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REGULARITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

DIRECTIONAL REGULARITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



CHAPTER I

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

This thesis is concerned with the continuous ridgelet transform, the Smith transform and the

continuous curvelet transform which are wavelet-like transforms with directional dilation.

We study these transforms of function with Hölder regularity and then analyze the Hölder

regularity of function by these transforms. The problem of this kind has been studied in the

wavelet transform. In 1989 which found in [1,2,3,4,5], M. Holschneider and P.Tchamitchian

gave a result and a proof that the wavelet transform is its ability to characterize the Hölder

regularity over interval of functions, gave a necessary and sufficient condition, in condition

that the wavelet is continuously differentiable, with real values and compact support. Jaf-

fard shows that one can also estimate the Hölder regularity of function, precisely at a point,

which gives a necessary condition and sufficient condition, but not a necessary and sufficient

condition, and he supposed that the wavelet type function has n vanishing moments, has

continuously differentiable and compact support. In 1998 [6,7], Emmanuel J. Candés has

been defined the ridgelet transform with three parameters: scale, location and orientation

parameter and then in 2002 [8,9,10,11], Emmanuel J. Candés and David L. Donoho have

been constructed the continuous curvelet transform, developed from the continuous ridgelet

transform and closely related to a continuous transform used by Hart Smith in his study

of Fourier Integral operators. The Smith’s transform [8,9,12,13] is based on strict affine

parabolic scaling of a single mother wavelet, while for the continuous curvelet transform

they discuss gernerating wavelet changes(slightly) scale by scale and affine based on polar

parabolic scaling. These transforms are motivated by the need for finding better represen-

tations for natural images with edges where several geometric wavelets have been proposed.
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These seem like the natural tools for analyzing the directional regularity of function.

In our work, we confine on the continuous ridgelet transform, the Smith’s transform

and the continuous curvelet transfrom, analyze the Hölder regularity by these transform.

Generally speaking the amount of Hölder regularity of a function reflected in its ridgelet,

Smith’s or curvelet transform by the decrease of their cofficient at small scale. And then we

turn our attention to the reciprocal problem. The next section consists of basic definitions,

theorems and some interesting properties that will be used in our investigations. The next

chapter we represent the continuous wavelet transform and demonstrate the characteriza-

tion of pointwise and uniform Hölder regularity with the wavelet transform. In chapter

III we definitively indicate the continuous ridgelet transform, the Smith transform and the

continuous curvelet transfrom and discuss their properties. Final chapter, we analyze the

Hölder regularity with these transforms and the directional regularity with the ridgelet

transform.

First, we indicate state fundamental definitions, examples, theorems and some interest-

ing properties that will be used in the proceeding chapters.

1.2 The Lp-spaces

Definition If 0 < p <∞ and if f is a complex measurable function on X, define

‖f‖ =
{∫

x
|f |p dµ

} 1
p

and let Lp(µ) consist of all f for which

‖f‖ <∞.

We call ‖f‖ the Lp − norm of f .

Theorem 1.1. (Hölder inequality) If p and q are conjugate expands, i.e.
1
p

+
1
q

= 1

1 ≤ p, q ≤ ∞, and if f ∈ Lp(µ) and g ∈ Lq(µ), then fg ∈ L1(µ) and ‖fg‖1 ≤ ‖f‖p ‖g‖q.

In this thesis, we shall deal exclusively with Lebesgue measure on Rd and hence denote

the integral of function by the usual integral notation.
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Theorem 1.2. (Fubini’s theorem). If
∫ ∫

|f(x, y)| dydx <∞, then∫ ∫
f(x, y) dy dx =

∫ [∫
f(x, y) dy

]
dx =

∫ [∫
f(x, y) dx

]
dy,

i.e., the order of the integrations can be permuted.

On a given Hilbert space H, we will follow the mathematician’s convention and use

inner product which is linear in the first argument, i.e.,

〈λ1u1 + λ2u2, v〉 = λ1 〈u1, v〉+ λ2 〈u2, v〉 for λ1, λ2 ∈ C and u1, u2, v ∈ H.

As usual, we have 〈u, v〉 = 〈v, u〉 where α denotes the complex conjugate of α, and 〈u, u〉 ≥ 0

for all u ∈ H. We define the norm ‖u‖ of u by ‖u‖2 = 〈u, u〉. A standard inequality in a

Hilbert space is the Cauchy-Schwarz inequality,

| 〈v, w〉 | ≤ ‖v‖ ‖w‖

for all v, w ∈ H. A standard example of such a Hilbert space is L2(R2), with

〈f, g〉 =
∫

R2

f(x)g(x) dx.

We will often drop the integration bound when the integral runs over the whole R2.

1.3 Rotation Matrices

Let v1 = (x1, y1), v2 = (x2, y2) ∈ R2. We say that vector v1 is rotated to v2 by an angle θ,

with θ ∈ [0, 2π), if we have the following relationships;

x2 = x1 cos θ − y1 sin θ

y2 = y1 cos θ + x1 sin θ, i.e.,

x2

y2

 =

cos θ − sin θ

sin θ cos θ


x1

y1

 ,
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or we can also write v2 = Rθv1 where Rθ is the 2×2 matrix on the right of the equation,

called the rotation matrix by the angle θ.

Indeed, since x1 = r cosα and y1 = r sinα for some α ∈ [0, 2π) and r ∈ R we

have

x2 = r cos(α+ θ) = r(cosα cos θ − sinα sin θ) = x1 cos θ − x2 sin θ

y2 = r sin(α+ θ) = r(sinα cos θ + cosα sin θ) = y1 cos θ + x1 sin θ.

1.4 Fourier Transform

Let f ∈ L1(R). We let

f̂(ξ) =
∫ ∞

−∞
f(x)e−2πixξ dx, ξ ∈ R

be the definition of the Fourier transform of f .

The inverse of the Fourier transform of f is defined by

f(x) =
∫ ∞

−∞
f̂(ξ)e2πiξx dξ for all x ∈ R.

In 2-dimensional space, the Fourier transform becomes

f̂(ξ) =
∫

R2

f(x)e−2πix·ξ dx

=
∫

R2

f(x1, x2)e−2πi(x1ξ1+x2ξ2) dx1 dx2 for all ξ = (ξ1, ξ2) ∈ R2.

And, the inversion formula is

f(x) =
∫

R2

f̂(ξ)e2πiξ·x dξ

=
∫

R2

f̂(ξ1, ξ2)e2πi(x1ξ1+x2ξ2) dξ1 dξ2 for all x = (x1, x2) ∈ R2.

We assume that functions f and g are pointwise continuous and absolutely integrable on

the plane. The convolution of f and g is defined and denoted by

(f ∗ g)(x) =
∫ ∞

−∞
f(y)g(x− y) dy.
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We then have

(̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ)

and

(̂fg)(ξ) = f̂(ξ) ∗ ĝ(ξ).

1.5 The Hölder Regularity

Let f be a real-valued function defined on Rdand x0 ∈ Rd. We recall the following definitions

of uniform and pointwise Hölder regularity with exponent α where α > 0.

Definition : Uniform Hölder Regularity

For α /∈ N. A locally bounded function f : Rd → R is uniform Hölder regular with exponent

α, denoted by f ∈ Cα(Rd), if there exists a constant C > 0 for which at any x0 ∈ Rd,

there is a polynomial Px0 of degree less than α such that, for all x in a neighborhood of x0,

|f(x)− Px0(x− x0)| ≤ C ‖x− x0‖α . (1.3)

Definition : Pointwise Hölder Regularity

i. f : Rd → R is pointwise Hölder regular at x0 with exponent α, denoted by f ∈ Cα(x0),

if there exist a constant C > 0 and a polynomial Px0 of degree less than α such that, for

all x in a neighborhood of x0, |f(x)− Px0(x− x0)| ≤ C ‖x− x0‖α .

It can be shown that if f ∈ Cα(x0), then f belongs to Cβ(x0) for any β < α.

Remark: For 0 < α < 1, Px0(x − x0) = f(x0). Indeed if α < 1 then P ≡ constant. If

x = x0 we have |f(x0)−Px0(x0−x0)| ≤ C ‖x0 − x0‖α = 0, then Px0(x−x0) = f(x0). Thus,

for 0 < α < 1, the inequality (1.3) becomes |f(x)− f(x0)| ≤ C ‖x− x0‖α.

ii. The pointwise Hölder exponent, hf (x0), of f at x0 is defined by

hf (x0) = sup {α : f ∈ Cα(x0)} ,

where we say that hf (x0) = 0 if f is not in Cα(x0) for any α > 0. That is, we are taking

the supremum of the set of α > 0 for which f ∈ Cα(x0) as a subset of [0,∞). Note that

the function hf (x0) takes value in [0,∞]. This exponent measures the pointwise regularity



6

of the function f at x0. The larger the exponent hf (x0) is, the ‘smoother’ the function f

is at the point x0.

Note that (1) If f is Hölder continuous with exponent α then for each β < α, f is Hölder

continuous with exponent β.

(2) The uniform Hölder exponent of a function need not be the infimum of the

pointwise Hölder exponents. For example the function f(x) = x sin
(

1
x

)
is C1 at the origin

and C∞ elsewhere, while its uniform Hölder exponent is only 1/2. The following example

demonstrates that an irregular function, in this case a continuous nowhere-differentiable

function, might not be a multifractal function.

Example It is well known, see also [2,3,4], that the Weiertrass function

Wα(x) =
∞∑
j=0

sin(2jx)
2jα

is continuous but nowhere differentiable for α ∈ (0, 1). We shall prove that the Hölder

exponent of the Weierstrass function is α everywhere. That is, we show that for all β <

α < γ, Wα ∈ Cβ(x0) but Wα /∈ Cγ(x0) at a point x0 ∈ R.

Proof. We shall only show that Wα ∈ Cβ(x0) for all β < α and for all x0 ∈ R. Let x0 ∈ R

and β < α. By the mean value theorem, | sin(2jx)− sin(2jx0)| ≤ 2j |x− x0|. But from the

boundedness of the sine function, we also have 2 as another upper bound of the left hand

side. So we will have to choose better bounds for each j. Suppose that |x− x0| < 1. Then

1
2n+1 ≤ |x− x0| < 1

2n for some n ≥ 0.

|Wα(x)−Wα(x0)| ≤
∑

2j2−n≤2

| sin(2jx)− sin(2jx0)|
2jα

+
∑

2j2−n>2

| sin(2jx)− sin(2jx0)|
2jα

.
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By the mean value theorem and boundedness of sine function, we have

|Wα(x)−Wα(x0)| ≤
∑

2j2−n≤2

2j |x− x0|
2jα

+
∑

2j2−n>2

| sin(2jx)− sin(2jx0)|
2jα

≤ |x− x0|
∑
j≤n+1

2j(1−α) +
∑
j>n+1

2
2jα

≤ |x− x0|

(
2(n+2)(1−α) − 21−α

21−α − 1

)
+ 2

(
2−α(n+2)

1− 2−α

)

≤ |x− x0|β

2n(1−β)

(
2(n+1)(1−α) − 21−α

21−α − 1

)
+

2
1− 2−α

(
1
2
|x− x0|

)α
≤ |x− x0|β

[
21−α

21−α − 1

(
21−α

2n(α−β)
− 1

2n(α−β)

)
+

2
2α − 1

1
2n(α−β)

]
≤ Cβ,α|x− x0|β.



CHAPTER II

CONTINUOUS WAVELET TRANSFORM AND

CHARACTERIZATION OF HÖLDER REGULARITY

A concise exposition of the theory of characterization of the uniform and pointwise Hölder

regularity (irregularity) of functions via the continuous wavelet transforms is given, see also

[1,2,3,4,5]. Section 2.1 introduces the definitions and theorems of the continuous wavelet

transforms. Some characterizations of the uniform(global) Hölder regularity by the wavelet

transform are then listed and proved in section 2.2. The last section, gives and proves some

characterization of the pointwise(local) Hölder regularity.

2.1 Continuous Wavelet Transform

We will not give an exhaustive definition of what we will call a wavelet, since in the liter-

ature the term wavelet is used for various kinds of functions depending on the application.

However, to fix the ideas, we shall consider a locally integrable complex-valued function

ψ ∈ L2, which is in general well localized and regular in the sense that

|ψ(t)|+ |ψ′(t)| ≤ C

1 + |t|2+ε
for some fixed constant C > 0, ε > 0.

In addition, suppose that the first two moments of ψ vanish:∫ ∞

−∞
ψ(t) dt =

∫ ∞

−∞
ψ(t)t dt = 0.

These two conditions are maximal in the sense that all theorems stated in this chapter

hold for those functions taken as wavelets. Depending on the problem we shall be able

to relax these conditions considerably. Since some moments of ψ vanish it necessarily has

some oscillations, which justify the term wavelet. Dilating and translating the wavelet ψ
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we obtain a parameter family of functions

ψa,b(x) =
1√
a
ψ

(
x− b

a

)
.

The parameter b ∈ R is a position(translation) parameter, where as a > 0 may be inter-

preted as a scale parameter. We can define the wavelet transform of an arbitrary function

f ∈ L2(R) with respect to a wavelet ψ as follows.

Definition (Continuous Wavelet Transform). The continuous wavelet transform of an

L2(R) function f is defined by

Wf (a, b) =
∫
f(x)ψa,b(x) dx

=
1√
a

∫
f(x)ψ

(
x− b

a

)
dx

where this Lebesgue integral is well-defined for a ∈ (0,∞) and b ∈ R.

Note that |Wf (a, b)| ≤ ‖f‖2 ‖ψ‖2, and it also should be noted that the continous wavelet

transform maps L2(R) function into L2(R+ × R, a−2da db).

Definition (Admissibility Condition). A function ψ is said to be admissible if

0 < Cψ =
∫ ∞

0
|ψ̂(a)|2da

a
<∞.

Observe that for any ξ ∈ R, ∫ ∞

0
|ψ̂(aξ)|2da

a
=
∫ ∞

0
|ψ̂(a)|2da

a
.

In general, Wf is a smooth function over the position-scale half-plane. Analyzing a function

with the help of the wavelet transform amounts to analyzing it on different length scales

around arbitrary positions. This transform is a sort of mathematical microscope, where
1
a

is the enlargement and b is its position over the function to be analyzed.

The wavelet transform is invertible. An explicit inversion formula is given by the fol-

lowing theorem.
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Theorem 2.1. (Inversion Formula)

Let ψ ∈ L2(R) be admissible. If f ∈ L1(R ∩ L2(R) and f̂ ∈ L1(R), then for each x ∈ R, we

have the inversion formula

f(x) =
1
Cψ

∫ ∞

0

∫
R
Wf (a, b)ψab(x) db

da

a2

and the Plancherel formula∫
R
|f(x)|2 dx =

1
Cψ

∫ ∞

0

∫
R
|Wf (a, b)|2 db

da

a2
.

Let α > 0 and k = [α]. Here and below we choose a wavelet-type function ψ satisfying

the following smoothness, decaying and oscillating properties

|ψ(i)(x)| ≤ C(1 + |x|)−k−2 for i = 0, ..., k + 1,∫
R
xjψ(x) dx = 0 for j = 0, ..., k,

and ∫ ∞

0

|ψ̂(ξ)|2

ξ
dξ = 1 with ψ̂(ξ) = 0 if ξ < 0.

We use this wavelet-type function ψ to analyze uniform and pointwise Hölder regularity by

the wavelet transform in the next two sections.

2.2 Wavelet Transform Analysis of Uniform(Global) Hölder

Regularity

In this section we recall how to analyze uniform Hölder regularity by the wavelet transform.

Generally speaking the amount of uniform regularity of function is reflected in the decrease

of its wavelet transform at small scale as shown by the following well known theorem which

gives a necessary and sufficient condition.

Theorem 2.2. A bounded function f ∈ L2(R) is Hölder continuous with exponent α, 0 <

α < 1 if and only if its wavelet transform with respect to a compactly supported wavelet-type

function ψ satisfies |Wf (a, b)| ≤ Caα+ 1
2 for some constant C > 0, for all (a, b) ∈ (0,∞)×R.
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Proof. Because of the oscillating property,
∫

R
ψ(y) dy = 0, we have

∫
R
ψ

(
x− b

a

)
f(b) dx =

0. We apply the uniform Hölder regularity of f and obtain

|Wf (a, b)| =

∣∣∣∣∣ 1√
a

∫
R
f(x)ψ

(
x− b

a

)
dx

∣∣∣∣∣
=

∣∣∣∣∣ 1√
a

∫
R
(f(x)− f(b))ψ

(
x− b

a

)
dx

∣∣∣∣∣
≤ 1√

a

∫
R
|f(x)− f(b)|

∣∣∣∣∣ψ
(
x− b

a

)∣∣∣∣∣ dx
≤ 1√

a

∫
R
C |x− b|α

∣∣∣∣ψ(x− b

a

)∣∣∣∣ dx, since f ∈ Cα(R),

= C
1√
a

∫
R
aα+1 |y|α |ψ (y)| dy

≤ Caα+ 1
2

∫
R
C ′ |y|α

(1 + |y|)2
dy, by the decaying property,

≤ C ′′aα+ 1
2 , since 0 < α < 1.

Conversely, by the inversion formula we have

f(x) =
1
Cψ

∫ ∞

0

∫ ∞

−∞
Wf (a, b)ψa,b(x) db

da

a2
for all x ∈ R.

Now, Cψ =
∫ |ψ̂(ξ)|2

ξ dξ = 1. Let 0 < α < 1. We will break the interval of integration over

a into parts, a ≤ 1 and a ≥ 1, and call the respective integrals fSS (small scales) and fLS

(large scales).

Let x ∈ R. First of all, note that fLS is bounded unifromly in x as a simple change of

variable and integrability of ψ yield

|fLS(x)| ≤
∫
a≥1

∫ ∞

−∞
|Wf (a, b)| |ψa,b(x)| db

da

a2

≤
∫
a≥1

∫ ∞

−∞
‖f‖2 ‖ψ‖2 |ψa,b(x)| db

da

a2

= C

∫
a≥1

a−
1
2
+1−2 ‖ψ‖1 da

≤ C ′ <∞.
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Next, let h ∈ R be such that |h| ≤ 1. Then

|fLS(x+ h)− fLS(x)| ≤
∫
a≥1

∫ ∞

−∞
|Wf (a, b)| |ψa,b(x+ h)− ψa,b(x)| db

da

a2

≤
∫
a≥1

a−3

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
f(y)ψ

(
y − b

a

)
dy

∣∣∣∣∣∣∣∣ψ(x+ h− b

a

)
− ψ

(
x− b

a

)∣∣∣∣ db da (1)

Since ψ is differentiable everywhere so there is a constant C > 0 such that |ψ(z+t)−ψ(z)| ≤

C|t| and, also, since supp(ψ) ⊆ [−R,R] for some R <∞, we can bound (1) by

(1) ≤ C

∫
a≥1

a−3

∫
|x−b|≤aR+1

|h|
a

(∫
|y−b|≤aR

∣∣∣∣ψ(y − b

a

)∣∣∣∣ |f(y)| dy

)
db da

≤ C|h|
∫
a≥1

a−4

∫
|y−b|≤aR

|f(y)|

(∫
|x−b|≤aR+1

∣∣∣∣ψ(y − b

a

)∣∣∣∣ db
)
dy da

≤ C ′|h|
∫
a≥1

a−3

(∫
|y−x|≤2aR+1

|f(y)| dy

)
da

≤ C ′|h| ‖f‖2

∫
a≥1

a−3 (4aR+ 2)
1
2 da

≤ C ′′|h|.

This holds for all |h| < 1. This, together with the uniform boundedness of fLS , implies that

|fLS(x+ h)− fLS(x)| ≤ C|h|α for all h ∈ R, uniformly in x ∈ R. The small scale part fSS

is also uniformly bounded as a simple change of variable and integrability of ψ yield

|fSS(x)| =
∣∣∣∣∫
a≤1

∫ ∞

−∞
Wf (a, b)ψa,b(x) db

da

a2

∣∣∣∣
≤
∫
a≤1

∫ ∞

−∞
|Wf (a, b)| |ψa,b(x)| db

da

a2

≤ C

∫
a≤1

∫ ∞

−∞
aα+ 1

2a−
1
2

∣∣∣∣ψ(x− b

a

)∣∣∣∣ db daa2

≤ C

∫
a≤1

aα−2+1

∫ ∞

−∞
|ψ(y)| dy da

= C ′
∫
a≤1

aα−1 da

= C ′′ < ∞
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We therefore again only have to bound |fSS(x + h) − fSS(x)| for small h, say |h| ≤ 1.By

the assumtion, we have

|fSS(x+ h)− fSS(x)| =
∣∣∣∣∫
a≤1

∫ ∞

−∞
Wf (a, b) (ψa,b(x+ h)− ψa,b(x)) db

da

a2

∣∣∣∣
≤
∫
a≤1

∫ ∞

−∞
|Wf (a, b)| |ψa,b(x+ h)− ψa,b(x)| db

da

a2

≤ C

∫
a≤1

∫ ∞

−∞
aα+ 1

2 |ψa,b(x+ h)− ψa,b(x)| db
da

a2
. (2)

We split the integral into fine and coarse scale ranges and using again |ψ(z+t)−ψ(z)| ≤ C|t|

(2) ≤ C

∫
a≤|h|

∫ ∞

−∞
aα+ 1

2
−2− 1

2

(∣∣∣∣ψ(x+ h− b

a

)∣∣∣∣+ ∣∣∣∣ψ(x− b

a

)∣∣∣∣) db da

+ C

∫
|h|≤a≤1

∫ ∞

−∞
aα+ 1

2
− 1

2
−2

∣∣∣∣ψ(x+ h− b

a

)
− ψ

(
x− b

a

)∣∣∣∣ db da
≤ C

∫
a≤|h|

aα−2+1

(∫ ∞

−∞
ψ(y) dy

)
da

+ C ′
∫
|h|≤a≤1

aα−2

(∫
|x−b|≤aR+|h|

∣∣∣∣ha
∣∣∣∣ db

)
da since supp(ψ) ⊆ [−R,R]

= C ′′
∫
a≤|h|

aα−1 da+ C ′|h|
∫
|h|≤a≤1

aα−3(aR+ |h|) da ≤ C ′′′|h|α.

This holds for all |h| ≤ 1, which, together with the proven fact that fSS is bounded uni-

formly, implies that |fSS(x+ h)− fSS(x)| ≤ C|h|α for all h and uniformly in x. It follows

that f is Hölder continuous with exponent α.

It already contains, in a very simple form, main ingredients of the proofs in the subse-

quent theorem.

2.3 Wavelet Transform Analysis of Pointwise(Local)

Hölder Regularity

Above theorems gives a characterization of the Hölder regularity over R but not at a point.

The next theorem proved by Jaffard [1,2,3,4,5] show that one can also estimate the Hölder

regularity of a function precisely at a point. The theorems give a necessary condition and

a sufficient condition, but not a necessary and sufficient condition. We still assume that ψ

satisfies the smoothness, decaying and oscillating properties in page 9.
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Theorem 2.3. If a bounded function f is Hölder continuous at x0 with exponent α ∈ (0, 1),

then |Wf (a, b+ x0)| ≤ Ca
1
2 (aα + |b|α).

Proof. By translating everything of translation parameter b of the continuous wavelet trans-

form, we can assume that x0 = 0.

Because
∫
ψ(x) dx = 0, we have

∫
ψa,b(x)f(0) dx = 0. We obtain

|Wf (a, b)| ≤
∫
|ψa,b(x)||f(x)− f(0)| dx.

Since f is Hölder continuous at 0 with exponent α, it follows that

|Wf (a, b)| ≤ C

∫
|x− 0|αa−

1
2

∣∣∣∣ψ(x− b

a

)∣∣∣∣ dx
≤ Caα+ 1

2

∫ ∣∣∣∣y +
b

a

∣∣∣∣α |ψ(y)| dy

≤ Caα+ 1
2

(∫
|y|α |ψ(y)| dy +

∫ ∣∣∣∣ ba
∣∣∣∣α |ψ(y)| dy

)
.

As a result of the decay condition on ψ and its integrability, the last two integrals are finite,

and hence

|Wf (a, b)| ≤ C ′aα+ 1
2

(
1 +

∣∣∣∣ ba
∣∣∣∣α)

= C ′a
1
2 (aα + |b|α) .

We now turn our attention to the reciprocal proplem. The following theorem is similar

to a theorem proved before by S.Jaffard.

Theorem 2.4. Suppose that ψ is compactly supported, and f ∈ L2(R) is bounded and

continuous. If, for some β > 0 and α ∈ (0, 1), there exists a constant C such that

|Wf (a, b)| ≤ Caβ+ 1
2

and

|Wf (a, b+ x0)| ≤ Ca
1
2

(
aα +

|b|α

| log |b||

)
for all a, b.

then f is Hölder continuous at x0 with exponent α.
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Proof. We will split the integral over a into two parts, a ≤ 1 and a ≥ 1, and call the two

terms fSS (small scale) and fLS (large scale). Clearly, the large scale part fLS is always

regular by the same arguments as in the proof of Theorem 2.2.

Let x ∈ R. We start by proving that fSS is bounded at x0 as a simple change of variable

and integrability of ψ yield

|fSS(x0)| ≤
∫
a≤1

∫ ∞

−∞
|Wf (a, b)| |ψa,b(x0)| db

da

a2

≤ C

∫
a≤1

∫ ∞

−∞
aβ+ 1

2a−
1
2

∣∣∣∣ψ(x0 − b

a

)∣∣∣∣ db daa2

≤ C

∫
a≤1

aβ−2+1

∫ ∞

−∞
|ψ(y)| dy da

= C ′
∫
a≤1

aβ−1 da

= C ′′ < ∞.

We therefore only have bound |fSS(x0+h)−fSS(x0)| for small h, i.e. |h| ≤ 1. By translating

everything, we can assume x0 = 0. We split the integral into three ranges of the scale a

and get

|fSS(h)− fSS(0)| ≤
∫ 1

0

∫ ∞

−∞
|Wf (a, b)||ψa,b(h)− ψa,b(0)| db da

a2

≤
∫

0≤a≤|h|
α
β

∫ ∞

−∞
|Wf (a, b)| (|ψa,b(h)|+ |ψa,b(0)|) db da

a2

+
∫
|h|

α
β ≤a≤|h|

∫ ∞

−∞
|Wf (a, b)| (|ψa,b(h)|+ |ψa,b(0)|) db da

a2

+
∫
|h|≤a≤1

∫ ∞

−∞
|Wf (a, b)||ψa,b(h)− ψa,b(0)| db da

a2

Using the asumption,

|fSS(h)− fSS(0)| ≤ C

∫
0≤a≤|h|

α
β

∫ ∞

−∞
aβ
∣∣∣∣ψ(h− b

a

)∣∣∣∣ db daa2

+ C

∫
|h|

α
β ≤a≤|h|

∫ ∞

−∞

(
aα +

|b|α

| log |b||

) ∣∣∣∣ψ(h− b

a

)∣∣∣∣ db daa2

+ C

∫
a≤|h|

∫ ∞

−∞

(
aα +

|b|α

| log |b||

) ∣∣∣∣ψ(−ba
)∣∣∣∣ db daa2

+ C

∫
|h|≤a≤1

∫ ∞

−∞

(
aα +

|b|α

| log |b||

) ∣∣∣∣ψ(h− b

a

)
− ψ

(
−b
a

)∣∣∣∣ db daa2
,
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where we assume without loss of generality that α > β. Let us denote the four terms on the

right-hand side of inequality by T1, T2, T3 and T4, respectively. After a change of variable,

integrability of ψ yields

T1 = C

∫
0≤a≤|h|

α
β

∫ ∞

−∞
aβ
∣∣∣∣ψ(h− b

a

)∣∣∣∣ db daa2

≤ C

∫
0≤a≤|h|

α
β

aβ−2

(∫ ∞

−∞
|ψ(y)|a dy

)
da

≤
∫ |h|

α
β

0
aβ−1||ψ||1 da

≤ C|h|α.

By assumption,

T2 = C

∫
|h|

α
β ≤a≤|h|

∫ ∞

−∞

(
aα +

|b|α

| log |b||

) ∣∣∣∣ψ(h− b

a

)∣∣∣∣ db daa2

≤ C

∫
0≤a≤|h|

aα−2

(∫ ∞

−∞
|ψ(y)|a dy

)
da

+ C

∫
|h|

α
β ≤a≤|h|

a−2

∫ ∞

−∞

|b|α

| log |b||

∣∣∣∣ψ(h− b

a

)∣∣∣∣ db da
For the second term, since supp(ψ) ⊆ [−R,R] for some 0 < R <∞ we can bound the two

integrals in T2 as follows

T2 ≤ C

∫
0≤a≤|h|

aα−1||ψ||1 da

+ C

∫
|h|

α
β ≤a≤|h|

a−1||ψ||1
(aR+ |h|)α

|log(aR+ |h|)|
da

Since we integrate over a ≤ |h|, for sufficiently small |h| ≤ 1,

T2 ≤ C ′|h|α
[
1 +

1
|log |h||

∫
|h|

α
β ≤a≤|h|

a−1 da

]

≤ C ′|h|α.

Similarly, for sufficiently small |h| ≤ 1,

T3 = C

∫
a≤|h|

∫ ∞

−∞

(
aα +

|b|α

| log |b||

) ∣∣∣∣ψ(−ba
)∣∣∣∣ db daa2

≤
∫
a≤|h|

aα−1||ψ||1 da+
∫
a≤|h|

a−1||ψ||1
(aR)α

|log(aR)|
da

≤ C|h|α.
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Finally, we use the properties of ψ that it has compact support and bounded derivative to

obtain the following bound of T4:

T4 = C

∫
|h|≤a≤1

∫ ∞

−∞

(
aα +

|b|α

| log |b||

) ∣∣∣∣ψ(h− b

a

)
− ψ

(
−b
a

)∣∣∣∣ db daa2

≤ C|h|
∫
|h|≤a≤1

a−3

[
aα +

(aR+ |h|)α

|log(aR+ |h|)|

]
(aR+ |h|) da

≤ C ′|h|
[
1 + |h|−1+α + |h|(1 + |h|α−2)

]
≤ C ′′|h|α.

Thus |fSS(h) − fSS(0)| ≤ C|h|α for all |h| ≤ 1, which, together with the bound of fSS ,

implies that |fSS(h) − fSS(0)| ≤ C|h|α for all h. Hence f is Hölder continuous at x0 = 0

with exponent α as desired. Therefore by translating everything we can conclude that f is

Hölder regularity at x0 with exponent α.

It is well known that the Weierstrass function Wα(x) =
∞∑
j=1

sin(2jx)
2jα

, α ∈ (0, 1) has

Hölder continuous exponent α everywhere, this can be proved by the continuous wavelet

transform.



CHAPTER III

CONTINUOUS CURVELET AND SIMILAR

TRANSFORMS

Energized by the success of wavelets, the last two decades saw the rapid develop new field,

computational harmonic analysis, which aims to develop new systems for effecitively rep-

resenting phenomena of scientific interest. The curvelet transform is a recent addition

to the family of mathematical tools this community enthusiastically builds up. In short,

this is a new multiscale transform with strong directional character in which elements are

highly anisotropic at fine scale, with effective support shaped according to the parabolic

scaling principle length2 ∼ width. In this chapter we construct a continuous curvelet trans-

form, projects f ∈ R2 onto a curvelet γa,b̄,θ, yielding coefficient Γf (a, b̄, θ) =
〈
f, γa,b̄,θ

〉
;

with parameter space indexed by scale a > 0, location b̄ ∈ R2 and orientation θ ∈ [0, 2π).

The corresponding curvelet γa,b̄,θ is defined by parabolic dilation in polar frequency(Fourier)

domain coordinates. The continuous cuvelet transform is developed from the ridgelet trans-

form and it is also closely related to a continuous transform introduced by Hart Smith in

his study of Fourier integral operators. So we also study the continuous ridgelet trans-

form and the Smith transform. The ridgelet transform is a wavelet-like transform with

directional dilation, while the curvelet transform and the Smith transform is a wavelet-like

transform with directional parabolic dilation. The Smith transform is based on true affine

palabolic scaling of a single mother wavelet, while the continuous cuvelet transform can only

be viewed as affine palabolic scaling in Euclidean coordinate by taking a slightly different

mother wavelets at each scale. The geometry of a curvelet is now apparent: if the function

γ is supported near the unit square, we see that the envelope of γa,b̄,θ is supported near

an a by
√
a rectangle with minor axis pointing in the direction θ. An important property
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is possibility to analyze and reconstruct an arbitrary function f as a superposition of such

templates.

contents: Section 3.1 we recall that the continuous ridgelet transform provides a repro-

ducing formula and Parseval relation and Section 3.2 then construct a continuous curvelet

transform based on a polar parabolic scaling and provides a Calderón reproducing formula

and the Parseval relation. Section 3.3 discusses our reformulation of Smith transform based

on true palabolic scaling. The last section discusses some properties of continuous curvelet

transfrom.

3.1 The Continuous Ridgelet Transform

The success of wavelets is mainly due to the good performance for piecewise smooth func-

tions in 1-dimension. Unfortunately, such is not the case in 2-dimension. To overcome the

weakness of wavelets in higher dimensions, Candés and Donoho recently pioneered a new

system of representations named ridgelets which deals effectively with line singularities in

2-dimensional space. The idea is to map a line singularity into a point singularity using the

Radon transform. Then, the wavelet transform can be used to effectively handle the point

singularity in the Radon domain. Their initial proposal was intended for functions defined

in the continuous Rd, d > 1 space. We start by briefly reviewing the ridgelet transform,

see [6,7], showing its connections with other transform in the domain and then present a

reproducing formula and Parseval relation. Now, we have introduced the parameter space

Γ =
{

(a, ū, b); a, b ∈ R, a > 0, ū ∈ Sd−1
}

with Sd−1 denoting the unit sphere in Rd.

For each a > 0, b ∈ R and ū ∈ Sd−1, we define the bivariate ridgelet ψa,b,ū by

ψa,b,ū(x̄) =
1√
a
ψ

(
x̄ · ū− b

a

)
for all x̄ ∈ Rd

where the ridgelet parameter (a, ū, b) has a natural interpretation; a indexes the scale of

the ridgelet, ū represents its orientation and b is its location. The measure on space Γ is
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defined by da
ad+1σddūdb, where σd is the surface area of the unit sphere Sd−1 in dimension

d and dū the uniform probability measure on Sd−1. Finally, we will always asumme that

the wavelet-type 1-dimension function ψ : R → R belongs to the Schwartz space S(R). A

ridgelet is constant along the line ū · x̄ = constant. Transverse to these ridges is a wavelet.

The results permented here hold under weaker conditions on ψ.

Definition Let ψ : R → R satisfy the condition

Kψ =
∫
|ψ̂(ξ)|2

|ξ|d
dξ <∞.

Then ψ is called an Admissible Neural Activation Function.

We will call the ridge function ψa,b,ū generated by an admissible function ψ a ridgelet.

In 2-dimension, we have ū = (cos θ, sin θ). Given an integrable bivariate function f , its

continuous ridgelet transform in R2 is defined by

R(f)(a, b, θ) =
∫

R2

ψa,b,θ(x̄)f(x̄) dx̄

where the ridgelets ψabθ(x̄) are defined from a wavelet-type function in 1-dimension ψ as

ψa,b,θ(x̄) =
1√
a
ψ

(
x1 cos θ + x2 sin θ − b

a

)
for all x̄ = (x1, x2) ∈ R2.

As can be seen, the continuous ridgelet transform is similar to the 2-dimension contin-

uous wavelet transform except that the point parameters b̄ = (b1, b2) are replaced by the

line parameters (b, θ). In other words, these 2-D multiscale transforms are related by:

Wavelets : −→ ψscale, point−position

Ridgelets : −→ ψscale, line−position

As a consequence, wavelets are very effective in representing objects with isolated point

singularities, while ridgelets are very effective in representing objects with singularities along

lines. In fact, one can think of ridgelets as a way of concatenating 1-dimension wavelets along

lines. Hence the motivation for using ridgelets in image processing tasks is apparent since

singularities are often joined together along edges or contours in images. In 2-dimension,

points and lines are related via the Radon transform, thus the wavelet and ridgelet trans-

forms are lined via the Radon transform. More precisely, let us denote the Radon transform
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by

Rθf(t) =
∫

R
f(t cos θ − s sin θ, t sin θ + s cos θ) ds

then the ridgelet transform is the application of 1-dimension wavelet transform to the slices

(also refered to as projections) of the Radon transform,

R(f)(a, b, θ) =
∫

R
ψ

(
t− b

a

)
Rθf(t) dt.

More specifically, for Fourier transform we have

f̂(ξū) = f̂(ξ cos θ, ξ sin θ) =
∫

R
e−2πiξtRθf(t) dt = R̂θf(ξ).

Theorem 3.1. (Reproducing formula) Suppose that f and f̂ ∈ L1(Rd). If ψ is admissible,

then

f(x) =
1
Kψ

∫
〈f, ψa,b,θ〉ψa,b,θ(x)σd db dū

da

ad+1
for all x ∈ Rd.

Remark In fact, the admissibility condition on ψ is essentially equalivalent to the

requirement of vanishing moments
∫
tkψ(t) dt = 0, k ∈

{
0, 1, ...,

[
d+1
2

]
− 1
}
. This clearly

shows the similarity of admissibility condition to the 1-dimensional wavelet admissibility

condition, however, unlike wavelet theory, the number of necessary vanishing moments

grows linearly in the d-dimensional space.

Theorem 3.2. (Parseval relation) Assume f ∈ L1 ∩ L2(Rd) and ψ is admissible, then

‖f‖2
2 =

1
Kψ

∫
|〈f, ψabθ〉|2 σd db dū

da

ad+1
.

3.2 The Continuous Curvelet Transform (A Transform Based

on Polar Parabolic Scaling)

Candés and Donoho [8,9,10,11] introduced continuous curvelet transform which has much

simpler inversion formula and still enjoys properties reminiscent to parabolic scaling. We

work throughout in R2 with variable x̄ and frequency domain variable ξ̄ with polar coordi-

nates (r,ω). We shall define a continuous curvelet with a continuous scale/location/direction
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parameter space.

We begin by introducing the notation pair of windows.

i) Radial Window: W (r) is a positive real valued function on [0,∞) with support in(
1
2 , 2
)
. This window will always obey the admissibility condition:∫ ∞

0
W (r)2

dr

r
= 1

or we can say that
∫ ∞

0
W (ar)2

da

a
= 1 for all r > 0.

Indeed, since
∫ ∞

0
W (r)2

dr

r
= 1, by letting r = aŕ we get that

1 =
∫ ∞

0
W (r)2

dr

r
=
∫ ∞

0
W (aŕ)2ŕ

da

aŕ
=
∫ ∞

0
W (aŕ)2

da

a
.

ii) Angular Window: V (t) is a real-valued function for which supp(V ) ⊆ [−1, 1]. This

window will always obey the admissibility condition:∫ 1

−1
V (t)2 dt = 1.

We use these windows in the frequency domain to construct a family of analyzing ele-

ments with three parameters:

1. the scale parameter a ∈ R with 0 < a < a0. Here and below, a0 is a fixed number,

the coarsest scale for our proplem. It is fixed once and for all, and must obey a0 < π2 for

the construction of continuous curvelet trasform to work property. a0 = 1 seems a natural

choice.

2. The location(translation) parameter b̄ ∈ R2.

3. The oreintation (direction) parameter θ ∈ [0, 2π) (or [−π, π) according to convenience

below).
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At scale a, the family of curvelets elements is generated by translation and rotation of

a basic element γa,0̄,0, For each x̄ ∈ R2, define

γa,b̄,θ(x̄) = γa,0̄,0
(
Rθ
(
x̄− b̄

))
where Rθ is the 2-by-2 rotation matrix effecting planar rotation by θ radians. The generating

element at scale a ,γa,0̄,0, is defined by going to polar Fourier coordinates

γ̂a,0̄,0 (r, ω) = a
3
4W (ar)V

(
ω/
√
a
)
,

with radial variable r > 0 and angular variable ω ∈ [0, 2π) being polar coordinates in the

frequency domain. Now we note the definition of γ̂a,0̄,θ, if we put eω = (cosω, sinω);

γ̂a,0̄,θ (r, ω) = a
3
4W (ar)V

(
(ω − θ) /

√
a
)
.

The support of each γ̂a,b̄,θ is a polar wedge defined by the supports of W and V , the

radial and angular windows, with scale dependent window widths in each direction. Since

W (r) is supported in
(

1
2 , 2
)
, we get thatW (ar) is supported

(
1
2a ,

2
a

)
. Since V (t) is supported

on [-1,1], we get that V
(
ω√
a

)
is supported in [−

√
a,
√
a]. Thus γ̂a00 (ξ) is supported on{

(r, ω)
∣∣∣∣ 1
2a

≤ r ≤ 2
a
,−
√
a ≤ ω ≤

√
a

}
,

and now from the definition of γ̂a,0̄,θ, we see that its support lies in{
(r, ω)

∣∣∣∣ 1
2a

≤ r ≤ 2
a
, θ −

√
a ≤ ω ≤ θ +

√
a

}
.

In effect, the scaling is parabolic in the polar variables r and ω, with ω being the thin

variable. In accordance with the use of the term curvelet to denote families exhibiting such

parabolic scaling, we call this system of analyzing elements curvelets. However, note that

the curvelet γa,0̄,0 is not a simple affine change-of-variable acting on γá,0̄,0 for á 6= a. We

initially omit description of the transform at coarse scales. Note that these curvelets are

highly oriented and they become very needle-like at fine scales.
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Equipped with this family of high-frequency elements γa,b̄,θ, we can define a continuous

curvelet transfrom

Γf
(
a, b̄, θ

)
=
〈
γa,b̄,θ, f

〉
for 0 < a < a0, b̄ ∈ R2 and θ ∈ [0, 2π) .

This transform has an exact reconstruction formula and parseval relation.

Theorem 3.3. Let f ∈ L2 have a Fourier transform vanishing for |ξ| < 2
a0

. Let V and W

obey the admissibility conditions. We have a Calderon-like reproducing formula, valid for

such high-frequency functions;

f(x̄) =
∫ 2π

0

∫
R2

∫ a0

0
Γf
(
a, b̄, θ

)
γa,b̄,θ (x̄)

da

a3
db̄ dθ, for all x̄ ∈ R2

and a Parseval formula for high-frequency funtions;

‖f‖2
L2 =

∫ 2π

0

∫
R2

∫ a0

0

∣∣Γf (a, b̄, θ)∣∣2 da
a3
db̄ dθ.

3.3 The Smith Transform (A Transform Based on Affine

Parabolic Scaling)

Candés and Donoho [8,9,12,13] defined a wavelet-like transform in R2 with parabolic di-

rectional dilation as follows. The three parameters are scale a > 0, location b̄ ∈ R2, and

orientation θ ∈ [0, 2π). Let Pa,θ be the parabolic directional dilation of R2 given in matrix

by Pa,θ = D 1
a
R−θ where D 1

a
= diag

(
1
a ,

1√
a

)
and R−θ is planar rotation by −θ radians.

This matrix has ellipsoidal contours with minor axis pointing in direction θ.

Assume that ϕ ∈ L2(R2) is a single mother wavelet, then we define the family elements

generated by parabolic dialation, translation and rotation of a single mother wavelet ϕ;

ϕa,b̄,θ = ϕ
(
Pa,θ

(
x̄− b̄

))
Det (Pa,θ)

1
2 = ϕ

(
Pa,θ

(
x̄− b̄

))
a−

3
4 .

Classically, the term wavelet transfrom has been understood to mean that a single wave-

form is operated on by a family of affine transformations producing a family of analysing
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waveforms. So this transfrom fits in with the classical notation of wavelet family, except

that the family of parabolic affine transform is nonstandard.

Hart F. Smith (1998)[10] studied essentially this construction, with two inessential dif-

ferences. First, instead of working with scale a and direction θ, he worked with the frequency

variable ξ ≡ a−1eθ and second, instead of using the L2 normalizing factor Det (Pa,θ)
2, he

used the L1 normalizing factor Det (Pa,θ). In any event, we pretend that Smith has used

the scale/location/direction parametrization and the L2 normalization and we can define a

Hart Smith directional wavelet transform based on affine parabolic scaling

Γf
(
a, b̄, θ

)
=
〈
f, ϕa,b̄,θ

〉
where 0 < a < a0, b̄ ∈ R2 and θ ∈ [0, 2π) ,

where a0 is a fixed coarsest scale. Smith gave a reconstruction formula and a Parsevel

relation.

Theorem 3.4. There is a Fourier multiplier M of order 0 so that whenever f is a high-

frequency function supported in frequency space
∥∥ξ̄∥∥ > 2

a0
,

f(x̄) =
∫ 2π

0

∫
R2

∫ ∞

0

〈
ϕa,b̄,θ,Mf

〉
ϕa,b̄,θ(x̄)

da

a3
db̄ dθ for all x̄ ∈ R2

and

‖f‖2
2 =

∫ 2π

0

∫
R2

∫ ∞

0

∣∣∣〈ϕa,b̄,θ,M 1
2 f
〉∣∣∣2 da

a3
db̄ dθ.

The function Mf is defined in the frequency domain by a multiplier formula M̂f(ξ) =

m(‖ξ‖)f̂(ξ), where the multiplier such that logm(exp(u)) → 0 as u → ∞, together with

all its derivaties.

Observe that the reconstruction formula for the Smith’s transform is not as simple as those

of many other variants of wavelet transform.

Now, one has to work not with the coefficients of f but with those of Mf . An alternate

approach is to define dual elements ϕ∗
a,b̄,θ

≡Mϕa,b̄,θ and change the transform definition to

either

f =
∫ 〈

ϕ∗a,b̄,θ, f
〉
ϕa,b̄,θ

da

a3
db̄ dθ
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or

f =
∫ 〈

ϕa,b̄,θ, f
〉
ϕ∗a,b̄,θ

da

a3
db̄ dθ.

This more complicated set of formulas gaives a few annoyances which are avoided using the

continuous curvelet transform defined in the previous section. However, for many purposes,

the two transfroms have similar behavior. For an elementary example; see also [2], we have

the following lemma.

Lemma 3.5. Suppose that the windows V and W underlying the continuous curvelet trans-

form are C∞ and that the mother wavelet generating the Smith transform Γ̄ has the frequency-

domain representation

ϕ̂a,0̄,0(ξ) = Ca
3
4W (aξ1)V

(
ξ2√
aξ1

)
, a < ā0

for the same windows V and W , where C is some normalizing constant, and ā0 is the

transform’s coarsest scale. Then at fine scales we have sup
b,θ

∥∥γa,b̄,θ − ϕa,b̄,θ
∥∥

2
→ 0 as a→ 0.

3.4 Some Properties of Continuous Curvelet Transform

3.4.1 Directional Transform

In the standard wavelet transform there is a way to create a directional wavelet transform.

Suppose we have a classical admissible wavelet ϕ which is centered at the origin. We stretchs

it preferentially in one direction, say according to ϕ̃(x1, x2) = ϕ(10x1, x2/10), so it has an

elongated support ( in this case, one hundred times longer than its width ), and consider

each rotation ϕθ(x̄) = ϕ̃(Rθx̄) of that wavelet, where Rθ is rotation by θ radians. Next, we

take the generated scale-location family

ϕa,b̄,θ(x̄) =
1
a
ϕθ

(
x̄− b̄

a

)
=

1
a
ϕ̃

(
1
a
Rθ(x̄− b̄)

)
.

This would provide a wavelet transform with strongly oriented wavelets and a direction

parameter.
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3.4.2 Parabolic Scaling

In harmonic analysis there have been a number of important applications of decompositions

based on parabolic dilations

fa(x1, x2) = f

(
1
a
x1,

1√
a
x2

)
so called because they leave invariant the parabola x1 = x2

2. In the above equation the

dilation is always twice as powerful in one fixed direction as in the orthogonal one. Decom-

positions also can be based on directional parabolic dilation of the form

fa,θ(x1, x2) = fa(Rθ(x1, x2)) = f
(
D 1

a
Rθ(x1, x2)

)
where Rθ is a rotation matrix by θ radians, and D 1

a
= diag

(
1
a ,

1√
a

)
. The directional

transform we defined uses curvelets γa,b̄,θ which are essentially the result of such directional

parabolic dilations. This means that at fine scales they are increasingly long compared to

their width : width ≈ length2.

The motivation for decomposition into parabolic dilations comes from several sources.

Starting in the 1970’s they were used in harmonic analysis, for example by Fefferman and

later Seeger, Sogge, and Stein to study the boundedness of certain operators. More recently,

Hart Smith proposed parabolic scaling in defining molecular decompositions of Fourier inte-

geral operators, while Candés and Donoho proposed its use in decompositions of image-like

objects which are smooth apart from edges. So parabolic dilations are useful in representing

operators and singularities along curves.

3.4.3 Localization

From definition of the continuous curvelet transform, in this thesis we always suppose that

V and W are C∞ ; this will imply that γa,b̄,θ(x̄) and it derivatives are each of rapid decay

as ‖x̄‖ → ∞:

γa,b̄,θ(x̄) = O(‖x̄‖−N ), ∀N > 0.

We can describe the decay properties of γa,b̄,θ much more precisely; roughly the right norm

to measure distance from b is associated with an anisotropic ellipse with sides a and
√
a and
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minor axis in direction θ radians, and γa,b̄,θ decays as a function of distance in that norm.

So, suppose we let Pa,θ be the parabolic directional dilation of R2 given in matrix form by

Pa,θ = D 1
a
R−θ

whereD 1
a

= diag(1/a, 1/
√
a) and R−θ is planar rotation by −θ radians. For a vector v̄ ∈ R2,

define the norm

‖v̄‖a,θ = ‖Pa,θ(v̄)‖ =
∥∥∥D 1

a
R−θ(v̄)

∥∥∥
this norm has ellipsoidal unit ball with minor axis pointing in direction θ. It follows imme-

diately that ‖v̄‖√
a
≤ ‖v̄‖a,θ ≤

‖v̄‖
a . The following pointwise bound of their curvelets transform

will be needed in the next chapter, see [8,9]. Also, here and below, we use the notation

〈y〉 = (1 + y2)1/2 for all y ∈ R.

Lemma 3.6. Suppose that the windows V and W are C∞ and have compact supports.

Then, for each N = 1,2,... and corresponding constant CN ,

|γa,b̄,θ(x̄)| ≤ CN · a−3/4 ·
〈∥∥x̄− b̄

∥∥
a,θ

〉−N
for all x ∈ R2.

These estimates are compatible with the view that curvelets are affine transforms

of a single mother wavelet, where the analyzing elements are of the form ϕ(Pa,θ(x̄ −

b̄))Det(Pa,θ)1/2. However, it is important to emphasize that γabθ does not obey true

parabolic scaling, i.e., there is not a single mother curvelet γ1,0̄,0 so that

γa,b̄,θ = γ1,0̄,0(Pa,θ(x̄− b̄))Det(Pa,θ)1/2.

A transform based on such true parabolic scaling can of course be defined. In fact, essentially

this has been done by Hart F. Smith.



CHAPTER IV

CHARACTERIZATION OF HÖLDER REGULARITY

WITH THE CONTINUOUS CURVELET AND SIMILAR

TRANSFORM

A classical tool for measuring the Hölder regularity of a function f is to look at the asymp-

totic decay of its Fourier transform f̂ . One can prove that a bounded function f is uniformly

Hölder exponent α over R if
∫∞
−∞ |f̂(ω)| (1 + |ω|α) dω <∞. This condition is sufficient but

not necessary. It gives a global regularity condition over the whole real line but from this

condition, one can not determine whether the function is locally more regular at a partic-

ular point x0. This is because the Fourier transform unlocalizes the information along the

spatial variable x. The Fourier transform is therefore not well adapted to measure the local

Hölder regularity of functions. As an efficient mathematical microscope, wavelets has been

one of the better tools for analyzing regularity of functions. Holschneider and Tchamitchian

[4] have given chacterizations of uniform and pointwise Hölder regularity of functions. See

also [3,5,6,7,8]. It says roughly that a function has Hölder regularity with exponent α if

and only if its wavelet transform satisfies a corresponding bound condition across scales.

In Section 1, we show how the uniform and pointwise Hölder regularity of a function can

be characterized by its ridgelet transform. Similar characterizations by the Smith transform

are given in Section 2. We then give bounds of the continuous curvelet transform of uni-

form and pointwise Hölder continuous functions in Section 3. Since the system of functions

used in the ridgelet transform depends on the direction parameter, it is belived that this

transform can be adapted to studying the directional regularity. So in the last section we

give some idea of the directional regularity and use it to analyze the bounds of the ridgelet

transform.
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4.1 Characterizations of Hölder Regularity by The Ridgelet

Transform

Let α > 0 and k = [α]. We pick a smooth univariate wavelet-type function ψ : R → R

satisfying the following smoothness, decaying and oscillating properties

|ψ(i)(x)| ≤ C(1 + |x|)−k−2 for i = 0, 1, ..., k + 1 for some constant C > 0,∫
R2

xjψ(x) dx = 0 for j = 0, ..., k,

and ∫ ∞

0

|ψ̂(ξ)|2

|ξ|2
dξ = 1 with ψ̂(ξ) = 0 if ξ < 0.

This wavelet-type function ψ gives rise to the ridgelet transform used to analyze uniform and

pointwise Hölder regularity of functions. In this section, we show how to analyze uniform

and poinwise Hölder regularity by the ridgelet transform. Generally speaking, the amount

of uniform and pointwise regularity of a function is reflected in its ridgelet transform by the

decrease of the ridgelet coefficients at small scales as shown by the following theorem.

Theorem 4.1. If f : R2 → R has compact support and uniform Hölder exponent α ∈ (0, 1]

on R2, then there is a constant C > 0 such that |R(f)(a, b, θ)| ≤ Caα+ 1
2 for all a > 0, b ∈ R,

and θ ∈ [0, 2π).

Proof. We write the ridgelet transform in terms of the Radon transform,

|R(f)(a, b, θ)| =
∣∣∣∣ 1√
a

∫
R2

f(t cos θ − s sin θ, t sin θ + s cos θ)ψ
(
t− b

a

)
ds dt

∣∣∣∣
=
∣∣∣∣ 1√
a

∫
R
ψ

(
t− b

a

)(∫
R
f(Rθ(t, s)) ds

)
dt

∣∣∣∣ .
Since f is compactly supported and

∫
R
ψ(x) dx = 0 we have

|R(f)(a, b, θ)| =
∣∣∣∣ 1√
a

∫
R
ψ

(
t− b

a

)∫
R
f(Rθ(t, s)) ds dt−

1√
a

∫
R
ψ

(
t− b

a

)∫
R
f(Rθ(b, s)) ds dt

∣∣∣∣
≤ 1√

a

∫
R

∣∣∣∣ψ( t− b

a

)∣∣∣∣ |Rθf(t)−Rθf(b)| dt.
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Since f is Hölder continuous with exponent α and supp(f) ⊆ [−R,R] × [−R,R] for some

R <∞, we can bound |Rθf(t)−Rθf(b)| by

|Rθf(t)−Rθf(b)| ≤
∫

R
|f(Rθ(t, s))− f(Rθ(b, s))| ds

≤
∫ 2R

−2R
C ‖((t− b) cos θ, (t− b) sin θ)‖α ds

= C

∫ 2R

−2R

[
((t− b) cos θ)2 + ((t− b) sin θ)2

]α
2
ds

= C

∫ 2R

−2R
|t− b|α ds

= C |t− b|α
∫ 2R

−2R
1α ds

= C ′ |t− b|α .

Thus we have

|R(f)(a, b, θ)| ≤ 1√
a

∫
R

∣∣∣∣ψ( t− b

a

)∣∣∣∣C ′|t− b|α dt

= C ′aα−
1
2
+1

∫
R
|ψ (y)| |y|α dy

= C ′′aα+ 1
2

since the last integral is finite as a result of the decay condition on ψ.

The following is a converse theorem.

Theorem 4.2. Suppose that ψ is compactly supported. Suppose also that f ∈ L1(R) is

bounded, continuous, and compactly supported. If, for some α ∈ (0, 1), there is a constant

C > 0 such that |R(f)(a, b, θ)| ≤ C|a|α+ 3
2 for all a > 0, b ∈ R, and θ ∈ [0, 2π), then f is

Hölder continuous with exponent α.

Proof. Let x̄, h̄ ∈ R2. By the reconstruction formula of ridgelet transform we have

f(x̄) =
1
Kψ

∫ ∞

−∞

∫
S1

∫ ∞

−∞
R(f)(a, b, θ)

1√
a
ψ

(
x̄ · ū− b

a

)
σ2 db dū

da

a3

where ū = (cos θ, sin θ) belongs to S1. Note that Kψ = 1 and σ2 is the surface area of S1.

We will split integral over a into two parts, |a| ≤ 1 and |a| ≥ 1, and call the two terms fSS
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(small scale) and fLS (large scales). First of all, note that fLS is bounded uniformly in x̄

as a simple change of variable and integrability of ψ yield:

|fLS(x̄)| ≤ C

∫ ∞

1

∫
S1

∫ ∞

−∞
|R(f)(a, b, θ)| 1√

a

∣∣∣∣ψ( x̄ · ū− b

a

)∣∣∣∣ db dū daa3

= C

∫ ∞

1

∫
S1

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞

1√
a
ψ

(
t− b

a

)
Rθf(t) dt

∣∣∣∣ 1√
a

∣∣∣∣ψ( x̄ · ū− b

a

)∣∣∣∣ db dū daa3

≤ C

∫ ∞

1

1
a

∫
S1

∫ ∞

−∞

[∫ ∞

−∞

∣∣∣∣ψ( t− b

a

)∣∣∣∣ |Rθf(t)| dt
] ∣∣∣∣ψ( x̄ · ū− b

a

)∣∣∣∣ db dū daa3

≤ C

∫ ∞

1

∫
S1

∫ ∞

−∞
a−3−1+ 1

2 ‖ψ‖2 ‖Rθf‖2

∣∣∣∣ψ( x̄ · ū− b

a

)∣∣∣∣ db dū da.
Since f has compact support, we have ‖Rθf‖2 ≤ ‖f‖2. So the integrability of ψ and f yield

|fLS(x̄)| ≤ C

∫ ∞

1

∫
S1

∫ ∞

−∞
a−

7
2 ‖ψ‖2 ‖f‖2

∣∣∣∣ψ( x̄ · ū− b

a

)∣∣∣∣ db dū da
= C ′

∫ ∞

1
a−

7
2
+1

∫
S1

∫ ∞

−∞
|ψ(y)| dy dū da

= C ′′
∫ ∞

1
a−

5
2 da

= C ′′
[
a−

3
2

]∞
1

= C ′′′ <∞.

Next, we show |fLS(x̄+ h̄)− fLS(x̄)| ≤ C
∥∥h̄∥∥α for

∥∥h̄∥∥ ≤ 1;

|fLS(x̄+ h̄)− fLS(x̄)| ≤ C

∫ ∞

1

∫
S1

∫ ∞

−∞
|R(f)(a, b, θ)| 1√

a∣∣∣∣ψ( x̄ · ū− b

a

)
− ψ

(
(x̄+ h̄) · ū− b

a

)∣∣∣∣ db dū daa3

≤ C

∫ ∞

1

∫
S1

∫ ∞

−∞
a−

1
2
− 1

2
−3

∫ ∞

−∞
|ψ(

t− b

a
)| |Rθf(t)| dt∣∣∣∣ψ( x̄ · ū− b

a

)
− ψ

(
(x̄+ h̄) · ū− b

a

)∣∣∣∣ db dū da (1)

Since ψ is differentiable everywhere with uniformly bounded derivative, there is a constant

C such that |ψ(x)− ψ(y)| ≤ C |x− y| for all x, y ∈ R. Consequently,∣∣∣∣ψ( x̄ · ū− b

a

)
− ψ

(
(x̄+ h̄) · ū− b

a

)∣∣∣∣ ≤ C

∣∣∣∣ x̄ · ū− b

a
− (x̄+ h̄) · ū− b

a

∣∣∣∣
= C

∣∣∣∣ h̄ · ūa
∣∣∣∣

≤ C

∥∥h̄∥∥
a
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and, since supp(ψ) ⊆ [−M,M ] for some M <∞, if ψ
(

(x̄+h̄)·ū−b
a

)
6= 0 then∣∣∣∣(x̄+ h̄) · ū− b

a

∣∣∣∣ ≤M

which implies that |x̄ · ū−b|− |h̄ · ū| ≤ aM and hence |x̄ · ū−b| ≤ aM+ |h̄ · ū| ≤ aM+
∥∥h̄∥∥ ≤

aM + 1. ‖Rθf(t)‖2 ≤ ‖f‖2 since f is compact support, we can bound (1) by

(1) ≤ C ′
∫ ∞

1

∫
S1

a−4

∫
|x̄·ū−b|≤aM+1

(∫
|t−b|≤aM

|ψ(
t− b

a
)| |Rθf(t)| dt

) ∥∥h̄∥∥
a

db dū da

= C ′ ∥∥h̄∥∥∫ ∞

1

∫
S1

a−5

∫
|x̄·ū−t|≤2aM+1

(∫
|x̄·ū−b|≤aM+1

|ψ(
t− b

a
)| db

)
|Rθf(t)| dt dū da

≤ C ′′ ∥∥h̄∥∥∫ ∞

1

∫
S1

a−5+1

∫
|x̄·ū−t|≤2aM+1

|Rθf(t)| dt dū da

≤ C ′′′ ∥∥h̄∥∥ ‖Rθf(t)‖2

∫ ∞

1
a−4

(∫
|x̄·ū−t|≤2aM+1

1 dt

) 1
2

da

≤ C ′′′ ∥∥h̄∥∥ ‖f‖2

∫ ∞

1
a−4

√
2aM + 1 da

≤ C ′′′′ ∥∥h̄∥∥α .
This estimate holds for all

∥∥h̄∥∥ ≤ 1. Hence, together with uniformly boundedness of fLS ,

we conclude that |fLS(x̄+ h̄)− fLS(h̄)| ≤ C
∥∥h̄∥∥α for all h̄, uniformly in x̄.

Next, by the assumption on the decay of the ridgelet transform of f , the small scale part

fSS is also uniformly bounded as a simple change of variable, and integrability of ψ yield

|fSS(x)| ≤
∫ 1

0

∫
S1

∫ ∞

−∞

1√
a
|R(f)(a, b, θ)|

∣∣∣∣ψ( x̄ · ū− b

a

)∣∣∣∣ db dū daa3

≤ C

∫ 1

0

∫
S1

∫ ∞

−∞
aα+ 3

2
− 1

2
−3

∣∣∣∣ψ( x̄ · ū− b

a

)∣∣∣∣ db dū da
= C

∫ 1

0
aα−2+1

(∫ ∞

−∞
|ψ(y)| dy

)
da

= C

∫ 1

0
aα−1 da

= C

[
aα

α

]1

0

= C <∞.

Finally, we again only have to check |fSS(x̄+h̄)−fSS(x̄)| ≤ C
∥∥h̄∥∥α for small h̄, say

∥∥h̄∥∥ ≤ 1.

We apply the asummed inequality on the ridgelet transform and split the integral into fine
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and coarse scale ranges,

|fSS(x̄+ h̄)− fSS(x̄)|

≤
∫ 1

0

∫
S1

∫ ∞

−∞

1√
a
|R(f)(a, b, θ)|

∣∣∣∣ψ( ū · (x̄+ h̄)− b

a

)
− ψ

(
ū · x̄− b

a

)∣∣∣∣ db dū daa3

≤ C

∫ 1

0

∫
S1

∫ ∞

−∞
aα+ 3

2
− 1

2
−3

∣∣∣∣ψ( ū · (x̄+ h̄)− b

a

)
− ψ

(
ū · x̄− b

a

)∣∣∣∣ db dū da
≤ C

∫ ‖h̄‖
0

∫
S1

∫ ∞

−∞
aα−2

∣∣∣∣ψ( ū · (x̄+ h̄)− b

a

)∣∣∣∣+ ∣∣∣∣ψ( ū · x̄− b

a

)∣∣∣∣ db dū da
+ C

∫ 1

‖h̄‖

∫
S1

∫ ∞

−∞
aα−2

∣∣∣∣ψ( ū · (x̄+ h̄)− b

a

)
− ψ

(
ū · x̄− b

a

)∣∣∣∣ db dū da. (2)

By the decay condition of ψ and its is differentiability everywhere with uniformly bounded

derivative, there is a constant C > 0 such that |ψ(x) − ψ(y)| ≤ C |x− y| for all x, y ∈ R.

Also, since supp(ψ) ⊆ [−M,M ], we can bound (2) by

(2) ≤ C

∫ ‖h̄‖
0

∫
S1

aα−2+1 ‖ψ‖1 dū da

+ C

∫ 1

‖h̄‖

∫
S1

∫
|ū·x̄−b|≤aM+‖h̄‖

aα−2

∥∥h̄∥∥
a

db dū da

≤ C ′
∫ ‖h̄‖

0
aα−1 da+ C ′′ ∥∥h̄∥∥∫ 1

‖h̄‖
aα−3

∫
|ū·x̄−b|≤aM+‖h̄‖

1 db da

≤ C ′
∫ ‖h̄‖

0
aα−1 da+ C ′′ ∥∥h̄∥∥∫ 1

‖h̄‖
aα−3

(
aM +

∥∥h̄∥∥) da
= C ′

[
aα

α

]‖h̄‖
0

+ C ′′ ∥∥h̄∥∥[Maα−1

α− 1
+

∥∥h̄∥∥ aα−2

α− 2

]1

‖h̄‖

= C ′′′ ∥∥h̄∥∥α + C ′′ ∥∥h̄∥∥[ M

α− 1
+

∥∥h̄∥∥
α− 2

−
∥∥h̄∥∥α−1

M

α− 1
+

∥∥h̄∥∥∥∥h̄∥∥α−2

α− 2

]

= C ′′′ ∥∥h̄∥∥α + C ′′ ∥∥h̄∥∥α [ M

1− α

(
1−

∥∥h̄∥∥1−α
)

+
1

2− α
(1−

∥∥h̄∥∥2−α)
]

≤ C ′′′′ ∥∥h̄∥∥α .
Since this holds for all

∥∥h̄∥∥ ≤ 1, which, together with the uniformly boundedness of fSS ,

we conclude that |fSS(x̄+ h̄)− fSS(h̄)| ≤ C
∥∥h̄∥∥α for all h̄, uniformly in x̄. It follows that

f is Hölder continuous with exponent α.

Theorems 4.1 and 4.2 give a necessary condition and a suffficient condition for a function
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to be in Cα(R2) in terms of its ridgelet transform, respectively. The last two theorems in

this section provide a characterization of pointwise regularity by the same transform.

Theorem 4.3. If f is compactly supported and Hölder continuous at x̄0 with exponent

α ∈ (0, 1), then there is a constant C > 0 for which

|R(f)(a, b, θ)| ≤ Ca
1
2 (aα + |b− ū · x̄0|α + 1) for all a > 0, b ∈ R, and θ ∈ [0, 2π)

where ū is the unit vecter forming the angle θ radians counter clockwise with the positive

x-axis, i.e. ū = (cos θ, sin θ).

Proof. By translating everything we assume that x̄0 = 0̄. Using the assumptions
∫
ψ(y) dy =

0 that is
∫
ψa,b,θ(x) dx = 0 for all a > 0, b ∈ R, θ ∈ [0, 2π), and that f has Hölder continuous

at x0 with exponent α, we have

|R(f)(a, b, θ)| ≤
∫

R2

1√
a

∣∣∣∣ψ( x̄ · ū− b

a

)∣∣∣∣ |f(x̄)− f(0̄)| dx̄

≤
∫

R2

1√
a

∣∣∣∣ψ( x̄ · ū− b

a

)∣∣∣∣C ‖x̄‖α dx̄
= C

∫ ∞

−∞

∫ ∞

−∞

1√
a

∣∣∣∣ψ(x1 cos θ + x2 sin θ − b

a

)∣∣∣∣ (x2
1 + x2

2

)α
2 dx1 dx2.

Put x1 = t cos θ − s sin θ and x2 = t sin θ + s cos θ and, using the assumption that f is

compactly supported, we have

|R(f)(a, b, θ)| ≤ C

∫ ∞

−∞

∫ M

−M

1√
a

∣∣∣∣ψ( t− b

a

)∣∣∣∣ (t2 + s2
)α

2 ds dt

≤ C

∫ ∞

−∞

∫ M

−M

1√
a

∣∣∣∣ψ( t− b

a

)∣∣∣∣ |t|α ds dt+ C

∫ ∞

−∞

∫ M

−M

1√
a

∣∣∣∣ψ( t− b

a

)∣∣∣∣ |s|α ds dt
= C

∫ M

−M

∫ ∞

−∞

1√
a
a |ψ (y)| |ay + b|α dy ds+ C

∫ M

−M

∫ ∞

−∞

1√
a
a |ψ(y)| |s|α dy ds

≤ C

∫ M

−M

∫ ∞

−∞
a

1
2 |ψ (y)| (|ay|α + |b|α) dy ds+ C

∫ M

−M

∫ ∞

−∞
a

1
2 |ψ (y)| |s|α dy ds

≤ C ′a
1
2 ((a)α + |b|α)

∫ M

−M
1 ds+ C ′a

1
2

∫ M

−M
|s|α ds

≤ C ′′a
1
2 (aα + |b|α + 1),

where we have used the integrability of
∫
|ψ(y)||y|α dy and

∫
|ψ(y)| dy .
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We can see that the amount of pointwise Hölder regularity of function is reflected in

its ridgelet transform by the decrease of the ridgelet transform at small scales. However,

the decay dose not depend on the exponent α of a. In Section 5.4, we shall obtain a better

bound by means of directional regularity.

However, we can characterize the pointwise Hölder regularity of function by the ridgelet

transform in the following theorem.

Theorem 4.4. Suppose that ψ is compactly supported and suppose also that f ∈ L1(R2) is

bounded and continuous. If, for some β ∈ (0, 1), there is a constant C > 0 such that

|R(f)(a, b, θ)| ≤ Caβ+ 3
2 for all a > 0, b ∈ R and θ ∈ [0, 2π),

and for some α ∈ (0, 1), there is a constant C > 0 for which

|R(f)(a, b, θ)| ≤ Ca
3
2

(
aα +

|b− x̄0 · ū|α

|log |b− x̄0 · ū||

)
for all a > 0, b ∈ R and θ ∈ [0, 2π)

where ū is the unit vecter forming the angle θ radians counter clockwise with the positive

x-axis, i.e., ū = (cos θ, sin θ), then f is Hölder continuous with exponent α at x̄0.

Proof. We will split the integral over a into two parts, a ≤ 1 and a > 1, and call the two

terms fSS (small scale) and fLS (large scale). Clearly the large part fLS is always regular.

See the proof of the large scale part of Theorem 4.2. Thus we start the proof by showing

that fSS is bound for each x̄ ∈ R2.

|fSS(x̄)| ≤
∫
a≤1

∫
S1

∫
R
|R(f)(a, b, θ)| 1√

a

∣∣∣∣ψ( x̄ · ū− b

a

)∣∣∣∣ db dū daa3

≤ C

∫
a≤1

∫
S1

∫
R
aβ+ 3

2
− 1

2
−3

∣∣∣∣ψ( x̄ · ū− b

a

)∣∣∣∣ db dū da
= C

∫
a≤1

∫
S1

∫
R
aβ−2+1 |ψ (y)| dy dū da

= C ′
∫
a≤1

aβ−1 da

= C ′
[
aβ

β

]1

0

= C ′′ <∞.
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We therefore only have to check |fSS(x̄0 + h̄)−fSS(x̄0)| ≤ C
∥∥h̄∥∥α for small h, say

∥∥h̄∥∥ ≤ 1.

By an overall translation and dilation which does not change the local regularity of f , we

may suppose that the support of ψ is contained in [−R,R] for some 0 < R ≤ 1
2 and assume

x̄0 = 0̄. We then obtain

|fSS(h̄)− fSS(0̄)|

≤
∫
a≤1

∫
S1

∫
R
|R(f)(a, b, θ)| 1√

a

∣∣∣∣ψ( h̄ · ū− b

a

)
− ψ

(
−b
a

)∣∣∣∣ db dū daa3

≤
∫ ‖h̄‖α

β

0

∫
S1

∫
R
|R(f)(a, b, θ)| 1√

a

∣∣∣∣ψ( h̄ · ū− b

a

)∣∣∣∣ db dū daa3

+
∫ ‖h̄‖
‖h̄‖

α
β

∫
S1

∫
R
|R(f)(a, b, θ)| 1√

a

∣∣∣∣ψ( h̄ · ū− b

a

)∣∣∣∣ db dū daa3

+
∫ ‖h̄‖

0

∫
S1

∫
R
|R(f)(a, b, θ)| 1√

a

∣∣∣∣ψ(−ba
)∣∣∣∣ db dū daa3

+
∫ 1

‖h̄‖

∫
S1

∫
R
|R(f)(a, b, θ)| 1√

a

∣∣∣∣ψ( h̄ · ū− b

a

)
− ψ

(
−b
a

)∣∣∣∣ db dū daa3

where we have assumed α > β. (If α ≤ β, since f is Hölder continuous with exponent β,

it is Hölder continuous with exponent α). Let us denote the four terms on the right-hand

side of inequality by T1, T2, T3, and T4, respectively.

Using the uniform Hölder continuous of f we have |R(f)(a, b, θ)| ≤ Caβ+ 3
2 which leads to

T1 ≤ C

∫ ‖h̄‖α
β

0

∫
S1

∫
R
aβ+ 3

2
− 1

2
−3

∣∣∣∣ψ( h̄ · ū− b

a

)∣∣∣∣ db dū da
= C

∫ ‖h̄‖α
β

0

∫
S1

∫
R
aβ−2+1 |ψ (y)| dy dū da

= C ′
∫ ‖h̄‖α

β

0
aβ−1

(∫
R
|ψ (y)| dy

)
da

= C ′′
∫ ‖h̄‖α

β

0
aβ−1 da

= C ′′
[
aβ

β

]‖h̄‖α
β

0

= C ′′′ ∥∥h̄∥∥α .
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By the assumption, we get

T2 ≤ C

∫ ‖h̄‖
‖h̄‖

α
β

∫
S1

∫
R
a

3
2
− 1

2
−3

(
aα +

|b|α

|log |b||

) ∣∣∣∣ψ( h̄ · ū− b

a

)∣∣∣∣ db dū da
= C

∫ ‖h̄‖
‖h̄‖

α
β

∫
S1

∫
R
aα−2

∣∣∣∣ψ( h̄ · ū− b

a

)∣∣∣∣ db dū da
+ C

∫ ‖h̄‖
‖h̄‖

α
β

∫
S1

∫
R
a−2 |b|α

|log |b||

∣∣∣∣ψ( h̄ · ū− b

a

)∣∣∣∣ db dū da.
After a simple change of variable y =

h̄ · ū− b

a
in both terms, and for the second term,

since supp(ψ) ⊆ [−R,R], we have |b| ≤ aR +
∥∥h̄∥∥ and then |b| ≤ (R + 1)

∥∥h̄∥∥ because we

have under the integral a ≤
∥∥h̄∥∥. For sufficiently small

∥∥h̄∥∥,
T2 ≤ C

∫ ‖h̄‖
0

∫
S1

∫
R
aα−2+1 |ψ (y)| d dū da

+ C

∫ ‖h̄‖
‖h̄‖

α
β

∫
S1

∫
R
a−2+1 (R+ 1)α

∥∥h̄∥∥α∣∣log(R+ 1)
∥∥h̄∥∥∣∣ |ψ (y)| dy dū da.

Since ψ ∈ L1(R), we obtain that

T2 ≤ C ′ ∥∥h̄∥∥α + C ′′
∫ ‖h̄‖
‖h̄‖

α
β

a−1 (R+ 1)α
∥∥h̄∥∥α∣∣log((R+ 1)
∥∥h̄∥∥)∣∣ da.

For sufficiently small
∥∥h̄∥∥,
T2 ≤ C ′ ∥∥h̄∥∥α + C ′′′

∫ ‖h̄‖
‖h̄‖

α
β

a−1

∥∥h̄∥∥α∣∣log
∥∥h̄∥∥∣∣ da

= C ′ ∥∥h̄∥∥α + C ′′′
∥∥h̄∥∥α

| log
∥∥h̄∥∥ | [log

∥∥h̄∥∥− log
∥∥h̄∥∥α

β

]
= C ′ ∥∥h̄∥∥α + C ′′′ ∥∥h̄∥∥α [1− log

∥∥h̄∥∥α
β

| log
∥∥h̄∥∥ |

]
.

For the second term, we can see that costant > 0. Thus T2 ≤ C
∥∥h̄∥∥α.

By the assumption,

T3 ≤ C

∫ ‖h̄‖
0

∫
S1

∫
R
a

3
2
− 1

2
−3

(
aα +

|b|α

|log |b||

) ∣∣∣∣ψ(−ba
)∣∣∣∣ db dū da

= C

∫ ‖h̄‖
0

∫
S1

∫
R
aα−2

∣∣∣∣ψ(−ba
)∣∣∣∣ db dū da

+ C

∫ ‖h̄‖
0

∫
S1

∫
R
a−2 |b|α

|log |b||

∣∣∣∣ψ(−ba
)∣∣∣∣ db dū da.
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After a simple change of variable y =
−b
a

in both terms, and for the second term, since

supp(ψ) ⊆ [−R,R], we have |b| ≤ aR and then |b| ≤ R
∥∥h̄∥∥ because we have under the

integral a ≤
∥∥h̄∥∥. For sufficiently small

∥∥h̄∥∥,
T3 ≤ C ′

∫ ‖h̄‖
0

aα−1 da+ C ′′
∫ ‖h̄‖

0

∫
R
a−2+1 (aR)α

|log(aR)|
|ψ (y)| dy da.

Since ψ ∈ L1(R) and for sufficiently small
∥∥h̄∥∥, we obtain that

T3 ≤ C ′ ∥∥h̄∥∥α + C ′′′
∫ ‖h̄‖

0

aα−1

| log(
∥∥h̄∥∥)| da

≤ C ′ ∥∥h̄∥∥α + C ′′′
∫ ‖h̄‖

0
aα−1 da

≤ C ′ ∥∥h̄∥∥α + C ′′′

[∥∥h̄∥∥α
α

]

≤ C
∥∥h̄∥∥α .

Finally, by assumption, we derive

T4 ≤ C

∫ 1

‖h̄‖

∫
S1

∫
R
a

3
2
− 1

2
−3

(
aα +

|b|α

| log |b||

) ∣∣∣∣ψ( h̄ · ū− b

a

)
− ψ

(
−b
a

)∣∣∣∣ db dū da.
Since ψ is differentiable everywhere so there is a constant C > 0 such that∣∣∣∣ψ( h̄ · ū− b

a

)
− ψ

(
−b
a

)∣∣∣∣ ≤ C

∣∣∣∣ h̄ · ūa
∣∣∣∣ ≤ C

∥∥h̄∥∥
a

and, also, since supp(ψ) ⊆ [−R,R] we have |b| ≤ aR+
∥∥h̄∥∥, we can bound T4 by

T4 ≤ C

∫ 1

‖h̄‖

∫
S1

∫
|b|≤aR+‖h̄‖

a−2

(
aα +

(aR+
∥∥h̄∥∥)α

| log(aR+
∥∥h̄∥∥)|

) ∥∥h̄∥∥
a

db dū da

= C ′ ∥∥h̄∥∥∫ 1

‖h̄‖
a−3

(
aα +

(aR+
∥∥h̄∥∥)α

| log(aR+
∥∥h̄∥∥)|

)
(aR+

∥∥h̄∥∥) da.
This integral runs over

∥∥h̄∥∥ ≤ a ≤ 1, we get

T4 ≤ C ′ ∥∥h̄∥∥∫ 1

‖h̄‖
a−3

(
aα +

aα(R+ 1)α

| log(
∥∥h̄∥∥)|

)
(aR+

∥∥h̄∥∥) da.
≤ C ′′ ∥∥h̄∥∥∫ 1

‖h̄‖
a−3

(
aα +

aα

| log(
∥∥h̄∥∥)|

)
(aR+

∥∥h̄∥∥) da.
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For sufficiently small
∥∥h̄∥∥,

T4 ≤ C ′′′ ∥∥h̄∥∥∫ 1

‖h̄‖
aα−3(aR+

∥∥h̄∥∥) da
≤ C ′′′′ ∥∥h̄∥∥[∫ 1

‖h̄‖
aα−2 da+

∫ 1

‖h̄‖
aα−3

∥∥h̄∥∥ da]

= C ′′′′ ∥∥h̄∥∥( 1
α− 1

−
∥∥h̄∥∥α−1

α− 1
+

∥∥h̄∥∥
α− 2

−
∥∥h̄∥∥α−1

α− 2

)

= C ′′′′ ∥∥h̄∥∥α(1−
∥∥h̄∥∥1−α

1− α
+

1−
∥∥h̄∥∥2−α

2− α

)

= C ′′′′′ ∥∥h̄∥∥α .
Thus |fSS(h̄)−fSS(0̄)| ≤ C

∥∥h̄∥∥α for
∥∥h̄∥∥ ≤ 1. Together with the bound of fSS , we conclude

that |fSS(h̄)− fSS(0̄)| ≤ C
∥∥h̄∥∥α for all h̄ ∈ R2. It follows that f is Hölder continuous at 0̄

and hence at any x̄0, with exponent α.

4.2 Characterization of Hölder Regularity by The Smith Trans-

form

Partial derivative of function f : Rd → R is denoted by ∂νf = ∂ν11 ∂
ν2
2 ...∂

νd
d f where ∂i means

the partial derivative with respect to the ith-coordinate and the index ν = (ν1, ν2, ..., νd) ∈

Nd
0 with |ν| = ν1 + ν2 + ...+ νd. We pick a wavelet-type function ϕ ∈ L2(R2) is compactly

supported function obeying

|∂νϕ(x̄)| ≤ C(1 + ‖x̄‖)−2 for |ν| ≤ 2, x̄ ∈ R2

and
∫
ϕab̄θ(x̄) dx̄ = 0 for all 0 < a ≤ a0, b ∈ R2, and θ ∈ [0, 2π). This wavelet-type function

ψ gives rise to the smith transform used to analyze Uniform and poinwise Hölder regularity

of functions.

In this section we show how to analyze uniform and pointwise Hölder regularity by

Smith transform. Generally speaking the amount of uniform and pointwise regularity of a

function is reflected in its Smith transform by the decrease of the Smith transform at small

scales as shown by the following theorem.
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Theorem 4.5. If a bounded function f ∈ L2(R2) has Hölder continuous exponent α for

some 0 < α < 1, then there is a constant C > 0 such that

|Γf (a, b̄, θ)| ≤ Ca
α
2
+ 3

4 for all 0 < a < 1, b̄ ∈ R2, and θ ∈ [0, 2π).

Proof. We have

|Γf (a, b̄, θ)| =
∣∣∣∣∫

R2

ϕ
(
D 1

a
R−θ(x̄− b̄)

)
f(x̄) dx̄

∣∣∣∣
=
∣∣∣∣∫

R2

a−
3
4ϕ (y1, y2) f(x1, x2) dx

∣∣∣∣
where y1 = 1

a ((x1 − b1) cos θ + (x2 − b2) sin θ) and y2 = 1√
a

(−(x1 − b1) sin θ + (x2 − b2) cos θ).

A simple change of variable yields

|Γf (a, b̄, θ)| ≤
∫

R2

a−
3
4
+ 3

2 |ϕ(y1, y2)|

|f(ay1 cos θ −
√
ay2 sin θ + b1, ay1 sin θ +

√
ay2 cos θ + b2)| dy1 dy2.

Since
∫
ϕ(x̄) dx̄ = 0, we apply the uniform Hölder regularity of f and get

|Γf (a, b̄, θ)| ≤
∫

R2

a−
3
4
+ 3

2 |ϕ(y1, y2)|

|f(ay1 cos θ −
√
ay2 sin θ + b1, ay1 sin θ +

√
ay2 cos θ + b2)− f(b1, b2)| dy1 dy2

≤ C

∫
R2

a−
3
4
+ 3

2 |ϕ(y1, y2)|∥∥ay1 cos θ −
√
ay2 sin θ, ay1 sin θ +

√
ay2 cos θ

∥∥α dy1 dy2

=
∫

R2

a−
3
4
+ 3

2 |ϕ(y1, y2)|
(
a2y2

1 + ay2
2

)α
2 dy1 dy2

= Ca
α
2
+ 3

4

∫
R2

|ϕ(ȳ)|
(
ay2

1 + y2
2

)α
2 dȳ

≤ Ca
α
2
+ 3

4

∫
R2

|ϕ(ȳ)| ‖ȳ‖α dȳ.

Since the last integral is finite as a result of the decay condition on ϕ, we get

|Γf (a, b, θ)| ≤ C ′a
α
2
+ 3

4 .

The following is a converse theorem.
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Theorem 4.6. If, for some α ∈ (0, 1), there is a Fourier multiplier M of order 0 so that

whenever f ∈ L2(R2) is a high-frequency function supported in frequency space
∥∥ξ̄∥∥ > 2

a0

and a constant C > 0 for which

|〈ϕab̄θ,Mf〉| ≤ C ′a
α
2
+ 9

4 for all 0 < a < a0, b̄ ∈ R2 and θ ∈ [0, 2π),

then f is Hölder continuous with exponent α.

Proof. Without loss of generality, we suppose that a0 = 1 (otherwise is always see the proof

of the large scale part of Theorem 4.2). First of all, note that f is bounded uniformly in x

as the decay of Smith transform, a simple change of variable and integrability of ϕ yield

|f(x̄)| ≤
∫ 1

0

∫ 2π

0

∫
R
|〈ϕab̄θ,Mf〉|

∣∣ϕa,b̄,θ(x̄)∣∣ db̄ dθ daa3

≤ C

∫ 1

0

∫ 2π

0

∫
R
a

α
2
+ 9

4a−
3
4

∣∣∣ϕ(D 1
a
R−θ(x̄− b̄)

)∣∣∣ db̄ dθ da
a3

C

∫ 1

0

∫ 2π

0

∫
R
a

α
2
+ 3

2
+ 3

2
−3 |ϕ (ȳ)| dȳ dθ da

= C ′
∫ 1

0
a

α
2 da

= C ′
[

2
2 + α

]
= C ′′ < ∞.

Let x̄, x̄0 ∈ R2. Next, we look at |f(x̄)− f(x̄0)| ≤ C ‖x̄− x̄0‖α for |x̄− x̄0| ≤ 1. We apply

the inequality of Smith transform bounds and split the integral into fine and coarse scale

ranges.

|f(x̄)− f(x̄0)| ≤
∫ 1

0

∫ 2π

0

∫
R

∣∣〈ϕa,b̄,θ,Mf
〉∣∣ ∣∣ϕa,b̄,θ(x̄)− ϕa,b̄,θ(x̄0)

∣∣ db̄ dθ da
a3

≤ C

∫ 1

0

∫ 2π

0

∫
R
a

α
2
+ 9

4

∣∣ϕa,b̄,θ(x̄)− ϕa,b̄,θ(x̄0)
∣∣ db̄ dθ da

a3

≤ C

∫ ‖x̄−x̄0‖2

0

∫ 2π

0

∫
R
a

α
2
+ 9

4

∣∣ϕa,b̄,θ(x̄)∣∣+ ∣∣ϕa,b̄,θ(x̄0)
∣∣ db̄ dθ da

a3

+ C

∫ 1

‖x̄−x̄0‖2

∫ 2π

0

∫
R
a

α
2
+ 9

4

∣∣ϕa,b̄,θ(x̄)− ϕa,b̄,θ(x̄0)
∣∣ db̄ dθ da

a3
. (3)

By the decay condition of ϕ and all its first and second derivatives, ϕ is differentiable

everywhere with uniformly bounded gradients and so there is a constant C > 0 such that
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|ϕ(x̄)−ϕ(x̄0)| ≤ C ‖x̄− x̄0‖. Also, since supp(ϕ) is contained in a ball of radius R for some

R > 0, we can bound (3) by

(3) ≤ C

∫ ‖x̄−x̄0‖2

0

∫ 2π

0

∫
R
a

α
2
+ 9

4
− 3

4
+ 3

2 |ϕ(ȳ)| dȳ dθ da
a3

+ C

∫ 1

‖x̄−x̄0‖2

∫ 2π

0

∫
‖x̄−b̄‖≤√aR+‖x̄−x̄0‖

a
α
2
+ 9

4
− 3

4
−1 ‖x̄− x̄0‖ db̄ dθ

da

a3

= C ′
∫ ‖x̄−x̄0‖

0
a

α
2 da+ C ′′ ‖x̄− x̄0‖

∫ 1

‖x̄−x̄0‖2
a

α
2
− 5

2

∫
‖x̄−b̄‖≤√aR+‖x̄−x̄0‖

db̄ da

= C ′′′ ‖x̄− x̄0‖α+2

+ C ′′ ‖x̄− x̄0‖
∫ 1

‖x̄−x̄0‖2
a

α
2
− 5

2π(
√
aR+ ‖x̄− x̄0‖)2 da

= C ′′′ ‖x̄− x̄0‖α+2 + C ′′ ‖x̄− x̄0‖

[
1

α− 1
+
‖x̄− x̄0‖
α− 2

+
‖x̄− x̄0‖2

α− 3

]

− C ′′ ‖x̄− x̄0‖

[
‖x̄− x̄0‖α−1

α− 1
+
‖x̄− x̄0‖α−1

α− 2
+
‖x̄− x̄0‖α−1

α− 3

]

= C ′′′ ‖x̄− x̄0‖α+2

+ C ′′ ‖x̄− x̄0‖α
[

1− ‖x̄− x̄0‖1−α

1− α
+

1− ‖x̄− x̄0‖2−α

2− α
+

1− ‖x̄− x̄0‖3−α

3− α

]

≤ C ‖x̄− x̄0‖α .

This holds for all ‖x̄− x̄0‖ ≤ 1. Together with the uniform bounded of f in x̄, we conclude

that |f(x̄)− f(x̄0)| ≤ C ‖x̄− x̄0‖α for all x̄, x̄0 ∈ R2. Therefore f is Hölder continuous with

exponent α.

The pointwise (local) regularity of a function implies an equivalent local decrease of its

Smith transform at small scale as shown by the following theorem.

Theorem 4.7. If a bounded function f ∈ L2(R2) is Hölder continuous at x̄0 with exponent

α ∈ (0, 1), then there is a constant C > 0 such that

|Γ̄f (a, b̄, θ)| ≤ Ca
α
2
+ 3

4

(
1 +

∥∥b̄− x̄0

∥∥α
a

α
2

)
for all 0 < a ≤ 1, b̄ ∈ R2 and θ ∈ [0, 2π),

Proof. By translating everything we can assume that x̄0 = 0̄. Using the assumption that∫
ϕ(x̄) dx̄ = 0, i.e.,

∫
ϕa,b̄,θ(x̄) dx̄ = 0 for all 0 < a < 1, b̄ ∈ R2 and θ ∈ [0, 2π) and that f is
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Hölder regular at 0 with exponent α, we again have

|Γf (a, b̄+ 0̄, θ)| ≤
∫

R2

∣∣ϕa,b̄,θ(x̄)∣∣ |f(x̄)− f(0̄)| dx̄

≤ Ca−
3
4

∫
R2

∣∣∣ϕ(D 1
a
R−θ(x̄− b̄))

∣∣∣ ‖x̄− 0̄‖α dx̄

≤ Ca−
3
4

∫
R2

|ϕ(ȳ)|
(
a

1
2 ‖ȳ‖+

∥∥b̄∥∥)α a 3
2 dȳ

= Ca
α
2
+ 3

4

∫
R2

|ϕ(ȳ)|

(
‖ȳ‖+

∥∥b̄∥∥
a

1
2

)α
dȳ

≤ C ′a
α
2
+ 3

4

∫
R2

|ϕ(ȳ)|

(
‖ȳ‖α +

∥∥b̄∥∥α
a

α

2

)
dȳ

≤ C ′a
α
2
+ 3

4

(∫
R2

|ϕ(ȳ)| ‖ȳ‖α dȳ +
∫

R2

|ϕ(ȳ)|
∥∥b̄∥∥α
a

α

2

dȳ

)

= C ′′a
α
2
+ 3

4

(
1 +

∥∥b̄∥∥α
a

α

2

)
where we have used the integrability of |ϕ(ȳ)| ‖ȳ‖α and |ϕ(ȳ)| in the last inequality. Thus

|Γf (a, b̄+ x̄0, θ)| ≤ Ca
α
2
+ 3

4

(
1 +

∥∥b̄∥∥α
a

α

2

)
.

Therefore

|Γf (a, b̄, θ)| ≤ Ca
α
2
+ 3

4

(
1 +

∥∥b̄− x̄0

∥∥α
a

α

2

)
.

Above theorem shows that the Smith wavelet transform can also be used to characterize

local regularity. The following is a converse theorem.

Theorem 4.8. If, for some β > 0 and α ∈ (0, 1), there is a Fourier multiplier M of order

0 so that whenever f is a high-frequency function supported in frequency space
∥∥ξ̄∥∥ > 2

a0

and a constant C > 0, such that

|〈ϕab̄θ,Mf〉| ≤ Ca
β
2
+ 9

4 for 0 < a < a0 uniformly in b̄ ∈ R2

and there is a constant C > 0 for which

∣∣〈ϕa,b̄,θ,Mf
〉∣∣ ≤ Ca

α
2
+ 9

4

(
1 +

∥∥b̄− x̄0

∥∥α
a

α

2

)
for all 0 < a ≤ 1, b̄ ∈ R2 and θ ∈ [0, 2π),

then f is Hölder continuous at x̄0 with exponent α.
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Proof. First of all, note that f is bounded uniformly in x̄ as a simple change of variable

and integrability of ϕ yield

|f(x̄)| ≤
∫ 1

0

∫ 2π

0

∫
R

∣∣〈ϕa,b̄,θ,Mf
〉∣∣ ∣∣ϕa,b̄,θ(x̄)∣∣ db̄ dθ daa3

≤ C

∫ 1

0

∫ 2π

0

∫
R
a

α
2
+ 9

4a−
3
4

∣∣∣ϕ(D 1
a
Rθ(x̄− b̄)

)∣∣∣ db̄ dθ da
a3

= C

∫ 1

0

∫ 2π

0

∫
R
a

α
2
+ 3

2
+ 3

2
−3 |ϕ (ȳ)| dȳ dθ da

= C ′
∫ 1

0
a

β
2 da

= C ′
[

2
2 + β

]
≤ C ′′ < ∞.

We therefore only have to check |f(x̄0 + h̄)− f(x̄0)| ≤ C
∥∥h̄∥∥α for small h̄, i.e.

∥∥h̄∥∥ ≤ 1. By

translating everything, we can assume x̄0 = 0, and we obtain

|f(h̄)− f(0̄)| ≤
∫ 1

0

∫ 2π

0

∫
R

∣∣〈ϕa,b̄,θ,Mf
〉∣∣ ∣∣ϕa,b̄,θ(h̄)− ϕa,b̄,θ(0̄)

∣∣ db̄ dθ da
a3

≤
∫ ‖h̄‖ 2α

β

0

∫ 2π

0

∫
R

∣∣〈ϕa,b̄,θ,Mf
〉∣∣ ∣∣ϕa,b̄,θ(h̄)∣∣ db̄ dθ daa3

+
∫ ‖h̄‖2

‖h̄‖
2α
β

∫ 2π

0

∫
R

∣∣〈ϕa,b̄,θ,Mf
〉∣∣ ∣∣ϕa,b̄,θ(h̄)∣∣ db̄ dθ daa3

+
∫ ‖h̄‖2

0

∫ 2π

0

∫
R

∣∣〈ϕa,b̄,θ,Mf
〉∣∣ ∣∣ϕa,b̄,θ(0̄)

∣∣ db̄ dθ da
a3

+
∫ 1

‖h̄‖2

∫ 2π

0

∫
R

∣∣〈ϕa,b̄,θ,Mf
〉∣∣ ∣∣ϕa,b̄,θ(h̄)− ϕa,b̄,θ(0̄)

∣∣ db̄ dθ da
a3
.

By the assumption, we get

|f(h̄)− f(0̄)| ≤ C

∫ ‖h̄‖ 2α
β

0

∫ 2π

0

∫
R
a

β
2
+ 9

4

∣∣ϕa,b̄,θ(h̄)∣∣ db̄ dθ daa3

+ C

∫ ‖h̄‖2

‖h̄‖
2α
β

∫ 2π

0

∫
R
a

α
2
+ 9

4

(
1 +

∥∥b̄∥∥α
a

α

2

)∣∣ϕa,b̄,θ(h̄)∣∣ db̄ dθ daa3

+ C

∫ ‖h̄‖2

0

∫ 2π

0

∫
R
a

α
2
+ 9

4

(
1 +

∥∥b̄∥∥α
a

α

2

)∣∣ϕa,b̄,θ(0̄)
∣∣ db̄ dθ da

a3

+ C

∫ 1

‖h̄‖2

∫ 2π

0

∫
R
a

α
2
+ 9

4

(
1 +

∥∥b̄∥∥α
a

α

2

)∣∣ϕa,b̄,θ(h̄)− ϕa,b̄,θ(0̄)
∣∣ db̄ dθ da

a3
.

Let us denote the four terms on the right-hand side by T1, T2, T3, and T4.
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After a change of variable, integrability of ϕ yields

T1 = C

∫ ‖h̄‖ 2α
β

0

∫ 2π

0

∫
R
a

β
2
+ 9

4a−
3
4

∣∣∣ϕ(D 1
a
R−θ(x̄− b̄)

)∣∣∣ db̄ dθ da
a3

= C

∫ ‖h̄‖ 2α
β

0

∫ 2π

0

∫
R
a

β
2
+ 3

2
+ 3

2
−3 |ϕ (ȳ)| dȳ dθ da

= C ′
∫ ‖h̄‖ 2α

β

0
a

β
2 da

= C ′
[

2
2 + β

]
≤ C ′′ < ∞.

For T2, we have

T2 = C

∫ ‖h̄‖2

‖h̄‖
2α
β

∫ 2π

0

∫
R
a

α
2
− 3

4
− 3

4

∣∣∣ϕ(D 1
a
R−θ(h̄− b̄)

)∣∣∣ db̄ dθ da
+ C

∫ ‖h̄‖2

‖h̄‖
2α
β

∫ 2π

0

∫
R
a

α
2
− 3

4
− 3

4

∥∥b̄∥∥α
a

α
2

∣∣∣ϕ(D 1
a
R−θ(h̄− b̄)

)∣∣∣ db̄ dθ da.
After a change of variable in both terms by ȳ = D 1

a
R−θ(h̄ − b̄), since supp(ϕ) ⊆ B(0, R),

the support of ϕab̄θ(h̄) = ϕ
(
D 1

a
R−θ(h̄− ·)

)
lies in the ball B(h̄,

√
aR) for each h̄ ∈ R2, 0 <

a < 1 and θ ∈ [0, 2π). Using this fact, we obtain that
∥∥b̄∥∥ ≤ ∥∥h̄∥∥ +

√
a ‖ȳ‖ ≤

∥∥h̄∥∥ +
√
aR,

we can bound the two integrals in T2 as follows

T2 ≤ C

∫ ‖h̄‖2

0

∫ 2π

0

∫
R
a

α
2
− 3

2
+ 3

2 |ϕ (ȳ)| dȳ dθ da

+ C

∫ ‖h̄‖2

‖h̄‖
2α
β

∫ 2π

0

∫
R
a

3
2
− 3

2
(√
aR+

∥∥h̄∥∥)α |ϕ (ȳ)| dȳ dθ da

= C ′
∫ ‖h̄‖2

0
a

α
2 da+ C ′′

∫ ‖h̄‖2

‖h̄‖
2α
β

(√
aR+

∥∥h̄∥∥)α da
≤ C ′ 2

2 + α

∥∥h̄∥∥α+2 + C ′′′ ∥∥h̄∥∥α ∫ ‖h̄‖2

‖h̄‖
2α
β

1 da

= C ′′′′ ∥∥h̄∥∥α + C ′′ ∥∥h̄∥∥α (∥∥h̄∥∥2 −
∥∥h̄∥∥ 2α

β

)
= C

∥∥h̄∥∥α
where we have used a ≤

∥∥h̄∥∥2 in the last inequality. Estimate of T3 can be derived in the
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same fashion as that of T2.

T3 = C

∫ ‖h̄‖2

0

∫ 2π

0

∫
R
Ca

α
2
+ 9

4
−3

(
1 +

∥∥b̄∥∥α
a

α

2

)∣∣ϕa,b̄,θ(0̄)
∣∣ db̄ dθ da

= C

∫ ‖h̄‖2

0

∫ 2π

0

∫
R
a

α
2
− 3

4
− 3

4

∣∣∣ϕ(D 1
a
R−θ(−b̄)

)
)
∣∣∣ db̄ dθ da

+ C

∫ ‖h̄‖2

0

∫ 2π

0

∫
R
a

α
2
− 3

4
− 3

4

∥∥b̄∥∥α
a

α
2

∣∣∣ϕ(D 1
a
R−θ(−b̄)

)
)
∣∣∣ db̄ dθ da

= C

∫ ‖h̄‖2

0

∫ 2π

0

∫
R
a

α
2
− 3

2
+ 3

2 |ϕ (ȳ)| dȳ dθ da

+ C

∫ ‖h̄‖2

0

∫ 2π

0

∫
R
a

3
2
− 3

2 |
√
aR|α |ϕ (y)| dȳ dθ da

= C ′
∫ ‖h̄‖2

0
a

α
2 da+ C ′′

∫ ‖h̄‖2

0
|
√
aR|α da

≤ C ′ 2
2 + α

∥∥h̄∥∥α+2 + C ′′′ ∥∥h̄∥∥α ∫ ‖h̄‖2

0
1 da

= C ′′′′ ∥∥h̄∥∥α + C ′′ ∥∥h̄∥∥α (∥∥h̄∥∥2
)

= C
∥∥h̄∥∥α

where we have again used a ≤
∥∥h̄∥∥2 in the last inequality.

Finally for T4,

T4 = C

∫ 1

‖h̄‖2

∫ 2π

0

∫
R
a

α
2
+ 9

4
− 3

4

(
1 +

∥∥b̄∥∥α
a

α

2

)∣∣∣ϕ(D 1
a
R−θ(h̄− b̄)

)
− ϕ

(
D 1

a
R−θ(−b̄)

)∣∣∣ db̄ dθ da
a3
.

We then use the properties of ϕ that it has bounded derivatives so there is a constant C > 0

such that

∣∣∣ϕ(D 1
a
R−θ(h̄− b̄)

)
− ϕ

(
D 1

a
R−θ(−b̄)

)∣∣∣ ≤ C
∥∥∥D 1

a
R−θ(h̄− b̄)−D 1

a
R−θ(−b̄)

∥∥∥
≤ C

∥∥∥D 1
a
R−θ(h̄)

∥∥∥
≤ C

a

∥∥R−θ(h̄)∥∥
=
C

a

∥∥h̄∥∥ ,
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and, also, since ψ has compact support, we have
∥∥b̄∥∥ ≤ √

aR+
∥∥h̄∥∥ we can bound T4 by

T4 ≤ C

∫ 1

‖h̄‖2

∫ 2π

0

∫
‖b̄‖≤√aR+‖h̄‖

a
α
2
+ 3

2
−3

(
1 +

(√
aR+

∥∥h̄∥∥)α
a

α

2

)
1
a

∥∥h̄∥∥ db̄ dθ da
= C ′ ∥∥h̄∥∥∫ 1

‖h̄‖2
a

α
2
− 3

2
−1

(
1 +

(√
aR+

∥∥h̄∥∥)α
a

α

2

)
π
(√
aR+

∥∥h̄∥∥)2 da.
Since we have integrate over

∥∥h̄∥∥ ≤ a ≤ 1, we get

T4 ≤ C ′ ∥∥h̄∥∥∫ 1

‖h̄‖2
a

α
2
− 5

2

(
1 +

(
√
aR+

√
a)α

a
α

2

)
π
(√
aR+

∥∥h̄∥∥)2 da
= C ′′ ∥∥h̄∥∥∫ 1

‖h̄‖2
a

α
2
− 5

2

(
aR2 + 2

√
aR+

∥∥h̄∥∥2
)
da

= C ′′ ∥∥h̄∥∥( 2R2

α− 1
+

4R
∥∥h̄∥∥

α− 2
+

2
∥∥h̄∥∥2

α− 3
−

2R2
∥∥h̄∥∥α−1

α− 1
+

4R
∥∥h̄∥∥α−1

α− 2
+

2
∥∥h̄∥∥α−1

α− 3

)

= C ′′ ∥∥h̄∥∥α( 2R2

1− α

(
1−

∥∥h̄∥∥)+
4R

2− α

(
1−

∥∥h̄∥∥2
)

+
2

3− α

(
1−

∥∥h̄∥∥3
))

= C ′′′ ∥∥h̄∥∥α .
Thus |fSS(h̄)−fSS(0̄)| ≤ C

∥∥h̄∥∥α for
∥∥h̄∥∥ ≤ 1. Together with the bound of fSS , we conclude

that |fSS(h̄)− fSS(0̄)| ≤ C
∥∥h̄∥∥α for all h̄ ∈ R2. Therefore, f is Hölder continuous at 0̄ and

hence at x̄0, with exponent α as desired.

Theorem 4.5 gives a characterization of the Hölder regularity over an interval but not

at a point. Theorem 4.7 shows that one can also estimate the Hölder regularity of function,

precisely at a point x0. Both uniform and local Hölder regularity give a necessary condition

and a sufficient condition, but not a necessary and sufficient condition.

4.3 The Curvelet Transform of Functions with Hölder Reg-

ularity

In this section we show how to analyze uniform and pointwise Hölder regularity by curvelet

transforms. Generally speaking the amount of uniform regularity of a function is reflected

in its curvelet transform at small scales as shown in the following theorem.
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Theorem 4.9. Suppose the windows V and W are infinitely differentiable and of compact

support. If a bounded function f is Hölder continuous with exponent α , 0 < α < 1, then

there is a constant C > 0 such that |Γf (a, b̄, θ)| ≤ Ca
α
2
+ 1

4 for all 0 < a < 1, b̄ ∈ R2 and,

θ ∈ [0, 2π).

Proof. Since W (0) = 0 we have γ̂a,b̄,θ(0) = 0 we get that
∫
γab̄θ(x̄) dx̄ = 0. By Lemma 3.6,

|γa,b̄,θ(x̄)| ≤ CNa
− 3

4

〈∥∥x̄− b̄
∥∥
a,θ

〉−N
for all N ≥ 4, then

|Γf (a, b̄, θ)| ≤
∫

R2

∣∣γa,b̄,θ(x̄)∣∣ ∣∣f(x̄)− f(b̄)
∣∣ dx̄

≤ C

∫
R2

∣∣γa,b̄,θ(x̄)∣∣ ∥∥x̄− b̄
∥∥α dx̄

≤ C

∫
R2

CNa
− 3

4

〈∥∥x̄− b̄
∥∥
a,θ

〉−N ∥∥x̄− b̄
∥∥α dx̄

= C ′a−
3
4

∫
R2

∥∥x̄− b̄
∥∥α(

1 +
∥∥x̄− b̄

∥∥2

a,θ

)N
2

dx̄

≤ C ′a−
3
4

∫
R2

∥∥x̄− b̄
∥∥α(

1 + ‖x̄−b̄‖2

a

)N
2

dx̄ (4)

where we have used the fact that ‖v‖a,θ ≥
‖v‖√
a

in the last inequality.

In polar coorinates, (4) becomes

(4) = C ′a−
3
4

∫ ∞

0

∫ 2π

0

rα+1(
1 + r2

a

)N
2

dωdr

= C ′′a−
3
4

∫ ∞

0

rα+1(
1 + r2

a

)N
2

dr

= C ′′a−
3
4

∫ ∞

0

yα+1a
α
2
+ 1

2

(1 + y2)
N
2

a
1
2 dy

= C ′′a
α
2
+ 1

4

∫ ∞

0

yα+1

(1 + y2)
N
2

dy = C ′′′a
α
2
+ 1

4 .

Note that we let y = r√
a

and the last integral is integrable for all N ≥ 4.

The pointwise (local) regularity of a function implies an equivalent local decrease of its

curvelet coefficients at small scale as shown in the following theorem.
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Theorem 4.10. Suppose the windows V and W are infinitely differentiable and of compact

support. If a bounded function f is Hölder continuous at x̄0 with exponent α , 0 < α < 1,

then there is a constant C > 0 such that

|Γf (a, b̄, θ)| ≤ Ca
α
2
+ 1

4

(
1 +

∥∥b̄− x̄0

∥∥α
a

α
2

)
for all 0 < a < 1, b̄ ∈ R2 and, θ ∈ [0, 2π).

Proof. Since W (0) = 0 we have γ̂ab̄θ(0) = 0, i.e.,
∫
γab̄θ(x̄) dx̄ = 0. By translating everything

we can assume that x̄0 = 0̄. Then we consider |Γf (a, b̄+ x̄0, θ)| at x̄0 = 0̄.

|Γf (a, b̄+ 0̄, θ)| ≤
∫

R2

∣∣γa,b̄,θ(x̄)∣∣ |f(x̄)− f(0̄)| dx̄

≤ C

∫
R2

∣∣γa,b̄,θ(x̄)∣∣ ‖x̄− 0̄‖α dx̄

≤ C

∫
R2

CNa
− 3

4

〈∥∥x̄− b̄
∥∥
a,θ

〉−N
‖x̄− 0̄‖α dx̄

= C ′a−
3
4

∫
R2

‖x̄‖α(
1 +

∥∥x̄− b̄
∥∥2

a,θ

)N dx̄

where we have applied Lemma 3.6 with N ≥ 4. Using the fact that
∥∥x̄− b̄

∥∥2

a,θ
≥ ‖x̄−b̄‖2

a ,

we get

|Γf (a, b̄, θ)| ≤ C ′a−
3
4

∫
R2

‖x̄‖α(
1 + ‖x̄−b̄‖2

a

)N
2

dx̄.

After a change of variable,

|Γf (a, b̄, θ)| ≤ C ′a−
3
4

∫
R2

∥∥x̄+ b̄
∥∥α(

1 + ‖x̄‖2
a

)N
2

dx̄

≤ C ′a−
3
4

∫
R2

(
‖x̄‖+

∥∥b̄∥∥)α(
1 + ‖x̄‖2

a

)N
2

dx̄.

In polar coodinates,

|Γf (a, b̄, θ)| ≤ C ′a−
3
4

∫ ∞

0

∫ 2π

0

(
r +

∥∥b̄∥∥)α(
1 + r2

a

)N
2

r dφ dr

≤ C ′′a−
3
4

∫ ∞

0

(
r +

∥∥b̄∥∥)α(
1 + r2

a

)N
2

r dr.
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We again have, after a change of variable y = r√
a
,

|Γf (a, b̄, θ)| ≤ C ′′a−
3
4

∫ ∞

0

(√
ay +

∥∥b̄∥∥)α
(1 + y2)

N
2

√
ay
√
a dy

≤ C ′′a
1
4

∫ ∞

0

(
a

α
2 yα +

∥∥b̄∥∥α)
(1 + y2)

N
2

y dy

≤ C ′′a
1
4

[
a

α
2

∫ ∞

0

yα+1

(1 + y2)
N
2

dy +
∥∥b̄∥∥α ∫ ∞

0

y

(1 + y2)
N
2

dy

]

= C ′′′a
1
4

(
a

α
2 +

∥∥b̄∥∥α)
= C ′′′a

α
2
+ 1

4

(
1 +

∥∥b̄∥∥α
a

α
2

)
.

Note that the last integral is integrable for all N ≥ 4. Hence

|Γf (a, b̄+ x̄0, θ)| ≤ Ca
α
2
+ 1

4

(
1 +

∥∥b̄∥∥α
a

α
2

)

and so

|Γf (a, b̄, θ)| ≤ Ca
α
2
+ 1

4

(
1 +

∥∥b̄− x̄0

∥∥α
a

α
2

)
.

4.4 Directional Regularity

See also [14,15] for the following definition.

Definition Let x̄ ∈ Rd, d > 1 and let α > 0, Φ̄ be a vector in Rd of modulus 1. A function

f : Rd → R belongs to Cα
Φ̄
(x̄) if the one dimensional function g : t 7−→ f(x̄+ Φ̄t) belongs to

Cα(0), i.e., there exists a constant C > 0 s.t. |g(t)−g(0)| ≤ C|t|α for all t in a neighborhood

of 0. We can say that |f(x̄+ Φ̄t)− f(x̄)| ≤ C|t|α.

For d = 2 a given vector Φ̄ of modulus 1 is of the form Φ̄ = (cosφ, sinφ) for some φ ∈ [0, 2π).

Example Let α : S1 → R and x̄ ∈ R2, then x̄ = rΦ̄ = r(cosφ, sinφ) where r ∈ [0,∞) and

φ ∈ (0, 2π]. Define f : R2 → R by f(x̄) = rα(Φ̄). Then f has the directional Hölder exponent

α(Φ̄) at 0̄, i.e. f ∈ Cα(Φ̄)

Φ̄
(0̄).
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Proof. Let g : R → R be defined by g(t) = f(tΦ̄) for all t ∈ R. Let t be in a neighborhood

of 0. Then

|g(t)− g(0)| = |f(tΦ̄)− f(0̄)| = ||t|α(Φ̄) − 0| = |t|α(Φ̄).

Thus g ∈ Cα(Φ̄)(0) and then by definition we have f ∈ Cα(Φ̄)

Φ̄
(0̄).

Theorem 4.11. Suppose that f has compact support. Let φ ∈ [0, 2π) and Φ̄ = (cosφ, sinφ).

If f belongs to Cα(Φ̄)

Φ̄
(x̄) for all x̄ ∈ R2 such that x̄⊥Φ̄ then |R(f)(a, b, φ)| ≤ Ca

1
2

(
aα(Φ̄) + |b|α(Φ̄)

)
for a > 0, and b ∈ R.

Proof. Let φ ∈ [0, 2π) and Φ̄ = (cosφ, sinφ). Suppose that f ∈ C
α(Φ̄)

Φ̄
(x̄) for all x̄ ∈ R2

such that x̄⊥Φ̄, i.e., there is a one-dimensional function gx̄ : R → R defined by gx̄(k) =

f(x̄+ (k cosφ, k sinφ)), k ∈ R, satisfying the inequality |gx̄(t)− gx̄(0)| ≤ C|t|α(Φ̄) for some

constant C > 0, for all t in a neighborhood of 0, i.e. |f(x̄+(t cosφ, t sinφ))−f(x̄)| ≤ C|t|α(Φ̄)

for all t in a neighborhood of 0. Letting x1 = t cosφ− s sinφ and x2 = t sinφ+ s cosφ, we

have

R(f)(a, b, φ) =
∫

R

∫
R

1√
a
f(x1, x2)ψ

(
x1 cosφ+ x2 sinφ− b

a

)
dx1 dx2

=
1√
a

∫
R
ψ

(
t− b

a

)(∫
R
f(t cosφ− s sinφ, t sinφ+ s cosφ) ds

)
dt.

Since
∫

R
ψ(x̄) dx̄ = 0, we have

R(f)(a, b, φ) =
1√
a

∫
R
ψ

(
t− b

a

)∫
R
f(t cosφ− s sinφ, t sinφ+ s cosφ) ds dt

− 1√
a

∫
R
ψ

(
t− b

a

)∫
R
f(−s sinφ, s cosφ) ds dt.

Thus

|R(f)(a, b, φ)| ≤ 1√
a

∫
R2

∣∣∣∣ψ( t− b

a

)∣∣∣∣
|f(t cosφ− s sinφ, t sinφ+ s cosφ)− f(−s sinφ, s cosφ)| ds dt.
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Since f is compactly supported and f ∈ Cα(Φ̄)

Φ̄
(x̄) for all x̄ ∈ R2 such that x̄⊥Φ̄, we have

|R(f)(a, b, φ)| ≤ 1√
a

∫ M

−M

∫ M

−M

∣∣∣∣ψ( t− b

a

)∣∣∣∣C|t|α(Φ̄) ds dt

=
C√
a

∫ M

−M
1 ds

∫ M

−M

∣∣∣∣ψ( t− b

a

)∣∣∣∣ |t|α(Φ̄) dt

=
C ′
√
a

∫ M

−M

∣∣∣∣ψ( t− b

a

)∣∣∣∣ |t|α(Φ̄) dt

=
C ′
√
a

∫ M−b
a

−M−b
a

|ψ (y)| |ay + b|α(Φ̄)a dy

≤ C ′a
1
2

∫ ∞

−∞
|ψ (y)|

(
|ay|α(Φ̄) + |b|α(Φ̄)

)
dy

≤ C ′′a
1
2

(
aα(Φ̄) + |b|α(Φ̄)

)
.

Example: Let θ ∈ [0, 2π), we apply the Weierstrass function in 2-dimensional;

Wα,β,θ(x1, x2) = e−|−x1 sin θ+x2 cos θ|
∑
n

αn sin (βn(x1 cos θ + x2 sin θ))

where β is assumed to be larger than 1, so that the series is lacunary, and α is assumed to

be smaller than 1, so that the series converges normally. This function is continuous but

nowhere differentiable if αβ > 1.

Proof. Let a > 0 and b ∈ R, we have

R(Wα,β,θ)(a, b, θ) =
1√
a

∫
R2

e−|−x1 sin θ+x2 cos θ|
∑
n

αn sin (βn(x1 cos θ + x2 sin θ))

ψ

(
x1 cos θ + x2 sin θ − b

a

)
dx1dx2.

Putting x1 = t cos θ − s sin θ and x2 = t sin θ + s cos θ, we obtain that

R(Wα,β,θ)(a, b, θ) =
1√
a

∫
R2

e−|s|
∑
n

αn sin (βnt)ψ
(
t− b

a

)
dsdt

=
1√
a

(∫ ∞

−∞
e−|s| ds

)∑
n

αn
∫ ∞

−∞
sin (βnt)ψ

(
t− b

a

)
dt.
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Because of the integrable of e−|s| and sin z = e2πiz−e−2πiz

2i , we have

R(Wα,β,θ)(a, b, θ) =
C√
a

∑
n

αn
∫ ∞

−∞

[
e2πiβ

nt − e−2πiβnt

2i

]
ψ

(
t− b

a

)
dt

=
C

2i
√
a

∑
n

αn
∫ ∞

−∞
e2πiβ

ntψ

(
t− b

a

)
dt

− C

2i
√
a

∑
n

αn
∫ ∞

−∞
e−2πiβntψ

(
t− b

a

)
dt

=
C

2i
√
a
∑
n

αn
∫ ∞

−∞
e2πiβ

n(ay+b)ψ (y) dy

− C

2i
√
a
∑
n

αn
∫ ∞

−∞
e−2πiβn(ay+b)ψ (y) dy

=
C

2i
√
a
∑
n

αne2πiβ
nb

∫ ∞

−∞
e2πiβ

nayψ (y) dy

− C

2i
√
a
∑
n

αne−2πiβnb

∫ ∞

−∞
e−2πiβnayψ (y) dy

=
C

2i
√
a
∑
n

αne2πiβ
nbψ̂(βna)− C

2i
√
a
∑
n

αne−2πiβnbψ̂(−βna).

Since ψ̂(z) = 0 for all z < 0, we get

R(Wα,β,θ)(a, b, θ) =
C

2i
√
a
∑
n

αne2πiβ
nbψ̂(βna).

Thus |R(Wα,β,θ)(a, b, θ)| = C
2

√
a
∑

n α
n|ψ̂(βna)|.

Choosing am = β−m → 0 as m→∞, we have

|R(Wα,β,θ)(am, b, θ)| =
C

2
√
amα

m|ψ̂(1)|+ C

2
√
amα

m+1|ψ̂(β)|

≥ C
|ψ̂(1)|

2
β−m

√
am + C

|ψ̂(β)|
2

β−m−1√am

≥ Cβ−m
√
am

= Ca
1+ 1

2
m

provided ψ is chosen in such a way that supp(ψ̂) ⊆ [1, β]. Thus Wα,β,θ /∈ C1(R2).

Let us check that Wα,β,θ is C− log α
log β (x̄0) for any x̄0 ∈ R2. In the difference

|Wα,β,θ(x̄)−Wα,β,θ(x̄0)| ≤ αn
∑
n

|sin (βn(x1 cos θ + x2 sin θ))− sin (βn(x01 cos θ + x02 sin θ))| .
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We can either bound the difference of sines simply by 2 or, using the mean value theorem,

by βn|(x̄− x̄0) · (cos θ, sin θ)| ≤ βn ‖x̄− x̄0‖.

Let N = − log‖x̄−x̄0‖
log β . Using the first bound for n ≥ N and the second one for n < N , we

get

|Wα,β,θ(x̄)−Wα,β,θ(x̄0)| ≤
∑
n≤N

αnβn ‖x̄− x̄0‖+ 2
∞∑
n>N

αn

≤ ‖x̄− x̄0‖
(

(αβ)N+1 − αβ

αβ − 1

)
+ 2

(
αN+1

1− α

)
.

We have to sum up two geometric series. Because of the value taken for N , the first sum

is bounded by C(αβ)N ≤ C ‖x̄− x̄0‖−
log α
log β , and the second one is bounded by CαN ≤

C ‖x̄− x̄0‖−
log α
log β .

Indeed, logαN = N logα = − logα
log β log ‖x̄− x̄0‖ = log ‖x̄− x̄0‖−

log α
log β , then αN = ‖x̄− x̄0‖−

log α
log β

and log βN = N log β = − log‖x̄−x̄0‖
log β log β = − log ‖x̄− x̄0‖, thus βN = 1

‖x̄−x̄0‖ .

Therefore |Wα,β,θ(x̄)−Wα,β,θ(x̄0)| ≤ C ‖x̄− x̄0‖−
log α
log β .

Next we can show that |R(Wα,β,θ)(a, b, θ)| ≤ Ca
1
2
− log α

log β if αβ > 1.

Proof. Let a > 0. We can see that β−m ≤ a ≤ β−m+1 for some integer m > 0 and then

for each integer n, βn−m ≤ aβn ≤ βn−m+1. Suppose that ψ is chosen in such a way that

supp(ψ̂) ⊆ (1, β], the only nonvanishing integral corresponds to n = m. Then

|R(Wα,β,θ)(a, b, θ)| =
C

2
√
a
∑
n

αn|ψ̂(βna)|

= C ′√aαm+1|ψ̂(β)|

= C ′′√aαm.

We have to show that αm ≤ a
− log α

log β . Since αβ > 1 we have 1
β < α and then 1

βm < αm.

Thus log a ≥ log( 1
βm ) = −m log β, then m ≥ − log a

log β . Since 0 < α < 1 < β we obtain that

logαm = m logα ≤ − log a
log β logα = log a−

log α
log β , thus αm ≤ a

− log α
log β .

Hence |R(Wα,β,θ)(a, b, θ)| ≤ Ca
1
2
− log α

log β .
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Example: Let θ ∈ [0, 2π), we again apply the Weierstrass function in 2-dimensional;

Wα,β,θ(x1, x2) =
∑
n

αn sin (βn(x1 cos θ + x2 sin θ))

where β is assumed to be large than 1, so that the series is lacunary, and α is assume to

be smaller than 1, so that the series converges normally. This function is continuous but

nowhere differetiable if αβ > 1, we can prove by the Smith transform.

Proof. We can see that, for any a > 0 and b̄ ∈ R2,

Γ̄Wα,β,θ
(a, b̄, θ) = a−

3
4

∫
R2

∑
n

αn sin (βn(x1 cos θ + x2 sin θ))ϕ
(
D 1

a
R−θ(x̄− b̄)

)
dx.

Putting y1 = 1
a [(x1 − b1) cos θ + (x2 − b2) sin θ] and y2 = 1√

a
[−(x1 − b1) sin θ + (x2 − b2) cos θ].

So, we have x1 = ay1 cos θ−
√
ay2 sin θ+ b1 and x2 = ay1 sin θ+

√
ay2 cos θ+ b2 and obtain

that

Γ̄Wα,β,θ
(a, b̄, θ) = a−

3
4
+ 3

2

∫
R2

∑
n

αn sin (βn(ay1 + b1 cos θ + b2 sin θ))ϕ(y1, y2) dy1dy2

= a
3
4

∫
R2

∑
n

αn
e2πiβ

nay1e2πiβ
n(b1 cos θ+b2 sin θ) − e−2πiβnay1e−2πiβn(b1 cos θ+b2 sin θ)

2i

ϕ(y1, y2) dy1dy2

=
Ca

3
4

2i

[∑
n

αne2πβ
nb·(cos θ,sin θ)ϕ̂(βna, 0)−

∑
n

αne−2πβnb·(cos θ,sin θ)ϕ̂(−βna, 0)

]
.

We also to suppose that ϕ̂(z1, z2) = 0 if z1 < 0 or z2 < 0, then

Γ̄Wα,β,θ
(a, b̄, θ) =

Ca
3
4

2

∑
n

αn|ϕ̂(βna, 0)|.

Choosing am = β−m → 0 as m→∞, we have

|Γ̄Wα,β,θ
(am, b̄, θ)| =

C

2
a

3
4
mα

m|ϕ̂(1, 0)|+ C

2
a

3
4
mα

m+1|ϕ̂(β, 0)|

≥ C ′a
3
4
mβ

−m + C ′a
3
4
mβ

−m−1

≥ C ′a
3
4
mβ

−m

= C ′′a
3
4
+1

m

provided ϕ is choosen in such a way that supp(ϕ̂) ⊆ [1, β]× R.
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Let us check that Wα,β,θ is C− log α
log β (x̄0) for any x̄0 ∈ R2.

In the difference

|Wα,β,θ(x̄)−Wα,β,θ(x̄0)| ≤ αn
∑
n

|sin (βn(x1 cos θ + x2 sin θ))− sin (βn(x01 cos θ + x02 sin θ))| .

Similar the previous example we show that |Wα,β,θ(x̄)−Wα,β,θ(x̄0)| ≤ C ‖x̄− x̄0‖−
log α
log β .

Finally, we can show that |Γ̄Wα,β,θ
(a, b̄, θ)| ≤ Ca

3
4
− log α

log β .

Proof. Let a > 0. We can see that β−m ≤ a ≤ β−m+1 for some integer m > 0 and then

for each integer n, βn−m ≤ aβn ≤ βn−m+1. Suppose that ψ is chosen in such a way that

supp(ψ̂) ⊆ (1, β]× R, the only nonvanishing integral corresponds to n = m. Then

|Γ̄Wα,β,θ
(a, b̄, θ)| = C

2
a

3
4

∑
n

αn|ψ̂(βna, 0)|

= C ′√aαm+1|ψ̂(β, 0)|

= C ′′a
3
4αm.

We have to show that αm ≤ a
− log α

log β .Since αβ > 1 we have 1
β < α and then 1

βm < αm.

Thus log a ≥ log( 1
βm ) = −m log β, then m ≥ − log a

log β . Since 0 < α < 1 < β we obtain that

logαm = m logα ≤ − log a
log β logα = log a−

log α
log β , thus αm ≤ a

− log α
log β .

Hence |Γ̄Wα,β,θ
(a, b̄, θ)| ≤ Ca

3
4
− log α

log β .
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