2.2.2 Stateless Multicast RPL Forwarding (SMRF)
SMRF [11] is a multicast communication protocol designed to overcome disadvantages

of MPL as follows.
1. Scalability While MPL does not create a topology to reduce memory usage, MPL

has to create custom packets for each node to control the communication state. So
there will be several factors that affects its ability to scale such as communication
traffic and cache size.

2. Performance To prevent redundant communication, MPL will not immediately
forward packets. Instead, MPL will cache them and wait for Trickle Algorithm to
trigger sending. Thus, causing delay in communication.

3. Complexity In MPL, each node will have to maintain 2 Trickle Timers and a
Sliding Window for each multicast source and a cache for the most recent
multicast packet. MPL also has its own control packets which increase complexity
and size of the code and also increase memory usage.

 10

4. Multicast versus Broadcast Without using topology, MPL multicast packets have
to be sent through the entire network even to the nodes that do not want them
causing high unnecessary traffic and power consumption.

5. Arrival Order Using custom packets and caching may cause incorrect packet
arrival order which is not suitable for some applications such as Network
Monitoring System, in which case the packet arrival order verification has to be
implemented separately.

SMRF utilizes DODAG information to overcome those downsides. A node that wants to
join SMRF multicast group will announce to its parent node using DAO message and a parent
node will forward the multicast packets to its children. However, the limitations of RPL are 1. no
prevention mechanism for redundant packet reception and 2. nodes have to be sibling to be able
to send multicast to each other or they have to send multiple same unicast packets multiple times
instead which uses more memory and cause network delay.

Figure 6 A flowchart showing operation of SMRF

 11

An experiment shows that not using Trickle Algorithm makes SMRF less reliable than
MPL. SMRF has more packet loss rate but has higher communication speed and correct order of
arrival than MPL. Also, MPL code is smaller and more power efficient. [10]

Figure 7 Graph showing transmissions end-to-end delay and packet delivery ratio comparison of
multicast forwarding with MPL (TM) and SMRF using different configurations over ContikiMAC

2.2.3 Enhanced Stateless Multicast RPL Forwarding (ESMRF)
ESMRF [12] is a multicast communication protocol developed from SMRF by solving the

important downside of SMRF that is not able to send multicast packets upward. SMRF can only
send multicast packets from parents to their children but not vice versa. ESMRF overcomes this
limitation by sending the packet to the root first and since the root is the parent of all nodes so

 12

ESMRF will be able to send multicast packets in both upward and downward while having the
same performance of SMRF in linear topologies and having better performance in random
topologies.

Figure 8 A flowchart showing operation of ESMRF

Figure 9 Graph showing comparison of Average Network Delay and Network Delivery

Ratio in random topologies between ESMRF, MPL (TM), and SMRF

 13

2.2.4 TinyTorrents
There is also a work [13] called TinyTorrents in 2009 which was an attempt to bring

BitTorrent to wireless sensor networks. The work aims to pushing the sensed data into an existing
BitTorrent network by forwarding its metadata to the root node and a PC which are physically
connected and together work as a border router exposed the metadata to the Internet. As the
work’s intention was not to disseminate the data throughout the network but to get the data ready
for retrieving from the Internet, so we did not compare our performance to this work.

Figure 10 An overview of a TinyTorrents deployment

 14

3 PROPOSED ALGORITHM

 Definitions
We define our wireless sensor network is a network consists of N nodes with id from 0 to

N-1. As nodes are distributed, we assume that each node can communicate only to its neighbors.
For node i, let Neighbors(i) be a set of neighbors of node i that node i can communicate directly.
Due to limited memory, let assume that node i can communicate to at most M nodes
simultaneously. Note that the number of nodes in Neighbors(i) can be more or less than M.

Let node 0 is the root node which has the disseminating data of S bytes. The disseminating
data is divided into fixed number of X pieces. The size of each piece is S/X bytes. A node is
considered to be a seeder if it has all X pieces. A seeder always sends up-to M nodes that request
for pieces at the same time. A node is considered to be a leecher if it still does not have all pieces.
A leecher always requests for missing pieces from other nodes (up-to Md nodes simultaneously).
It also supplies pieces to up-to Mu nodes that request for the pieces that it has. Obviously, Mu +
Md <= M.

For a node requesting or supplying pieces, it uses 5 control messages to control the flow of
its communications with other nodes:

1. HANDSHAKE for a node to send its information about how many and which pieces it is
possessing and whom the node has downloaded from

2. ACKHANDSHAKE for a node to answer back its information possession information to
a HANDSHAKE

3. INTEREST for a node to inform that it is interested in downloading a piece
4. CHOKE/UNCHOKE for a node to tell if it allows the node that is interested to download

from it
5. REQUEST for a node to start downloading

Node i keeps track of the communication state for each node in Neighbors(i). Let node j is a

node in Neighbors(i) and let State(i, j) is the communication state between node i and node j. The
possible values of State(i, j) is described in Table 1.

 15

State(i, j) Description
IDLE node i has not handshaked with node j
HANDSHAKING node i sent HANDSHAKE to node j and

waiting for ACKHANDSHAKE from node j
HANDSHAKED node i has received ACKHANDSHAKE from

node j
INTEREST_INFORMING node i sent INTEREST to node j and waiting

for CHOKE or UNCHOKE from node j
INTEREST_INFORMED node i has received CHOKE or UNCHOKE

from node j
DOWNLOADING node i is downloading a piece from node j
UPLOADING node i is uploading a piece to node j

Table 1 Table showing the possible values of State(i, j)

 16

Figure 11 Demonstration of communication between node i and node j

In addition to State(i, j), node i also keeps track of Interest(i, j) indicates if node i is

interesting in node j, Choke(i, j) indicates if node i is choking node j, and NumUL(i, j) indicates
number of blocks node i has uploaded to node j

To support different priority levels of software updates, this algorithm can be configured to
disseminate at different speed and different power consumption. For high priority software
updates such as patching vulnerabilities, the disseminations should be as fast as possible even
causing high power consumption; on the contrary, for low priority software updates such as
adding an optional feature, the disseminations can be slower while keeping low power
consumption.

 17

The configuration can be done by setting a variable called Ts. At the beginning of a
dissemination process, it is likely for node i that every node in Neighbors(i) does not have any
pieces so node i will sleep and wake periodically every 5 seconds for a duration of Ts seconds.

So, If Ts = 0, the algorithm will assume that the dissemination needs to be as fast as
possible. But if Ts > 0, the algorithm will assume that the dissemination is focusing on reducing
power consumption more that increasing speed will enable features called Late On and Early Off
therefore which will be described in section 3.2.

 18

 Algorithm

Figure 12 Transition between operating modes

A node can operate in one of 4 modes: Normal Mode, Leecher Mode, Endgame Mode and

Seeder Mode. These modes and their operations will be described in this section.

3.2.1 Normal Mode
All nodes start in normal mode in which each node operates normally as a sensor or an

actuator, it will switch to leecher mode when it is informed that there is a new firmware update.
The root node sends a trigger packet to all nodes using reliable multicast communication [14]. As
a trigger packet is small, a standard protocol is effective enough.

3.2.2 Leecher Mode
In leecher mode, node i finds pieces from Neighbors(i). Initially, node i sets State(i, x) =

IDLE for each node x in Neighbors(i). The process of node i requesting a piece is described
below.

1. Node i sends HANDSHAKE to each node x in Neighbors(i) and sets State(i, x) =
HANDSHAKING

2. On receiving ACKHANDSHAKE from a node in Neighbors(i) and let node j be that
node, node i sets State(i, j) = HANDSHAKED

 19

3. If all nodes in Neighbors(i) do not have any pieces and Ts > 0, node i will sleep for Ts
seconds. Otherwise, node i continues handshaking. Note that Ts is the variable that
we used to vary among different priority levels of software updates. This is a feature
called Late On to delay download operation in exchange for lower power
consumption

4. If number of nodes being downloaded by node i < Md, node i will pick a piece Px
which it does not have and has only 1 owner in Neighbors(i) assuming to be the
rarest piece, then pick the first node in Neighbors(i) list that has the piece Px.
Suppose that node j is picked, node i sets Interest(i, j) = TRUE

5. Node i sends INTEREST to node j and sets State(i, j) = INTEREST_INFORMING
6. Node i expects for CHOKE or UNCHOKE

a. If CHOKE received, node i sets State(i, j) = HANDSHAKED and Interest(i,
j) = FALSE. After that, node i will stop sending messages to node j for 5
seconds.

b. If UNCHOKE received, node i sets State(i, j) = INTEREST_INFORMED
7. After 6.b, node i sends REQUEST to node j to start downloading and sets State(i, j)

= DOWNLOADING and waits for blocks of the piece Px
8. Node i will receive Y blocks from B0 to BY-1 consecutively. For each block received,

node i will verify its integrity using CRC16 attached in the message
9. After node i has received the last blocks BY-1 of the piece Px without problems, node i

sets State(i, j) = HANDSHAKED and Interest(i, j) = FALSE
Node i will keep requesting for its missing pieces from not more than Md nodes at the

same time while it also providing its pieces to other nodes that request for them not more than Mu
nodes at the same time.

To overcome unreliable communication, node i has recovery procedure when it does not
receive a response from node j within 3 seconds. The procedures of the recovery are as follows:

If State(i, j) is HANDSHAKING then set State(i, j) = IDLE. This is when node i has sent
HANDSHAKE but does not receive ACKHANDSHAKE in time, node i will set State(i, j) to
IDLE to resend HANDSHAKE to node j in the next iteration.

 20

If State(i, j) is INTEREST_INFORMING then set State(i, j) = HANDSHAKED and
Interest(i, j) = FALSE. This is when node i has sent INTEREST to node j but does not receive
CHOKE or UNCHOKE in time, node i will set Interest(i, j) to FALSE to find a new piece and a
new node to request for.

If State(i, j) is DOWNLOADING, node i will stop downloading from node j then set
State(i, j) = HANDSHAKED. This is when node i is downloading from node j but does not
receive all blocks in time, node i will set State(i, j) = HANDSHAKED to stop downloading.

Node i maintains a list of nodes that is unresponsive to it by keeping the list in
Blacklist(i). If node j has not responded to node i for 5 consecutive messages, node i will assume
that there may be some issues in the communication between itself and node j so node i will
remove node j from Neighbors(i) and push node j to Blacklist(i). To select a node to request from,
node i will iterate from the head of Neighbors(i) list. Thus, moving node j to the end of the list
making it unlikely to be selected again.

While possessing pieces, node i will receive requests for the pieces from node j. To
supply these pieces, node i performs as follows.

On receiving HANDSHAKE from a node j, node i will send ACKHANDSHAKE to
node j

On receiving INTEREST from node j, node i will consider if it should upload to node j.
If node i finds itself already uploading to Mu nodes at the time or node j has been choked from
optimistic unchoking, node i will send CHOKE to node j and set Choke(i, j) = FALSE to stop
choking node j in the next request. Otherwise, node i will send UNCHOKE to node j and set
Choke(i, j) = FALSE

On receiving REQUEST from node j, node i will set State(i, j) = UPLOADING to
prevent requesting from node j while uploading to it. Then divide the requested piece into Y
blocks from B0 to BY-1 and send them along with their CRC16 hashed value to node j
consecutively. For each block sent, NumUL(i, j) += 1

3.2.3 Endgame Mode
When node i is 2 or less pieces away from completion, node i will switch to endgame

mode. In this mode, node i will request for its missing pieces from Neighbors(i) as in leecher
mode but it will request for the same piece from multiple sources ignoring the fact that the piece

 21

may currently be downloading at that time. This is to quickly turn itself to be a seeder and enter
seeder mode and also to overcome stuck or inactive connections.

3.2.4 Seeder Mode
After node i completed downloading all X pieces, it will switch to seeder mode. In this

mode, node i will stop sending out HANDSHAKE, INTEREST, or REQUEST since it does not
need to request for any pieces anymore. But it will still respond to other nodes that request for its
pieces. Node i will now change its Md = 0 and Mu = M to upload to more nodes simultaneously.
As node i is still receiving HANDSHAKE, it still has knowledge of how many and which pieces
the nodes in Neighbors(i) are possessing and whom the nodes have downloaded from which are
likely to also be in Neighbors(i). So, if Ts > 0, node i will determine if all nodes in Neighbors(i)
are able to complete all X pieces without node i itself. If all nodes in Neighbors(i) can complete
the download by themselves, node i will stop uploading and turn back to Normal Mode to reduce
overall power consumption used for software updating. This is a feature called Early Off to stop
uploading earlier that may delay the overall download process but significantly reduce power
consumption.

3.2.5 Periodic Tasks
Along with the communication, there are 2 tasks node i is performing periodically:
1. Constructing Neighbors(i) – node i will fetch the list of neighbors from the

networking stack of the operating system every 7 seconds, node i will add these
nodes to Neighbors(i) if they are not existing then assign default values for State(i, j),
Interest(i, j), Choke(i, j) to each new node j. Note that if the new node is the old one
that was once removed from Neighbors(i) but exists in Blacklist(i) due to
unresponsiveness, node i will ignore it in adding it back to Neighbors(i) this time but
only remove it from Blacklist(i) which makes them wait for another 7 seconds to be
able to be added back.

2. Optimistic unchoking – node i will choke the node that has downloaded from it the
most to prevent uploading too many pieces to that node. Thus, improving data
distribution throughout the network. Let node j be the node that has downloaded
from node i the most (max NumUL()), node i will set Choke(i, j) = TRUE to deny

 22

the next request from node j and randomly pick a new node k when Choke(i, k) is
TRUE then set Choke(i, k) = FALSE

 Differences between our algorithm and BitTorrent

Although we derived some ideas from BitTorrent protocol to implement our algorithm,
but not all of them have the same intentions as they do in original BitTorrent.

3.3.1 Peer list
In original BitTorrent which is operating on the Internet, a network can be relatively

large and can be composed of hundreds or thousands of peers. So, the mechanism of keeping the
list of peers is to distribute it over the network using Distributed Hash Table (DHT). But in our
algorithm which disseminates the data in wireless sensor networks, it would be more efficient to
forwarding the data to neighbor nodes. So, the list of peers will be the list of neighbor nodes
provided by the operating system.

3.3.2 Choking Algorithm
Choking Algorithm was initially created in order to provide more data to good uploaders

in the network which will improve overall performance of the dissemination process. This is
because a BitTorrent network operates on the Internet and its peers can be anywhere in the world
so there are many factors that some peers are good uploaders and some aren’t. But in our
algorithm which is for disseminating important data as software updates, nodes in a network are
physically close to each other and equally in need of the same data, so the only reason to choke
others is incapability to serve the data to them.

3.3.3 Integrity Verification
A BitTorrent network would store the metadata of its data in DHT so after one of its

peers downloaded a piece, the peer will verify the integrity of the piece by comparing the SHA-1
hash of the piece to the metadata. But in our algorithm, instead of storing in metadata, the hash
will be attached to each BLOCK message sent to the destination. And instead of using CPU
intensive SHA-1 hash, our algorithm uses CRC16 for hashing which is more suitable for
microcontrollers.

 23

4 EVALUATION AND DISCUSSION

 Evaluation Setup
The implementation of our algorithm was developed using Contiki-NG operating system.

We implemented the algorithm for 6LoWPAN using RPL storing mode since it has been used by
many commercial deployments for its being decentralized which offers higher scalability for large
networks [15]. We assume that only application part is disseminated. The application part of a
node in a wireless sensor network can be varied in size as shown in Figure 13, so we defined that
the size of the disseminating data would be (S = 4096) bytes and as 6LoWPAN operates on IEEE
802.15.4 which limits its packet size to 127 bytes, so the parameter for the evaluation is
configured as follows: the disseminating data will be divided into (X = 32) pieces, a piece will be
divided into (Y = 4) blocks, thus making a block for each transmission will be 32 bytes. To limit
resources usage, a node will upload to (Mu = 2) nodes and download from (Md = 2) nodes at the
same time.

We defined 3 priority levels of software updates: Critical, Balanced, and Minor. For
Critical Updates, we set Ts value to 0 to disseminate the updates with the highest speed while
allowing high power consumption. For Balanced Updates, we set Ts value to 5 to disseminate the
updates with moderate speed while maintaining moderate power consumption. For Minor
Updates, we set Ts value to 10 to disseminate the updates with low speed while keeping low
power consumption. We evaluate the support of different priority levels of software updates by
varying Ts values in 5 random 50-node topologies and evaluate the performance against different
number of nodes in 3 random topologies for each 10, 30, and 60 nodes using Cooja Network
Simulator. All nodes are deployed as Zoleria Z1 boards. The simulations started with loading the
data onto the root node while the other nodes will start empty and the download process will start
after 1 minute.

 24

Figure 13 Screenshot of Cooja Network Simulator running a simulation of our algorithm on a 30-

node random topology

Figure 14 Code size comparison between Blink, Ping, and Surge applications which are compiled

into different formats [16]

 Result and Discussion
We evaluate the performance of our algorithm using two metrics: Dissemination Time and

Power Consumption.

 25

4.2.1 Comparison with multicast
We compared our algorithm to two multicast communication protocols: ESMRF and

MPL. On our algorithm and ESMRF, the transmissions were sent every 100 milliseconds since
they are not based on timers and able to handle fast transmissions well. Therefore, MPL is
Trickle-based and it can ensure higher delivery ratio on slow transmissions [11] so its
transmissions were sent every 1 second.

ESMRF and MPL multicast do not ensure packet discovery so the root node will
continue sending the data sequentially. Thus, a node which missed one of the last pieces will have
to wait longer than a node which missed one of the first.

Figure 15 and Figure 16 show the comparison of average time used and average power
consumed in the dissemination between our algorithm, ESMRF, and MPL. In 10-node topologies,
our algorithm spends less time than ESMRF and MPL for 33.60% and 39.58% and consumes less
power for 50.60% and 57.97% respectively. But as increasing number of nodes, our algorithm
performs even better. It spends around 40%-60% less time and consumes around 60%-80% less
power than both ESMRF and MPL. The result also shows that the increasing number of nodes
significantly takes both ESMRF and MPL dissemination time but not our algorithm.

Figure 15 Graph showing comparison of average time used in the disseminations using our

algorithm, ESMRF, and MPL as number of nodes increasing

 26

Figure 16 Graph showing comparison of average power consumption per node in the
disseminations using our algorithm, ESMRF, and MPL as number of nodes increasing

The results show that our algorithm outperforms both ESMRF and MPL in term of

dissemination time. ESMRF can disseminate the data with high transmission rate but also
encountered high rate of packet loss. MPL can disseminate the data with 100% delivery ratio to a
few first hops but the ratio dropped for the further hops and it took almost twice or three times as
much time to wait for the second or third retransmission. The results also show that increasing
number of nodes increases dissemination time of our algorithm with lower rate than ESMRF and
MPL. So, our algorithm may be considered to be higher scalable than both ESMRF and MPL.

4.2.2 Trade-off
To evaluate the performance of disseminations for different priority levels of software

updates, we used 3 Ts value: Critical Updates (Ts = 0), Balanced Updates (Ts = 5), and Minor
Updates (Ts = 10).

Figure 17 and Figure 18 show the comparison of average time used and average power
consumed in the dissemination between different priority levels of software updates. In 10-node
topologies, different Ts values do not cause any different in power consumption because of too
low number of nodes, however, the disseminations of Minor Updates (Ts = 10) take more time
which may not be a worthy trade-off. In 30-node topologies, the disseminations of Critical

 27

Updates (Ts = 0) and Balanced Updates (Ts = 5) take almost the same amount of time while the
disseminations of Balanced Updates (Ts = 5) consumes less power than Critical Updates (Ts = 0)
for 10.12%, also, Minor Updates (Ts = 10) take 15.71% more time but consume 7.85% less power
compared to Balanced Updates (Ts = 5). In 50-node topologies and 60-node topologies, the
disseminations of Balanced Updates (Ts = 5) take more time for around 5%-15% but consume
less power for around 15% than the disseminations of Critical Updates (Ts = 0) while the
disseminations of Minor Updates (Ts = 10) take more time for around 20-25% but consume less
power for around 17-20% compared to Critical Updates (Ts = 0).

Figure 17 Graph showing comparison of average time used to in the disseminations with

different Ts values as number of nodes increasing

 28

Figure 18 Graph showing comparison of average power consumed per node in the

disseminations with different Ts values as number of nodes increasing

As Figure 18 shows that, at 60 nodes, the disseminations have slightly lower average
power consumption per node, and we suspect that as increasing number of nodes there may be
higher chance that nodes can be switch off earlier. So, we plotted average time that nodes had
switched to Normal Mode (off time) before every nodes completed the download in Figure 18.

In Figure 19, at 10 nodes, the disseminations completed too fast, so we are going to
discuss about the result of 30 nodes and higher. The percentages of off time at each Ts value are
higher as number of nodes are increasing.

 29

Figure 19 Graph showing trendlines of average early off time percentage

4.2.3 Intermittent Failures
We also tested the reliability of our algorithm with random intermittent failures. By

simulating the intermittent failures, we have modified Contiki-NG network stack to make it not
accept and incoming packets or send out any packets during the failures.

We simulated every topology with different rate of intermittent failures, 0%, 1%, 3%,
and 5%. In 10-node and 20-node topologies, a failure will randomly occur to a node every 5 and
10 seconds, respectively. In 30-node or more, a failure will randomly occur to a node every 15
seconds. For each failure occurring, the node will be not responsive for 15 seconds.

The results in Figure 20 and Figure 21 show that intermittent failure occurring affects the
performance of the dissemination but not significantly because a node can ignore unavailable
nodes and continue downloading from others.

 30

Figure 20 Graph showing comparison of average time used in the disseminations using
our algorithm with multiple rates of intermittent faults as number of nodes increasing

Figure 21 Graph showing comparison of average power consumption per node in the

disseminations using our algorithm with multiple rates of intermittent faults as number of
nodes increasing

 31

4.2.4 Communication Overhead
To analyze the communication overhead of our algorithm, we classify the messages sent

from nodes as control messages or data messages. HANDSHAKE, INTEREST, CHOKE,
UNCHOKE, and REQUEST messages are control messages used to synchronize the flow of the
communications and BLOCK messages are the actual data. The percentages of number of these
two are showing in Table 2.

The number of BLOCK messages or actual data is around 40-47% of all packets but the
number is decreasing as the number of nodes increasing. While HANDSHAKE, INTEREST, and
CHOKE messages are increasing as the number of nodes increasing. However, considering only
their sizes, the size of BLOCK messages or actual data is around 86-91% of all packets.

Number of Messages (%) 10 nodes 20 nodes 30 nodes 40 nodes 50 nodes
HANDSHAKE Messages 13.11 16.70 21.56 22.13 23.83
INTEREST and CHOKE Messages 27.55 26.61 26.42 24.67 24.49
REQUEST Messages 12.68 12.13 11.43 11.30 11.13
BLOCK Messages (Data) 46.66 44.55 40.59 41.90 40.54
Table 2 Table showing percentage of Number of Control Messages vs. Number of Data Messages

in the disseminations as number of nodes increasing

Size of Messages (%) 10 nodes 20 nodes 30 nodes 40 nodes 50 nodes
HANDSHAKE Messages 3.80 5.01 6.92 6.92 7.64
INTEREST and CHOKE Messages 4.67 4.66 4.51 4.51 4.59
REQUEST Messages 1.23 1.21 1.22 1.18 1.19
BLOCK Messages (Data) 90.30 89.11 87.39 87.39 86.59
Table 3 Table showing percentage of Size of Control Messages vs. Size of Data Messages in the

disseminations as number of nodes increasing

 32

4.2.5 Code size
As our algorithm was designed to be a side program intended to retrieve and load the

main application so it requires some additional space in flash memory of the microcontroller.
Considering multicast is serving the same purpose, Table 3 shows the comparison of the code size
that will take up space in the flash memory. Note that each combined with Contiki-NG operating
system.

 Root Sink
Our algorithm 60.15 KiB 60.07 KiB
MPL 56.99 KiB 56.66 KiB
ESMRF 50.95 KiB 50.75 KiB

Table 4 Table showing code size of our algorithm, MPL, and ESMRF

 As shown in Table 4, in exchange of higher performance, our algorithm takes more space
for around 5.68% and 15.52% than MPL and ESMRF respectively and in addition to this, MPL
and ESMRF can also be used to send multicast packets in other purpose other than for software
updates.

4.2.6 Implementation Challenges
Since Contiki-NG process model are built on top of lightweight stackless threading

library called Protothreads which aims to reduce memory overhead of multithreading design. So,
the scheduler switches between threads without storing any states. So, the challenge is to define
our own state and store it in efficient way.

Because of inability to use large code size TCP transport protocol as in BitTorrent, we
use UDP transport protocol instead. The UDP transport protocol does not handle packet order and
packet loss so we had to design our handling mechanism by ourselves.

We used an unsigned 32-bit integer to represent a 32-piece possession bitfield which
each bit representing each piece, this makes it easier to do bitmasking in piece selection process.
But if a network wants the number of pieces to be more than 32, redesigning in bitfield storing
may be required.

 33

5 CONCLUSION

In this research, we have introduced a decentralized energy-speed trade-off configurable
peer-to-peer data dissemination algorithm for wireless sensor networks that adopted several
features from BitTorrent for being highly scalable and efficient.

Our algorithm can be configured for energy-speed trade-off for 3 priority levels of
software updates: Critical (Ts = 0), Balanced (Ts = 5), and Minor (Ts = 10). The algorithm
disseminates the Critical Updates fastest while consume around 8-20% more power. But
disseminating Minor Updates, the algorithm can achieve highest energy efficiency but spends 15-
25% more time than Balanced Updates and Critical Updates.

The evaluation results also show that our algorithm performs better than multicast-based
algorithms in term of download speed up to 58.97% and energy efficient up to 79.39%. In order
to achieve these results, our proposed algorithm requires additional information regarding to
neighbors from the operating system. Furthermore, it requires more memory to operate comparing
to those multicast-based algorithms. Nevertheless, these can be considered minor limitations as
modern sensors become more powerful.

Although we have designed this algorithm to be portable that can operate on other
protocols but as it operates by exchanging large number of messages, it is still inconclusive that
the performance of this algorithm would still be good if it worked on networks with higher
latency such as LoRA networks or ZigBee networks.

In future works, we will focus on adapting our algorithm for using in Unattended
Wireless Sensor Networks (UWSN). A UWSN is a wireless sensor network that monitors an
extreme environment such as volcano or battlefield [17]. The sensed data cannot be transmitted
immediately, instead it will have to be stored for being retrieved later. Because of the necessity of
storing data in extreme conditions, one of the important factors is the survivability of the stored
data. Thus, our algorithm will enable nodes in an UWSN to back up their sensed data by
efficiently distribute the data to their neighbors in order to extend survivability of the data.

REFERENCES

REFERENCES

1. Chlipala, A., J. Hui, and G. Tolle, Deluge: Data Dissemination for Network
Reprogramming at Scale. 2004.

2. Kulkarni, S.S. and W. Limin, MNP: Multihop Network Reprogramming Service for Sensor
Networks, in 25th IEEE International Conference on Distributed Computing Systems
(ICDCS'05). 2005. p. 7-16.

3. Kushalnagar, N., G. Montenegro, and C. Schumacher, IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and
Goals. 2007.

4. Lavric, A. and V. Popa, Internet of Things and LoRa™ Low-Power Wide-Area Networks: A
survey, in 2017 International Symposium on Signals, Circuits and Systems (ISSCS). 2017.
p. 1-5.

5. BitTorrent Foundation BitTorrent (BTT) White Paper. 2019.
6. Winter, T., et al., RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. 2012.
7. Levis, P., et al., The Trickle Algorithm. 2011.
8. IEEE Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-2015 (Revision of

IEEE Std 802.15.4-2011). p. 1-709.
9. Hui, J. and R. Kelsey, Multicast Protocol for Low-Power and Lossy Networks (MPL). 2016.
10. Clausen, T., A.C. de Verdiere, and J. Yi, Performance analysis of Trickle as a flooding

mechanism, in 2013 15th IEEE International Conference on Communication Technology.
2013. p. 565-572.

11. Oikonomou, G., I. Phillips, and T. Tryfonas, IPv6 Multicast Forwarding in RPL-Based
Wireless Sensor Networks. Wireless Personal Communications, 2013. 73(3): p. 1089-1116.

12. Abdel Fadeel, K.Q. and K. El Sayed, ESMRF: Enhanced Stateless Multicast RPL
Forwarding For IPv6-based Low-Power and Lossy Networks, in Proceedings of the 2015
Workshop on IoT challenges in Mobile and Industrial Systems - IoT-Sys '15. 2015. p. 19-24.

13. McGoldrick, C., et al., TinyTorrents - Integrating Peer-to-Peer and Wireless Sensor
Networks, in 2009 Sixth International Conference on Wireless On-Demand Network
Systems and Services. 2009. p. 119-126.

 35

14. AndreasF. Thread Tutorial: Practical guide for device upgrade OTA. 2019; Available from:
https://devzone.nordicsemi.com/nordic/short-range-guides/b/mesh-networks/posts/thread-
tutorial-practical-guide-for-device-upgrade-ota.

15. Eriksson, J., et al., Scaling RPL to Dense and Large Networks with Constrained Memory, in
Proceedings of the 2018 International Conference on Embedded Wireless Systems and
Networks. 2018, Junction Publishing: Madrid, Spain. p. 126–134.

16. Dong, W., et al., Dynamic linking and loading in networked embedded systems, in 2009
IEEE 6th International Conference on Mobile Adhoc and Sensor Systems. 2009. p. 554-562.

17. Choi, H.-B., Y.-B. Ko, and K.-W. Lim, Energy-Aware Distribution of Data Fragments in
Unattended Wireless Sensor Networks, in 2018 Third International Conference on Security
of Smart Cities, Industrial Control System and Communications (SSIC). 2018. p. 1-8.

VITA

VITA

NAME Natchanon Nuntanirund

DATE OF BIRTH 10 January 1994

PLACE OF BIRTH Phetchabun

INSTITUTIONS ATTENDED Chulalongkorn University

	ABSTRACT (THAI)
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	List of figures
	1 INTRODUCTION
	1.1 Motivations
	1.2 Objectives
	1.3 Scope of Work
	1.4 Research Procedure
	1.5 Expected Benefits
	1.6 Published Paper

	2 TECHNICAL BACKGROUNDS AND RELATED WORKS
	2.1 Technical Backgrounds
	2.1.1 6LoWPAN
	2.1.2 IPv6 Routing Protocol for LLNs (RPL)
	2.1.3 IEEE 802.15.4
	2.1.4 BitTorrent

	2.2 Related Works
	2.2.1 IPv6 Multicast Forwarding in RPL-Based Wireless Sensor Networks (MPL)
	2.2.2 Stateless Multicast RPL Forwarding (SMRF)
	2.2.3 Enhanced Stateless Multicast RPL Forwarding (ESMRF)
	2.2.4 TinyTorrents

	3 PROPOSED ALGORITHM
	3.1 Definitions
	3.2 Algorithm
	3.2.1 Normal Mode
	3.2.2 Leecher Mode
	3.2.3 Endgame Mode
	3.2.4 Seeder Mode
	3.2.5 Periodic Tasks

	3.3 Differences between our algorithm and BitTorrent
	3.3.1 Peer list
	3.3.2 Choking Algorithm
	3.3.3 Integrity Verification

	4 EVALUATION AND DISCUSSION
	4.1 Evaluation Setup
	4.2 Result and Discussion
	4.2.1 Comparison with multicast
	4.2.2 Trade-off
	4.2.3 Intermittent Failures
	4.2.4 Communication Overhead
	4.2.5 Code size
	4.2.6 Implementation Challenges

	5 CONCLUSION
	REFERENCES
	VITA

