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Graph-structured data are widely used in many fields of study. For example, in

cheminformatics, the data of biochemical compounds can be encoded as a compound

graph where atoms are represented by vertices and chemical bonds between pairs of atoms

are represented by edges. By this setting, we can predict the molecular characteristics of

an unseen biochemical compound by considering the similarity between two compound

graphs. This problem is called a graph classification. This study, proposes an algorithm

for compound graph classification by finding primitive substructures of the compounds

and encode them in a new graph form. Then, their similarities are computed and fed to a

support vector machine. The proposed algorithm was evaluated on four real-world data

sets with four similarity measures, yielding the average accuracy of 84.7%. Furthermore,

the performance of the algorithm was also better than the classification method that solely

uses graph kernels. In conclusion, the extraction of primitive structures can be a great

tool for extracting compound structure features in biochemical compound classification.
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CHAPTER I

INTRODUCTION

This chapter gives information about the problem description, the motiva-

tion, the related works, and the objective of this study.

1.1 Motivation and Literature Surveys

In recent years, the graph-structured data recieved increasing attention from

researchers and entrepreneurs, as well as many organizations such as Oracle and

Neo4j try to focus on developing the graph databases. The advantage of graphs is

that it contains information about the relationships between each data point which

is hard to explain with traditional relational data. Therefore, the graph-structured

data is widely used in many fields of study such as social network analysis, fraud

detection, recommendation system, bioinformatics, and cheminformatics.

In cheminformatics, the data of biochemical compounds can be encoded

as graphs where the vertex of the graph is an atom and the edge of the graph

depicts chemical bond between a pair of atoms. There is an important problem

based on this representation of the biochemical compound, which is to predict

the molecular function of an unseen biochemical compound under the assumption

that biochemical compounds with similar structures will have similar molecular

functions. The problem of classifying the graph-structured data with its similarity

is called a graph classification.

The graph classification method is used to classify graph-structured data. A

traditional graph classification method has two main steps. First, transforming a
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graph into a vector space that preserves the graph structure properties by using

graph embedding techniques or calculating a similarity between each pair of graphs

by using graph similarity measures. Second, machine learning such as a support

vector machine, a decision tree, or a neural network is applied to classify each

graphs from its feature vector or its similarity.

Many classification methods have been proposed. In the 2000s, there was

a method based on a graph kernel, by using a kernel function for calculating

similarities between a pair of graphs and classifying them with a kernel method.

Traditional graph kernel can be categorized into three classes[1]: (1) a graph

kernel based on walks and paths such as the random walk kernel (RW)[2], and the

shortest-path kernel (SP)[3], (2) a graph kernel based on limited-size subgraphs

such as the graphlet count kernel (GK)[4], and (3) a graph kernel based on subtree

patterns such as the subtree kernel (ST)[5]. However, these methods take such

high computational time when calculating the kernel function on the large graph.

In 2011, N. Shervashidze et al. proposed the Weisfeiler-Lehman framework (WL)

[1] which was inspired by the Weisfeiler-Lehman test of graph isomorphism [4].

This framework was operated with another graph kernel. The popular kernel

with this framework was the Weisfeiler-Lehman subtree kernel (WL-ST) which

was a Weisfeiler-Lehman framework operating with a vertex histogram kernel.

This kernel had better computational complexity compared to the original subtree

kernel. Therefore, it can be easily performed for a huge graph. Another interesting

Weisfeiler-Lehman kernel was the Weisfeiler-Lehman shortest-path kernel (WL-

SP) which had better performance than the original shortest-path kernel on some

data sets.

The using of graph embedding techniques was performed for a graph clas-

sification task. In 2016, M. Niepert et al.[6] proposed the Patchy-San technique
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for graph embedding and applied convolutional neural networks (CNN) for the

classification, so-called PSCN. In the following year, A. Narayanan et al.[7] pro-

posed a whole-graph embedding technique, namely graph2vec for converting each

graph into a vector. After that, these vector features were then fed to the support

vector machine. In the same year, 2D convolutional neural networks (2DCNN)

was proposed by A. Tixier et al.[8]. They employed a node embedding technique

based on a random walk, namely node2vec [9], and converted feature vectors into

an image form by using a 2D histogram and then classified the data with CNN.

However, these methods have some downsides. A graph kernel decomposes

a graph into substructures then counts the number of occurrence of these sub-

structures. Thus, a graph classification method based on graph kernels has some

problems when it is used on graphs with the same local properties, but different

global structures. The problem of the method based on graph embedding is its

complication. For example, the classification method depending on node2vec has

many steps such as sampling walks from a graph and then these walks are used

as input data for the skip-gram neural network to embed each node into a vector

space, which after that each node will be grouped to create a 2D histogram. Then,

these 2D histograms are fed to a convolutional neural network.

In this study, we focus on developing a classification method on biochemical

compounds. Biochemical compounds compose of many identical molecules which

are similar to a simple graph, for example, a ring of 6 carbons in benzene is

similar to a cycle graph in graph theory, propane is similar to a star graph with

3 vertices, isobutane is similar to a star graph with 4 vertices. We assumed that

the molecular function of compounds can be analyzed by using the set of common

graph structures of the compounds.

We thus proposed a classification framework for biochemical compounds en-
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coded as a graph by finding a common molecule or substructure that frequently

appeared in every graph called “primitive structure”. After that, we recreated a

new graph called “primitive structure graph” from these substructures. We cal-

culated the similarities between a pair of graphs by various techniques, such as

counting the number of edges between each type of the primitive structure, using

graph kernels such as the Weisfeiler-Lehman subtree kernel which counts the num-

ber of common subtree patterns between two graphs. These similarity measures

were fed into the machine learning technique called the “kernel method”. Finally,

the best technique was reported and compared with the existing one.

1.2 Research Objectives

The objective of this research was to develop the method to classify the

biochemical compounds based on the connectivity of primitive structures. First,

the algorithm selecting the primitive structure from a set of candidate structures

was applied. Then, these structures were extracted from a graph in the data set

and the new graph based on the connection of these structures was created by our

developed algorithm. The proposed classification method was implemented and

experimented on the real-world dataset. Finally, the results were then compared

with other methods using the accuracy, precision, recall, and F1-score as the

performance measures.

1.3 Thesis Overview

The remainder of this thesis consists of the following chapters. Chapter II

provides the relevant background of the graph, the graph kernel function, the

kernel method, and the sub-graph isomorphism problem. In Chapter III, the defi-

nition of a primitive structure and the algorithms to classify the graph-structured

data by the primitive structure is proposed. Chapter IV is the experiment results
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on the real-world data sets. The final chapter is the conclusion that provided the

discussion and the conclusion of this work.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE

The objective of this chapter is to describe the preliminaries of this thesis.

Section 2.1 is the basic graph theory. Section 2.2 is a graph kernel function and

its examples. Section 2.3 is a kernel method for classification. Section 2.4 is a

sub-graph isomorphism problem.

2.1 Graph theory

These definitions are basic concepts from graph theory [10].

Definition 2.1.1 (Graph). A graph G = (V, E) consists of a set of vertices (or

nodes) V and a set of edges (or links) E ⊆ V × V which an edge connect a pair

of vertices. A graph in which edges are undirected is said to be undirected graph

and a graph with directed edges is said to be the directed graph.

Definition 2.1.2 (Labeled graph). A labeled graph is a graph G = (V, E) en-

dowed with a labeling function l : V ∪ E → ∑ that assigns labels to the vertices

and edges of the graph from a discrete set of labels ∑.

Figure 2.1: A labeled graph with 5 vertices where the label of each vertex (edge) is
represented by their color.
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Definition 2.1.3 (Degree). Given an undirected graph G = (V, E) and a vertex

vi ∈ V , the degree of vi in G is the number of edges incident to vi, defined as

degg(vi) = |{vj : {vi, vj} ∈ E}| (2.1)

Figure 2.2: An undirected graph with 5 vertices where each vertex labeling with its
degree.

Definition 2.1.4 (Graph isomorphism). Let G = (V, E) and G′ = (V ′, E ′) be

labeled graphs with labeling function l and l′, respectively. An isomorphism of

graph is a bijective function f : V → V ′, such that

1 ∀vi ∈ V, f(vi) ∈ V ′ and l(vi) = l′(f(vi))

2 ∀{vi, vj} ∈ E, {f(vi), f(vj)} ∈ E ′ and l({vi, vj}) = l′({f(vi), f(vj)})

If there is an isomorphism between graphs G and G′, then G and G′ are isomorphic.

Figure 2.3: Example of graph isomorphism, graph A and graph B are isomorphic.
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Definition 2.1.5 (Cycle graph). A cycle graph Cn is a graph that consists of a

single cycle with n vertices.

Figure 2.4: Example of cycle graphs.

Definition 2.1.6 (Star graph). A star graph Sn is a graph that consists of n + 1

vertices with one vertex having degree of n and the others having degree of 1.

Figure 2.5: Example of star graphs.
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Definition 2.1.7 (Path graph). A path graph Pn is a graph that consists of n

vertices with two terminal vertices (vertices that have degree of 1), while all others

have degree of 2.

Figure 2.6: Example of path graphs.

Definition 2.1.8 (Shortest-path graph). Let G = (V, E) be a graph. A shortest-

path graph of graph G is a graph with the same set of vertices V . Shortest-path

graph’s vertices are connected if there exists a walk between them in G, and

shortest-path graph’s edges are labeled with the shortest distance between its

endpoints in G.

Figure 2.7: Graph G and its shortest-path graph G′ where the blue edge represents the
shortest-path with a distance equal to 1 and the red edge represents the shortest-path
with a distance equal to 2.
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2.2 Graph kernel function

The general solution to calculate the similarity between graphs is using a

graph kernel. Most graph kernels are constructed by using the framework called

R-convolution kernels [11]. Graphs will be decomposed into small substructures

such as subgraph, path, and subtree with a feature mapping function. After that,

the kernel will be computed by considering the pairwise similarity between these

feature vectors. Let G and G′ be graphs, then the graph kernel can be defined as

follows:

K(G, G′) = ⟨ϕ(G), ϕ(G′)⟩ (2.2)

where ϕ is a feature mapping function on graphs based on each type of the graph

kernel.

A graph kernel can also serves as a graph embedding technique by trans-

forming a graph into its explicit feature mapping ϕ(G), for example, the feature

mapping ϕ(G) of the graphlet kernel is the vector that each element is the number

of each type of graphlets in the graph G.

In this study, the following graph kernels are deployed.
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2.2.1 Shortest-path kernel

Definition 2.2.1 (Shortest-path kernel). Let G, G′ be graphs, and S = (V, E),

S ′ = (V ′, E ′) be their corresponding shortest-path graph. The shortest-path kernel

is defined as

KSP(G, G′) =
∑
e∈E

∑
e′∈E′

k
(1)
walk(e, e′), (2.3)

where k
(1)
walk(e, e′) is a kernel on edge walks of length 1.

Let e = {v, u} ∈ E, e′ = {v′, u′} ∈ E ′ and δ is the Dirac kernel, it is 1 when

its arguments are equal, otherwise it is 0. Then, k
(1)
walk(e, e′) is usually defined as

k
(1)
walk(e, e′) = δ(l(v), l(v′))δ(l(e), l(e′))δ(l(u), l(u′))

+δ(l(v), l(u′))δ(l(e), l(e′))δ(l(u), l(v′)) (2.4)

2.2.2 Weisfeiler-Lehman kernel

In 2011, Nino Shervashidze proposed the Weisfeiler-Lehman framework for

the graph kernel. This framework was inspired by the Weisfeiler-Lehman test of

graph isomorphism. It calculated a similarity between graphs by considering on

new graphs which were created with its “relabeling process”.

Let G be a graph and G0 = G. Let li be a labeling function of graph

G after ith relabeling process called Gi. Then, the ith relabeling process of the

Weifeiler-Lehman framework is defined as follow

1 Assign a multiset-label Mi(v) to each vertex v in Gi−1. Mi(v) = {li−1(u)|u ∈

N (v)} where N (v) is a set of neighbors of v.

2 Sort elements in Mi(v) in ascending order and concatenate them into a string
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si(v). Then, add li−1(v) as a prefix to si(v).

3 Map each string si(v) to a compressed label using function f : Σ∗ → Σ such

that f(si(v)) = f(si(u)) if and only if si(v) = si(u).

4 Let Gi = Gi−1. Then, set li(v) := f(si(v)) for all vertices in Gi.

Figure 2.8: Illustration of the Weifeiler-Lehman relabeling process at iteration i = 1
of labeled graph G and G′

Definition 2.2.2 (Weisfeiler-Lehman kernel). Let G, G′ be graphs and i =

1, 2, . . . , h. Graphs Gi and G′
i are graphs obtained after ith iteration of the

Weisfeiler-Lehman relabeling process of graphs G and G′, respectively. Let Kb

be graph kernel called a base graph kernel. Then the Weisfeiler-Lehman kernel

with h iterations is defined as

KWL(G, G′) = Kb(G0, G′
0) + Kb(G1, G′

1) + · · ·+ Kb(Gh, G′
h). (2.5)
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2.2.2.1 Weisfeiler-Lehman sub-tree kernel

The Weisfeiler-Lehman sub-tree kernel is the Weisfeiler-Lehman kernel where

the base graph kernel (Kb) is a vertex histogram kernel (VH). The vertex histogram

kernel is a graph kernel based on the number of matching vertex labels between

each graph. The vertex histogram kernel is defined as

KVH(G, G′) =
∑
v∈V

∑
v′∈V ′

δ(l(v), l(v′)), (2.6)

where δ is the Dirac kernel and V , V ′ are sets of vertices of graph G, G′, respec-

tively.

Then, the Weisfeiler-Lehman sub-tree kernel (WL-ST) between graph G =

(V, E) and G′ = (V ′, E ′) with h iterations is defined as

KWL-ST(G, G′) = KVH(G0, G′
0) + KVH(G1, G′

1) + · · ·+ KVH(Gh, G′
h), (2.7)

where Gi and G′
i are graphs obtained after ith iteration of the Weisfeiler-Lehman

relabeling process of graphs G and G′, respectively.

Figure 2.9: Illustration of the computaion of the Weifeiler-Lehman sub-tree kernel
with h = 1 for graphs G and G′.
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2.2.2.2 Weisfeiler-Lehman shortest-path kernel

The Weisfeiler-Lehman shortest-path kernel is the Weisfeiler-Lehman kernel

where the base graph kernel is the shortest-path kernel that is defined in Eq. (2.3).

Then, the Weisfeiler-Lehman shortest-path kernel between graph G = (V, E) and

G′ = (V ′, E ′) with h iterations is defined as

KWL-SP(G, G′) = KSP(G0, G′
0) + KSP(G1, G′

1) + · · ·+ KSP(Gh, G′
h), (2.8)

where Gi and G′
i are graphs obtained after ith iterations of the Weisfeiler-Lehman

relabeling process of graphs G and G′, respectively.

Figure 2.10: Illustration of the computaion of the Weisfeiler-Lehman shortest-path
kernel with h = 1 for graphs G and G′.
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2.3 Kernel method for classification

Kernel methods are a class of methods for pattern analysis. They use kernel

or similarity function to implicitly transform the data into a higher-dimensional

space then compute the similarity by the dot product. The most recognized kernel

method is the support vector machine (SVM).

2.3.1 Support vector machine

A support vector machine (SVM) is a supervised machine learning method to

solve binary classification problems. It was first invented by Vladimir Vapnik and

Alexey Chervonenkis in 1963, the current version of the support vector machine

was proposed by Corinna Cortes and Vladimir Vapnik in 1995[12]. The main idea

of the support vector machine is to find the optimum hyperplane that can best

separate data into each class. The problem to find the optimum hyperplane can

be written as

min 1
2
||w||2 + C

n∑
i=1

ξi

subject to: yi(w · xi + b) ≥ 1− ξi

ξi > 0

∀i = 1, 2, . . . , n

(2.9)

where yi is a class of ith sample and yi ∈ {−1, 1},

w is a normal vector to the hyperplane,

b is a bias,

C is a penalty parameter.
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Figure 2.11: Classification of data by the support vector machine (SVM).

The optimization problem of the support vector machine can be solved with

the dual problem of Lagrange multipliers which is quadratic programing.

max
n∑

i=1
Li −

1
2

∑
i,j

LiLjyiyjxi · xj

subject to: 0 ≤ Li ≤ C

n∑
i=1

Liyi = 0

∀i = 1, 2, . . . , n

(2.10)

where w = ∑n
i=1 Liyixi,

yi is a class of ith sample and yi ∈ {−1, 1},

Li is a Lagrange multiplier,

b is a bias,

C is a penalty parameter.
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2.3.1.1 Support vector machine with kernel function

The support vector machine can be used as a nonlinear classifier by ap-

plying the kernel trick to the maximum-margin hyperplane problem [13]. Since

the maximum-margin hyperplane problem depends on a dot product of the data.

Therefore, we can use the kernel function to solve the problem in the high-

dimensional space. Then, the optimization problem of the support vector machine

with kernel function can be written as follow:

max
n∑

i=1
Li −

1
2

∑
i,j

LiLjyiyjK(xi, xj)

subject to: 0 ≤ Li ≤ C

n∑
i=1

Liyi = 0

∀i = 1, 2, . . . , n

(2.11)

where ϕ is a feature mapping function,

w = ∑n
i=1 Liyiϕ(xi),

K(xi, xj) = ϕ(xi) · ϕ(xj) is a kernel function,

yi is a class of ith sample and yi ∈ {−1, 1},

Li is a Lagrange multiplier,

b is a bias,

C is a penalty parameter.
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2.3.2 Example of a kernel function

As previously mentioned, there are many kernel functions for graph-structured

data such as the vertex histogram kernel, the shortest-path kernel, the Weisfeiler-

Lehman sub-tree kernel, and the Weisfeiler-Lehman shortest-path kernel. The

following examples are common kernel functions for data in the form of vector.

2.3.2.1 Linear kernel

The linear kernel is the simplest kernel function. It is defined by the inner

product of two samples plus a constant c. Let x and x′ be considered samples.

Then

KLinear(x, x′) = xT x′ + c, (2.12)

where c is the free parameter.

2.3.2.2 Polynomial kernel

The polynomial kernel is a kernel function that represents the similarity

of samples in a feature space over polynomials. The Polynomial kernel for two

samples x, x′ is defined as

KPolynomial(x, x′) = (αxT x′ + c)d, (2.13)

where α and c are free parameters and d is the polynomial degree.
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2.3.2.3 Radial basis function kernel

Radial basis function kernel (RBF kernel) is a common kernel function for

support vector machine classification. The RBF kernel for two samples x, x′ is

defined as

KRBF(x, x′) = exp(−γ||x− x′||2), (2.14)

where γ is the free parameter.

2.4 Sub-graph isomorphism problem

The problem of matching graphs or sub-graphs is called sub-graph isom-

porphism problem. In cheminformatics, this problem is implemented to find the

substructure of biochemical and chemical compound. H. Ehrlich and M. Rarey

recommended using the VF2 algorithm for molecular substructure searching[14].

2.4.1 VF2 algorithm

The VF2 algorithm[15] is a well-known state-of-the-art algorithm for solving

sub-graph isomorphism problem. It is based on a state space representation, each

state is a partial mapping between the two considered graphs. The final state

is a complete mapping which is a graph isomorphism. The VF2 algorithm is as

followed:
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Algorithm 1: VF2

Function Match(G1, G2, s)
input : a target graph G1, a pattern graph G2, an intermediate

state s; the initial state s0 has M(s0) = ∅

output: the mapping between two graph

if M(s) covers all the vertices of G2 then
return M(s)

else
P (s)← the set of the pairs candidate for inclusion in M(s)

for p = (u, v) ∈ P (s) do

if F (s, u, v) is true then
Compute the state s′ obtained by adding p to M(s)

Match(G1, G2, s′)

Let G1 = (V1, E1) be a target graph and G2 = (V2, E2) be a pattern graph.

In each state s of the algorithm, mapped couples are stored in a set M(s) called the

core set. M1(s) and M2(s) are sets of vertices in M(s) for first and second graph,

respectively. Neighbors of vertices in the core set are kept in a two-set, T1(s) and

T2(s), namely terminal sets. VF2 algorithm selects the candidate pair (u, v) by

picking u from T1(s) and v from T2(s) if T1(s) ̸= ∅ and T2(s) ̸= ∅. Otherwise, the

candidate pair will be picked from the remaining vertices of G1 and G2 that are

not in the core or in the terminal sets. The example of core sets and terminal sets

are shown in Figure 2.12.
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Figure 2.12: Core sets (solid line) and terminal sets (dotted line) used by VF2 of a tar-
get graph G1 and a pattern graph G2. In this example, M(s) = {(e, 4), (h, 3)}, M1(s) =
{e, h}, M2(s) = {3, 4}, T1(s) = {f, d, i, j}, T2(s) = {1, 2}.

The candidate pair (u, v) will be added in M(s) if it passes the feasibility rules

of VF2. Let F (s, u, v) be the feasibility function, which is true if the addition to a

state s of the candidate pair (u, v) satisfies all the feasibility rules. The feasibility

function is define as:

F (s, u, v) = Fsyn(s, u, v) ∧ Fsem(s, u, v), (2.15)

where Fsyn is a syntactic feasibility rule, and Fsem is a semantic feasibility rule.

The syntactic feasibility rule depends on the structure of graphs. It consists

of two sets of rules, the core rule and the look-ahead rules. The core rule is used

to check that the candidate pair can be a part of a solution. The look-ahead rules

are used to confirm that the algorithm can continue searching for a final solution

after including the candidate pair into the partial mapping M(s). The syntactic

feasibility rule for the sub-graph isomorphism problem is defined as:
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Fsyn(s, u, v) = Rcore(s, u, v) ∧Rterm(s, u, v) ∧Rnew(s, u, v), (2.16)

where Rcore is the core rule, Rterm is the 1-look-ahead rule, and Rnew is the 2-look-

ahead rule.

The core rule, the 1-look-ahead-rule, and the 2-look-ahead rule for undirected

graphs are defined as[16]:

Rcore(s, u, v) ⇐⇒

∀u′ ∈ adj(u) ∩M1(s), ∃v′ ∈ adj(v) ∩M2(s) : (u′, v′) ∈M(s)

∧∀v′ ∈ adj(v) ∩M2(s), ∃u′ ∈ adj(u) ∩M1(s) : (u′, v′) ∈M(s), (2.17)

Rterm(s, u, v) ⇐⇒ |adj(u) ∩ T1(s)| ≥ |adj(v) ∩ T2(s)|, (2.18)

Rnew(s, u, v) ⇐⇒ |adj(u) ∩ Ṽ1(s)| ≥ |adj(v) ∩ Ṽ2(s)|, (2.19)

where adj(u) is the neighbors of the vertex u, adj(v) is the neighbors of the vertex

v, Ṽ1(s) = V1 −M1(s)− T1(s), and Ṽ2(s) = V2 −M2(s)− T2(s).

The semantic feasibility rule depends on the attributes of each vertex and

edge. The semantic feasibility on undirected labeled graphs is defined as:

Fsem(s, u, v) ⇐⇒

l1(u) = l2(v)

∧∀(u′, v′) ∈M(s), (u, u′) ∈ E1 → l1((u, u′)) = l2(v, v′), (2.20)

where l1 is a labeling function of G1, and l2 is a labeling function of G2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

PROPOSED METHOD

This chapter proposes the definition of a primitive structure, the relevant

algorithm, and the outline of the graph classification method based on primitive

structures. The algorithm to select the primitive structure from a set of candidate

structures is called “primitive structure selection” and the algorithm to extract

these structures from a graph in a data set and recreate the new graph based on

the connection of these structures is called “primitive structure extraction”.

3.1 Outline of our graph classification method

A graph classification method has two main steps. First, the information

extraction method is applied to extract the information such as features of graphs

or the similarity between each pair of graphs. After that, the information from

the first step is used to classify the graph-structured data.

In this work, we proposed a method to extract the information from bio-

chemical compounds represented as graphs. Our method consisted of three steps.

The first step was to identify common sub-graph structures from all graphs of

biochemical compounds in the data set. These common sub-graphs were called

“primitive structures”. In the second step, a considered biochemical compound

graph was scanned to identify all primitive structures which were obtained from

the first step. Then, the connection of all primitive structures in a considered

graph was formed as a new graph. These graph was called “primitive structure

graph”. In the last step, the similarity between each pair of primitive structure

graphs was computed. These similarity measures of all biochemical compounds

were fed into kernel methods such as support vector machine to classify them.
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Since the main idea of the first and the second step of our method is to identify a

primitive structure in a considered graph, this problem was called “sub-graph iso-

morphism problem” which was one of the NP-class problems. The VF2 algorithm

by Cordella et al. [15] was applied to solve this problem. The time complexity of

the VF2 algorithm is O(|Vmax|2) in the best case and O(|Vmax||Vmax|!) in the worst

case where |Vmax| is the maximum number of vertices of considered graphs.

Figure 3.1: The outline of our method

The diagrams of the illustrated outline for our method is shown in Figure 3.1.

The leftmost diagram shows the set of candidate sub-graphs. The second diagram

shows some examples of the process of identifying all primitive structures from

compound graphs. The third diagram shows the representation of each primitive

structure as a vertex and the connection of these representing vertices.

3.2 Primitive structure

The important task of this method was finding the common molecules of

biochemical compounds from all compound graphs in the data set. We called

these common molecules as “primitive structures”.

Definition 3.2.1 (Primitive structure). A primitive structure is a labeled graph

that has similar structure with a chemical molecule that appears as a sub-graph

of a compound graph in the data set.
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Many molecular structures can be written as a combination of cycle graphs,

star graphs, and path graphs as shown in [17], [18]. For example, the molecular

structure of propane can be shown as the star graph with 3 vertices (S2), the

molecular structure of isobutane can be shown as the star graph with 4 vertices

(S3), and the molecular structure of benzene can be shown as the cycle graph

with 6 vertices (C6). As in the Figure 3.2 and Figure 3.3, a chemical compound of

2,4-Dinitrochlorobenzene ((O2N)2C6H3Cl) consists of a NO2 bounds with a C, a

benzene, and a Cl bounds with a C where these components are similar to a star

graph with 3 vertices (S2), a cycle graph with 6 vertices (C6) and a star graph

with 2 vertices (S1) or a path graph with 2 vertices (P2), respectively.

Figure 3.2: 2,4-Dinitrochlorobenzene ((O2N)2C6H3Cl) and representation in the form
of graph.

Figure 3.3: Composition of 2,4-Dinitrochlorobenzene. From left to right, a NO2 bounds
with a C in a benzene ring, a benzene ring (C6H6), a Cl bounds with a C in a benzene
ring.
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3.3 Proposed method

The following section is an explanation of each step of our proposed method.

3.3.1 Primitive structure selection

The first step of our method is to identify and collects all common sub-

graph structures from all compound graphs in the data set. The algorithm of

this step is as follows. First, let C be a set of candidate sub-graphs that consists

of cycle graphs, star graphs and path graphs, and G be a data set of considered

compound graphs. The candidate graph that is isomorphic with a sub-graph of

a graph in the data set is selected as a primitive structure. The time complexity

of this algorithm is O(|C||G||Vmax||Vmax|!) where |Vmax| is the maximum number

of vertices of considered graphs. Code of this algorithm in python is shown in

APPENDIX A.

Algorithm 2: Primitive structure selection
input : set of candidate sub-graphs C where c ∈ C is a unlabeled graph,

set of graphs G where g ∈ G is a labeled compound graph

output: set of primitive structures P

A← ∅

for c ∈ C do

for g ∈ G do
S ← set of a sub-graph in g that isomorphic with c

for s in S do
add s to A

P = ∅

for p ∈ A do

if p is not isomorphic with a graph in P then
add p in P
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3.3.2 Primitive structure extraction

In this step, a considered compound graph structure is scanned to identify

all primitive structures which are defined from the step of “Primitive structure

selection”, then the connection of all primitive structures is formed as a new graph.

The algorithm of this step is as follow. Let P be a set of primitive structures, and

G be a set of considered compound graphs. Let pi ∈ P be the ith primitive

structure. For every graph in a data set G, a new graph is created by considering

each primitive structure of an original graph as vertex with label i. Each primitive

structure sub-graph in the set of all primitive structures is searched and identified

inside the considered compound graph, starting from the largest to the smallest

cycle structures, the largest to the smallest star structures, and the largest to the

smallest path structures.

After all primitive structures are found, a primitive structure graph is cre-

ated. Each primitive structure is represented by a vertex in the new graph if it

is not share more than half of its vertices with other registered primitive struc-

tures. The procedure to check this condition is the same as the previos order,

starting from the largest to the smallest cycle structures, the largest to the small-

est star structures, and the largest to the smallest path structures. There is an

edge which connect between each pair of primitive structure vertices if they share

the same vertex in the original graph. The time complexity of this algorithm is

O(|P ||G||Vmax||Vmax|!) where |Vmax| is the maximum number of vertices of consid-

ered graphs. Code of this algorithm in python is shown in APPENDIX B.
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Algorithm 3: Primitive structure extraction
input : set of primitive structures P , set of graphs G

output: set of primitive structure graphs H

P ← sorted P from type of primitive structure

H ← ∅

for g ∈ G do
Sall ← ∅; Spri ← ∅

// Sall is a set of all founded primitive structures in g

// Spri is a set of primitive structures in g after delete

some overlap structures

for pi ∈ P do
Vp ← set of nodes of sub-graph of g that isomorphic with graph pi

for v ∈ Vp do
add v to Sall

for sall ∈ Sall do
not_overlay ← True

for spri ∈ Spri do
sshare ← sall ∩ spri

if |sshare| > 1
2 |sall| then

not_overlay ← False

if not_overlay then
add sall to Spri

V ← ∅; E ← ∅; i← 1

for spri ∈ Spri do
add node i to V

l(i)← type of primitive structure of si

j ← 1

for sj ∈ Spri do

if si ∩ sj ̸= ∅ and i ̸= j then
add edge {i, j} to E

j ← j + 1
i← i + 1

add h = (V, E) to H
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3.3.3 Computing similarity measure

The last step is to extract the information from primitive structure graphs

which is obtained in the second step. The following are examples of techniques

for extracting the information from the graph-structured data.

3.3.3.1 Graph similarity

As previously mentioned, the similarity between graphs can be computed

by using the graph kernel such as the vertex histogram kernel (VH) in equation

2.6, the shortest-path kernel (SP) in equation 2.3, the Weisfeiler-Lehman sub-tree

kernel (WL-ST) in equation 2.7, and the Weisfeiler-Lehman shortest-path kernel

(WL-SP) in equation 2.8.

3.3.3.2 Counting the number of edges between each type of vertex

label

The other way to extract the information from the primitive structure graphs

is considering the number of connections between each pair of vertices in graphs,

by counting the number of edges between each type of the vertex label.

Let G = (V, E) be a considered graph, l be a labeling function of all graphs

in a data set. We will label each edge e = (u, v) ∈ E by l(e) = (l(u), l(v)).

Assume that, there are d edge labels in total among all graphs in a data set, say

s1, s2, . . . , sd. Then, the vector contains the number of edges between each type

of the vertex label of G is

f(G) = (f1, f2, . . . , fd) (3.1)

where fi = |{e ∈ E : l(e) = si}| for each i = 1, 2, . . . , d .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

EXPERIMENTS AND RESULTS

In this chapter, we evaluated our method by comparing it with graph clas-

sification methods based on a graph kernel on the original graph.

4.1 Data sets

The following standard benchmark data sets of biochemical compounds from

TUD Datasets were used [19]. Each vertex represented an atom and each vertex

label represented a type of an atom. Each edge represented a chemical bond

between a pair of atoms. Code to import the benchmark data set in python is

shown in APPENDIX C. In this work, we considered only connected graphs to

evaluate in this experiment. The statistic result such as the number of graphs,

the class ratio, the average number of vertices, the average number of edges, and

the number of vertex labels of each data set is shown in Table 4.1 where the class

ratio is the ratio of the number of positive data among the number of negative

data. The selected data sets in this study were as follows:

Table 4.1: Statistics of data sets in the experiment

Class Avg. Avg. #vertex

Datasets #Graphs ratio #vertices #edges labels

MUTAG 188 1:2 17.93 19.79 7

NCI1 3865 1:1.1 29.39 32.02 19

BZR 405 1:3.7 35.75 38.36 10

COX2 467 1:3.6 41.22 43.45 8
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4.1.1 MUTAG

MUTAG is a data set containing 188 nitro compounds where classes indicate

the mutagenic effect on a bacterium named Salmonella typhimurium[20].

Figure 4.1: The examples of compound graphs from MUTAG data set. Graphs with
red vertices are positive while graphs with blue vertices are negative.
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4.1.2 NCI1

NCI1 is a data set containing 3,865 chemical compounds where classes indi-

cate the activity against non-small cell lung cancer[21].

Figure 4.2: The examples of compound graphs from NCI1 data set. Graphs with red
vertices are positive while graphs with blue vertices are negative.
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4.1.3 BZR

BZR is a data set containing 405 ligands where classes indicate the benzo-

diazepine receptor[22].

Figure 4.3: The examples of compound graphs from BZR data set. Graphs with red
vertices are positive while graphs with blue vertices are negative.
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4.1.4 COX2

COX2 is a data set containing 467 cyclooxygenase-2 inhibitors where classes

indicate vitro activities against human recombinant enzymes [22].

Figure 4.4: The examples of compound graphs from COX2 data set. Graphs with red
vertices are positive while graphs with blue vertices are negative.
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4.2 Experimental setup

A set consisted of labeled cycle graphs with 3 to 10 vertices, labeled star

graphs with 3 to 7 vertices, and a path graph with 2 vertices was selected as a set

of candidate sub-graphs. The Weisfieler-Lehman subtree kernel (Primitive WL-

ST), the Weisfieler-Lehman shortest-path kernel (Primitive WL-SP), the shortest-

path kernel (Primitive SP), and the number of edges between each type of vertex

label which is a label of the primitive structure (Primitive Edges) were selected

as similarity measures. The obtained results from our proposed method based on

different similarity measures were reported. Our methods were compared to the

graph classification method on original graphs with following similarity measures,

the Weisfieler-Lehman subtree kernel (WL-ST), the Weisfieler-Lehman shortest-

path kernel (WL-SP), the shortest-path kernel (SP), and the number of edges

between each type of vertex label (Edges).

The shortest-path kernel, the Weisfeiler-Lehman subtree kernel, and the

Weisfeiler-Lehman shortest-path kernel were computed by a library of graph ker-

nels for python called GraKel [23]. The sub-graph isomorphism and graph iso-

morphism problem were computed by graph library for python called graph-tools

[24] and networkx [25].

80% of data were for the training set and 20% were for the test set. Five-

fold stratified cross-validation of the support vector machine using scikit-learn [26]

were used on the training set to exclude the random effect of data separation and

to select the best hyperparameters. The experiments were repeated 10 times on

each data set. The height parameter for the Weisfieler-Lehman sub-tree kernel

was chosen in {1, 2, ..., 5}, and for the Weisfieler-Lehman shortest-path kernel was

chosen in {1, 2, 3} except the data set NCI1 whose the height parameter was set

to be h = 1 due to the memory limitation of the machine. The free parameter
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C for the support vector machine was chosen between 10−2 and 103. Optimal

hyper-parameters for each method in this experiment are shown in Table 4.2.

The information obtained by the number of edges between each type of vertex

label (edge) was fed into the support vector machine with the radial basis function

kernel setting γ = 1/n, where n was the number of features. Other graph kernels

were also used as the kernel function of the support vector machine.

The CPU runtimes in seconds measured on 1.80GHz Intel(R) Core(TM)

i7-8565U CPU and 20GB RAM are reported in Table 4.8 and Table 4.9.

Code for classification with SVM by using the Weisfeiler-Lehman sub-tree

kernel as a similarity measure in python is shown in APPENDIX D.

Table 4.2: Parameters on each data set where θ is the threshold value of primitive
structures selection, h is the height parameter of the Weisfeiler-Lehman framework, and
C is a parameter for the support vector machine.

Methods
MUTAG NCI1 BZR COX2

h C h C h C h C

WL-ST 1 1000 5 21.54 3 21.54 1 1000
WL-SP 1 278.26 1 21.54 3 77.43 2 77.43
SP - 1000 - 278.26 - 21.54 - 1000
Edges - 1.67 - 21.54 - 1.67 - 1.67
Primitive WL-ST 2 1.67 4 5.99 1 21.54 5 5.99
Primitive WL-SP 2 0.46 1 5.99 1 21.54 1 77.43
Primitive SP - 0.46 - 5.99 - 21.54 - 77.43
Primitive Edges - 1.67 - 278.26 - 278.26 - 77.43
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4.3 Performance measures

The results of the classification can be separated into 4 cases. The first case

are called true positives, which are positive data such that a classification predicts

them as positive. The second case are called false positives, which are negative

data such that a classification predicts it them as positive. The third case are

called true negatives, which are negative data such that a classification predicts

them as negative. The last case are called false negatives, which are positive data

such that a classification predicts them as negative.

Let TP be the number of true positives, FP be the number of false positives,

TN be the number of true negatives and FN be the number of false negatives.

We use the following metrics to evaluate the performance of our method.

4.3.1 Accuracy

The accuracy is the rate of correct classifications. It is defined as a proportion

of true results among the total number of cases examined.

Accuracy = TP + TN

TP + TN + FP + FN
(4.1)

4.3.2 Precision

The precision is a measurement of the confidence of a positive prediction. It

is defined as a proportion of true positives among all positive predictions.

Precision = TP

TP + FP
(4.2)
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4.3.3 Recall

The recall is a measurement of the completeness of a positive prediction. It

is defined as a proportion of true positives among all positive cases.

Recall = TP

TP + FN
(4.3)

4.3.4 F1 score

The F1 score is a performance measure of a classification method. It is

defined by the harmonic mean of the precision and the recall.

F1 = 2 · Precision · RecallPrecision + Recall (4.4)

4.3.5 Wilcoxon signed-ranks test

The Wilcoxon signed-ranks test is a non-parametric statistical hypothesis

test proposed by Wilcoxon in 1945[27]. This test is recommended for comparison

of two classifiers[28]. It ranks the differences in performances of two classifiers for

each data set and compare the rank for the positive and negative differences.

Let c1
i and c2

i be performance measures of two classifiers on the ith of N

observation and let di = c2
i −c1

i be the differences and M is the median differences.

The one-sided test is used for this experiment where the null hypothesis is: the

median of difference is less than or equal to zero (H0 : M ≤ 0), and the alternative

hypothesis is: the median difference is greater than zero (HA : M > 0). The

differences are ranked by their absolute values. Let R+ be the sum of ranks for

the data sets that the second algorithm outperforms the first, and R− be the sum
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of ranks for the data sets that the first algorithm outperforms the second. Ranks

of di = 0 are split among the sums:

R+ =
∑
di>0

rank(di) + 1
2

∑
di=0

rank(di), (4.5)

R− =
∑
di<0

rank(di) + 1
2

∑
di=0

rank(di). (4.6)

For this null hypothesis of the Wilcoxon signed-rank test, we consider on the

sum of ranks of positive differences, let T = R+. The exact critical values for T is

used if N is less than or equal to 25. Otherwise, the test statistics

z =
T − 1

4N(N + 1)√
1
24N(N + 1)(2N + 1)

(4.7)

is distributed approximately normally. The null hypothesis can be rejected

if z is greater than a critical value.

4.4 Results

4.4.1 Classification performance

The average classification performance on each data set of the experiments

are shown in Table 4.3.

The graph classification method on original graphs with theWeisfeiler-Lehman

subtree kernel (WL-ST) had a good performance on the NCI1 data set with the

highest recall and F1-score which were 0.819 and 0.826, respectively. This method

had the best accuracy among other methods that extract the information from the
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Table 4.3: Average classification performance on each data set

Methods
Data sets

MUTAG NCI1 BZR COX2
Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1

WL-ST .842 .866 .909 .884 .833 .835 .819 .826 .884 .868 .599 .703 .815 .641 .404 .489
WL-SP .826 .850 .907 .873 .813 .808 .806 .807 .879 .826 .632 .709 .809 .653 .402 .480
SP .797 .823 .890 .852 .734 .729 .722 .725 .860 .792 .553 .649 .812 .674 .369 .456
Edges .847 .872 .915 .888 .717 .735 .653 .691 .843 .941 .350 .504 .819 .781 .287 .413

Primitive WL-ST .884 .932 .896 .911 .822 .830 .798 .814 .859 .765 .569 .648 .815 .651 .373 .463
Primitive WL-SP .905 .951 .906 .926 .834 .854 .795 .823 .880 .782 .682 .727 .801 .595 .367 .446
Primitive SP .889 .920 .914 .916 .804 .806 .786 .795 .874 .789 .631 .699 .795 .545 .395 .453
Primitive Edges .871 .937 .866 .899 .794 .804 .763 .783 .896 .847 .680 .752 .826 .700 .400 .498
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original graph on the NCI1 and BZR data sets.

The method based on the numbers of edges between each type of vertex label

on original graphs (Edges) had the highest recall on MUTAG which was 0.915,

the highest precision on BZR which was 0.941, and the highest precision on COX2

which was 0.781. This method outperformed other methods based on the original

graph on the MUTAG data set. For the COX2 data set, this method had the

second best accuracy which was 0.819.

The classification method on primitive structure graphs with the Weisfeiler-

Lehman subtree kernel (Primitive WL-ST) had a better performance compared

to other methods on original graphs on the MUTAG data set. For the other data

sets, this method had moderate performance.

Our method with the Weisfeiler-Lehman shortest-path kernel (Primitive WL-

SP) had the best accuracy, precision, and F1-score on the MUTAG data set. The

accuracy of this method on the MUTAG data set was 0.905, the precision was

0.951, and the F1-score was 0.926. It also had good performance on the NCI1

which its accuracy was 0.834, its precision was 0.854, and its F1-score was 0.824

which was the runner-up method in term of the F1-score on this data set. This

method had the highest recall on the BZR data set which was 0.682 and the

runner-up F1-score which was 0.727.

Our method with the shortest-path kernel (Primitive SP), this method had

the runner-up accuracy and F1-score on the MUTAG data set. The accuracy of

this method on the MUTAG data set was 0.889, and the F1-score of this method

on the MUTAG data set was 0.916. However, this method had the worst accuracy

on the COX2 data set.
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The last method was the method based on the numbers of edges between

each type of vertex labels on primitive structure graphs (Primitive Edges). This

method had the greatest accuracy and the F1-score on the BZR and the COX2

data sets. The accuracy and the F1-score on the BZR were 0.896 and 0.752,

respectively. For the COX2 data set, the accuracy was 0.826 and the F1-score was

0.498.

Our method had greater performance than the method based on the original

graph on the MUTAG data set. Moreover, using the Weisfeiler-Lehman shortest-

path kernel, the shortest-path kernel, and the numbers of edges between each type

of vertex labels improved the performance of the classification on the NCI1 and

the BZR data set. However, on the COX2 data set, our method had better perfor-

mance than the method on the original graph only when used the numbers of edges

between each type of vertex labels as the similarity measure. Since compounds in

the COX2 data set were bigger than compounds in other data set. Their average

number of vertices was 41.22 and the average number of edges was 43.45. In the

opinion of the author, path graphs with size more than 2 should include the set

of candidate sub-graphs to handle this data set.

4.4.2 Comparing between the classification methods based on original

graphs and primitive structure graphs

In this section, we compared between the classification methods based on

original graphs and the classification methods based on primitive structure graphs

with the one-sided Wilcoxon signed-ranks test. Let c1
i be a performance measure

of classification methods based on original graphs of ith observation, and c2
i be a

performance measure of classification methods based on primitive structure graphs

of ith observation. In this experiment, we had totally 40 observations for each

pair of classifiction methods. The accuracy and the F1-score were used as the
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performance measures to comparing classification methods.

4.4.2.1 WL-ST and Primitive WL-ST

The average accuracy and the average F1-score between the method using

the Weisfeiler-Lehman subtree kernel on original graphs and the method using

the Weisfeiler-Lehman subtree kernel on primitive structure graphs are shown in

Figure 4.5.

Figure 4.5: The graph shows comparison between the average accuracy and the average
F1-score on each data set of Primitive WL-ST and WL-ST

The Wilcoxon signed-ranks test between these methods is shown in Table

4.4.
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Table 4.4: Test statistics to comparing between WL-ST and Primitive WL-ST

Accuracy F1-score

R+ 301 R+ 261

R− 519 R− 559

z -1.465 z -2.003

p-value 0.92855 p-value 0.97740

The null hypothesis could not be rejected on both accuracy and F1-score.

Thus, our method could not improve the classification performance when combin-

ing with the Weisfeiler-Lehman subtree kernel. The method using the Weisfeiler-

Lehman subtree kernel on primitive structure graphs had better performance only

on the MUTAG data set where the compounds in this data set were small.

4.4.2.2 WL-SP and Primitive WL-SP

The average accuracy and the average F1-score between the method using

the Weisfeiler-Lehman shortest-path kernel on original graphs and the method

using the Weisfeiler-Lehman shortest-path kernel on primitive structure graphs

are shown in Figure 4.6.
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Figure 4.6: The graph shows comparison between the average accuracy and the average
F1-score on each data set of Primitive WL-SP and WL-SP

The Wilcoxon signed-ranks test between these methods is shown in Table

4.5.

Table 4.5: Test statistics to comparing between WL-SP and Primitive WL-SP.

Accuracy F1-score

R+ 639.5 R+ 518

R− 180.5 R− 302

z 3.085 z 1.452

p-value 0.00102 p-value 0.07330

The null hypothesis of accuracy could be rejected at a significant level of

0.005. Thus, our method could improve the classification accuracy when combining

with the Weisfeiler-lehman shortest-path kernel. The p-value of test statistics for

F1-score was between 0.05 and 0.10. This provide evidence that our method’s

F1-score was slightly greater than the method solely used the Weisfeiler-Lehman
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shortest-path kernel.

4.4.2.3 SP and Primitive SP

The average accuracy and the average F1-score between the method using

the shortest-path kernel on original graphs and the method using the shortest-path

kernel on primitive structure graphs are shown in Figure 4.7.

Figure 4.7: The graph shows comparison between the average accuracy and the average
F1-score on each data set of Primitive SP and SP

The Wilcoxon signed-ranks test between these methods is shown in Table

4.6.
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Table 4.6: Test statistics to comparing between SP and Primitive SP.

Accuracy F1-score

R+ 765.5 R+ 679

R− 54.5 R− 141

z 4.778 z 6.616

p-value 8.836*10−7 p-value 1.498*10−4

The null hypothesis could be rejected on both accuracy and F1-score at a

significant level of 0.001. Thus, our method with the shortest-path kernel had

greater performance than the method solely used the shortest-path kernel.

4.4.2.4 Edge and Primitive Edge

The average accuracy and the average F1-score between the method based

on the numbers of edges between each type of vertex labels on original graphs and

the method based on the numbers of edges between each type of vertex labels on

primitive structure graphs are shown in Figure 4.8.
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Figure 4.8: The graph shows comparison between the average accuracy and the average
F1-score on each data set of Primitive Edge and Edge

The Wilcoxon signed-ranks test between these methods is shown in Table

4.7.

Table 4.7: Test statistics to comparing between Edge and Primitive Edge.

Accuracy F1-score

R+ 717 R+ 731

R− 103 R− 89

z 4.126 z 4.315

p-value 1.842*10−5 p-value 7.993*10−6

The null hypothesis could be rejected on both accuracy and F1-score at a

significant level of 0.001. Thus, our method based on the numbers of edges between

each type of vertex labels had greater performance than the method based on the

numbers of edges between each type of vertex labels on original graphs.
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From the results, using the information from primitive structure graphs can

improve the performance of graph classification in 3 out of 4 similarity measures

in the experiment.

4.4.3 CPU Runtime

The runtime for our method in the first and the second step (the primitive

structure selection algorithm, and the primitive structure extraction algorithm)

was high, due to the time complexity of a sub-graph isomorphism problem which

was one of NP-class problems, especially on the large data set such as NCI1 such

that total runtime was 6157 seconds (about 1 hour and 42 minutes).

Table 4.8: CPU runtime in second for primitive structure selection and primitive
structure extraction on each data set.

Methods
Data sets

MUTAG NCI1 BZR COX2

Primitive structure selection 50 3338 471 643

Primitive structure extraction 21 2819 103 107

Total runtime 71 6157 574 750

However, most of the CPU runtime for similarity measures and classification

on our method was lower than the runtime of the method based on original graphs.

Because the concept of our algorithm was to group common structures and con-

sidered them as vertices, then the primitive structure graphs were usually smaller

than the original graphs. Thus, it needed less time to calculated the similarity

measure. The runtime of the method based on the numbers of edges between each

type of vertex labels on primitive structure graphs (Primitive Edges) was higher

than the method with the same idea of information extraction (Edges). Since the

number of vertex labels on the primitive structure graph, which was a type of
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primitive structures, was always larger than the number of vertex labels (type of

atoms) on the original graph.

Table 4.9: Average CPU runtime in second for similarity measures and classification
on each data set.

Methods
Data sets

MUTAG NCI1 BZR COX2

WL-ST 0.43 51.93 1.23 1.68
WL-SP 3.34 57.57 26.84 31.23
SP 0.23 22.55 1.29 1.44
Edges 0.07 36.87 0.19 0.18

Primitive WL-ST 0.35 40.17 0.95 0.97
Primitive WL-SP 0.64 68.31 7.36 8.15
Primitive SP 0.10 13.95 0.47 0.55
Primitive Edges 0.08 655.00 0.80 0.81



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS AND FUTURE WORK

This chapter provides conclusion of this thesis and the possibility of the

future work.

5.1 Conclusions

The algorithm to extract the information from the data of biochemical com-

pounds encoded as graph-structured data by analyzing their common sub-graphs

called “primitive structure” and creating a new graph called “primitive struc-

ture graph” was proposed. The primitive structure graph was a graph where its

vertices were primitive structures and its edges were connections between each

primitive structure. This new graph obtained from our approach could be used

with any previously proposed graph kernels or other similarity measures to extract

their information. The information obtained by this method could be used with

the support vector machine to classify a graph. Primitive structures and their

connection in the original graph were the primary concern for this study. They

were a piece of essential information for measuring the similarity of biochemical

compounds. The algorithm was tested with four benchmark data sets and four

similarity measures. The result shows that this algorithm can improve the ac-

curacy, and the F1-score of classification methods when combined with suitable

similarity measures.
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5.2 Future work

Directions for the future work are to apply this algorithm on the labeled

graph with high-dimensional vertex labels (graph with multidimensional and real

value vertex labels) which provide more information about the structure of bio-

chemical compounds. Moreover, we need to find a better kernel method to handle

the problem of imbalanced data set as well as a multi-class problem. Since the

real-world data set of biochemical compounds mostly has non-interested class data

more than interested class data and some data sets have more than two classes.
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APPENDIX A : Primitive structure selection

1 import networkx as nx

2 def primitive_selection(candidate_list):

3 '''

4 Input: candidate_list (set of candidate sub-graph)

5 Output: primitive_structure (set of primitive structure)

6 '''

7 all_primitive_structure = []

8 #Search for all candidate graph that appear in data set

9 for candidate in candidate_list:

10 for g in MUTAG_graph:

11 for i in nx.algorithms.isomorphism.GraphMatcher(g,

candidate).subgraph_isomorphisms_iter():

12 sub = nx.Graph.subgraph(g,i)

13 all_primitive.append(sub)

14 #Delete duplicate primitive structure

15 primitive_structure = []

16 nm = nx.algorithms.isomorphism.categorical_node_match('label',

node_label_set)

17 for g in all_primitive:

18 dif_g = True

19 for base_g in primitive_structure:

20 if nx.algorithms.isomorphism.GraphMatcher(g,base_g,nm).

is_isomorphic():

21 dif_g = False

22 break

23 if dif_g:

24 primitive_structure.append(g)

25 return primitive_structure
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APPENDIX B : Primitive structure extraction

1 import graph_tool.all as gt

2 def primitive_extraction(graph_db,primitive_structure,

primitive_structure_label):

3 '''

4 Input: graph_db (set of considered graph)

5 primitive_structure (set of primitive structure)

6 primitive_structure_label (set of primitive structure label)

7 Output: graph_primitive (set of graph created by primitive structure

)

8 '''

9 graph_primitive = []

10 #Scan all graph in data set to create the new one

11 for g in graph_db:

12 all_unique_set = []

13 #Identify all primitive structure in considered graph

14 for idx, base_g in enumerate(primitive_structure):

15 iso_list = []

16 for i in gt.subgraph_isomorphism(base_g,g,vertex_label=(

base_g.vertex_properties['label'],g.vertex_properties['

label']),generator=True):

17 iso_list.append(frozenset(i))

18 all_unique_set.append(set(iso_list))

19 graph_obj = []

20 #Select only primitive_structure that not overlay with other

21 for idx_obj, set_obj in enumerate(all_unique_set):

22 for obj_i in set_obj:

23 check_overlay = False

24 for obj_j in graph_obj:

25 i_intersect_j = obj_i.intersection(obj_j[0])

26 if len(i_intersect_j) > len(obj_i)/2 or len(i_intersect_j

) == len(obj_i):
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27 check_overlay = True

28 if not(check_overlay):

29 graph_obj.append([obj_i,primitive_structure_label[idx_obj

]])

30 #Create new graph from primitive structures and their connection

31 go = nx.empty_graph()

32 for i,[obj_i,label_i] in enumerate(graph_obj):

33 go.add_node(i)

34 go.nodes[i]["label"] = label_i

35 for j,[obj_j,label_j] in enumerate(graph_obj):

36 if i!= j and obj_i.intersection(obj_j) != set():

37 go.add_edge(i,j)

38 graph_primitive.append(go)

39 return graph_primitive
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APPENDIX C : Import benchmark data set

1 from grakel import datasets

2 import networkx as nx

3 def Load_graph(names):

4 '''

5 Input: names (name of a benchmark dataset in TUD Datasets)

6 Output: graph_db (list of graph in networx format)

7 dataset.target (list of target class for each graph)

8 '''

9 dataset = datasets.fetch_dataset(names, verbose=False,

prefer_attr_nodes=False)

10 dataset_attr = datasets.fetch_dataset(names, verbose=False,

prefer_attr_nodes=True)

11 graph_data = dataset.data

12 graph_data_attr = dataset_attr.data

13 graph_db = []

14 #Convert graph data from dict to networkx.graph

15 for i,g_el in enumerate(graph_data):

16 g = nx.from_edgelist(g_el[0])

17 if g_el[1] != {}:

18 for v in g.nodes:

19 g.nodes[v]["label"] = g_el[1][v]

20 if graph_data_attr[i][1] != {}:

21 for v in g.nodes:

22 g.nodes[v]["attribute"] = graph_data_attr[i][1][v]

23 if g_el[2] != {}:

24 for e in g.edges:

25 g.edges[e]["label"] = g_el[2][e]

26 graph_db.append(g)

27 return graph_db, dataset.target
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APPENDIX D : Example code for classification with SVM by using the
Weisfeiler-Lehman sub-tree kernel as a similarity measure.

1 from grakel import GraphKernel

2 from sklearn.svm import SVC

3 from sklearn.metrics import accuracy_score, precision_score,

recall_score, f1_score

4 from sklearn.model_selection import train_test_split, GridSearchCV,

StratifiedKFold

5 import numpy as np

6 '''

7 Input: grakel_db (list of graph in grakel dictionary format)

8 classes_db (list of target class for each graph)

9 rs (list of random_state seed)

10 Output: acc (list of accuracy for each experiment)

11 pre (list of precision for each experiment)

12 rec (list of recall for each experiment)

13 f1 (list of f1-score for each experiment)

14 '''

15 acc = []

16 pre = []

17 rec = []

18 f1 = []

19 for i in rs:

20 best_score = 0

21 for iter in [1,2,3,4,5]:

22 X_train, X_test, y_train, y_test = train_test_split(np.array(

grakel_db), np.array(classes_db) , test_size = ts,

random_state = i)

23 wl_kernel = GraphKernel(kernel=[{"name": "weisfeiler_lehman",

"n_iter": iter}, {"name": "subtree_wl"}], normalize=True

)

24 K_train = wl_kernel.fit_transform(X_train)
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25 parameters = {'C':np.logspace(-2,3,10)}

26 clf = GridSearchCV(SVC(kernel='precomputed'), parameters, cv=

StratifiedKFold(n_splits=5))

27 clf.fit(K_train, y_train)

28 if clf.best_score_ > best_score:

29 best_model = clf

30 best_h = iter

31 best_kernel = wl_kernel

32 best_score = clf.best_score_

33 best_test = X_test

34 K_test = best_kernel.transform(best_test)

35 y_pred = best_model.predict(K_test)

36 acc.append(accuracy_score(y_test, y_pred))

37 pre.append(precision_score(y_test, y_pred,pos_label=1))

38 rec.append(recall_score(y_test, y_pred,pos_label=1))

39 f1.append(f1_score(y_test, y_pred,pos_label=1))
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