
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ทอพอโลยีนัยทั่วไปที่ชักนำจากฟงกชันทางเดียวและคลาสพันธุกรรม

นาย สหวัฒน วงศขุนเณร

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาคณิตศาสตร ภาควิชาคณิตศาสตรและวิทยาการคอมพิวเตอร

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย
ปการศึกษา 2562

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENERALIZED TOPOLOGIES INDUCED BY MONOTONIC MAPS AND

HEREDITARY CLASSES

Mr. Sahawat Wongkhunen

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Mathematics

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2019

Copyright of Chulalongkorn University



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis Title GENERALIZED TOPOLOGIES INDUCED BY

MONOTONIC MAPS AND HEREDITARY CLASSES

By Mr. Sahawat Wongkhunen

Field of Study Mathematics

Thesis Advisor Assistant Professor Pongdate Montagantirud, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in

Partial Fulfillment of the Requirements for the Master’s Degree

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chairman

(Associate Professor Wicharn Lewkeeratiyutkul, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thesis Advisor

(Assistant Professor Pongdate Montagantirud, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examiner

(Associate Professor Phichet Chaoha, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Examiner

(Assistant Professor Annop Kaewkhao, Ph.D.)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv

สหวัฒน วงศขุนเณร: ทอพอโลยีนัยทั่วไปที่ชักนำจากฟงกชันทางเดียวและคลาสพันธุกรรม
(GENERALIZED TOPOLOGIES INDUCED BY MONOTONIC MAPS AND

HEREDITARY CLASSES)

อ.ที่ปรึกษาวิทยานิพนธหลัก : ผศ.ดร.พงษเดช มนทกานติรัตน, 55 หนา.

ทอพอโลยีนัยทั่วไปที่กำหนดมาใหใดๆ จะสามารถนำไปสรางทอพอโลยีนัยทั่วไปใหมไดโดย
ใชคลาสพันธุกรรม และจากบทความ [5] ไดศึกษาความตอเนื่องบนทอพอโลยีนัยทั่วไปที่เกิดจาก
คลาสพันธุกรรม เรานิยามและศึกษาทอพอโลยีนัยทั่วไปที่ชักนำจากฟงกชันทางเดียวและคลาส
พันธุกรรม อีกทั้งศึกษาความตอเนื่องบนทอพอโลยีนัยทั่วไปที่ชักนำจากฟงกชันทางเดียวและคลาส
พันธุกรรมอีกดวย และสุดทายนี้ศึกษาสมบัติและลักษณะเฉพาะของทอพอโลยีนัยทั่วไปที่ชักนำ
จากฟงกชันทางเดียวซึ่งมีสมบัติพิเศษบางประการและคลาสพันธุกรรม

ภาควิชา . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .คณิตศาสตรและวิทยาการคอมพิวเตอร ลายมือชื่อนิสิต. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

สาขาวิชา . . . . . . . . . . . . . . . . . . . . .คณิตศาสตร. . . . . . . . . . ลายมือชื่อ อ.ที่ปรึกษาหลัก . . . . . . . . . . . . . . . . . .

ปการศึกษา . . . . . . . . . . . . . . . .2562. . . . . . . . . . . . . . .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

# # 6172077023 : MAJOR MATHEMATICS

KEYWORDS : GENERALIZED TOPOLOGICAL SPACES/ MONOTONIC MAPS/

HEREDITARY CLASSES

�SAHAWAT WONGKHUNEN : GENERALIZED TOPOLOGIES INDUCED

BY MONOTONIC MAPS AND HEREDITARY CLASSES

ADVISOR : ASST. PROF. PONGDATE MONTAGANTIRUD, Ph.D.

55 pp.

It is shown in [3] that every generalized topology can be extended to a new one

by using hereditary classes, called a generalized topology via a hereditary class.

Following [5], the continuity on generalized topological spaces via hereditary classes

was studied. In this thesis, we introduce the notion of generalized topological

spaces induced by monotonic maps and hereditary classes and provide some of their

properties. Also, we define and study the continuity on generalized topological

spaces induced by monotonic maps and hereditary classes in various situations.

Finally, we study some properties and characterizations of generalized topological

spaces induced by monotonic maps having special properties and hereditary classes.

Department : . . . . . . . . . . . . .Mathematics . . . .and. . . . . . . . . . .Computer. . . . . . . . .Science Student’s Signature . . . . . . . . . . . .

Field of Study : . . . . . . . . . . . . . . . . . . . .Mathematics. . . . . . . . . Advisor’s Signature . . . . . . . . . . . . . . . .

Academic Year : . . . . . . . . . . . . . . .2019 . . . . . . . . . . . . . .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Asst. Prof.

Dr. Pongdate Montagantirud for the continuous support of my thesis research,

for his patience, motivation, enthusiasm, and immense knowledge. His guidance

helped me in all the time of research and writing of this thesis. I am most graceful

to work with him. Besides my advisor, I would like to express my special thanks

to the rest of my thesis committee: Assoc. Prof. Dr. Wicharn Lewkeeratiyutkul,

Assoc. Prof. Dr. Phichet Chaoha, and Asst. Prof. Dr. Annop Kaewkhao, for their

encouragement, insightful comments, and hard questions which incented me to

widen my research from various perspectives. Their suggestions and comments are

my sincere appreciation. Moreover, I feel very thankful to all of my teachers who

have taught me abundant knowledge and also Science Achievement Scholarship of

Thailand for supporting me a scholarship to do the project comfortably. Finally,

I must express my very profound gratitude to my parents for providing me with

unfailing support and continuous encouragement throughout my years of study and

through the process of researching and writing this thesis. This accomplishment

would not have been possible without them. Thank you.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTENTS

ABSTRACT IN THAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT IN ENGLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Generalized topologies via hereditary classes . . . . . . . . . . . . . 3

2.2 Continuous maps on generalized topological spaces via hereditary

classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 GENERALIZED TOPOLOGICAL SPACES INDUCED BY MONOTONIC

MAPS AND HEREDITARY CLASSES . . . . . . . . . . . . . . . . . . . 9

3.1 The set A∗
γ,H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Generalized topological spaces induced by monotonic maps and

hereditary classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 (g∗γ, g
∗
β)-continuous maps . . . . . . . . . . . . . . . . . . . . 15

3.2.2 (g∗γ, g
∗
β)-open maps . . . . . . . . . . . . . . . . . . . . . . . 22

4 GENERALIZED TOPOLOGICAL SPACES INDUCED BY MONOTONIC

MAPS HAVING PARTICULAR PROPERTIES AND HEREDITARY

CLASSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Restricting maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 (g∗γ, g
∗
β)-continuous maps . . . . . . . . . . . . . . . . . . . . 32

4.1.2 (g∗γ, g
∗
β)-open maps . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.3 Relations between (g∗γ , g
∗
β)-continuity and (g∗gγ , g

∗
gβ
)-continuity 39

4.2 Strong maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 (g∗γ, g
∗
β)-continuous maps . . . . . . . . . . . . . . . . . . . . 44

4.2.2 (g∗γ, g
∗
β)-open maps . . . . . . . . . . . . . . . . . . . . . . . 47

5 CONCLUSION AND DISCUSSION . . . . . . . . . . . . . . . . . . . . 51



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER I

INTRODUCTION

In 1997, Császár [1] presented the concept of open sets in a topological space via

monotonic maps, called γ-open sets. He observed that for any monotonic map γ,

the empty set is γ-open and any union of γ-open sets is also γ-open. From his

observation, he defined a generalized topology which is a collection of subsets of a

given nonempty set containing the empty set and arbitrary unions of members in

this collection. In 1990, Janković and Hamlett [4] defined a hereditary class H on a

topological space X, which is the collection of subsets of X such that every subset

of elements in H is in H. They also introduced the generalization of the closure

in a topological space via the hereditary class H. In 2007, Császár [3] defined a

new generalized topology which contains an old generalized topology via heredi-

tary classes. In 2018, Montagantirud and Thaikua [5] introduced a notion of the

continuity on generalized topological spaces via hereditary classes in various situ-

ations. They also proved that the continuity between two generalized topological

spaces can be preserved on generalized topological spaces via hereditary classes.

In this thesis, we shall use the motivation discussed above to study general-

ized topologies induced by monotonic maps and hereditary classes. Our thesis is

organized as follows. In Chapter II, we recall the definition of monotonic maps,

generalized topological spaces, hereditary classes and continuous maps on gener-

alized topological spaces. We also provide some facts which follow from properties

of a generalized topological space induced by a hereditary class. In Chapter III,

we introduce a notion of a generalized topological space induced by a monotonic

map and a hereditary class. Also, we provide some of their properties. Next, we

obtain some results of the continuity on generalized topological spaces induced by

monotonic maps and hereditary classes and construct a hereditary class H that



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

makes a given function continuous on the generalized topological space via a given

monotonic map and the set H. Finally, we give some applications of generalized

topological spaces induced by monotonic maps having particular properties and

hereditary classes. We also investigate the relationships between generalized topo-

logical spaces via hereditary classes and generalized topological spaces induced by

monotonic maps and hereditary classes.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations and results which will be used

for this dissertation.

2.1 Generalized topologies via hereditary classes

Let X be a nonempty set. We denote the power set of X by exp(X). In 1997,

Császár [1] introduced a generalization of open sets, called γ-open sets.

Definition 2.1.1. The map γ : exp(X) → exp(X) is called monotonic if A ⊆ B

implies γ(A) ⊆ γ(B) for all A,B ∈ exp(X). The set of all monotonic maps is

denoted by Γ(X).

Definition 2.1.2. Let γ be a monotonic map. A set A ⊆ X is called γ-open if

A ⊆ γ(A). The collection of all γ-open sets is denoted by gγ.

In [1], Császár observed that the collection of γ-open sets has some properties

similar to the collection of open sets in a topological space. That is, for any

monotonic map γ, the empty set is γ-open and any union of γ-open sets is γ-open.

From his observation, he defined a generalized topological space.

Definition 2.1.3. Let X be a nonempty set. A collection µ of subsets of X is

called a generalized topology on X if it satisfies the following conditions.

(1) The empty set is in µ.

(2) Any union of elements in µ is in µ.

The pair (X,µ) is called a generalized topological space, the elements of µ

are called µ-open sets, and the complements of µ-open sets are called µ-closed

sets. In particular, any topology is also a generalized topology.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Remark 2.1.4. The set gγ is a generalized topology. We are able to say that a

monotonic map on exp(X) constitutes a generalized topology.

Definition 2.1.5. Let (X,µ) be a generalized topological space. For A ⊆ X, the

µ-interior of A, denoted by iµ(A), is the union of all µ-open subsets of A, and

the µ-closure of A, denoted by cµ(A), is the intersection of all µ-closed supersets

of A. In particular, iµ and cµ can be regraded as monotonic maps.

In 1990, Janković and Hamlett [4] generalized the concept of the closure in a

topological space X via a collection of a particular subset, called a hereditary class,

H of X and they also obtained a new topology which contains an old topology by

using this concept.

Definition 2.1.6. A collection H of subsets of X is said to be a hereditary class

on X if for each A,B ∈ exp(X),

A ⊆ B and B ∈ H imply A ∈ H.

If a hereditary class H has a further property that for each A,B ∈ exp(X),

A,B ∈ H imply A ∪B ∈ H,

then H is said to be an ideal. We call (X,µ,H) a generalized topological space

(X,µ) together with a hereditary class H.

Remark 2.1.7. ∅ ∈ H and H = exp(X) if X ∈ H.

In 2007, Császár [3] introduced and studied the construction of a generalized

topology via a hereditary class.

Definition 2.1.8. Let (X,µ,H) be a generalized topological space together with

a hereditary class H. For each A ⊆ X, we define

A∗
µ,H = {x ∈ X | x ∈ M ∈ µ implies M ∩ A /∈ H}.
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In particular, A∗
µ,{∅} = cµ(A). If there is no ambiguity, then A∗

µ,H will be denoted

by A∗
µ.

The following are some properties of A∗
µ.

Proposition 2.1.9. [3] Let (X,µ,H) be a generalized topological space together

with a hereditary class H and A,B,M ⊆ X.

(1) A ⊆ B implies A∗
µ ⊆ B∗

µ;

(2) A∗
µ ⊆ cµ(A);

(3) If M ∈ µ and M ∩ A ∈ H, then M ∩ A∗
µ = ∅;

(4) A∗
µ is µ-closed;

(5) A is µ-closed implies A∗
µ ⊆ A;

(6) (A∗
µ)

∗
µ ⊆ A∗

µ;

(7) X = X∗
µ if and only if µ ∩H = ∅.

Moreover, he observed that A∗
µ does not contain A. Therefore, A∗

µ would not

be a generalization of the closure of A. This leads to the following definition.

Definition 2.1.10. Let (X,µ,H) be a generalized topological space together with

a hereditary class H. For each A ⊆ X,

c∗µ,H(A) = A ∪ A∗
µ,H.

If there is no ambiguity, then c∗µ,H(A) will be denoted by c∗(A).

After that, Császár [3] proved that there is a generalized topology µ∗ such that

c∗(A) is the intersection of all µ∗-closed supersets of A, that is, M ∈ µ∗ if and only

if c∗(X −M) = X −M . From this motivation, we obtain the following definition.
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Definition 2.1.11. Let (X,µ,H) be a generalized topological space together with

a hereditary class H. Define a generalized topology on X via a hereditary class H

by

µ∗
H = {M ⊆ X | c∗(X −M) = X −M}.

The elements of µ∗
H are called µ∗

H-open sets and the complements of µ∗
H-open

sets are called µ∗
H-closed sets. If there is no ambiguity, then µ∗

H will be denoted

by µ∗.

The following are some properties of the generalized topology µ∗.

Proposition 2.1.12. [3] Let (X,µ,H) be a generalized topological space together

with a hereditary class H. Then:

(1) If H = {∅}, then µ∗ = µ;

(2) F is µ∗-closed if and only if F ∗
µ ⊆ F ;

(3) µ ⊆ µ∗.

Definition 2.1.13. Let (X,µ) be a generalized topological space. The collection

B is a base for µ if and only if B ⊆ µ and every M ∈ µ is a union of elements of

B.

Theorem 2.1.14. [3] Let (X,µ,H) be a generalized topological space together with

a hereditary class H. The set

{M −H ⊆ X | M ∈ µ and H ∈ H}

constitutes a base for µ∗.

2.2 Continuous maps on generalized topological spaces via

hereditary classes

In a generalized topological space (X,µ), we can define a continuous map, an open

map and a homeomorphism in the same way as in a topological space.
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Definition 2.2.1. Let (X,µ) and (Y, µ′) be generalized topological spaces. Then

f : X → Y is said to be (µ, µ′)-continuous if U ∈ µ′ implies f−1(U) ∈ µ.

Definition 2.2.2. Let (X,µ) and (Y, µ′) be generalized topological spaces. Then

f : X → Y is said to be (µ, µ′)-open if U ∈ µ implies f(U) ∈ µ′.

Theorem 2.2.3. [5] Let (X,µ) and (Y, µ′) be generalized topological spaces and f

a bijective function from X onto Y . Then f is (µ, µ′)-open if and only if f−1 is

(µ′, µ)-continuous.

Definition 2.2.4. Let (X,µ) and (Y, µ′) be generalized topological spaces. Then

f : X → Y is said to be a (µ, µ′)-homeomorphism if f is a (µ, µ′)-continuous

bijection and f−1 is (µ′, µ)-continuous.

Theorem 2.2.5. [5] Let (X,µ) and (Y, µ′) be generalized topological spaces and f

a bijection from X onto Y . Then f is a (µ, µ′)-homeomorphism if and only if f is

(µ, µ′)-continuous and (µ, µ′)-open.

Following [5], we obtain some results of the continuity on generalized topological

spaces via hereditary classes.

Theorem 2.2.6. [5] Let (X,µ) and (Y, ν,HY ) be generalized topological spaces

and HY a hereditary class on Y . If f : X → Y is a (µ, ν)-continuous injection,

then for the hereditary class on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is (µ∗, ν∗)-continuous.

Theorem 2.2.7. [5] Let (X,µ,HX) and (Y, ν) be generalized topological spaces

and HX a hereditary class on X. If f : X → Y is a (µ, ν)-continuous bijection,

then for the hereditary class on Y defined by

HY = {f(H) | H ∈ HX},

the function f is (µ∗, ν∗)-continuous.
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Corollary 2.2.8. [5] Let (X,µ) and (Y, ν,HY ) be generalized topological spaces

and HY a hereditary class on Y . If f : X → Y is a (µ, ν)-open bijection, then

there is a hereditary class HX on X such that f is (µ∗, ν∗)-open.

Corollary 2.2.9. [5] Let (X,µ,HX) and (Y, ν) be generalized topological spaces

and HX a hereditary class on X. If f : X → Y is a (µ, ν)-open bijection, then

there is a hereditary class HY on Y such that f is (µ∗, ν∗)-open.

Theorem 2.2.10. [5] Let (X,µ) and (Y, ν,HY ) be generalized topological spaces

and HY a hereditary class on Y . If f : X → Y is a (µ, ν)-homeomorphism, then

there is a hereditary class HX on X such that f is a (µ∗, ν∗)-homeomorphism.

Corollary 2.2.11. [5] Let (X,µ,HX) and (Y, ν) be generalized topological spaces

and HX a hereditary class on X. If f : X → Y is a (µ, ν)-homeomorphism, then

there is a hereditary class HY on Y such that f is a (µ∗, ν∗)-homeomorphism.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

GENERALIZED TOPOLOGICAL SPACES INDUCED

BY MONOTONIC MAPS AND HEREDITARY

CLASSES

Let γ be a monotonic map on a set X. Following Remark 2.1.4, we obtain the

generalized topological space (X, gγ) which is simply denoted by (X, γ).

Definition 3.0.12. For each A ⊆ X, we denote

iγ(A) = {x ∈ X | γ(M) ⊆ A for some M ∈ gγ containing x},

clγ(A) = {x ∈ X | x ∈ M ∈ gγ implies γ(M) ∩ A ̸= ∅},

ιγ(A) = {x ∈ X | M ⊆ A for some M ∈ gγ containing x},

cγ(A) = {x ∈ X | x ∈ M ∈ gγ implies M ∩ A ̸= ∅}.

We observe that iγ(A) ⊆ ιγ(A) ⊆ A and A ⊆ cγ(A) ⊆ clγ(A) for all A ⊆ X.

In addition, it is easy to see that iγ, clγ, ιγ and cγ are monotonic maps. Following

the definition 3.0.1, we provide some basic results of iγ, clγ, ιγ and cγ .

Proposition 3.0.13. For each A ⊆ X, we have

(1) iγ(A) = X − clγ(X − A);

(2) clγ(A) = X − iγ(X − A);

(3) ιγ(A) = X − cγ(X − A);

(4) cγ(A) = X − ιγ(X − A).
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Proof. (1):

x ∈ iγ(A) ⇔ γ(M) ⊆ A for some M ∈ gγ containing x

⇔ γ(M) ∩ (X − A) = ∅ for some M ∈ gγ containing x

⇔ x /∈ clγ(X − A)

⇔ x ∈ X − clγ(X − A).

(2): By (1), we obtain that clγ(A) = clγ(X − (X − A)) = X − iγ(X − A).

(3):

x ∈ ιγ(A) ⇔ M ⊆ A for some M ∈ gγ containing x

⇔ M ∩ (X − A) = ∅ for some M ∈ gγ containing x

⇔ x /∈ cγ(X − A)

⇔ x ∈ X − cγ(X − A).

(4): By (3), we obtain that cγ(A) = cγ(X − (X − A)) = X − ιγ(X − A).

Proposition 3.0.14. For each A ⊆ X, we have

(1) A is γ-open if and only if ιγ(A) = A;

(2) A is γ-closed if and only if cγ(A) = A.

Proof.

(1): It suffices to show that the converse is hold. Assume that ιγ(A) = A. Let

x ∈ A. By the assumption, there is M ∈ gγ containing x such that M ⊆ A. This

implies that x ∈ M ⊆ γ(M) ⊆ γ(A). Hence, A ⊆ γ(A), i.e. A is γ-open.

(2): We conclude that

A is γ-closed ⇔ X − A is γ-open

⇔ ιγ(X − A) = X − A (By (1))

⇔ cγ(A) = X − ιγ(X − A) = A. (By Proposition 3.0.2 (4))
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3.1 The set A∗
γ,H

Let H denote a hereditary class on a generalized topological space X. In 2007,

Császár [3] introduced and studied the construction of a generalized topology via

a hereditary class. Similarly, we define a generalized topology induced by a mono-

tonic map and a hereditary class as follows. Firstly, we study a generalization of

the closure in a generalized topological space by using a monotonic map γ and a

hereditary class H.

Definition 3.1.1. Let (X, γ,H) be a generalized topological space together with

a hereditary class H. For each A ⊆ X, we define

A∗
γ,H = {x ∈ X | x ∈ M ∈ gγ implies γ(M) ∩ A /∈ H}.

In particular, A∗
γ,{∅} = clγ(A). If there is no ambiguity, then A∗

γ,H will be denoted

by A∗
γ.

The following are some properties of A∗
γ.

Proposition 3.1.2. Let (X, γ,H) be a generalized topological space together with

a hereditary class H. For each A,B ⊆ X, we have

(1) A∗
γ ⊆ B∗

γ if A ⊆ B;

(2) A∗
γ ⊆ clγ(A);

(3) if M ∈ gγ and γ(M) ∩ A ∈ H, then M ∩ A∗
γ = ∅;

(4) cγ(A
∗
γ) = A∗

γ;

(5) A∗
γ is γ-closed;

(6) if clγ(A) ⊆ A, then A∗
γ ⊆ A.
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Proof. (1): Assume that A ⊆ B. We will show that X − B∗
γ ⊆ X − A∗

γ. Let

x /∈ B∗
γ. There exists an M ∈ gγ containing x such that γ(M) ∩ B ∈ H.

Since A ⊆ B, we obtain γ(M)∩A ⊆ γ(M)∩B ∈ H. We have γ(M)∩A ∈ H

because H is a hereditary class. Hence, x /∈ A∗
γ.

(2): Let x /∈ clγ(A). There exists M ∈ gγ such that x ∈ M and γ(M) ∩A = ∅ ∈

H. Hence, x /∈ A∗
γ.

(3): Assume that M ∩ A∗
γ ̸= ∅ and M ∈ gγ. There exists a point x ∈ M ∩ A∗

γ.

Since x ∈ A∗
γ and M ∈ gγ containing x, we obtain γ(M) ∩ A /∈ H.

(4): It is enough to show that cγ(A
∗
γ) ⊆ A∗

γ . Let x /∈ A∗
γ. There exists M ∈ gγ

such that x ∈ M and γ(M) ∩ A ∈ H. By (3), M ∩ A∗
γ = ∅. Therefore,

x /∈ cγ(A
∗
γ).

(5): It follows from Proposition 3.0.3 and (4).

(6): Assume that clγ(A) ⊆ A. By (2), A∗
γ ⊆ clγ(A) ⊆ A.

Proposition 3.1.3. Let (X, γ,H) be a generalized topological space together with a

hereditary class H. For each M,M ′ ⊆ X, the following statements are equivalent.

(i) If M ∈ gγ, then M ⊆ M∗
γ .

(ii) If M,M ′ ∈ gγ and M ∩ γ(M ′) ∈ H, then M ∩M ′ = ∅.

Proof. Firstly, we prove that (i) implies (ii). Let M,M ′ ∈ gγ and M ∩M ′ ̸= ∅.

Assume that the statement (i) holds. There is a point x ∈ M ∩ M ′. We obtain

x ∈ M ′ ∈ gγ. Since M ∈ gγ, by the assumption, x ∈ M ⊆ M∗
γ . Thus, x ∈ M∗

γ .

It follows that γ(M ′) ∩ M /∈ H. Conversely, we assume the statement (ii) holds

and M ∈ gγ. Let x ∈ M and M ′ ∈ gγ containing x. Thus, x ∈ M ∩ M ′, i.e.,

M ∩M ′ ̸= ∅. So, we obtain γ(M ′) ∩M /∈ H. Hence, x ∈ M∗
γ .

Definition 3.1.4. [3] A hereditary class H is said to be γ-codense if X = X∗
γ .
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Proposition 3.1.5. Let (X, γ,H) be a generalized topological space together with

a hereditary class H. For M ⊆ X, the following statements are equivalent.

(i) H is γ-codense.

(ii) If M ∈ gγ and γ(M) ∈ H, then M = ∅.

Proof. Now, we will show that (i) implies (ii). Let ∅ ̸= M ∈ gγ. Assume that H is

γ-codense. We have x ∈ M for some x ∈ X. Then x ∈ X = X∗
γ . Since x ∈ M ∈ gγ,

we obtain γ(M) = γ(M)∩X /∈ H. Conversely, we assume the statement (ii) holds.

It is enough to show that X ⊆ X∗
γ . Let x ∈ X and M ∈ gγ containing x. By the

assumption, we conclude γ(M) /∈ H. That is, γ(M) ∩ X = γ(M) /∈ H. Hence,

x ∈ X∗
γ .

Remark 3.1.6. The fact that for each M,M ′ ⊆ X, M,M ′ ∈ gγ and M ∩γ(M ′) ∈

H imply M ∩M ′ = ∅ obviously implies that H is γ-codense.

The following example shows that A∗
γ does not contain A.

Example 3.1.7. Let X = {a, b} and H = {∅, {a}}. We define a monotonic map

γ : exp(X) → exp(X) by γ(∅) = ∅, γ({a}) = {b}, γ({b}) = {b}, and γ(X) = X.

Then we have gγ = {∅, {b}, X} and {a}∗γ = ∅. Therefore, {a} ⊈ ∅ = {a}∗γ.

3.2 Generalized topological spaces induced by monotonic

maps and hereditary classes

In 2007, Császár [3] defined a new generalized topology, called a generalized topol-

ogy via a hereditary class, which contains the old generalized topology. Likewise,

we provide the definition of a new generalized topology which contains gγ by us-

ing a monotonic map γ and a hereditary class H. This leads to the concept of

generalized topological spaces induced by monotonic maps and hereditary classes.

Definition 3.2.1. Let (X, γ,H) be a generalized topological space together with

a hereditary class H. We define

g∗γ,H = {M ⊆ X | M ∩ (X − γ(M))∗γ = ∅}.
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If there is no ambiguity, then g∗γ,H will be denoted by g∗γ.

Theorem 3.2.2. g∗γ is a generalized topology.

Proof. It is clear that ∅ ∈ g∗γ. Let {Mα}α∈Λ be a collection of elements in g∗γ.

Let x ∈
∪

α∈ΛMα. Then x ∈ Mα for some α ∈ Λ, i.e., x /∈ (X − γ(Mα))
∗
γ.

There exists N ∈ gγ such that x ∈ N and γ(N) ∩ (X − γ(Mα)) ∈ H. Since

γ is monotonic, γ(Mα) ⊆ γ(
∪

α∈ΛMα), i.e., X − γ(
∪

α∈Λ Mα) ⊆ X − γ(Mα).

We obtain γ(N) ∩ (X − γ(
∪

α∈ΛMα)) ⊆ γ(N) ∩ (X − γ(Mα)) ∈ H. By the

definition of a hereditary class, we have γ(N)∩(X−γ(
∪

α∈Λ Mα)) ∈ H. Therefore,

x /∈ (X−γ(
∪

α∈ΛMα))
∗
γ. It follows that

∪
α∈ΛMα∩(X−γ(

∪
α∈ΛMα))

∗
γ = ∅. Hence,∪

α∈ΛMα ∈ g∗γ.

By the above theorem, we call g∗γ a generalized topology induced by γ

and H.

Theorem 3.2.3. gγ ⊆ g∗γ .

Proof. Let G ∈ gγ. Suppose that G∩ (X − γ(G))∗γ ̸= ∅. Let x ∈ G∩ (X − γ(G))∗γ.

We have ∅ = γ(G) ∩ (X − γ(G)) /∈ H. It contradicts the fact that ∅ ∈ H.

The following example shows that there is a monotonic map γ which makes

gγ ̸= g∗γ.

Example 3.2.4. Let X = {a, b, c}. We define a monotonic map γ : exp(X) →

exp(X) by
γ(∅) = ∅, γ({a}) = {a},

γ({b}) = {b}, γ({c}) = ∅,

γ({a, b}) = {a, b}, γ({a, c}) = {a},

γ({b, c}) = {b}, γ(X) = X.

We have gγ = {∅, {a}, {b}, {a, b}, X}. Let H = exp(X). We have A∗
γ = ∅ for all

A ∈ exp(X). Thus, g∗γ = exp(X). We obtain gγ ⊊ g∗γ.

From the above example, we need to find a sufficient condition that makes

gγ = g∗γ.
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Theorem 3.2.5. Let γ be a monotonic map on exp(X) and H a hereditary class on

X. Assume that X /∈ H ⊆ gγ and for each M /∈ gγ, (M − γ(M))∩
∪

G∈gγ−{X}G =

∅. Then gγ = g∗γ.

Proof. Let M /∈ gγ. Then M ⊈ γ(M). There is x ∈ M and x /∈ γ(M). We have

x /∈
∪

G∈gγ−{X}G. We claim that x ∈ (X − γ(M))∗γ. Let G be a γ-open set which

contains x. If x ∈ γ(G) ∩ (X − γ(M)) ∈ H ⊆ gγ , then γ(G) ∩ (X − γ(M)) ̸= X

and x ∈
∪

G∈gγ−{X} G. It is impossible. We conclude that γ(G)∩ (X−γ(M)) /∈ H.

Thus, x ∈ (X − γ(M))∗γ. Therefore, M ∩ (X − γ(M))∗γ ̸= ∅. Hence, M /∈ g∗γ.

Example 3.2.6. Let X = {a, b, c} and H = {∅, {a}, {b}, {a, b}}. We define

a monotonic map γ in the same way as in Example 3.2.4. We obtain gγ =

{∅, {a}, {b}, {a, b}, X} and
∪

G∈gγ−{X}G = {a, b}. We observe that for each

M /∈ gγ, M − γ(M) = {c}. By the above theorem, we obtain g∗γ = gγ =

{∅, {a}, {b}, {a, b}, X}.

Next, we give some conditions that make g∗γ equal to exp(X).

Proposition 3.2.7. Let γ be a monotonic map on exp(X) and H a hereditary

class on X. Assume that H = exp(X) and for any x ∈ X, there exists a γ-open

set G such that G contains x. Then A∗
γ = ∅ for all A ∈ exp(X). Moreover,

g∗γ = exp(X).

Proof. Let A ∈ exp(X). Let x ∈ X. There exists G ∈ gγ such that x ∈ G. Then

γ(G) ∩ A ∈ exp(X) = H. This implies that x /∈ A∗
γ.

3.2.1 (g∗γ, g
∗
β)-continuous maps

Definition 3.2.8. Let (X, γ) and (Y, β) be generalized topological spaces. A

function f from X to Y is (gγ, gβ)-continuous if f−1(G) is γ-open, for each

β-open set G.

From Theorem 3.2.3, we obtain the following theorems.
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Theorem 3.2.9. Let (X, γ) and (Y, β) be generalized topological spaces and HX a

hereditary class on X. Assume that f is a (gγ, gβ)-continuous function from X to

Y . Then f is (g∗γ, gβ)-continuous.

Proof. For each G ∈ gβ, we have f−1(G) ∈ gγ ⊆ g∗γ because f is (gγ, gβ)-continuous.

Theorem 3.2.10. Let (X, γ) and (Y, β) be generalized topological spaces and HY

a hereditary class on Y . Assume that f is a (gγ, g
∗
β)-continuous function from X

to Y . Then f is (gγ, gβ)-continuous.

Proof. For each G ∈ gβ ⊆ g∗β, we have f−1(G) ∈ gγ because f is (gγ, g∗β)-continuous.

Example 3.2.11. Let X = {a, b, c} and Y = {x, y, z}. We define monotonic maps

γ : exp(X) → exp(X) and β : exp(Y ) → exp(Y ) by

γ(∅) = ∅, β(∅) = ∅,

γ({a}) = {a}, β({x}) = {x},

γ({b}) = {b}, β({y}) = {y},

γ({c}) = ∅, β({z}) = ∅,

γ({a, b}) = {a, b}, β({x, y}) = {x, y},

γ({a, c}) = {a}, β({x, z}) = {x},

γ({b, c}) = {b}, β({y, z}) = {y},

γ(X) = X, β(Y ) = Y.

It is clear that gγ = {∅, {a}, {b}, {a, b}, X} and gβ = {∅, {x}, {y}, {x, y}, Y }. Let

HX = {∅, {a}, {b}, {a, b}} and HY = exp(Y ). We conclude that
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∅∗
γ,HX

= ∅, ∅∗
β,HY

= ∅,

{a}∗γ,HX
= ∅, {x}∗β,HY

= ∅,

{b}∗γ,HX
= ∅, {y}∗β,HY

= ∅,

{c}∗γ,HX
= {c}, {z}∗β,HY

= ∅,

{a, b}∗γ,HX
= ∅, {x, y}∗β,HY

= ∅,

{a, c}∗γ,HX
= {c}, {x, z}∗β,HY

= ∅,

{b, c}∗γ,HX
= {c}, {y, z}∗β,HY

= ∅,

X∗
γ,HX

= {c}, Y ∗
β,HY

= ∅.

We obtain g∗γ,HX
= {∅, {a}, {b}, {a, b}, X} and g∗β,HY

= exp(Y ). Let f : X → Y

be defined by f(a) = x, f(b) = z, and f(c) = z. Therefore, f is (gγ, gβ)-continuous.

However, f is not (g∗γ,HX
, g∗β,HY

)-continuous because f−1({z}) = {b, c} /∈ g∗γ,HX
.

It implies that not every (gγ, gβ)-continuous function is (g∗γ, g
∗
β)-continuous.

This motivates us to the notion of the (γ, β)-continuity and the strongly (γ, β)-

continuity.

Definition 3.2.12. Let (X, γ) and (Y, β) be generalized topological spaces. A

function f from X to Y is (γ, β)-continuous if f−1(β(B)) ⊆ γ(f−1(B)) for all

B ⊆ Y .

Proposition 3.2.13. Let (X, γ) and (Y, β) be generalized topological spaces. As-

sume that f : X → Y is (γ, β)-continuous. Then f is (gγ, gβ)-continuous.

Proof. Let G be β-open. Then G ⊆ β(G). We obtain that f−1(G) ⊆ f−1(β(G)) ⊆

γ(f−1(G)). Therefore, f−1(G) is γ-open.

Example 3.2.14. Let X = {a, b, c} and Y = {x, y, z}. We define f : X → Y such

that f(a) = x, f(b) = z, and f(c) = z. In the setting of γ and β in Example 3.2.11,

we also obtain that f is (γ, β)-continuous but f is not (g∗γ,HX
, g∗β,HY

)-continuous.

Definition 3.2.15. Let (X, γ) and (Y, β) be generalized topological spaces. A

function f from X to Y is strongly (γ, β)-continuous if f−1(β(B)) = γ(f−1(B))

for all B ⊆ Y .
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Remark 3.2.16. From the above definitions, we have the following relations but

the reverse relations may not be true in general.

strongly (γ, β)-continuous ⇒ (γ, β)-continuous ⇒ (gγ, gβ)-continuous.

The following theorems show that for a given hereditary class on either X or Y ,

we can find another hereditary class that makes a given strongly (γ, β)- continuous

bijective map (g∗γ, g
∗
β)-continuous.

Theorem 3.2.17. Let γ and β be monotonic maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces and HY a

hereditary class on Y . Assume that f : X → Y is a strongly (γ, β)-continuous

injection. Then for the hereditary class on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is (g∗γ, g
∗
β)-continuous.

Proof. Firstly, we will show that HX is a hereditary class on X. Let A ⊆ f−1(H) ⊆

X where H ∈ HY . Then f(A) ⊆ H. We have f(A) ∈ HY . Since f is injective,

A = f−1[f(A)] ∈ HX . It remains to show that f is (g∗γ, g
∗
β)-continuous. Let

G ∈ g∗β. Then G ∩ (Y − β(G))∗β = ∅, i.e., G ⊆ Y − (Y − β(G))∗β. It follows that

f−1(G) ⊆ X−f−1[(Y −β(G))∗β]. Let x ∈ f−1(G). That is, f(x) ∈ G. Then f(x) /∈

(Y −β(G))∗β. There exists B ∈ gβ such that f(x) ∈ B and β(B)∩(Y −β(G)) ∈ HY .

This implies that

γ(f−1(B)) ∩ [X − γ(f−1(G))] = f−1(β(B)) ∩ [X − f−1(β(G))]

= f−1[β(B) ∩ (Y − β(G))] ∈ HX .

By Proposition 3.2.13, x ∈ f−1(B) ∈ gγ. Thus, x /∈ (X−γ(f−1(G)))∗γ, i.e., f−1(G)∩

(X − γ(f−1(G)))∗γ = ∅. This leads to the conclusion f−1(G) ∈ g∗γ. Hence, f is

(g∗γ, g
∗
β)-continuous.

The following example shows that the set HX of pre-images of all elements in

HY may not be a hereditary class if a function f is not injective.
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Example 3.2.18. Let X = {a, b, c} and Y = {1, 2}. We define monotonic maps

γ : exp(X) → exp(X) and β : exp(Y ) → exp(Y ) by

γ(∅) = ∅, γ({a, b}) = ∅, β(∅) = ∅,

γ({a}) = ∅, γ({a, c}) = {a, c}, β({1}) = ∅,

γ({b}) = ∅, γ({b, c}) = ∅, β({2}) = ∅,

γ({c}) = ∅, γ(X) = X, β(Y ) = Y.

Let f : X → Y be defined by f(a) = 1 and f(b) = 2 = f(c). We obtain f is

strongly (γ, β)-continuous but f is not injective. We define HY = {∅, {2}} to be a

hereditary class on Y . By the construction, we have HX = {∅, {b, c}}. Therefore,

HX is not a hereditary class on X.

Remark 3.2.19. Let f : (X, γ) → (Y, β,HY ) be an injective function. There is a

hereditary class HX on X such that we have the following implications.

strongly (γ, β)-continuous (γ, β)-continuous (gγ, gβ)-continuous

(g∗γ, g
∗
β)-continuous.

Theorem 3.2.20. Let γ and β be monotonic maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ,HX) and (Y, β) be generalized topological spaces and HX a

hereditary class on X. Assume that f : X → Y is a strongly (γ, β)-continuous

bijection. Then for the hereditary class on Y defined by

HY = {f(H) | H ∈ HX},

the function f is (g∗γ, g
∗
β)-continuous.

Proof. Firstly, we prove that HY is a hereditary class on Y . Let A ⊆ f(H) ⊆ Y

where H ∈ HX . Then f−1(A) ⊆ f−1[f(H)] = H ∈ HX because f is injective. We

obtain f−1(A) ∈ HX . Since f is surjective, A = f [f−1(A)]. Thus, A ∈ HY . Next,

we show that f is (g∗γ, g
∗
β)-continuous. Let G ∈ g∗β. Then G ∩ (Y − β(G))∗β = ∅,

i.e., G ⊆ Y − (Y − β(G))∗β. It follows that f−1(G) ⊆ X − f−1[(Y − β(G))∗β]. Let
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x ∈ f−1(G). That is, f(x) ∈ G. Then f(x) /∈ (Y − β(G))∗β. There exists B ∈ gβ

such that f(x) ∈ B and β(B)∩(Y −β(G)) ∈ HY . Thus, β(B)∩(Y −β(G)) = f(A)

for some A ∈ HX . Note that

γ(f−1(B)) ∩ [X − γ(f−1(G))] = f−1(β(B)) ∩ [X − f−1(β(G))]

= f−1[β(B) ∩ (Y − β(G))]

= f−1[f(A)]

= A ∈ HX .

By Proposition 3.2.13, x ∈ f−1(B) ∈ gγ. Thus, x /∈ (X−γ(f−1(G)))∗γ, i.e., f−1(G)∩

(X − γ(f−1(G)))∗γ = ∅. This leads to the conclusion f−1(G) ∈ g∗γ. Hence, f is

(g∗γ, g
∗
β)-continuous.

Remark 3.2.21. Let f : (X, γ,HX) → (Y, β) be a bijective function. There is a

hereditary class HY on Y such that we have the following implications.

strongly (γ, β)-continuous (γ, β)-continuous (gγ, gβ)-continuous

(g∗γ, g
∗
β)-continuous.

Likewise, we study the composition of continuous functions in the following

theorems.

Theorem 3.2.22. Let (X, γ), (Y, β) and (Z, α) be generalized topological spaces.

Assume that f : X → Y is (gγ, gβ)-continuous and g : Y → Z is (gβ, gα)-

continuous. Then g ◦ f : X → Z is (gγ, gα)-continuous.

Proof. Let G ∈ gα. Since g is (gβ, gα)-continuous, we obtain g−1(G) ∈ gβ. Simi-

larly, (g ◦ f)−1(G) = f−1(g−1(G)) ∈ gγ because f is (gγ, gβ)-continuous.

Theorem 3.2.23. Let (X, γ), (Y, β) and (Z, α) be generalized topological spaces.

Assume that f : X → Y is (γ, β)-continuous and g : Y → Z is (β, α)-continuous.

Then g ◦ f : X → Z is (γ, α)-continuous.
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Proof. Let G ⊆ Z. We observe that

(g ◦ f)−1(α(G)) = f−1[g−1(α(G))]

⊆ f−1[β(g−1(G))]

⊆ γ[f−1(g−1(G))]

= γ[(g ◦ f)−1(G)].

Hence, g ◦ f : X → Z is (γ, α)-continuous.

Theorem 3.2.24. Let (X, γ), (Y, β) and (Z, α) be generalized topological spaces.

Assume that f : X → Y is strongly (γ, β)-continuous and g : Y → Z is strongly

(β, α)-continuous. Then g ◦ f : X → Z is strongly (γ, α)-continuous.

Proof. The proof is similar to the proof of Theorem 3.2.23 by replacing ⊆ with =.

That is, for each G ⊆ Z, we obtain

(g ◦ f)−1(α(G)) = f−1[g−1(α(G))]

= f−1[β(g−1(G))]

= γ[f−1(g−1(G))]

= γ[(g ◦ f)−1(G)].

Hence, g ◦ f : X → Z is (γ, α)-continuous.

Corollary 3.2.25. Let (X, γ), (Y, β) and (Z, α) be generalized topological spaces.

Assume that f : X → Y is a strongly (γ, β)-continuous bijective function and g :

Y → Z is a strongly (β, α)-continuous bijective function. The following statements

are satisfied.

(1) If HX is a hereditary class on X, then there are the hereditary classes HY

on Y and HZ on Z such that g ◦ f is (g∗γ, g
∗
α)-continuous.

(2) If HY is a hereditary class on Y , then there are the hereditary classes HX

on X and HZ on Z such that g ◦ f is (g∗γ, g
∗
α)-continuous.

(3) If HZ is a hereditary class on Z, then there are the hereditary classes HX on

X and HY on Y such that g ◦ f is (g∗γ, g
∗
α)-continuous.
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3.2.2 (g∗γ, g
∗
β)-open maps

Definition 3.2.26. Let (X, γ) and (Y, β) be generalized topological spaces. A

function f from X to Y is (gγ, gβ)-open if f(G) is β-open, for each γ-open set G.

From Theorem 3.2.3, it is easy to prove the following theorems.

Theorem 3.2.27. Let (X, γ) and (Y, β) be generalized topological spaces and HY

a hereditary class on Y . Assume that f is a (gγ, gβ)-open function from X to Y .

Then f is (gγ, g
∗
β)-open.

Proof. For each G ∈ gγ, we have f(G) ∈ gβ ⊆ g∗β because f is (gγ, gβ)-open.

Theorem 3.2.28. Let (X, γ) and (Y, β) be generalized topological spaces and HX

a hereditary class on X. Assume that f is a (g∗γ, gβ)-open function from X to Y .

Then f is (gγ, gβ)-open.

Proof. For each G ∈ gγ ⊆ g∗γ, we have f(G) ∈ gβ because f is (g∗γ, gβ)-open.

Definition 3.2.29. Let (X, γ) and (Y, β) be generalized topological spaces. A

function f from X to Y is (γ, β)-open if f(γ(A)) ⊆ β(f(A)) for all A ⊆ X.

Definition 3.2.30. Let (X, γ) and (Y, β) be generalized topological spaces. A

function f from X to Y is strongly (γ, β)-open if f(γ(A)) = β(f(A)) for all

A ⊆ X.

Proposition 3.2.31. Let (X, γ) and (Y, β) be generalized topological spaces. As-

sume that f : X → Y is (γ, β)-open. Then f is (gγ, gβ)-open.

Proof. Let G be γ-open. Then G ⊆ γ(G). We obtain that f(G) ⊆ f(γ(G)) ⊆

β(f(G)). Therefore, f(G) is β-open.

Remark 3.2.32. From the above definitions, we have the following implications

but the reverse may not be true in general.

strongly (γ, β)-open ⇒ (γ, β)-open ⇒ (gγ, gβ)-open.
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Proposition 3.2.33. Let (X, γ) and (Y, β) be generalized topological spaces and f

a bijective function from X onto Y . Then f is (gγ, gβ)-open if and only if f−1 is

(gβ, gγ)-continuous.

Proof. It follows from Theorem 2.2.3.

Proposition 3.2.34. Let (X, γ) and (Y, β) be generalized topological spaces and

f a bijective function from X onto Y . Then f is (γ, β)-open if and only if f−1 is

(β, γ)-continuous.

Proof.

f is (γ, β)-open ⇔ f(γ(A)) ⊆ β(f(A)) for all A ⊆ X

⇔ (f−1)−1(γ(A)) ⊆ β((f−1)−1(A)) for all A ⊆ X

⇔ f−1 is (β, γ)-continuous.

Proposition 3.2.35. Let (X, γ) and (Y, β) be generalized topological spaces and f

a bijective function from X onto Y . Then f is strongly (γ, β)-open if and only if

f−1 is strongly (β, γ)-continuous.

Proof. The proof is similar to the proof of Proposition 3.2.34 by replacing ⊆ with

=. That is,

f is strongly (γ, β)-open ⇔ f(γ(A)) = β(f(A)) for all A ⊆ X

⇔ (f−1)−1(γ(A)) = β((f−1)−1(A)) for all A ⊆ X

⇔ f−1 is strongly (β, γ)-continuous.

Similarly, we show that a given hereditary class on either X or Y under some

conditions on the function f , we can find a hereditary class H on the another

space that makes f is open on the generalized topological space induced by a

given monotonic map and the hereditary class H.
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Corollary 3.2.36. Let γ and β be monotonic maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces and HY a

hereditary class on Y . Assume that f : X → Y is a strongly (γ, β)-open bijection.

Then for the hereditary class on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is (g∗γ, g
∗
β)-open.

Proof. Similar to Theorem 3.2.17, it suffices to show that f is (g∗γ, g
∗
β)-open.

f is strongly (γ, β)-open ⇒ f−1 is strongly (β, γ)-continuous (By Proposition 3.2.35)

⇒ f−1 is (g∗β, g
∗
γ)-continuous (By Theorem 3.2.20)

⇒ f is (g∗γ, g
∗
β)-open. (By Proposition 3.2.33)

Remark 3.2.37. Let f : (X, γ) → (Y, β,HY ) be an open bijection. By the above

corollary, there is a hereditary class HX on X such that we have the following

implications.

strongly (γ, β)-open (γ, β)-open (gγ, gβ)-open

(g∗γ, g
∗
β)-open.

Corollary 3.2.38. Let γ and β be monotonic maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ,HX) and (Y, β) be generalized topological spaces and HX a

hereditary class on X. Assume that f : X → Y is a strongly (γ, β)-open bijection.

Then for the hereditary class on Y defined by

HY = {f(H) | H ∈ HX},

the function f is (g∗γ, g
∗
β)-open.
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Proof. Similar to Theorem 3.2.20, it suffices to show that f is (g∗γ, g
∗
β)-open.

f is strongly (γ, β)-open ⇒ f−1 is strongly (β, γ)-continuous (By Proposition 3.2.35)

⇒ f−1 is (g∗β, g
∗
γ)-continuous (By Theorem 3.2.17)

⇒ f is (g∗γ, g
∗
β)-open. (By Proposition 3.2.33)

Remark 3.2.39. Let f : (X, γ,HX) → (Y, β) be an open bijection. By the above

corollary, there is a hereditary class HY on Y such that we have the following

implications.

strongly (γ, β)-open (γ, β)-open (gγ, gβ)-open

(g∗γ, g
∗
β)-open.

In the following definitions, we can define homeomorphisms via monotonic

maps.

Definition 3.2.40. Let (X, γ) and (Y, β) be generalized topological spaces. A

function f from X to Y is a (gγ, gβ)-homeomorphism if f is a (gγ, gβ)-continuous

bijection and f−1 is (gβ, gγ)-continuous.

Definition 3.2.41. Let (X, γ) and (Y, β) be generalized topological spaces. A

function f from X to Y is a (γ, β)-homeomorphism if f is a (γ, β)-continuous

bijection and f−1 is (β, γ)-continuous.

Definition 3.2.42. Let (X, γ) and (Y, β) be generalized topological spaces. A

function f from X to Y is a strongly (γ, β)-homeomorphism if f is a strongly

(γ, β)-continuous bijection and f−1 is strongly (β, γ)-continuous.

Remark 3.2.43. Similarly, we have some implications of homeomorphisms but

the reverse relations may not be true in general.

a strongly (γ, β)-homeomorphism a (γ, β)-homeomorphism

a (gγ, gβ)-homeomorphism.
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Corollary 3.2.44. Let (X, γ) and (Y, β) be generalized topological spaces and f a

bijection from X onto Y . Then f is a (gγ, gβ)-homeomorphism if and only if f is

(gγ, gβ)-continuous and (gγ, gβ)-open.

Proof. Apply Corollary 2.2.5.

Corollary 3.2.45. Let (X, γ) and (Y, β) be generalized topological spaces and f a

bijection from X onto Y . Then f is a (γ, β)-homeomorphism if and only if f is

(γ, β)-continuous and (γ, β)-open.

Proof. Apply Proposition 3.2.34.

Corollary 3.2.46. Let (X, γ) and (Y, β) be generalized topological spaces and f a

bijection from X onto Y . Then f is a strongly (γ, β)-homeomorphism if and only

if f is strongly (γ, β)-continuous and strongly (γ, β)-open.

Proof. Apply Proposition 3.2.35.

Now, it is easy to prove the following corollaries for the homeomorphism func-

tion.

Corollary 3.2.47. Let γ and β be monotonic maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces and HY a

hereditary class on Y . Assume that f : X → Y is a strongly (γ, β)-homeomorphism.

Then for the hereditary class on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is a (g∗γ, g
∗
β)-homeomorphism.

Proof. Similar to Theorem 3.2.17, it suffices to show that f is a (g∗γ, g
∗
β)-homeomorphism.

By Corollary 3.2.46, it implies that f is strongly (γ, β)-continuous and strongly

(γ, β)-open. By Theorem 3.2.17 and Corollary 3.2.36, f is (g∗γ, g
∗
β)-continuous and

(g∗γ, g
∗
β)-open. It follows from Corollary 3.2.44 that f is a (g∗γ, g

∗
β)-homeomorphism.
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Corollary 3.2.48. Let γ and β be monotonic maps on exp(X) and exp(Y ), respec-

tively. Let (X, γ,HX) and (Y, β) be generalized topological spaces and HX a hered-

itary class on X. Assume that f : X → Y is a strongly (γ, β)-homeomorphism.

Then for the hereditary class on Y defined by

HY = {f(H) | H ∈ HX},

the function f is a (g∗γ, g
∗
β)-homeomorphism.

Proof. Consider f−1 and apply Corollary 3.2.47.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

GENERALIZED TOPOLOGICAL SPACES INDUCED

BY MONOTONIC MAPS HAVING PARTICULAR

PROPERTIES AND HEREDITARY CLASSES

In this chapter, we study a notion of a generalized topological space induced by

a monotonic map and a hereditary class when the monotonic map has some par-

ticular properties. In 1997, Császár [1] introduced and studied the properties of

monotonic maps in the following definitions.

Definition 4.0.49. Let γ be a monotonic map. A map γ is called enlarging if

A ⊆ γ(A) for all A ⊆ X.

Definition 4.0.50. Let γ be a monotonic map. A map γ is called restricting if

γ(A) ⊆ A for all A ⊆ X.

Remark 4.0.51. If γ is enlarging, then gγ = exp(X).

From the above remark, we will study a generalized topology g∗γ,H when γ is

restricting.

4.1 Restricting maps

Remark 4.1.1. Let γ be a restricting map on exp(X).

1. A is γ-open if and only if A = γ(A).

2. We obtain that iγ = ιγ and cγ = clγ.

Following [3], Császár defined a new generalized topological space via given

generalized topology and hereditary class. It is well-known that gγ is a generalized
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topology induced by the monotonic map γ. Likewise, we also obtain some results

via a monotonic map in the following definitions and theorems.

Definition 4.1.2. Let (X, γ,H) be a generalized topological space together with

a hereditary class H. For each A ⊆ X, we define

A∗
gγ ,H = {x ∈ X | x ∈ M ∈ gγ implies M ∩ A /∈ H}.

In particular, A∗
gγ ,{∅} = cγ(A). If there is no ambiguity, then A∗

gγ ,H will be denoted

by A∗
gγ .

Proposition 4.1.3. Let γ be a restricting map on exp(X) and (X, γ,H) a gen-

eralized topological space together with a hereditary class H. For each A ⊆ X, we

have A∗
γ = A∗

gγ .

Proof.
x ∈ A∗

γ ⇔ γ(M) ∩ A /∈ H for all M ∈ gγ containing x

⇔ M ∩ A /∈ H for all M ∈ gγ containing x

⇔ x ∈ A∗
gγ .

By using Propositions 2.1.9 and 4.1.3, we easily obtain the following theorem.

Theorem 4.1.4. Let γ be a restricting map on exp(X) and (X, γ,H) a generalized

topological space together with a hereditary class H. Let A,B,M ⊆ X.

(1) A ⊆ B implies A∗
γ ⊆ B∗

γ;

(2) A∗
γ ⊆ cγ(A);

(3) If M ∈ µ and M ∩ A ∈ H, then M ∩ A∗
γ = ∅;

(4) A∗
γ is γ-closed;

(5) A is γ-closed implies A∗
γ ⊆ A;

(6) (A∗
γ)

∗
γ ⊆ A∗

γ when A ⊆ X;
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(7) X = X∗
γ if and only if gγ ∩H = {∅}.

Remark 4.1.5. Following Proposition 4.1.3, the set A∗
γ and A∗

gγ can be denoted

by A∗ if γ is restricting.

We have known that gγ is a generalized topology. Following [3], we use gγ to

define a new generalized topology via a hereditary class.

Definition 4.1.6. Let (X, γ,H) be a generalized topological space together with

a hereditary class H. We define

g∗gγ ,H = {M ⊆ X | c∗(X −M) = X −M}.

If there is no ambiguity, then g∗gγ ,H will be denoted by g∗gγ .

Remark 4.1.7. By the definition of c∗ in Chapter II, we have

g∗gγ ,H = {M ⊆ X | M ∩ (X −M)∗gγ = ∅}.

Theorem 4.1.8 ([3]). g∗gγ is a generalized topology and gγ ⊆ g∗gγ .

Theorem 4.1.9. Let γ be a restricting map on exp(X) and (X, γ,H) a generalized

topological space together with a hereditary class H. Then g∗γ ⊆ g∗gγ .

Proof. It follows from M ∩ (X −M)∗ = M ∩ (X −M)∗ ⊆ M ∩ (X − γ(M))∗ for

all M ⊆ X.

Remark 4.1.10. gγ ⊆ g∗γ ⊆ g∗gγ if γ is a restricting map.

Theorem 4.1.11 ([3]). Let (X, γ,H) be a generalized topological space together

with a hereditary class H. The set

{M −H ⊆ X | M ∈ gγ and H ∈ H}

constitutes a base for g∗gγ .
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Corollary 4.1.12. For each G ∈ g∗γ, G =
∪

α∈Λ{Mα−Hα | Mα ∈ gγ and Hα ∈ H}

where Λ is an index set.

Proof. It follows from Theorems 4.1.9 and 4.1.11.

The following example shows that there is a monotonic map γ which makes

g∗γ ̸= g∗gγ .

Example 4.1.13. Let X = {a, b, c} and H = {∅, {a}, {b}, {a, b}}. In the setting

of a restricting map γ in Example 3.2.11, we get g∗γ = gγ = {∅, {a}, {b}, {a, b}, X}.

We can see that {c} = X − {a, b} ∈ g∗gγ but {c} /∈ g∗γ. Hence, g∗γ ⊊ g∗gγ .

Proposition 4.1.14. Let γ be a restricting map on exp(X) and (X, γ,H) a gen-

eralized topological space together with a hereditary class H. We obtain g∗γ = g∗gγ if

and only if M −H ∈ g∗γ for all M ∈ gγ and H ∈ H.

Proof. It follows from Theorem 4.1.11.

Remark 4.1.15. Let γ be a restricting map on exp(X) and (X, γ,H) a generalized

topological space together with a hereditary class H. If M − H is γ-open for all

M ∈ gγ and H ∈ H, then gγ = g∗γ = g∗gγ .

Example 4.1.16. Let X = {a, b, c}. Define γ : exp(X) → exp(X) by

γ(∅) = ∅, γ({a, b}) = {a, b},

γ({a}) = {a}, γ({a, c}) = {a},

γ({b}) = {b}, γ({b, c}) = {b},

γ({c}) = ∅, γ(X) = {a, b}.

We can see that γ is restricting on exp(X) and gγ = {∅, {a}, {b}, {a, b}}. Let

H = {∅, {a}} be a hereditary class on X. We consider {M − H | M ∈ gγ and

H ∈ H} = gγ. By the above proposition, we get gγ = g∗γ = g∗gγ .

So, we easily obtain that g∗γ = g∗gγ when γ is the trivial map. Next, we introduce

the property of the hereditary class H that makes g∗γ = g∗gγ .
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Proposition 4.1.17. Let γ be a restricting map on exp(X) and (X, γ,H) a gener-

alized topological space together with a hereditary class H. Assume that M∩H = ∅

for all M ∈ gγ and H ∈ H. Then g∗γ = g∗gγ .

Proof. By the assumption, we obtain M−H = M ∈ gγ for all M ∈ gγ and H ∈ H.

It follows from Remark 4.1.15. Hence, gγ = g∗γ = g∗gγ .

4.1.1 (g∗γ, g
∗
β)-continuous maps

Let (X, γ) and (Y, β) be generalized topological spaces. Let f : X → Y be a

function. Similar to the previous section, we can prove that f is (g∗γ, g∗β)-continuous

when f is (γ, β)-continuous and γ is restricting.

Proposition 4.1.18. Let γ be a restricting map and β an enlarging map on exp(X)

and exp(Y ), respectively. Let (X, γ) and (Y, β) be generalized topological spaces.

If f : X → Y is (γ, β)-continuous, then f is strongly (γ, β)-continuous.

Proof. It follows from γ(f−1(B)) ⊆ f−1(B) ⊆ f−1(β(B)) for all B ⊆ X.

Remark 4.1.19. Let γ be a restricting map on exp(X) and β an enlarging map

exp(Y ). By Remark 3.2.16, we have the following relations.

strongly (γ, β)-continuous ⇔ (γ, β)-continuous ⇒ (gγ, gβ)-continuous.

Proposition 4.1.20. Let γ be an enlarging map and β a restricting map on exp(X)

and exp(Y ), respectively. Then f : X → Y is (γ, β)-continuous. In particular,

f : X → Y is (gγ, gβ)-continuous.

Proof. Observe that f−1(β(B)) ⊆ f−1(B) ⊆ γ(f−1(B)) for all B ⊆ X.

By Proposition 4.1.18, we obtain the following Corollaries.

Corollary 4.1.21. Let γ be a restricting map and β an enlarging map on exp(X)

and exp(Y ), respectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces
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and HY a hereditary class on Y . Assume that f : X → Y is a (γ, β)-continuous

injection. Then for the hereditary class on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is (g∗γ, g
∗
β)-continuous.

Proof. Apply Proposition 4.1.18 and Theorem 3.2.17.

Corollary 4.1.22. Let γ be a restricting map and β an enlarging map on exp(X)

and exp(Y ), respectively. Let (X, γ,HX) and (Y, β) be generalized topological spaces

and HX a hereditary class on X. Assume that f : X → Y is a (γ, β)-continuous

bijection. Then for the hereditary class on Y defined by

HY = {f(H) | H ∈ HX},

the function f is (g∗γ, g
∗
β)-continuous.

Proof. Apply Proposition 4.1.18 and Theorem 3.2.20.

We observed that gγ = exp(X) if γ is enlarging. Thus, g∗γ = exp(X).

Remark 4.1.23. Let γ be an enlarging map and β a monotonic map on exp(X)

and exp(Y ), respectively. Let (X, γ,HX) and (Y, β,HY ) be generalized topological

spaces. Then f : X → Y is (g∗γ, g
∗
β)-continuous.

The following theorems show that we can only assume f is (γ, β)-continuous

where γ is restricting in the above corollaries. So, we obtain the same results that

f is (g∗γ, g
∗
β)-continuous.

Theorem 4.1.24. Let γ be a restricting map and β a monotonic map on exp(X)

and exp(Y ), respectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces

and HY a hereditary class on Y . Assume that f : X → Y is a (γ, β)-continuous

injection. Then for the hereditary class on X defined by

HX = {f−1(H) | H ∈ HY },



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34

the function f is (g∗γ, g
∗
β)-continuous.

Proof. Similar to proof Theorem 3.2.17, it remains to show that f is (g∗γ, g
∗
β)-

continuous. Let G ∈ g∗β. Then G ∩ (Y − β(G))∗ = ∅, i.e. G ⊆ Y − (Y − β(G))∗.

It follows that f−1(G) ⊆ X − f−1[(Y − β(G))∗]. Let x ∈ f−1(G). Then f(x) /∈

(Y −β(G))∗. There exists B ∈ gβ such that f(x) ∈ B and β(B)∩(Y −β(G)) ∈ HY .

This implies that

γ(f−1(B)) ∩ [X − γ(f−1(G))] ⊆ f−1(β(B)) ∩ [X − f−1(β(G))]

= f−1[β(B) ∩ (Y − β(G))] ∈ HX .

By Proposition 3.2.13, x ∈ f−1(B) ∈ gγ. Thus, x /∈ (X−γ(f−1(G)))∗, i.e. f−1(G)∩

(X−γ(f−1(G)))∗ = ∅. This leads to f−1(G) ∈ g∗γ. Hence, f is (g∗γ, g∗β)-continuous.

Remark 4.1.25. Let γ be a restricting map and β a monotonic map on exp(X)

and exp(Y ), respectively. Assume that f : (X, γ) → (Y, β,HY ) is an injective

function. By Theorems 2.2.6 and 4.1.24, there is a hereditary class HX on X such

that we have the following relationships.

strongly (γ, β)-continuous (γ, β)-continuous (gγ, gβ)-continuous

(g∗γ, g
∗
β)-continuous (g∗gγ , g

∗
gβ
)-continuous.

Theorem 4.1.26. Let γ be a restricting map and β a monotonic map on exp(X)

and exp(Y ), respectively. Let (X, γ,HX) and (Y, β) be generalized topological spaces

and HX a hereditary class on X. Assume that f : X → Y is a (γ, β)-continuous

bijection. Then for the hereditary class on Y defined by

HY = {f(H) | H ∈ HX},

the function f is (g∗γ, g
∗
β)-continuous.
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Proof. Similar to proof Theorem 3.2.20, we will show that f is (g∗γ, g∗β)-continuous.

Let G ∈ g∗β. Then G ∩ (Y − β(G))∗ = ∅, i.e. G ⊆ Y − (Y − β(G))∗. It follows

that f−1(G) ⊆ X − f−1[(Y − β(G))∗]. Let x ∈ f−1(G). Then f(x) /∈ (Y − β(G))∗.

There exists B ∈ gβ such that f(x) ∈ B and β(B) ∩ (Y − β(G)) ∈ HY . Thus,

β(B) ∩ (Y − β(G)) ∈ HY = f(A) for some A ∈ HX .

γ(f−1(B)) ∩ [X − γ(f−1(G))] ⊆ f−1(β(B)) ∩ [X − f−1(β(G))]

= f−1[β(B) ∩ (Y − β(G))]

= f−1[f(A)]

= A ∈ HX .

By Proposition 3.2.13, x ∈ f−1(B) ∈ gγ. Thus, x /∈ (X−γ(f−1(G)))∗, i.e. f−1(G)∩

(X−γ(f−1(G)))∗ = ∅. This leads to f−1(G) ∈ g∗γ. Hence, f is (g∗γ, g∗β)-continuous.

Remark 4.1.27. Let γ be a restricting map and β a monotonic map on exp(X)

and exp(Y ), respectively. Assume that f : (X, γ,HX) → (Y, β) is a bijection. It

follows from Theorems 2.2.7 and 4.1.26 that there is a hereditary class HY on Y

such that we have the following relationships.

strongly (γ, β)-continuous (γ, β)-continuous (gγ, gβ)-continuous

(g∗γ, g
∗
β)-continuous (g∗gγ , g

∗
gβ
)-continuous.

Corollary 4.1.28. Let γ, β and α be monotonic maps such that γ and β are

restricting. Let (X, γ), (Y, β) and (Z, α) be generalized topological spaces. Assume

that f : X → Y is a (γ, β)-continuous bijective function and g : Y → Z is a

(β, α)-continuous bijective function. The following statements are satisfied.

(1) If HX is a hereditary class on X, then there are the hereditary classes HY

on Y and HZ on Z such that g ◦ f is (g∗γ, g
∗
α)-continuous.

(2) If HY is a hereditary class on Y , then there are the hereditary classes HX

on X and HZ on Z such that g ◦ f is (g∗γ, g
∗
α)-continuous.
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(3) If HZ is a hereditary class on Z, then there are the hereditary classes HX on

X and HY on Y such that g ◦ f is (g∗γ, g
∗
α)-continuous.

Proof. Apply Theorem 4.1.24 and Theorem 4.1.26.

4.1.2 (g∗γ, g
∗
β)-open maps

Proposition 4.1.29. Let γ be an enlarging map and β a restricting map on exp(X)

and exp(Y ), respectively. Let (X, γ) and (Y, β) be generalized topological spaces.

If f : X → Y is (γ, β)-open, then f is strongly (γ, β)-open.

Proof. It follows from β(f(A)) ⊆ f(A) ⊆ f(γ(A)) for all A ⊆ X.

Proposition 4.1.30. Let γ be a restricting map and β an enlarging map on

exp(X) and exp(Y ), respectively. Then f : X → Y is (γ, β)-open. In particular,

f : X → Y is (gγ, gβ)-open.

Proof. Observe that f(γ(A)) ⊆ f(A) ⊆ β(f(A)) for all A ⊆ X.

Corollary 4.1.31. Let γ be a monotonic map and β a restricting on exp(X) and

exp(Y ), respectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces and

HY a hereditary class on Y . Assume that f : X → Y is a (γ, β)-open bijection.

Then for the hereditary class on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is (g∗γ, g
∗
β)-open.

Proof. Similar to Theorem 3.2.20, it suffices to show that f is (g∗γ, g
∗
β)-open.

f is (γ, β)-open ⇒ f−1 is (β, γ)-continuous (By Proposition 3.2.34)

⇒ f−1 is (g∗β, g
∗
γ)-continuous (By Theorem 4.1.26)

⇒ f is (g∗γ, g
∗
β)-open. (By Proposition 3.2.33)
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Remark 4.1.32. Let γ be a monotonic map and β a restricting map on exp(X)

and exp(Y ), respectively. Assume that f : (X, γ) → (Y, β,HY ) is a bijection. By

Theorem 2.2.8 and the above corollary, there is a hereditary class HX on X such

that we have the following relationships.

strongly (γ, β)-open (γ, β)-open (gγ, gβ)-open

(g∗γ, g
∗
β)-open (g∗gγ , g

∗
gβ
)-open.

Corollary 4.1.33. Let γ be a monotonic map and β a restricting on exp(X) and

exp(Y ), respectively. Let (X, γ,HX) and (Y, β) be generalized topological spaces

and HX a hereditary class on X. Assume that f : X → Y is a (γ, β)-open bijection.

Then for the hereditary class on Y defined by

HY = {f(H) | H ∈ HX},

the function f is (g∗γ, g
∗
β)-open.

Proof. Similar to Theorem 3.2.17, it suffices to show that f is (g∗γ, g
∗
β)-open.

f is (γ, β)-open ⇒ f−1 is (β, γ)-continuous (By Proposition 3.2.34)

⇒ f−1 is (g∗β, g
∗
γ)-continuous (By Theorem 4.1.24)

⇒ f is (g∗γ, g
∗
β)-open. (By Proposition 3.2.33)

Remark 4.1.34. Let γ be a monotonic map and β a restricting map on exp(X)

and exp(Y ), respectively. Assume that f : (X, γ,HX) → (Y, β) is a bijection. By

Theorem 2.2.9 and the above corollary, there is a hereditary class HY on Y such

that we have the following relationships.

strongly (γ, β)-open (γ, β)-open (gγ, gβ)-open

(g∗γ, g
∗
β)-open (g∗gγ , g

∗
gβ
)-open.
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Remark 4.1.35. Let γ be a monotonic map and β an enlarging map on exp(X)

and exp(Y ), respectively. Let (X, γ,HX) and (Y, β,HY ) be generalized topological

spaces. Then f : X → Y is (g∗γ, g
∗
β)-open.

Corollary 4.1.36. Let γ and β be restricting maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces and HY a

hereditary class on Y . Assume that f : X → Y is a (γ, β)-homeomorphism. Then

for the hereditary class on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is a (g∗γ, g
∗
β)-homeomorphism.

Proof. Similar to Theorem 3.2.17, it suffices to show that f is a (g∗γ, g
∗
β)-homeomorphism.

By Corollary 3.2.45, it implies that f is (γ, β)-continuous and (γ, β)-open. By

Theorem 4.1.24 and Corollary 4.1.31, f is (g∗γ, g∗β)-continuous and (g∗γ, g
∗
β)-open. It

follows from Corollary 3.2.44 that f is a (g∗γ, g
∗
β)-homeomorphism.

Corollary 4.1.37. Let γ and β be restricting maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ,HX) and (Y, β) be generalized topological spaces and HX a

hereditary class on X. Assume that f : X → Y is a (γ, β)-homeomorphism. Then

for the hereditary class on X defined by

HY = {f(H) | H ∈ HX},

the function f is a (g∗γ, g
∗
β)-homeomorphism.

Proof. Consider f−1 and apply Corollary 4.1.36.

Remark 4.1.38. Let γ and β be enlarging maps on exp(X) and exp(Y ), respec-

tively. Let (X, γ,HX) and (Y, β,HY ) be generalized topological spaces. Assume

that f : X → Y is bijective. Then f : X → Y is a (g∗γ, g
∗
β)-homeomorphism.
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4.1.3 Relations between (g∗γ, g
∗
β)-continuity and (g∗gγ , g

∗
gβ
)-continuity

Let γ and β are restricting maps. In this subsection, we discuss on the relations

between (g∗γ, g
∗
β)-continuity and (g∗gγ , g

∗
gβ
)-continuity. Firstly, we begin with the

following example.

Example 4.1.39. Let X = {a, b, c} and Y = {1, 2, 3, 4}. We define monotonic

maps γ : exp(X) → exp(X) and β : exp(Y ) → exp(Y ) by

γ(A) =



A if A = {b}, {c}, {b, c}, X,

{b} if A = {a, b},

{c} if A = {a, c},

∅ otherwise.

β(B) =



B if B = {1}, {1, 2}, {1, 3, 4}, Y,

{1} if B = {1, 3}, {1, 4},

{1, 2} if B = {1, 2, 3}, {1, 2, 4}

∅ otherwise.

It is clear that γ and β are restricting. We obtain that gγ = {∅, {b}, {c}, {b, c}, X}

and gβ = {∅, {1}, {1, 2}, {1, 3, 4}, Y }. Let HX = {∅, {a}, {b}, {c}, {a, c}} and

HY = {∅, {1}, {2}, {4}, {2, 4}}. Assume that f : X → Y is defined by f(a) =

2, f(b) = 1 and f(c) = 4. Then f is injective. By Theorem 4.1.11, we conclude

that

g∗gγ = {∅, {b}, {c}, {a, b}, {a, c}, {b, c}, X} and

g∗gβ = {∅, {1}, {2}, {1, 2}, {1, 3}, {3, 4}, {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, Y }.

Since f−1({2}) = {a} /∈ g∗gγ , f is not (g∗gγ , g
∗
gβ
)- continuous. By using Remark

4.1.10, we can compute

g∗γ = {∅, {b}, {c}, {a, b}, {b, c}, X} and

g∗β = {∅, {1}, {1, 2}, {1, 3, 4}, Y } = gβ.
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Hence, we can see that f is (g∗γ, g
∗
β)-continuous.

This implies that not every (g∗γ, g
∗
β)-continuous injection f is (g∗gγ , g∗gβ)-continuous

when we assume that HY is a hereditary class on Y and HX = {f−1(H) | H ∈ HY }

is a hereditary class on X. So, we can ask what conditions make an injective

(g∗γ, g
∗
β)-continuous function to be (g∗gγ , g

∗
gβ
)-continuous. This leads to the following

theorems.

Theorem 4.1.40. Let γ and β be restricting maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces and HY an

ideal on Y . Assume that f : X → Y is a (g∗γ, g
∗
β)-continuous injection. Then for

the ideal on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is (g∗gγ , g
∗
gβ
)-continuous.

Proof. In first step, we will show that HX is an ideal. It is enough to show that

f−1(A) ∪ f−1(B) ∈ HX for all A,B ∈ HY . Let A,B ∈ HY . Then A ∪ B ∈ HY

because HY is an ideal on Y . So, f−1(A)∪f−1(B) = f−1(A∪B) ∈ HX . Thus, HX

is an ideal on X. Next, we prove that f is (g∗gγ , g
∗
gβ
)-continuous. Let G ∈ g∗gβ . By

Theorem 4.1.11, we have G =
∪

b∈Λ′(Mb−Hb) where Mb ∈ gβ and Hb ∈ HY . Since

gβ ⊆ g∗β and f is (g∗γ, g
∗
β)-continuous, f−1(Mb) ∈ g∗γ ⊆ g∗gγ for all b ∈ Λ′. Then for

each b ∈ Λ′, f−1(Mb) =
∪

a∈Λ(Nba−Hba) where Nba ∈ gγ and Hba ∈ HX . Consider

f−1(G) =
∪

b∈Λ′(f−1(Mb)− f−1(Hb))

=
∪

b∈Λ′(
∪

a∈Λ(Nba −Hba)− f−1(Hb))

=
∪

b∈Λ′
∪

a∈Λ(Nba − (Hba ∪ f−1(Hb))).

Since HX is an ideal on X, Hba ∪ f−1(Hb) ∈ HX and so Nba − (Hba ∪ f−1(Hb))

belongs to the basis for g∗gγ for all b ∈ Λ′ and a ∈ Λ. Thus, f−1(G) ∈ g∗gγ . Hence,

f is (g∗gγ , g
∗
gβ
)-continuous.
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Remark 4.1.41. Let γ and β be restricting maps on exp(X) and exp(Y ), respec-

tively. Assume that f : (X, γ) → (Y, β,HY ) is an injective function and HY is an

ideal on Y . By Theorems 2.2.6 and 4.1.40, there is an ideal HX on X such that

we have the following relationships.

strongly (γ, β)-continuous (γ, β)-continuous (gγ, gβ)-continuous

(g∗γ, g
∗
β)-continuous (g∗gγ , g

∗
gβ
)-continuous.

Theorem 4.1.42. Let γ and β be restricting maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ,HX) and (Y, β) be generalized topological spaces and HX an

ideal on X. Assume that f : X → Y is a (g∗γ, g
∗
β)-continuous bijection. Then for

the ideal on Y defined by

HY = {f(H) | H ∈ HX},

the function f is (g∗gγ , g
∗
gβ
)-continuous.

Proof. First, we will show that HY is an ideal. It is enough to show that f(A) ∪

f(B) ∈ HY for all A,B ∈ HX . Let A,B ∈ HX . Then A ∪B ∈ HX because HX is

an ideal on X. So, f(A) ∪ f(B) = f(A ∪ B) ∈ HY . Thus, HY is an ideal on Y .

Next, we prove that f is (g∗gγ , g
∗
gβ
)-continuous. Let G ∈ g∗gβ . By Theorem 4.1.11,

we have G =
∪

b∈Λ′(Mb − f(Hb)) where Mb ∈ gβ and Hb ∈ HX . Since gβ ⊆ g∗β and

f is (g∗γ, g
∗
β)-continuous, f−1(Mb) ∈ g∗γ ⊆ g∗gγ for all b ∈ Λ′. Then for each b ∈ Λ′,

f−1(Mb) =
∪

a∈Λ(Nba −Hba) where Nba ∈ gγ and Hba ∈ HX . Consider

f−1(G) =
∪

b∈Λ′(f−1(Mb)− f−1(f(Hb)))

=
∪

b∈Λ′(
∪

a∈Λ(Nba −Hba)−Hb)

=
∪

b∈Λ′
∪

a∈Λ(Nba − (Hba ∪Hb)).

Since HX is an ideal on X, Hba ∪ Hb ∈ HX and so Nba − (Hba ∪ Hb) belongs to

the basis for g∗gγ for all b ∈ Λ′ and a ∈ Λ. Thus, f−1(G) ∈ g∗gγ . Hence, f is

(g∗gγ , g
∗
gβ
)-continuous.
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Remark 4.1.43. Let γ and β be restricting maps on exp(X) and exp(Y ), respec-

tively. Assume that f : (X, γ,HX) → (Y, β) is a bijection and HX is an ideal on

X. By Theorems 2.2.7 and 4.1.42, there is an ideal HY on Y such that we have

the following relationships.

strongly (γ, β)-continuous (γ, β)-continuous (gγ, gβ)-continuous

(g∗γ, g
∗
β)-continuous (g∗gγ , g

∗
gβ
)-continuous.

Moreover, we obtain the same results on open maps and homeomorphisms.

Corollary 4.1.44. Let γ and β be restricting maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces and HY an

ideal on Y . Assume that f : X → Y is a (g∗γ, g
∗
β)-open bijection. Then for the ideal

on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is (g∗gγ , g
∗
gβ
)-open.

Proof. Similar to Theorem 4.1.40, it suffices to show that f is (g∗gγ , g
∗
gβ
)-open.

f is (g∗γ, g
∗
β)-open ⇒ f−1 is (g∗β, g

∗
γ)-continuous (By Proposition 3.2.33)

⇒ f−1 is (g∗gβ , g
∗
gγ )-continuous (By Theorem 4.1.42)

⇒ f is (g∗gγ , g
∗
gβ
)-open. (By Proposition 3.2.33)

Remark 4.1.45. Let γ and β be restricting maps on exp(X) and exp(Y ), respec-

tively. Assume that f : (X, γ) → (Y, β,HY ) is a bijection and HY is an ideal on

Y . By Corollaries 2.2.8 and 4.1.44, there is an ideal HX on X such that we have

the following relations.

strongly (γ, β)-open (γ, β)-open (gγ, gβ)-open

(g∗γ, g
∗
β)-open (g∗gγ , g

∗
gβ
)-open.
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Corollary 4.1.46. Let γ and β be restricting maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ,HX) and (Y, β) be generalized topological spaces and HX is

an ideal on X. Assume that f : X → Y is a (g∗γ, g
∗
β)-open bijection. Then for the

ideal on X defined by

HY = {f(H) | H ∈ HX},

the function f is (g∗gγ , g
∗
gβ
)-open.

Proof. Similar to Theorem 4.1.42, it suffices to show that f is (g∗gγ , g
∗
gβ
)-open.

f is (g∗γ, g
∗
β)-open ⇒ f−1 is (g∗β, g

∗
γ)-continuous (By Proposition 3.2.33)

⇒ f−1 is (g∗gβ , g
∗
gγ )-continuous (By Theorem 4.1.40)

⇒ f is (g∗gγ , g
∗
gβ
)-open. (By Proposition 3.2.33)

Remark 4.1.47. Let γ and β be restricting maps on exp(X) and exp(Y ), respec-

tively. Assume that f : (X, γ,HX) → (Y, β) is a bijection and HX is an ideal on

X. By Theorems 2.2.9 and 4.1.46, there is an ideal HY on Y such that we have

the following relations.

strongly (γ, β)-open (γ, β)-open (gγ, gβ)-open

(g∗γ, g
∗
β)-open (g∗gγ , g

∗
gβ
)-open.

Corollary 4.1.48. Let γ and β be restricting maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces and HY an

ideal on Y . Assume that f : X → Y is a (g∗γ, g
∗
β)-homeomorphism. Then for the

ideal on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is a (g∗gγ , g
∗
gβ
)-homeomorphism.

Proof. Similar to Theorem 4.1.40, it suffices to show that f is a (g∗gγ , g
∗
gβ
)-homeomorphism.

By Corollary 3.2.44, it implies that f is (g∗γ, g
∗
β)-continuous and (g∗γ, g

∗
β)-open. By
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Theorem 4.1.40 and Corollary 4.1.44, f is (g∗gγ , g∗gβ)-continuous and (g∗gγ , g
∗
gβ
)-open.

It follows from Corollary 3.2.44 that f is a (g∗gγ , g
∗
gβ
)-homeomorphism.

Corollary 4.1.49. Let γ and β be restricting maps on exp(X) and exp(Y ), re-

spectively. Let (X, γ,HX) and (Y, β) be generalized topological spaces and HX an

ideal on X. Assume that f : X → Y is a (g∗γ, g
∗
β)-homeomorphism. Then for the

ideal on Y defined by

HY = {f(H) | H ∈ HX},

the function f is a (g∗gγ , g
∗
gβ
)-homeomorphism.

Proof. Consider f−1 and apply Corollary 4.1.48.

4.2 Strong maps

Definition 4.2.1. Let γ be a monotonic map. A map γ is called idempotent if

γ(A) = γ(γ(A)) for all A ⊆ X.

Definition 4.2.2. Let γ be a monotonic map. A map γ is called strong if γ is

restricting and idempotent.

4.2.1 (g∗γ, g
∗
β)-continuous maps

Proposition 4.2.3. Let γ be a monotonic map and β a strong map on exp(X)

and exp(Y ), respectively. Let (X, γ) and (Y, β) be generalized topological spaces.

If f : X → Y is (gγ, gβ)-continuous, then f is (γ, β)-continuous.

Proof. Let B ⊆ Y . Then β(B) = β(β(B)), i.e. β(B) is β-open. By the assump-

tion, we obtain f−1(β(B)) is γ-open. It follows that f−1(β(B)) ⊆ γ[f−1(β(B))].

Thus, f−1(β(B)) ⊆ γ[f−1(β(B))] ⊆ γ[f−1(B)] because β is restricting. This is

true for all B ⊆ Y . Hence, f is (γ, β)-continuous.

Remark 4.2.4. Let γ be a monotonic map on exp(X) and β a strong map on

exp(Y ). By Remark 3.2.16, we have the following relations.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45

strongly (γ, β)-continuous ⇒ (γ, β)-continuous ⇔ (gγ, gβ)-continuous.

Let (X, γ) and (Y, β) be generalized topological spaces. Let f : X → Y be

a function. Similarly, the following corollaries show that f is (g∗γ, g
∗
β)-continuous

when f is (gγ, gβ)-continuous, γ is restricting, and β is strong.

Corollary 4.2.5. Let γ be a restricting map and β a strong map on exp(X) and

exp(Y ), respectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces

and HY a hereditary class on Y . Assume that f : X → Y is a (gγ, gβ)-continuous

injection. Then for the hereditary class on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is (g∗γ, g
∗
β)-continuous.

Proof. Apply Proposition 4.2.3 and Theorem 4.1.24.

Remark 4.2.6. Let γ be a restricting map and β a strong map on exp(X) and

exp(Y ), respectively. Assume that f : (X, γ) → (Y, β,HY ) is an injective function

and HY is an ideal on Y . By Theorem 4.1.40 and Corollary 4.2.5, there is an ideal

HX on X such that we have the following implications.

strongly (γ, β)-continuous (γ, β)-continuous

(gγ, gβ)-continuous (g∗γ, g
∗
β)-continuous

(g∗gγ , g
∗
gβ
)-continuous.

By the above corollary, the following example shows that a (gγ, gβ)-continuous

injection may not be (g∗γ, g
∗
β)-continuous if a monotonic map β is not strong.
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Example 4.2.7. Let X = {a, b, c} and Y = {x, y, z}. We define monotonic maps

γ : exp(X) → exp(X) and β : exp(Y ) → exp(Y ) by

γ(∅) = ∅, β(∅) = ∅,

γ({a}) = {a}, β({x}) = ∅,

γ({b}) = {b}, β({y}) = ∅,

γ({c}) = ∅, β({z}) = ∅,

γ({a, b}) = {a, b}, β({x, y}) = {x},

γ({a, c}) = {a}, β({x, z}) = {z},

γ({b, c}) = {b}, β({y, z}) = {y},

γ(X) = X, β(Y ) = Y.

We obtain that β(β({x, y})) = β({x}) = ∅ ̸= {x} = β({x, y}). Thus, β is not

strong. It is clear that gγ = {∅, {a}, {b}, {a, b}, X} and gβ = {∅, Y }. Let f :

X → Y be defined by f(a) = x, f(b) = y and f(c) = z. Therefore, f is a

(gγ, gβ)-continuous injection. Let HY = {∅, {x}, {y}, {x, y}} and HX = {f−1(H) |

H ∈ HY } = {∅, {a}, {b}, {a, b}} be hereditary classes on exp(Y ) and exp(X),

respectively. Next, we observe that

{x, z} ∩ (Y − β({x, z}))∗β = {x, z} ∩ ({x, y})∗β = {x, z} ∩∅ = ∅.

So, we have g∗γ,HX
= gγ = {∅, {a}, {b}, {a, b}, X} and {x, z} ∈ g∗β,HY

. Hence, f is

not (g∗γ,HX
, g∗β,HY

)-continuous because f−1({x, z}) = {a, c} /∈ g∗γ,HX
.

Corollary 4.2.8. Let γ be a restricting map and β a strong map on exp(X) and

exp(Y ), respectively. Let (X, γ,HX) and (Y, β) be generalized topological spaces

and HX a hereditary class on X. Assume that f : X → Y is a (gγ, gβ)-continuous

bijection. Then for the hereditary class on Y defined by

HY = {f(H) | H ∈ HX},

the function f is (g∗γ, g
∗
β)-continuous.
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Proof. Apply Proposition 4.2.3 and Theorem 4.1.26.

Remark 4.2.9. Let γ be a restricting map and β a strong map on exp(X) and

exp(Y ), respectively. Assume that f : (X, γ,HX) → (Y, β) is a bijection and HX

is an ideal on X. By Theorem 4.1.42 and Corollary 4.2.8, there is an ideal HY on

Y such that we have the following implications.

strongly (γ, β)-continuous (γ, β)-continuous

(gγ, gβ)-continuous (g∗γ, g
∗
β)-continuous

(g∗gγ , g
∗
gβ
)-continuous.

Next, it is easy to obtain the following corollary for the composition.

Corollary 4.2.10. Let γ, β and α be monotonic maps such that γ is restricting

and β, α are strong. Let (X, γ), (Y, β) and (Z, α) be generalized topological spaces.

Assume that f : X → Y is a (gγ, gβ)-continuous bijective function and g : Y → Z

is a (gβ, gα)-continuous bijective function. The following statements are satisfied.

(1) If HX is a hereditary class on X, then there are the hereditary classes HY

on Y and HZ on Z such that g ◦ f is (g∗γ, g
∗
α)-continuous.

(2) If HY is a hereditary class on Y , then there are the hereditary classes HX

on X and HZ on Z such that g ◦ f is (g∗γ, g
∗
α)-continuous.

(3) If HZ is a hereditary class on Z, then there are the hereditary classes HX on

X and HY on Y such that g ◦ f is (g∗γ, g
∗
α)-continuous.

Proof. Apply Theorems 4.2.5 and 4.2.8.

4.2.2 (g∗γ, g
∗
β)-open maps

Similarly, we obtain the same results on open maps and homeomorphisms.
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Proposition 4.2.11. Let γ be a strong map and β a monotonic on exp(X) and

exp(Y ), respectively. Let (X, γ) and (Y, β) be generalized topological spaces. If

f : X → Y is (gγ, gβ)-open, then f is (γ, β)-open.

Proof. Let A ⊆ X. Since γ is strong, γ(A) is γ-open. It follows that f(γ(A)) is

β-open. Thus, f(γ(A)) ⊆ β(f(γ(A))) ⊆ β(f(A)). Hence, f is (γ, β)-open.

Corollary 4.2.12. Let γ be a strong map and β a restricting map on exp(X) and

exp(Y ), respectively. Let (X, γ) and (Y, β,HY ) be generalized topological spaces

and HY a hereditary class on Y . Assume that f : X → Y is a (gγ, gβ)-open

bijection. Then for the hereditary class on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is (g∗γ, g
∗
β)-open.

Proof. Similar to Theorem 3.2.20, it suffices to show that f is (g∗γ, g
∗
β)-open.

f is (gγ, gβ)-open ⇒ f−1 is (gβ, gγ)-continuous (By Proposition 3.2.33)

⇒ f−1 is (g∗β, g
∗
γ)-continuous (By Corollary 4.2.8)

⇒ f is (g∗γ, g
∗
β)-open. (By Proposition 3.2.33)

Remark 4.2.13. Let γ be a strong map and β a restricting map on exp(X) and

exp(Y ), respectively. Assume that f : (X, γ) → (Y, β,HY ) is a bijection and HY

is an ideal on Y . By Corollaries 4.1.44 and 4.2.12, there is an ideal HX on X such

that we have the following relationships.

strongly (γ, β)-open (γ, β)-open

(gγ, gβ)-open (g∗γ, g
∗
β)-open

(g∗gγ , g
∗
gβ
)-open.
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Corollary 4.2.14. Let γ be a strong map and β a restricting map on exp(X) and

exp(Y ), respectively. Let (X, γ,HX) and (Y, β) be generalized topological spaces

and HX a hereditary class on X. Assume that f : X → Y is a (gγ, gβ)-open

bijection. Then for the hereditary class on Y defined by

HY = {f(H) | H ∈ HX},

the function f is (g∗γ, g
∗
β)-open.

Proof. Similar to Theorem 3.2.17, it suffices to show that f is (g∗γ, g
∗
β)-open.

f is (gγ, gβ)-open ⇒ f−1 is (gβ, gγ)-continuous (By Proposition 3.2.33)

⇒ f−1 is (g∗β, g
∗
γ)-continuous (By Corollary 4.2.5)

⇒ f is (g∗γ, g
∗
β)-open. (By Proposition 3.2.33)

Remark 4.2.15. Let γ be a strong map and β a restricting map on exp(X) and

exp(Y ), respectively. Assume that f : (X, γ,HX) → (Y, β) is a bijection and HX

is an ideal on X. By Corollaries 4.1.46 and 4.2.14, there is an ideal HY on Y such

that we have the following relationships.

strongly (γ, β)-open (γ, β)-open

(gγ, gβ)-open (g∗γ, g
∗
β)-open

(g∗gγ , g
∗
gβ
)-open.

We finish this section with the following corollaries on homeomorphism maps.

Corollary 4.2.16. Let γ and β be strong maps on exp(X) and exp(Y ), respectively.

Let (X, γ) and (Y, β,HY ) be generalized topological spaces and HY a hereditary

class on Y . Assume that f : X → Y is a (gγ, gβ)-homeomorphism. Then for the
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hereditary class on X defined by

HX = {f−1(H) | H ∈ HY },

the function f is a (g∗γ, g
∗
β)-homeomorphism.

Proof. Similar to Theorem 3.2.17, it suffices to show that f is a (g∗γ, g
∗
β)-homeomorphism.

By Corollary 3.2.44, it implies that f is (gγ, gβ)-continuous and (gγ, gβ)-open. By

Corollary 4.2.5 and 4.2.12, f is (g∗γ, g
∗
β)-continuous and (g∗γ, g

∗
β)-open. It follows

from Corollary 3.2.44 that f is a (g∗γ, g
∗
β)-homeomorphism.

Corollary 4.2.17. Let γ and β be strong maps on exp(X) and exp(Y ), respectively.

Let (X, γ,HX) and (Y, β) be generalized topological spaces and HX a hereditary

class on X. Assume that f : X → Y is a (gγ, gβ)-homeomorphism. Then for the

hereditary class on Y defined by

HY = {f(H) | H ∈ HX},

the function f is a (g∗γ, g
∗
β)-homeomorphism.

Proof. Consider f−1 and apply Corollary 4.2.16.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSION AND DISCUSSION

Let X and Y be nonempty sets. Let γ and β be monotonic maps on exp(X) and

exp(Y ), respectively, and H a hereditary class on X. In this thesis, we present the

concepts of a generalized topology induced by a monotonic map γ and a hered-

itary class H, denoted by g∗γ,H. Also, we show that g∗γ,H contains the collection

of all γ-open sets, denoted by gγ. That is, gγ ⊆ g∗γ,H. After that, we study a

notion of the continuity on generalized topological spaces induced by monotonic

maps and hereditary classes. We prove that the strongly (γ, β)-continuity between

two generalized topological spaces (X, γ) and (Y, β) implies the continuity on gen-

eralized topological spaces induced by monotonic maps and hereditary classes in

various situations. That is, given a hereditary class on either X or Y , we can find a

hereditary class on the another space that makes a given strongly (γ, β)-continuous

bijective map to be (g∗γ, g
∗
β)-continuous. By applying these theorem, we obtain the

same results on open maps. So, we get the following implications on the bijective

function:

strongly (γ, β)-continuous (γ, β)-continuous (gγ, gβ)-continuous

(g∗γ, g
∗
β)-continuous

and

strongly (γ, β)-open (γ, β)-open (gγ, gβ)-open

(g∗γ, g
∗
β)-open

Let g∗gγ ,H denote the generalized topology induced by a generalized topology gγ and

a hereditary class H. In Chapter IV, we consider the properties of the monotonic

maps in two cases.
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1. On restricting maps

Let γ and β be restricting maps. We conclude that gγ ⊆ g∗γ,H ⊆ g∗gγ ,H. We also

obtain the continuity on the generalized topological spaces induced by monotonic

maps and hereditary classes when we reduce some conditions by replacing the

strongly (γ, β)-continuity by the (γ, β)-continuity. That is, given a hereditary class

on either X or Y , we can construct a hereditary class on the another space that

makes a given (γ, β)-continuous bijective map to be (g∗γ, g
∗
β)-continuous. Similarly,

we obtain results concerning open maps. We have the following relationships on

the bijective function:

strongly (γ, β)-continuous (γ, β)-continuous (gγ, gβ)-continuous

(g∗γ, g
∗
β)-continuous (g∗gγ , g

∗
gβ
)-continuous

and

strongly (γ, β)-open (γ, β)-open (gγ, gβ)-open

(g∗γ, g
∗
β)-open (g∗gγ , g

∗
gβ
)-open

Moreover, we prove that given an ideal on either X or Y , we can construct an

ideal on the another space that makes a given (g∗γ, g
∗
β)-continuous bijective map to

be (g∗gγ , g
∗
gβ
)-continuous. Thus, we have the following relationships on the bijective

function:

strongly (γ, β)-continuous (γ, β)-continuous (gγ, gβ)-continuous

(g∗γ, g
∗
β)-continuous (g∗gγ , g

∗
gβ
)-continuous

and

strongly (γ, β)-open (γ, β)-open (gγ, gβ)-open

(g∗γ, g
∗
β)-open (g∗gγ , g

∗
gβ
)-open
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2. On strong maps

Let γ and β be strong maps. We let a hereditary class on either X or Y .

Similarly, we can define a hereditary class on the another space that makes a given

(gγ, gβ)-continuous bijective map to be (g∗γ, g
∗
β)-continuous. Similar to 1., since

γ and β are restricting, we also get the following implications on the bijective

function:

strongly (γ, β)-continuous (γ, β)-continuous

(gγ, gβ)-continuous (g∗γ, g
∗
β)-continuous

(g∗gγ , g
∗
gβ
)-continuous

and

strongly (γ, β)-open (γ, β)-open

(gγ, gβ)-open (g∗γ, g
∗
β)-open

(g∗gγ , g
∗
gβ
)-open

Therefore, in this thesis, we define and study generalized topological spaces

induced by monotonic maps and hereditary classes. After that, we study the conti-

nuity on generalized topological spaces induced by monotonic maps and hereditary

classes. Finally, we obtain some results of generalized topological spaces induced

by monotonic maps having particular properties and hereditary classes.
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