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CHAPTER 1
INTRODUCTION

In 1997, Csészar [[l] presented the concept of open sets in a topological space via
monotonic maps, called y-open sets. He observed that for any monotonic map -,
the empty set is y-open and any union of y-open sets is also v-open. From his
observation, he defined a generalized topology which is a collection of subsets of a
given nonempty set containing the empty set and arbitrary unions of members in
this collection. In 1990, Jankovi¢ and Hamlett [4] defined a hereditary class H on a
topological space X, which is the collection of subsets of X such that every subset
of elements in ‘H is in H. They also introduced the generalization of the closure
in a topological space via the hereditary class H. In 2007, Cséaszar [3] defined a
new generalized topology which contains an old generalized topology via heredi-
tary classes. In 2018, Montagantirud and Thaikua [5] introduced a notion of the
continuity on generalized topological spaces via hereditary classes in various situ-
ations. They also proved that the continuity between two generalized topological
spaces can be preserved on generalized topological spaces via hereditary classes.
In this thesis, we shall use the motivation discussed above to study general-
ized topologies induced by monotonic maps and hereditary classes. Our thesis is
organized as follows. In Chapter II, we recall the definition of monotonic maps,
generalized topological spaces, hereditary classes and continuous maps on gener-
alized topological spaces. We also provide some facts which follow from properties
of a generalized topological space induced by a hereditary class. In Chapter III,
we introduce a notion of a generalized topological space induced by a monotonic
map and a hereditary class. Also, we provide some of their properties. Next, we
obtain some results of the continuity on generalized topological spaces induced by

monotonic maps and hereditary classes and construct a hereditary class H that



makes a given function continuous on the generalized topological space via a given
monotonic map and the set H. Finally, we give some applications of generalized
topological spaces induced by monotonic maps having particular properties and
hereditary classes. We also investigate the relationships between generalized topo-
logical spaces via hereditary classes and generalized topological spaces induced by

monotonic maps and hereditary classes.



CHAPTER II
PRELIMINARIES

In this chapter, we give some definitions, notations and results which will be used

for this dissertation.

2.1 Generalized topologies via hereditary classes

Let X be a nonempty set. We denote the power set of X by exp(X). In 1997,

Csészar [[] introduced a generalization of open sets, called y-open sets.

Definition 2.1.1. The map 7 : exp(X) — exp(X) is called monotonic if A C B
implies v(A) C ~(B) for all A;B € exp(X). The set of all monotonic maps is
denoted by I'(X).

Definition 2.1.2. Let v be a monotonic map. A set A C X is called v-open if
A C ~(A). The collection of all y-open sets is denoted by g,.

In [, Csészar observed that the collection of y-open sets has some properties
similar to the collection of open sets in a topological space. That is, for any
monotonic map 7, the empty set is y-open and any union of y-open sets is y-open.

From his observation, he defined a generalized topological space.

Definition 2.1.3. Let X be a nonempty set. A collection u of subsets of X is

called a generalized topology on X if it satisfies the following conditions.
(1) The empty set is in p.
(2) Any union of elements in yu is in p.

The pair (X, u) is called a generalized topological space, the elements of
are called p-open sets, and the complements of p-open sets are called p-closed

sets. In particular, any topology is also a generalized topology.



Remark 2.1.4. The set g, is a generalized topology. We are able to say that a

monotonic map on exp(X) constitutes a generalized topology.

Definition 2.1.5. Let (X, u) be a generalized topological space. For A C X, the
p-interior of A, denoted by i,(A), is the union of all y-open subsets of A, and
the p-closure of A, denoted by ¢, (A), is the intersection of all yi-closed supersets

of A. In particular, 7, and c, can be regraded as monotonic maps.

In 1990, Jankovi¢ and Hamlett [4] generalized the concept of the closure in a
topological space X via a collection of a particular subset, called a hereditary class,
H of X and they also obtained a new topology which contains an old topology by

using this concept.

Definition 2.1.6. A collection H of subsets of X is said to be a hereditary class
on X if for each A, B € exp(X),

AC Band Be€Himply AcH.
If a hereditary class H has a further property that for each A, B € exp(X),
A, BeHimply AUB € H,

then H is said to be an ideal. We call (X, u, H) a generalized topological space
(X, p) together with a hereditary class H.

Remark 2.1.7. @ € H and H = exp(X) if X € H.

In 2007, Csaszar [3] introduced and studied the construction of a generalized

topology via a hereditary class.

Definition 2.1.8. Let (X, u, H) be a generalized topological space together with
a hereditary class H. For each A C X, we define

Ay ={reX|reMe pimplies MNA¢H}.



In particular, A; (o) = ¢, (A). If there is no ambiguity, then A7, 5, will be denoted
by A7,

The following are some properties of A,

Proposition 2.1.9. [3] Let (X, u,H) be a generalized topological space together
with a hereditary class H and A,B,M C X.

(1) A C B implies A}, C By;;

(9) 4, € 0,(A);

(3) If M € pand M N A€H, then M N A}, = &,
(4) A, is p-closed;

(5) A is p-closed implies A}, C A;

(6) (AL C AL

(7) X =X if and only if uNH = 2.

Moreover, he observed that A} does not contain A. Therefore, A} would not

be a generalization of the closure of A. This leads to the following definition.

Definition 2.1.10. Let (X, u, H) be a generalized topological space together with
a hereditary class H. For each A C X

If there is no ambiguity, then c}, ; (A) will be denoted by c*(A).

After that, Csészar [3] proved that there is a generalized topology p* such that
c*(A) is the intersection of all p*-closed supersets of A, that is, M € p* if and only
if ¢*(X — M) = X — M. From this motivation, we obtain the following definition.



Definition 2.1.11. Let (X, u, H) be a generalized topological space together with
a hereditary class H. Define a generalized topology on X via a hereditary class H
by

py ={MCX|NX-M)=X-M}

The elements of uj, are called p; -open sets and the complements of p3-open

sets are called pj -closed sets. If there is no ambiguity, then p3, will be denoted
by u*.
The following are some properties of the generalized topology p*.

Proposition 2.1.12. /3] Let (X, u, H) be a generalized topological space together
with a hereditary class H. Then:

(1) If H={@}, then p* = p;
(2) F is p*-closed if and only if F;; C F;

(8) € .

Definition 2.1.13. Let (X, u) be a generalized topological space. The collection
B is a base for u if and only if B C u and every M € p is a union of elements of

B.

Theorem 2.1.14. /3] Let (X, u, H) be a generalized topological space together with
a hereditary class H. The set

{M—-—HCX|ME€puand H € H}

constitutes a base for u*.

2.2 Continuous maps on generalized topological spaces via

hereditary classes

In a generalized topological space (X, i), we can define a continuous map, an open

map and a homeomorphism in the same way as in a topological space.



Definition 2.2.1. Let (X, u) and (Y, /) be generalized topological spaces. Then
f: X — Y issaid to be (u, p’)-continuous if U € p/ implies f~*(U) € p.
Definition 2.2.2. Let (X, u) and (Y, /) be generalized topological spaces. Then
f: X — Y issaid to be (u, p’)-open if U € p implies f(U) € p/'.

Theorem 2.2.3. [j] Let (X, p) and (Y, ') be generalized topological spaces and f
a bijective function from X onto Y. Then f is (u,u')-open if and only if f=1 is

(W', p)-continuous.

Definition 2.2.4. Let (X, u) and (Y, /) be generalized topological spaces. Then
f: X — Y is said to be a (u, p')-homeomorphism if f is a (u, u’)-continuous

bijection and f~! is (y/, p)-continuous.

Theorem 2.2.5. [/ Let (X, ) and (Y, ') be generalized topological spaces and f
a bijection from X ontoY. Then f is a (u, p')-homeomorphism if and only if f is
(u, p')-continuous and (u, p')-open.

Following [b], we obtain some results of the continuity on generalized topological

spaces via hereditary classes.

Theorem 2.2.6. [j] Let (X,pu) and (Y, v, Hy) be generalized topological spaces
and Hy a hereditary class on Y. If f + X =Y is a (u,v)-continuous injection,

then for the hereditary class on X defined by
Hx ={f"'(H) | H € Hy},

the function f is (u*,v*)-continuous.

Theorem 2.2.7. [/ Let (X, u,Hx) and (Y,v) be generalized topological spaces
and Hx a hereditary class on X. If f : X = Y is a (u,v)-continuous bijection,

then for the hereditary class on'Y defined by
Hy ={f(H) | H € Hx},

the function f is (u*,v*)-continuous.



Corollary 2.2.8. [/ Let (X,pu) and (Y,v,Hy) be generalized topological spaces
and Hy a hereditary class on Y. If f: X — Y is a (u,v)-open bijection, then
there is a hereditary class Hx on X such that f is (u*,v*)-open.

Corollary 2.2.9. [j] Let (X,pu, Hx) and (Y,v) be generalized topological spaces
and Hyx a hereditary class on X. If f : X — Y is a (u,v)-open bijection, then
there is a hereditary class Hy on'Y such that f is (u*,v*)-open.

Theorem 2.2.10. [j] Let (X, u) and (Y,v,Hy) be generalized topological spaces
and Hy a hereditary class on Y. If f : X — Y is a (u,v)-homeomorphism, then

there is a hereditary class Hx on X such that f is a (u*,v*)-homeomorphism.

Corollary 2.2.11. [j] Let (X, u, Hx) and (Y,v) be generalized topological spaces
and Hx a hereditary class on X. If f : X — Y s a (u, v)-homeomorphism, then

there is a hereditary class Hy on 'Y such that f is a (u*,v*)-homeomorphism.



CHAPTER I11
GENERALIZED TOPOLOGICAL SPACES INDUCED
BY MONOTONIC MAPS AND HEREDITARY
CLASSES

Let v be a monotonic map on a set X. Following Remark , we obtain the

generalized topological space (X, g,) which is simply denoted by (X, 7).

Definition 3.0.12. For each A C X, we denote

i(A) = {zeX|~y(M)C A for some M € g, containing =},
cy(A) = {reX|ze M e g, implies y(M)N A # o},

t,(A) = {xreX|MCAfor some M € g, containing z},
c(A) = {reX|zeMEeg,implies M NA#o}.

We observe that i,(A) C ¢, (A) € Aand A C ¢,(A) C cl,(A) for all A C X.
In addition, it is easy to see that ., cl,, ¢, and ¢, are monotonic maps. Following

the definition , we provide some basic results of i, cl, 1, and c,.
Proposition 3.0.13. For each A C X, we have

(1) iy(4) = X — el (X — A);

(2) cly(A) = X —iy(X — A);

(8) 15(A) = X — c,(X — A);

(4) cy(A) = X — 1, (X — A).
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Proof. (1):

r € iy (A) y(M) C A for some M € g, containing x
x ¢ cl,(X —A)

=
& y(M)N (X —A) = o for some M € g, containing
=
& reX —c,(X—-A).

(2): By (1), we obtain that cl,(A) = cl,(X — (X — A4)) = X —i (X — A).
(3):

x € 1, (A) M C A for some M € g, containing x
M N (X — A) = @ for some M € g, containing x
o (X ~ A

reX—c(X—=A).

T ¢ T

(4): By (3), we obtain that ¢,(A) = ¢,(X — (X — A4)) =X — 1, (X — A).

Proposition 3.0.14. For each A C X, we have
(1) A is y-open if and only if 1,(A) = A;
(2) A is y-closed if and only if c,(A) = A.

Proof.

(1): It suffices to show that the converse is hold. Assume that ¢,(A) = A. Let
x € A. By the assumption, there is M € g, containing x such that M C A. This
implies that x € M C v(M) C v(A). Hence, A C y(A), i.e. A is y-open.

(2): We conclude that

Ais y-closed < X — A is y-open
& L(X—A)=X-A (By (1)
& oy (A)=X—1, (X —A)=A (By Proposition 3.0.2 (4))
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3.1 The set A;H

Let ‘H denote a hereditary class on a generalized topological space X. In 2007,
Cséaszar [3] introduced and studied the construction of a generalized topology via
a hereditary class. Similarly, we define a generalized topology induced by a mono-
tonic map and a hereditary class as follows. Firstly, we study a generalization of
the closure in a generalized topological space by using a monotonic map v and a

hereditary class H.

Definition 3.1.1. Let (X, v, H) be a generalized topological space together with
a hereditary class H. For each A C X, we define

Ay ={r € X |r €M € g, implies y(M)N A ¢ H}.
In particular, A% (o} = cl,(A). If there is no ambiguity, then A’ ;, will be denoted
by AZ.
The following are some properties of AZ.

Proposition 3.1.2. Let (X,v,H) be a generalized topological space together with
a hereditary class H. For each A, B C X, we have

(1) A2 C B if AC B;

(2) A% C cly(A);

(3) if M € g, and y(M)NA€H, then MNA: = 3;
(4) cy(A7) = A%;

(5) A% is y-closed;

(6) if cl,(A) C A, then AZ C A.



12

Proof. (1): Assume that A C B. We will show that X — B> C X — A%, Let
x ¢ BZ. There exists an M € g, containing = such that v(M)N B € H.
Since A C B, we obtain y(M)NA C~v(M)NB € H. We have y(M)NA € H

because H is a hereditary class. Hence, z ¢ AX.

(2): Let = ¢ cl,(A). There exists M € g, such that z € M and y(M)NA=2 €
H. Hence, x ¢ AZ.

(3): Assume that M N A # @ and M € g,. There exists a point x € M N AZ.
Since » € A% and M € g, containing x, we obtain v(M)N A ¢ H.

(4): It is enough to show that c,(A}) C Al. Let x ¢ AJ. There exists M € g,
such that € M and v(M) N A € H. By (3), M N A> = &. Therefore,

z & ¢ (AL).
(5): It follows from Proposition and (4).

(6): Assume that cl,(A) C A. By (2), A7 C cl,(A4) C A.
O

Proposition 3.1.3. Let (X, v, H) be a generalized topological space together with a

hereditary class H. For each M, M’ C X, the following statements are equivalent.
(i) If M € g, then M C M.
(i) If M, M’ € g, and M N~y(M') € H, then MNM' = @.

Proof. Firstly, we prove that (¢) implies (i7). Let M, M’ € g, and M N M’ # @.
Assume that the statement (i) holds. There is a point x € M N M’. We obtain
x € M € g, Since M € g, by the assumption, z € M C MZ. Thus, z € M.
It follows that v(M’) N M ¢ H. Conversely, we assume the statement (i) holds
and M € g,. Let x € M and M’ € g, containing x. Thus, x € M N M’ ie,
M N M'# @. So, we obtain y(M') N M ¢ H. Hence, x € M. O

Definition 3.1.4. [3] A hereditary class H is said to be y-codense if X = X>.
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Proposition 3.1.5. Let (X,v,H) be a generalized topological space together with

a hereditary class H. For M C X, the following statements are equivalent.

(i) H is y-codense.

(it) If M € g, and y(M) € H, then M = @.
Proof. Now, we will show that (i) implies (i7). Let @ # M € g,. Assume that H is
y-codense. We have x € M for somex € X. Thenx € X = X7. Sincex € M € g,
we obtain y(M) = v(M)NX ¢ H. Conversely, we assume the statement (47) holds.
It is enough to show that X C X7. Let x € X and M € g, containing x. By the
assumption, we conclude v(M) ¢ H. That is, v(M) N X = y(M) ¢ H. Hence,
T € X7, [
Remark 3.1.6. The fact that for each M, M' C X, M, M’ € g, and M N~(M’) €
‘H imply M N M’ = & obviously implies that H is y-codense.

The following example shows that A% does not contain A.

Example 3.1.7. Let X = {a,b} and H = {&, {a}}. We define a monotonic map

7+ exp(X) = exp(X) by 7(9) = @,5({a}) = {b},7({b}) = {b}, and 7(X) = X.
Then we have g, = {@, {b}, X} and {a}; = @. Therefore, {a} € @ = {a}.

3.2 Generalized topological spaces induced by monotonic

maps and hereditary classes

In 2007, Csészar [3] defined a new generalized topology, called a generalized topol-
ogy via a hereditary class, which contains the old generalized topology. Likewise,
we provide the definition of a new generalized topology which contains g, by us-
ing a monotonic map 7 and a hereditary class H. This leads to the concept of

generalized topological spaces induced by monotonic maps and hereditary classes.

Definition 3.2.1. Let (X,v,H) be a generalized topological space together with
a hereditary class H. We define

Gy =M S X [ MO (X —~(M))] =2}

v
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If there is no ambiguity, then g 5, will be denoted by g7.
Theorem 3.2.2. g7 is a generalized topology.

Proof. 1t is clear that @ € g7. Let {M,}aeca be a collection of elements in gZ.
Let ¥ € Uyep Moo Then x € M, for some a € A, ie, v ¢ (X — y(M,))?.
There exists N € g, such that € N and (N) N (X —~(M,)) € H. Since
7 is monotonic, Y(Ms) € Y(Uyer Ma), i€y X = ¥(Uper Ma) € X — v(M,).
We obtain y(N) N (X — Y(Uper Ma)) € ¥(N) N (X — v(M,)) € H. By the
definition of a hereditary class, we have v(N)N (X —v(U,en Ma)) € H. Therefore,
T & (X=7(Uaea Ma));- Tt follows that (J,en MaN(X =7(Uger Ma)); = @. Hence,

Uaer Mo € g3 ]

By the above theorem, we call g a generalized topology induced by -~
and H.

Theorem 3.2.3. g, C ¢.

Proof. Let G € g,. Suppose that G (X —(G))} # 9. Let x € GN (X —~(G)):.

We have @ = v(G) N (X —v(G)) ¢ H. It contradicts the fact that @ € H. O

The following example shows that there is a monotonic map v which makes

9y F# 95

Example 3.2.4. Let X = {a,b,c}. We define a monotonic map v : exp(X) —
exp(X) by

19 = 2 v{ae}) = A{a},
1({b}) = {b}, 1)) = &,
1({a,0}) = {a,b}, v({a,c}) = {a},
({b.c}) = {b}, 1(X) = X

We have g, = {@, {a},{b},{a, b}, X}. Let H = exp(X). We have AZ = & for all
A € exp(X). Thus, g7 = exp(X). We obtain g, C gZ.

From the above example, we need to find a sufficient condition that makes

*

g’Y = g'y‘
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Theorem 3.2.5. Let v be a monotonic map on exp(X) and H a hereditary class on
X. Assume that X ¢ H C g, and for each M ¢ g,, (M —~(M))NUgey,—1x; G =
. Then g, = g;.

Proof. Let M ¢ g,. Then M ¢ ~(M). There is x € M and = ¢ ~(M). We have
z ¢ Ugey,—(xy G- We claim that « € (X —~(M));. Let G be a y-open set which
contains z. If z € y(G)N (X —~(M)) € H C g5, then y(G) N (X —~y(M)) # X
and z € Uge,,_xy G- It is impossible. We conclude that y(G) N (X —~(M)) ¢ H.
Thus, © € (X —~y(M)):. Therefore, M N (X —~y(M)): # @. Hence, M ¢ g5. [

Example 3.2.6. Let X = {a,b,c} and H = {&,{a},{b},{a,b}}. We define
a monotonic map 7 in the same way as in Example . We obtain g, =
{2,{a},{b} {a,b}, X} and Uge, (x; G = {a,b}. We observe that for each
M ¢ g,, M — (M) = {c}. By the above theorem, we obtain g7 = g, =

{2,{a}, {0}, {a, 0}, X}.
Next, we give some conditions that make g7 equal to exp(X).

Proposition 3.2.7. Let v be a monotonic map on exp(X) and H a hereditary
class on X. Assume that H = exp(X) and for any x € X, there exists a y-open
set G such that G contains x. Then A = @ for all A € exp(X). Moreover,

g5 = exp(X).

Proof. Let A € exp(X). Let © € X. There exists G € g, such that € G. Then
Y(G) N A € exp(X) = H. This implies that x ¢ AZ. O

3.2.1 (g, gj)-continuous maps

Definition 3.2.8. Let (X,v) and (Y, ) be generalized topological spaces. A
function f from X to Y is (g, gg)-continuous if f~(G) is y-open, for each
[-open set G.

From Theorem , we obtain the following theorems.
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Theorem 3.2.9. Let (X,7) and (Y, ) be generalized topological spaces and Hx a
hereditary class on X. Assume that f is a (g, gg)-continuous function from X to

Y. Then f is (g3, gs)-continuous.

Proof. For each G € gg, we have f~1(G) € g, C g2 because f is (g,, gg)-continuous.
[

Theorem 3.2.10. Let (X,v) and (Y, 5) be generalized topological spaces and Hy
a hereditary class on Y. Assume that f is a (g, g})-continuous function from X

toY. Then f is (gy, g3)-continuous.

Proof. For each G € gz C gj, we have f~'(G) € g, because f is (g, gj)-continuous.
]

Example 3.2.11. Let X ={a,b,c¢} and Y = {z,y, 2}. We define monotonic maps
v exp(X) — exp(X) and 8 : exp(Y) — exp(Y) by

1(2) = @, Be) = o,
v({a}) = {a}, B({z}) = {z},
v({b}) = {b}, By = {v}
v({c}) = 2, B{=}) = @,
7({a,;0}) = {a, b}, B({z,y}) = {z,y},
vHa,c}) = {a}, B{z,2}) = {z},
v({b.c}) = {o},  B{w.2}) = {v},

7X) = X, BY) =Y.

It is clear that g, = {@,{a}, {b},{a,b}, X} and g3 = {&, {z}, {y},{z,y}, Y }. Let
Hx = {9, {a}, {b},{a,b}} and Hy = exp(Y). We conclude that
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T = 2, Ty, = 9,
{a}so, = 2, {z}hn, = @
0wy = 9 Whn, = 9,
{Ho = ey {2, = 9
{a,0}55 = 9 A{zyihn, = 9
{CL,C}:’HX = {c}, {$7Z}E,Hy = 4,
{bvc}:ﬂx = {c}, {y7Z}E,HY = O,

Xy = A, Yiy, = 9.

We obtain g, = {@,{a}, {b},{a,b}, X} and g5, = exp(Y). Let f: X =V
be defined by f(a) =z, f(b) = 2z, and f(c) = z. Therefore, f is (g5, gz)-continuous.

However, f is not (g% 5, 954, )-continuous because f~'({z}) = {b,c} ¢ g% 5.-

It implies that not every (g,,gs)-continuous function is (g3, g)-continuous.
This motivates us to the notion of the (v, 3)-continuity and the strongly (v, 5)-

continuity.

Definition 3.2.12. Let (X,~) and (Y, ) be generalized topological spaces. A
function f from X to Y is (v, B)-continuous if f~!(3(B)) C v(f~1(B)) for all
BCY.

Proposition 3.2.13. Let (X,v) and (Y, ) be generalized topological spaces. As-

sume that f : X =Y is (v, B)-continuous. Then f is (g, g3)-continuous.

Proof. Let G be B-open. Then G C B(G). We obtain that f~1(G) C f~1(8(G)) C
Y(f~HQ)). Therefore, f~}(G) is y-open. O

Example 3.2.14. Let X = {a,b,c} and Y = {z,y, z}. We define f : X — Y such
that f(a) =z, f(b) = z, and f(c) = z. In the setting of v and § in Example ,

we also obtain that f is (v, 8)-continuous but f is not (g7 4, g5 %, )-continuous.

Definition 3.2.15. Let (X,~) and (Y, ) be generalized topological spaces. A
function f from X to Y is strongly (v, 3)-continuous if f~!(3(B)) = v(f~(B))
forall BCY.
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Remark 3.2.16. From the above definitions, we have the following relations but

the reverse relations may not be true in general.
strongly (7, 8)-continuous = (v, 3)-continuous = (g, gz)-continuous.

The following theorems show that for a given hereditary class on either X or Y,
we can find another hereditary class that makes a given strongly (v, 3)- continuous

bijective map (g7, gj)-continuous.

Theorem 3.2.17. Let v and [ be monotonic maps on exp(X) and exp(Y'), re-
spectively. Let (X,v) and (Y, [, Hy) be generalized topological spaces and Hy a
hereditary class on Y. Assume that f : X — Y is a strongly (v, B)-continuous
injection. Then for the hereditary class on X defined by

Hx ={f'(H) | H € Hy},

the function f is (g3, gi)-continuous.

Proof. Firstly, we will show that Hx is a hereditary classon X. Let A C f~'(H) C
X where H € Hy. Then f(A) C H. We have f(A) € Hy. Since f is injective,
A = fUf(A)] € Hx. It remains to show that f is (g, gj)-continuous. Let
G € g5 Then GN(Y - B(G)); = D, ie, GCY = (Y — B(G));. It follows that
fHG) S X = fH(Y =B(G)5). Let z € f71(G). Thatis, f(z) € G. Then f(x) ¢
(Y —B(G))j. There exists B € gg such that f(x) € B and 3(B)N(Y —B(G)) € Hy-.
This implies that

VB N[X =y (fHE)] =

By Proposition 7 z € f7Y(B) € gy. Thus, z ¢ (X—y(f~(G)))%, ie., fTHG)N
(X —=~(f~M(G))); = @. This leads to the conclusion f~'(G) € g%. Hence, f is

* gr)-continuous. ]
(9%, 95)

The following example shows that the set Hy of pre-images of all elements in

Hy may not be a hereditary class if a function f is not injective.
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Example 3.2.18. Let X = {a,b,c} and Y = {1,2}. We define monotonic maps
v exp(X) — exp(X) and 5 : exp(Y) — exp(Y) by

12) = &, 7({a,b}) = 2, p@) = 2,
v{a}) = 2, 7({a,c}) = {a,c}, B{1}) = 2,
1{0}) = 2, (b)) = p{2h) = &
M) = 2, X)) = X, prY) =Y

Let f : X — Y be defined by f(a) = 1 and f(b) = 2 = f(c). We obtain f is
strongly (7, #)-continuous but f is not injective. We define Hy = {&, {2}} to be a
hereditary class on Y. By the construction, we have Hx = {&, {b, c}}. Therefore,

Hx is not a hereditary class on X.

Remark 3.2.19. Let f: (X,7) — (Y, 8, Hy) be an injective function. There is a

hereditary class Hx on X such that we have the following implications.

strongly (7, 8)-continuous == (7, #)-continuous == (g,, gg)-continuous

!

(9%, g)-continuous.

Theorem 3.2.20. Let v and [ be monotonic maps on exp(X) and exp(Y'), re-
spectively. Let (X,~,Hx) and (Y, 5) be generalized topological spaces and Hx a
hereditary class on X. Assume that f : X — Y is a strongly (v, 8)-continuous
bijection. Then for the hereditary class on'Y defined by

Hy ={f(H) | H € Hx},

the function f is (g3, gj)-continuous.

Proof. Firstly, we prove that Hy is a hereditary class on Y. Let A C f(H) C Y
where H € Hx. Then f~1(A) C f~'[f(H)] = H € Hx because f is injective. We
obtain f~1(A) € Hx. Since f is surjective, A = f[f71(A)]. Thus, A € Hy. Next,
we show that f is (g7, gj;)-continuous. Let G' € gj. Then G N (Y — B(G)); = &,
ie, G CY — (Y = B(Q)); It follows that f~1(G) € X — f~H[(Y — B(G))5]. Let
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z € f7Y(G). That is, f(z) € G. Then f(z) ¢ (Y — 3(G))5. There exists B € gz
such that f(x) € Band B(B)N(Y —B(G)) € Hy. Thus, B(B)N(Y —B(G)) = f(A)
for some A € Hx. Note that

VB NX =G = fTHBB)NX = [7H(B(G))]

By Proposition , z € f7Y(B) € gy. Thus, z ¢ (X—(f~1(G)))%, ie., fTHG)N
(X —~(f~1(G))); = @. This leads to the conclusion f~'(G) € g%. Hence, f is

* gh)-continuous. L]
(95, 95)

Remark 3.2.21. Let f: (X,7,Hx) — (Y, 5) be a bijective function. There is a

hereditary class Hy on Y such that we have the following implications.

strongly (7, 8)-continuous == (7, #)-continuous == (g,, gg)-continuous

!

(93, g3)-continuous.

Likewise, we study the composition of continuous functions in the following

theorems.

Theorem 3.2.22. Let (X,7),(Y,B) and (Z,«) be generalized topological spaces.
Assume that f @ X — Y is (gy,98)-continuous and g : Y — Z is (g, ga)-

continuous. Then go f: X — Z is (g, ga)-continuous.

Proof. Let G € g,. Since g is (gs, ga)-continuous, we obtain ¢g~!(G) € gs. Simi-
larly, (go f)"HG) = f~Hg ' (G)) € g, because [ is (g, gs)-continuous. O

Theorem 3.2.23. Let (X,7),(Y,B) and (Z,«) be generalized topological spaces.
Assume that f : X — Y is (v, B)-continuous and g : Y — Z is (8, a)-continuous.

Then go f: X — Z is (v, a)-continuous.
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Proof. Let G C Z. We observe that

(go /) Hal@) = g Ha(G))]
C Bl HG))]
C A e G
= 7[(go /)G
Hence, go f: X — Z is (7, a)-continuous. O

Theorem 3.2.24. Let (X,7),(Y, ) and (Z,«) be generalized topological spaces.
Assume that f : X — Y is strongly (v, B)-continuous and g : Y — Z is strongly

(B, a)-continuous. Then go f : X — Z is strongly (v, «)-continuous.

Proof. The proof is similar to the proof of Theorem by replacing C with =.
That is, for each G C Z, we obtain

(g0 /) HaUG)) = [ g Ha(G))]
= [BlgH(@))]
= AW g7H(G))]
= 7[(go f)7HG)].
Hence, go f: X — Z is (7, a)-continuous. O

Corollary 3.2.25. Let (X,7),(Y,) and (Z,«) be generalized topological spaces.
Assume that f : X =Y is a strongly (v, 8)-continuous bijective function and g :
Y — Z is a strongly (5, a)-continuous bijective function. The following statements

are satisfied.

(1) If Hx is a hereditary class on X, then there are the hereditary classes Hy
onY and Hz on Z such that g o f is (g3, g, )-continuous.

(2) If Hy is a hereditary class on'Y, then there are the hereditary classes Hx
on X and Hyz on Z such that go f is (gf;,g;';)—continuous.

(8) If Hz is a hereditary class on Z, then there are the hereditary classes Hx on
X and Hy on'Y such that g o f is (g3, gz,)-continuous.
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3.2.2 (g7, 953)-open maps

Definition 3.2.26. Let (X,~) and (Y, ) be generalized topological spaces. A
function f from X to Y is (g4, gg)-open if f(G) is S-open, for each y-open set G.

From Theorem , it is easy to prove the following theorems.

Theorem 3.2.27. Let (X,v) and (Y, 5) be generalized topological spaces and Hy

a hereditary class on'Y . Assume that f is a (g4, gs)-open function from X to'Y.

Then f is (g, gj)-open.
Proof. For each G € g,, we have f(G) € gs C gj because f is (g,, gg)-open. [

Theorem 3.2.28. Let (X,v) and (Y, ) be generalized topological spaces and Hx
a hereditary class on X. Assume that f is a (gﬁ';,gg)—open function from X to Y.

Then f is (g, gp)-open.
Proof. For each G € g, C g%, we have f(G) € gs because f is (g3, gs)-open. O

Definition 3.2.29. Let (X,~) and (Y, ) be generalized topological spaces. A
function f from X to Y is (v, 8)-open if f(7y(A)) C B(f(A)) for all A C X.

Definition 3.2.30. Let (X,~) and (Y, ) be generalized topological spaces. A
function f from X to Y is strongly (v,3)-open if f(y(A)) = B(f(A)) for all
ACX.

Proposition 3.2.31. Let (X,v) and (Y, 3) be generalized topological spaces. As-
sume that f : X =Y is (v, B)-open. Then f is (g, gz)-open.

Proof. Let G be v-open. Then G C v(G). We obtain that f(G) C f(v(G)) C
B(f(Q)). Therefore, f(G) is B-open. ]

Remark 3.2.32. From the above definitions, we have the following implications

but the reverse may not be true in general.

strongly (v, 8)-open = (v, 8)-open = (g,, gs)-open.
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Proposition 3.2.33. Let (X,~) and (Y, 3) be generalized topological spaces and f
a bijective function from X onto Y. Then f is (g, gs)-open if and only if f~!

(9,6’7 97) -continuous.
Proof. 1t follows from Theorem , 0

Proposition 3.2.34. Let (X,~) and (Y, ) be generalized topological spaces and
[ a bijective function from X onto Y. Then f is (v, B8)-open if and only if f~!

(B, 7)-continuous.

Proof.

[is (v, B)-open & f(7(A)) € B(f(A)) for all A C X
& (7Y ) S BI(fH)7(A)) forall A C X

(A
& f71is (B,7)-continuous.
L]

Proposition 3.2.35. Let (X,7) and (Y, B) be generalized topological spaces and f
a bijective function from X onto Y. Then f is strongly (v, B)-open if and only if

[t is strongly (B, )-continuous.

Proof. The proof is similar to the proof of Proposition by replacing C with
=. That is,

[ is strongly (v, 8)-open < f(y(A)) = B(f(A)) for all A C X
S (fTH7H(A) =8((F)1(A) forall AC X

& f~!is strongly (/3,7)-continuous.

O

Similarly, we show that a given hereditary class on either X or Y under some
conditions on the function f, we can find a hereditary class H on the another
space that makes f is open on the generalized topological space induced by a

given monotonic map and the hereditary class H.
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Corollary 3.2.36. Let v and 5 be monotonic maps on exp(X) and exp(Y), re-
spectively. Let (X,v) and (Y, [, Hy) be generalized topological spaces and Hy a
hereditary class on'Y . Assume that f : X — 'Y is a strongly (v, B)-open bijection.
Then for the hereditary class on X defined by

Hx ={f"'(H) | H € Hy},

the function f is (g3, g5)-open.

Proof. Similar to Theorem , it suffices to show that f is (g3, gj)-open.

f is strongly (v, 8)-open = =1 is strongly (3,7)-continuous (By Proposition 3.2.35)

= f~1is (g5, g%)-continuous (By Theorem 3.2.20)
= fis (g3, 95)-open. (By Proposition 3.2.33)
[

Remark 3.2.37. Let f: (X,7v) — (Y, 8, Hy) be an open bijection. By the above
corollary, there is a hereditary class Hx on X such that we have the following

implications.

strongly (7, 3)-open == (v, 3)-open == (g,, gs)-open

(93, g5)-open.

Corollary 3.2.38. Let v and  be monotonic maps on exp(X) and exp(Y'), re-
spectively. Let (X,v,Hx) and (Y, ) be generalized topological spaces and Hyx a
hereditary class on X. Assume that f: X — Y is a strongly (v, B)-open bijection.
Then for the hereditary class on'Y defined by

Hy ={f(H) | H € Hx},

the function f is (g3, g5)-open.
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Proof. Similar to Theorem , it suffices to show that f is (g7, g5)-open.

f is strongly (v, 8)-open = f~!is strongly (3, y)-continuous (By Proposition 3.2.35)

= f~'is (g}, g%)-continuous (By Theorem 3.2.17)
= [ is (g5, g5)-open. (By Proposition 3.2.33)
O

Remark 3.2.39. Let f: (X,v,Hx) — (Y, 3) be an open bijection. By the above
corollary, there is a hereditary class Hy on Y such that we have the following

implications.

strongly (v, 8)-open == (v, 8)-open == (g, gs)-open

(93, 95)-open.
In the following definitions, we can define homeomorphisms via monotonic

maps.

Definition 3.2.40. Let (X,~) and (Y, ) be generalized topological spaces. A
function f from X to Y is a (g, gg)-homeomorphism if f is a (g,, g3)-continuous

bijection and f~! is (gg, g,)-continuous.

Definition 3.2.41. Let (X,~) and (Y, ) be generalized topological spaces. A
function f from X to Y is a (v, 8)-homeomorphism if f is a (v, 8)-continuous

bijection and f~! is (3, y)-continuous.

Definition 3.2.42. Let (X,~) and (Y, ) be generalized topological spaces. A
function f from X to Y is a strongly (v, 3)-homeomorphism if f is a strongly

(7, B)-continuous bijection and f~! is strongly (/3,7)-continuous.

Remark 3.2.43. Similarly, we have some implications of homeomorphisms but

the reverse relations may not be true in general.

a strongly (v, #)-homeomorphism =———= a (7, #)-homeomorphism

!

a (g, gg)-homeomorphism.
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Corollary 3.2.44. Let (X,~) and (Y, 3) be generalized topological spaces and f a
bijection from X onto Y. Then f is a (g, gz)-homeomorphism if and only if f is

(g, g3)-continuous and (g, gz)-open.
Proof. Apply Corollary , -

Corollary 3.2.45. Let (X,v) and (Y, B) be generalized topological spaces and f a
bijection from X onto Y. Then f is a (v, )-homeomorphism if and only if f is
(7, B)-continuous and (v, 3)-open.

Proof. Apply Proposition . [

Corollary 3.2.46. Let (X,) and (Y, B) be generalized topological spaces and f a
bijection from X onto Y. Then f is a strongly (v, 8)-homeomorphism if and only
if [ is strongly (v, B)-continuous and strongly (v, 3)-open.

Proof. Apply Proposition . O]

Now, it is easy to prove the following corollaries for the homeomorphism func-

tion.

Corollary 3.2.47. Let v and § be monotonic maps on exp(X) and exp(Y'), re-
spectively. Let (X,v) and (Y, 3, Hy) be generalized topological spaces and Hy a
hereditary class onY . Assume that f - X — Y is a strongly (v, 8)-homeomorphism.
Then for the hereditary class on X defined by

Hx ={f""(H) | H € Hy},

the function f is a (g3, g5)-homeomorphism.

Proof. Similar to Theorem , it suffices to show that f is a (g7, g5)-homeomorphism.
By Corollary , it implies that f is strongly (v, )-continuous and strongly
(v, 8)-open. By Theorem and Corollary , [ is (g3, gj)-continuous and

(93, g3)-open. It follows from Corollary that f is a (g2, g5)-homeomorphism.
[
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Corollary 3.2.48. Lety and [3 be monotonic maps on exp(X) and exp(Y'), respec-
tively. Let (X,v,Hx) and (Y, 3) be generalized topological spaces and Hx a hered-
itary class on X. Assume that f : X — Y is a strongly (v, 8)-homeomorphism.
Then for the hereditary class on'Y defined by

Hy ={f(H) | H € Hx},

the function f is a (g3, g5)-homeomorphism.

Proof. Consider f~! and apply Corollary . ]



CHAPTER IV
GENERALIZED TOPOLOGICAL SPACES INDUCED
BY MONOTONIC MAPS HAVING PARTICULAR
PROPERTIES AND HEREDITARY CLASSES

In this chapter, we study a notion of a generalized topological space induced by
a monotonic map and a hereditary class when the monotonic map has some par-
ticular properties. In 1997, Csészar [1] introduced and studied the properties of

monotonic maps in the following definitions.

Definition 4.0.49. Let v be a monotonic map. A map 7 is called enlarging if
ACH(A) forall AC X.

Definition 4.0.50. Let v be a monotonic map. A map <y is called restricting if

v(A) C Aforall AC X.
Remark 4.0.51. If 7 is enlarging, then g, = exp(X).

From the above remark, we will study a generalized topology g7 ;, when v is

restricting.

4.1 Restricting maps

Remark 4.1.1. Let v be a restricting map on exp(X).
1. Ais v-open if and only if A =~(A).
2. We obtain that i, = ¢, and ¢, = cl,,.

Following [3], Csaszar defined a new generalized topological space via given

generalized topology and hereditary class. It is well-known that g, is a generalized
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topology induced by the monotonic map ~. Likewise, we also obtain some results

via a monotonic map in the following definitions and theorems.

Definition 4.1.2. Let (X,v,H) be a generalized topological space together with
a hereditary class H. For each A C X, we define

Ay w={r € X |z e MEeg,implies MNA¢H}

In particular, AZW (o} = c4(A). If there is no ambiguity, then A;,H will be denoted
by A;.

Proposition 4.1.3. Let v be a restricting map on exp(X) and (X,v,H) a gen-
eralized topological space together with a hereditary class H. For each A C X, we
have A = A;.
Proof.
reA & y(M)NAg¢gH forall M € g, containing x
& MNAg¢H for all M € g, containing
& TEA .
="

O

By using Propositions blq and |4.1‘Zi we easily obtain the following theorem.

Theorem 4.1.4. Let 7 be a restricting map on exp(X) and (X,v,H) a generalized
topological space together with a hereditary class H. Let A, B, M C X.

(1) A C B implies A% C B;

(2) A2 C ey (4);

(3) If M € pand MN A€ H, then MNAZ = &,
(4) A% is y-closed;

(5) A is y-closed implies A% C A;

(6) (Az): C AX when A C X;
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(7) X = X if and only if g, NH = {@}.

Remark 4.1.5. Following Proposition , the set A7 and A7 can be denoted
by A* if v is restricting.

We have known that g, is a generalized topology. Following [3], we use g, to

define a new generalized topology via a hereditary class.

Definition 4.1.6. Let (X,v,H) be a generalized topological space together with
a hereditary class H. We define

G ={MCX|c"(X~M)=X-M}

If there is no ambiguity, then 9y, H will be denoted by 9y, -

Remark 4.1.7. By the definition of ¢* in Chapter II, we have
g;%H:{MgX|Mﬂ(X—M);:®}.

Theorem 4.1.8 ([3]). g;. is a generalized topology and g, C g; .

Theorem 4.1.9. Let v be a restricting map on exp(X) and (X,~y,H) a generalized
topological space together with a hereditary class H. Then g5 C g .

Proof. Tt follows from M N (X — M)* =M N (X — M)* C M N (X —~(M))* for
all M C X. O]

Remark 4.1.10. g, C g7 C 9y, if v is a restricting map.

Theorem 4.1.11 ([3]). Let (X,v,H) be a generalized topological space together
with a hereditary class H. The set

{M—-—HCX|MEe€g, and H € H}

constitutes a base for 9y, -
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Corollary 4.1.12. For cach G € g}, G = U,en{Ma—Ho | My € gy and H, € H}

where A is an index set.

Proof. 1t follows from Theorems and . O

The following example shows that there is a monotonic map v which makes
95 # 9y, -
Example 4.1.13. Let X = {a,b,c} and H = {@,{a}, {b},{a,b}}. In the setting

of a restricting map ~ in Example , we get ¢ = g, = {J,{a}, {b},{a, b}, X}.
We can see that {c} = X — {a,b} € g; but {c} € g;. Hence, g5 C g; .

Proposition 4.1.14. Let v be a restricting map on exp(X) and (X,~,H) a gen-
eralized topological space together with a hereditary class H. We obtain g5 = 9y, if

and only if M — H € g}, for all M € g, and H € H.
Proof. 1t follows from Theorem . [

Remark 4.1.15. Let v be a restricting map on exp(X) and (X, 7, H) a generalized
topological space together with a hereditary class H. If M — H is ~v-open for all
M € gy, and H € H, then g, = ¢ = g .

Example 4.1.16. Let X = {a,b,c}. Define v : exp(X) — exp(X) by

) = @, A({ab}) = {ab},
{a}) = {a}, 7({a,c}) = AHaj,

) = {bt}, ({beh) = {o},

) = 2, (X) = {ab}

We can see that 7 is restricting on exp(X) and g, = {@,{a}, {b},{a,b}}. Let
H = {@,{a}} be a hereditary class on X. We consider {M — H | M € g, and
H € H} = g,. By the above proposition, we get g, = 95 = 9g -

So, we easily obtain that g7 = 9y, when v is the trivial map. Next, we introduce

the property of the hereditary class #H that makes ¢ = gy .
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Proposition 4.1.17. Let vy be a restricting map on exp(X) and (X,~,H) a gener-
alized topological space together with a hereditary class H. Assume that MNH = &
Jor all M € gy and H € H. Then g5 = g .

Proof. By the assumption, we obtain M —H = M € g, forall M € g, and H € H.
It follows from Remark . Hence, g, = g} =g, . [

4.1.1 (g}, gj)-continuous maps

Let (X,v) and (Y, () be generalized topological spaces. Let f : X — Y be a
function. Similar to the previous section, we can prove that f is (gi, gg)—continuous

when f is (v, )-continuous and + is restricting.

Proposition 4.1.18. Lety be a restricting map and 5 an enlarging map on exp(X)
and exp(Y), respectively. Let (X,7) and (Y, ) be generalized topological spaces.
If f: X =Y is (v, B)-continuous, then f is strongly (v, 3)-continuous.

Proof. Tt follows from (f~Y(B)) C f~Y(B) C f~*(B8(B)) for all B C X. O

Remark 4.1.19. Let v be a restricting map on exp(.X) and  an enlarging map
exp(Y). By Remark , we have the following relations.

strongly (7, 8)-continuous < (v, #)-continuous = (g, gz)-continuous.

Proposition 4.1.20. Let~y be an enlarging map and B a restricting map on exp(X)
and exp(Y), respectively. Then f : X — Y s (v, 8)-continuous. In particular,
f:X =Y is (g, 93)-continuous.

Proof. Observe that f~*(3(B)) C f~4(B) C y(f~Y(B)) for all B C X. O

By Proposition , we obtain the following Corollaries.

Corollary 4.1.21. Let 7 be a restricting map and B an enlarging map on exp(X)
and exp(Y'), respectively. Let (X,~) and (Y, B, Hy) be generalized topological spaces



33

and Hy a hereditary class on Y. Assume that f : X — Y is a (v, 5)-continuous
injection. Then for the hereditary class on X defined by

Hx ={f""(H) | H € Hy},

the function f is (g, g5)-continuous.

Proof. Apply Proposition and Theorem . [

Corollary 4.1.22. Let 7y be a restricting map and 3 an enlarging map on exp(X)
and exp(Y'), respectively. Let (X,~, Hx) and (Y, 3) be generalized topological spaces
and Hyx a hereditary class on X. Assume that f: X — Y is a (v, 5)-continuous
bijection. Then for the hereditary class on'Y defined by

Hy ={f(H) | H € Hx},

the function f is (g3, gj)-continuous.
Proof. Apply Proposition and Theorem . [

We observed that g, = exp(X) if v is enlarging. Thus, g = exp(X).

Remark 4.1.23. Let v be an enlarging map and # a monotonic map on exp(X)
and exp(Y'), respectively. Let (X, v, Hx) and (Y, 8, Hy) be generalized topological

spaces. Then f: X — Y is (g7, g5)-continuous.

The following theorems show that we can only assume f is (7, #)-continuous
where 7 is restricting in the above corollaries. So, we obtain the same results that

fis (g2, gj)-continuous.

Theorem 4.1.24. Let vy be a restricting map and B a monotonic map on exp(X)
and exp(Y'), respectively. Let (X,~) and (Y, B, Hy) be generalized topological spaces
and Hy a hereditary class on Y. Assume that [ : X — Y is a (v, B)-continuous
injection. Then for the hereditary class on X defined by

My ={/7'(H) | H € Hy},
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the function f is (g3, gj)-continuous.

Proof. Similar to proof Theorem , it remains to show that f is (g3, gg)—
continuous. Let G' € g5. Then G N (Y — B(G))* = @, ie. GCY — (Y — B(G))".
It follows that f~1(G) C X — f7[(Y — B(G))*]. Let x € f~(G). Then f(z) ¢
(Y —B(G))*. There exists B € gs such that f(z) € Band (B)N(Y —5(G)) € Hy.
This implies that

Y(THB) NIX = (fH(G)]

N

fHBB)NIX — f71(B(G))]
BB N (Y — B(G))] € Hx.

By Proposition B.2.13, # € f~Y(B) € g,. Thus, z & (X —7(f~1(G)))*, i.e. f~1(G)N
(X =~(f~MG)))* = @. This leads to f~'(G) € g. Hence, f is (g%, gj)-continuous.
0

Remark 4.1.25. Let v be a restricting map and 5 a monotonic map on exp(X)
and exp(Y), respectively. Assume that f : (X,7) — (Y,3,Hy) is an injective
function. By Theorems m and , there is a hereditary class Hx on X such

that we have the following relationships.

strongly (v, 8)-continuous === (v, )-continuous === (g, gg)-continuous

! !

(9%, 95)-continuous (95, 95, )-continuous.

Theorem 4.1.26. Let y be a restricting map and 3 a monotonic map on exp(X)
and exp(Y), respectively. Let (X,~,Hx) and (Y, ) be generalized topological spaces
and Hx a hereditary class on X. Assume that f : X — Y is a (v, B)-continuous

bijection. Then for the hereditary class on'Y defined by
Hy ={f(H) | H € Hx},

the function f is (g3, gj)-continuous.
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Proof. Similar to proof Theorem , we will show that f is (g7, g;;)—continuous.
Let G € g5 Then GN (Y — B(G))" = 2, ie. G CY — (Y - B(G))". It follows
that f71(G) € X — f7H(Y = B(G))"]. Let x € f7H(G). Then f(z) & (Y - B(G))".
There exists B € gs such that f(z) € B and 8(B) N (Y — 5(G)) € Hy. Thus,
B(B)N(Y — B(G)) € Hy = f(A) for some A € Hx.

VB NX =(fTHE) € fHBB) NIX — f7H(B(G))]
= fTBB)N(Y = B(G))]
= Q)
=/ AecHx

By Proposition , z € f7YB) € g,. Thus, x ¢ (X —y(fH(Q)))*, ie. f7HG)N
(X =7(f1(G)))* = @. This leads to f~(G) € g%. Hence, f is (g2, g5)-continuous.
[

Remark 4.1.27. Let v be a restricting map and 5 a monotonic map on exp(X)
and exp(Y’), respectively. Assume that f : (X,v,Hx) — (Y, /) is a bijection. It
follows from Theorems and that there is a hereditary class Hy on Y

such that we have the following relationships.

strongly (v, 8)-continuous === (7, #)-continuous === (g, gg)-continuous
(93, g5)-continuous (g;, s )-continuous.
Corollary 4.1.28. Let v, and o be monotonic maps such that v and [ are
restricting. Let (X,7), (Y, ) and (Z,«a) be generalized topological spaces. Assume
that f :+ X — Y s a (v, 8)-continuous bijective function and g :' Y — Z is a

(B, a)-continuous bijective function. The following statements are satisfied.

(1) If Hx is a hereditary class on X, then there are the hereditary classes Hy
onY and Hz on Z such that g o f is (g3, gi)-continuous.

(2) If Hy is a hereditary class on'Y, then there are the hereditary classes Hx
on X and Hz on Z such that g o f is (g3, g, )-continuous.
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(8) If Hy is a hereditary class on Z, then there are the hereditary classes Hx on
X and Hy on'Y such that g o f is (g3, gi,)-continuous.

Proof. Apply Theorem and Theorem . O

4.1.2 (g3, g5)-open maps

Proposition 4.1.29. Let~y be an enlarging map and B a restricting map on exp(X)
and exp(Y), respectively. Let (X,7) and (Y, ) be generalized topological spaces.
If f: X =Y is (v, 8)-open, then f is strongly (v, B)-open.

Proof. Tt follows from B(f(A)) C f(A) C f(7(A)) for all A C X. O

Proposition 4.1.30. Let v be a restricting map and [ an enlarging map on
exp(X) and exp(Y), respectively. Then f: X — Y is (v, 5)-open. In particular,
f:X =Y is (gy,93)-open.

Proof. Observe that f(y(A)) € f(A) C B(f(A)) for all A C X. O

Corollary 4.1.31. Let v be a monotonic map and 3 a restricting on exp(X) and
exp(Y'), respectively. Let (X, ) and (Y, B, Hy) be generalized topological spaces and
Hy a hereditary class on Y. Assume that f: X — Y is a (v, 3)-open bijection.
Then for the hereditary class on X defined by

My ={f"(H) | H € Hy},

the function f is (g3, g5)-open.
Proof. Similar to Theorem , it suffices to show that f is (g:, gz;)—open.
fis (v, 8)-open = f~1is (B,7)-continuous  (By Proposition 3.2.34)

= f~"is (g}, g%)-continuous (By Theorem 4.1.26)
= [is (g3, g5)-open. (By Proposition 3.2.33)
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Remark 4.1.32. Let v be a monotonic map and [ a restricting map on exp(X)
and exp(Y), respectively. Assume that f : (X,v) — (Y, 5, Hy) is a bijection. By
Theorem and the above corollary, there is a hereditary class Hx on X such

that we have the following relationships.

strongly (7, 3)-open === (v, 8)-open === (g,, g3)-open

! J

(9, 95)-open (95, 95,)-open.

Corollary 4.1.33. Let v be a monotonic map and 3 a restricting on exp(X) and
exp(Y), respectively. Let (X,~v,Hx) and (Y, ) be generalized topological spaces
and Hx a hereditary class on X . Assume that f : X — Y is a (v, 5)-open bijection.
Then for the hereditary class on'Y defined by

Hy ={f(H) | H € Hx},

the function f is (g3, g5)-open.

Proof. Similar to Theorem , it suffices to show that f is (g3, gj)-open.

fis (v, B)-open = f~1is (8, )-continuous (By Proposition 3.2.34)
= f~!is (g5, ¢5)-continuous (By Theorem 4.1.24)
= fis (g3, 95)-open. (By Proposition 3.2.33)

]

Remark 4.1.34. Let v be a monotonic map and /3 a restricting map on exp(X)
and exp(Y), respectively. Assume that f : (X,v, Hx) — (Y, ) is a bijection. By
Theorem and the above corollary, there is a hereditary class Hy on Y such

that we have the following relationships.

strongly (7, 3)-open === (v, §)-open === (g,, g3)-open

! J

(93, 95)-open (95,+95,)-open.
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Remark 4.1.35. Let v be a monotonic map and § an enlarging map on exp(X)
and exp(Y'), respectively. Let (X,~, Hx) and (Y, 8, Hy) be generalized topological
spaces. Then f: X — Y is (g7, gj3)-open.

Corollary 4.1.36. Let v and [ be restricting maps on exp(X) and exp(Y'), re-
spectively. Let (X,v) and (Y, 3, Hy) be generalized topological spaces and Hy a
hereditary class on' Y. Assume that f: X — Y is a (v, 8)-homeomorphism. Then
for the hereditary class on X defined by

Hx ={f'(H) | H € Hy},

the function f is a (g3, g5)-homeomorphism.

Proof. Similar to Theorem , it suffices to show that f is a (g7, g5)-homeomorphism.
By Corollary , it implies that f is (v, )-continuous and (v, 3)-open. By

Theorem and Corollary , f is (g%, g5)-continuous and (g7, g5)-open. It
follows from Corollary that fis a (g7, g5)-homeomorphism. O

Corollary 4.1.37. Let v and [ be restricting maps on exp(X) and exp(Y), re-
spectively. Let (X,~,Hx) and (Y,5) be generalized topological spaces and Hx a
hereditary class on X. Assume that f : X — Y is a (v, B)-homeomorphism. Then
for the hereditary class on X defined by

Hy ={f(H) | H € Hx},

the function f is a (g3, g5)-homeomorphism.

Proof. Consider f~! and apply Corollary . ]

Remark 4.1.38. Let v and 5 be enlarging maps on exp(X) and exp(Y), respec-
tively. Let (X,~,Hx) and (Y, 3,Hy) be generalized topological spaces. Assume
that f: X — Y is bijective. Then f: X — Y is a (g7, g3)-homeomorphism.
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4.1.3 Relations between (g, gj)-continuity and (g;, gy,)-continuity

Let v and [ are restricting maps. In this subsection, we discuss on the relations
between (g3, gj)-continuity and (g; , g;,)-continuity. Firstly, we begin with the

following example.

Example 4.1.39. Let X = {a,b,c} and Y = {1,2,3,4}. We define monotonic
maps 7 : exp(X) — exp(X) and 5 : exp(Y) — exp(Y) by

(

A it A={b},{c},{b,c}, X,
{b} if A={a,b},
{c} if A={a,c},

\ 1%} otherwise.

(

B if B={1},{1,2},{1,3,4},Y,

{1} if B={1,3},{1,4},

(1,2} it B=1{1,2,3},{1,2,4}

| 1%} otherwise.

It is clear that v and § are restricting. We obtain that ¢, = {@, {b}, {c}, {b,c}, X'}
and gs = {@,{1},{1,2},{1,3,4},Y}. Let Hx = {2, {a}, {b},{c}, {a,c}} and
Hy = {2, {1},{2},{4},{2,4}}. Assume that f : X — Y is defined by f(a) =
2, f(b) =1 and f(c) = 4. Then f is injective. By Theorem , we conclude
that

9y, =19, {0}, {c}, {a, b}, {a, ¢}, {b, ¢}, X} and
g, = {2 {1}, {2} {1,2},{1,3},{3,4}, {1,2,3},{1,3,4}, {2.3,4},Y}.

Since f~'({2}) = {a} ¢ g; , f is not (g; ,g;,)- continuous. By using Remark

, we can compute
9y =19, 1} {c} {a, b}, {b, ¢}, X} and

g; ={2,{1},{1,2},{1,3,4},Y} = 9s-
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Hence, we can see that f is (gi, gj)-continuous.

This implies that not every (g3, g5)-continuous injection f is (g; . g;,)-continuous
when we assume that Hy is a hereditary classon Y and Hx = {f~Y(H) | H € Hy}
is a hereditary class on X. So, we can ask what conditions make an injective
(95 g5)-continuous function to be (g; , g;,)-continuous. This leads to the following

theorems.

Theorem 4.1.40. Let v and (8 be restricting maps on exp(X) and exp(Y), re-
spectively. Let (X,~) and (Y, 3, Hy) be generalized topological spaces and Hy an
ideal on' Y. Assume that f : X — Y is a (g3, g3)-continuous injection. Then for

the ideal on X defined by
Hx =A{f'(H) | H € Hy},

the function f is (g , g,,)-continuous.

Proof. In first step, we will show that Hx is an ideal. It is enough to show that
fH(A)U f7Y(B) € Hx for all A,B € Hy. Let A,B € Hy. Then AUB € Hy
because Hy is an ideal on Y. So, fH(A)Uf~Y(B) = f'(AUB) € Hx. Thus, Hx
is an ideal on X. Next, we prove that f is (g; , g, )-continuous. Let G € g; . By
Theorem , we have G = | J,c, (M, — Hy) where M, € gg and H, € Hy. Since
g5 C g5 and f is (g%, g5)-continuous, f~(M,) € gi C gy for all b € A’. Then for

eachb e N, f~1 (M) = User (Voo — Hpq) Where Ny, € g, and Hy, € Hx. Consider

FHG) = Upea (71 (M) — f71(Hy))
= Usea (Uaer (Noa — Hia) — fH(Hy))
= Upear Uaea (Noa — (Hea U f71(Hp)))-

Since Hy is an ideal on X, Hy, U f~1(H,) € Hx and s0 Ny, — (Hpe U f71(Hy))
belongs to the basis for g; for all b € A" and a € A. Thus, HG) e g, - Hence,

fis (g;, gzﬁ)—continuous. ]



41

Remark 4.1.41. Let v and 8 be restricting maps on exp(X) and exp(Y'), respec-
tively. Assume that f: (X,v) — (Y, 5, Hy) is an injective function and Hy is an
ideal on Y. By Theorems l226| and |4.1.4d, there is an ideal Hx on X such that

we have the following relationships.

strongly (7, 8)-continuous == (v, )-continuous === (g5, gs)-continuous

! !

(95 g5)-continuous == (g, , g, )-continuous.
Theorem 4.1.42. Let v and ( be restricting maps on exp(X) and exp(Y), re-
spectively. Let (X,v,Hx) and (Y, 3) be generalized topological spaces and Hx an

ideal on X. Assume that f : X — Y isa (g:‘;,g;})-contz’nuous bijection. Then for
the ideal on'Y defined by

Hy ={f(H) | H € Hx},

the function f is (g, , g,,)-continuous.

Proof. First, we will show that Hy is an ideal. It is enough to show that f(A) U
f(B) € Hy forall A,B € Hx. Let A,B € Hx. Then AU B € Hx because Hx is
an ideal on X. So, f(A)U f(B) = f(AU B) € Hy. Thus, Hy is an ideal on Y.
Next, we prove that f is (g;, g;ﬁ)—continuous. Let G € 9gs- By Theorem ,
we have G = (Jyen (Mp — f(Hy)) where M, € g and H, € Hx. Since gs C gj and
fis (g%, g5)-continuous, f~H(My) € g% C g, forall b € A'. Then for each b € A,
F7HM,) = Uyep(Noo — Hyg) where Ny, € g, and Hy, € Hx. Consider

FHG) = Upea (FHM) = f7H(f(Hb)))
= UbeA'<UaeA(Nba - Hba) - Hb)
= UbeA/ UaeA(Nba - (Hba U Hy)).

Since Hy is an ideal on X, Hy, U H, € Hx and so Ny, — (Hpe U Hp) belongs to
the basis for g; for all b € A" and a € A. Thus, f~'(G) € g; . Hence, f is

( 9y, 9q ﬁ)—continuous. -
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Remark 4.1.43. Let v and 8 be restricting maps on exp(X) and exp(Y'), respec-
tively. Assume that f : (X,v,Hx) — (Y, ) is a bijection and Hx is an ideal on
X. By Theorems and , there is an ideal Hy on Y such that we have

the following relationships.

strongly (7, 8)-continuous == (v, )-continuous === (g5, gp)-continuous

! !

(95, g5)-continuous == (g . g;,)-continuous.
Moreover, we obtain the same results on open maps and homeomorphisms.

Corollary 4.1.44. Let vy and B be restricting maps on exp(X) and exp(Y), re-
spectively. Let (X,v) and (Y, B, Hy) be generalized topological spaces and Hy an
ideal on'Y . Assume that f : X — Y isa (g:, gg)—open bijection. Then for the ideal
on X defined by

Hx ={f'(H) | H € Hy},

the function f is (g;,g;ﬁ)-open.

Proof. Similar to Theorem , it suffices to show that f is (g;,g;ﬁ)—open.

[ is (g3, g5)-open = flis (95, 9% )-continuous (By Proposition 3.2.33)
= [~'is (g;,,9;,)-continuous (By Theorem 4.1.42)
= [fis (g5, 95,)-open. (By Proposition 3.2.33)

O

Remark 4.1.45. Let v and 8 be restricting maps on exp(X) and exp(Y'), respec-
tively. Assume that f: (X,v) — (Y, 8, Hy) is a bijection and Hy is an ideal on
Y. By Corollaries and , there is an ideal Hx on X such that we have

the following relations.

strongly (7, 3)-open === (v, 8)-open === (g,, g3)-open

! J

(95, g5)-open == (g; . g;,)-open.
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Corollary 4.1.46. Let vy and [ be restricting maps on exp(X) and exp(Y), re-
spectively. Let (X,~v,Hx) and (Y, ) be generalized topological spaces and Hyx is
an ideal on X. Assume that f: X —Y is a (g3, g5)-open bijection. Then for the
ideal on X defined by

Hy ={f(H) | H € Hx},

the function f is (g;,g;B)—open.

Proof. Similar to Theorem , it suffices to show that f is (g )-open.

;v ! g;B
fis (g3, 95)-open = f~'is (g, g%)-continuous (By Proposition 3.2.33)
= flis (95, 95, )-continuous (By Theorem 4.1.40)
= fis (g;, g;‘ﬂ)—open. (By Proposition 3.2.33)

]

Remark 4.1.47. Let v and (3 be restricting maps on exp(X) and exp(Y’), respec-
tively. Assume that f : (X,v,Hx) — (Y, ) is a bijection and Hx is an ideal on
X. By Theorems and , there is an ideal Hy on Y such that we have

the following relations.

strongly (7, 3)-open == (v, 8)-open === (g,, g3)-open

! !

(93 g5)-open == (g;, . g;,)-open.

Corollary 4.1.48. Let vy and [ be restricting maps on exp(X) and exp(Y'), re-
spectively. Let (X,~) and (Y, 3, Hy) be generalized topological spaces and Hy an
ideal on'Y. Assume that f : X =Y is a (g:,gz;)-homeomorphism. Then for the
ideal on X defined by

Hx = {f"'(H) | H € Hy},

the function f is a (g; . g;,)-homeomorphism.

Proof. Similar to Theorem , it suffices to show that f isa ( 9y g;b,)—homeomorphism.
By Corollary , it implies that f is (g2, g)-continuous and (gZ, g5)-open. By
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Theorem and Corollary , fis (g;,: 95 B)—continuous and (g; , g, B)—open.
It follows from Corollary that f is a (g;, g;‘ﬁ)—homeomorphism. [

Corollary 4.1.49. Let v and B be restricting maps on exp(X) and exp(Y), re-
spectively. Let (X,v,Hx) and (Y, ) be generalized topological spaces and Hx an
ideal on X. Assume that f : X =Y is a (g3, g5)-homeomorphism. Then for the
ideal on'Y defined by

Hy ={f(H) | H € Hx},

the function f is a (g;,g;ﬁ)—homeomorphism.

Proof. Consider f~! and apply Corollary . O

4.2 Strong maps

Definition 4.2.1. Let v be a monotonic map. A map +y is called idempotent if
v(A) = y(y(A)) for all A C X.

Definition 4.2.2. Let v be a monotonic map. A map v is called strong if ~ is

restricting and idempotent.

4.2.1 (g}, gj)-continuous maps

Proposition 4.2.3. Let 7y be a monotonic map and f a strong map on exp(X)
and exp(Y), respectively. Let (X,7) and (Y, ) be generalized topological spaces.
If f: X =Y is(gy,9s)-continuous, then f is (v, B)-continuous.

Proof. Let B CY. Then §(B) = B(B(B)), i.e. B(B) is f-open. By the assump-
tion, we obtain f~1(B(B)) is y-open. It follows that f~'(3(B)) C v[f~1(B(B))].
Thus, f~YB(B)) C ~v[f~HB(B))] € ~[f~(B)] because f3 is restricting. This is
true for all B C Y. Hence, f is (v, §)-continuous. O

Remark 4.2.4. Let v be a monotonic map on exp(X) and (§ a strong map on

exp(Y). By Remark , we have the following relations.
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strongly (7, 8)-continuous = (v, #)-continuous < (g,, gz)-continuous.

Let (X,7) and (Y, ) be generalized topological spaces. Let f : X — Y be
a function. Similarly, the following corollaries show that f is (g7, gj)-continuous

when f is (g, gs)-continuous, 7 is restricting, and [ is strong.

Corollary 4.2.5. Let 7y be a restricting map and B a strong map on exp(X) and
exp(Y), respectively. Let (X,v) and (Y,B,Hy) be generalized topological spaces
and Hy a hereditary class on Y. Assume that f: X =Y is a (g, gg)-continuous

injection. Then for the hereditary class on X defined by
Hx ={f"'(H) | H € Hy},

the function f is (g3, gi)-continuous.

Proof. Apply Proposition and Theorem . O]

Remark 4.2.6. Let v be a restricting map and § a strong map on exp(X) and
exp(Y), respectively. Assume that f: (X,v) — (Y, 8, Hy) is an injective function
and Hy is an ideal on Y. By Theorem and Corollary , there is an ideal

Hx on X such that we have the following implications.

strongly (v, 8)-continuous == (7, 5)-continuous

!

(9, gs)-continuous == (g, g5)-continuous

!

* * .
(95, 95,)-continuous.

By the above corollary, the following example shows that a (g., gg)-continuous

injection may not be (gi;, gg)—continuous if a monotonic map [ is not strong.
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Example 4.2.7. Let X = {a,b,c} and Y = {x,y, z}. We define monotonic maps
v exp(X) — exp(X) and 5 : exp(Y) — exp(Y) by

1(9) = 2, po) = 2,
v{a}) = A{a}, p{z}) = 2,
1({b}) = {b}, iy} = 2,
e} = 2, sz} = @,
v({a,b}) = {a,b}, B({z,y}) = {«},
"ac}) = {a},  B({=z,2}) = {z},
1({o,ch) = {b}, By, 2} = {u},

1(X) = X, plY) = Y.

We obtain that S(8({z,y})) = 8({z}) = @ # {«} = B({z,y}). Thus, 5 is not
strong. It is clear that g, = {@,{a}, {b}, {a,0}, X} and g = {@,Y}. Let f :
X — Y be defined by f(a) = z, f(b) = y and f(c) = z. Therefore, f is a
(94, gs)-continuous injection. Let Hy = {&, {z}, {y}, {x,y}} and Hx = {f " (H) |
H € Hy} = {2,{a},{b},{a,b}} be hereditary classes on exp(Y) and exp(X),

respectively. Next, we observe that

{e. 2} N (¥ = B, 1) = Lo 23 0 () = (w2} N2 =
So, we have g* 5 = g, = {@,{a},{b}, {a, b}, X} and {z,2} € gj4, . Hence, f is
not (g7 3.+ 953, )-continuous because f~'({z, z}) = {a,c} & g2 4, -

Corollary 4.2.8. Let y be a restricting map and 5 a strong map on exp(X) and
exp(Y), respectively. Let (X,~v,Hx) and (Y, ) be generalized topological spaces
and Hx a hereditary class on X. Assume that f: X — Y is a (g, gg)-continuous

bijection. Then for the hereditary class on'Y defined by
Hy ={f(H) | H € Hx},

the function f is (g3, gj)-continuous.
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Proof. Apply Proposition and Theorem . O

Remark 4.2.9. Let v be a restricting map and § a strong map on exp(X) and
exp(Y), respectively. Assume that f: (X,v, Hx) — (Y, /) is a bijection and H x

is an ideal on X. By Theorem and Corollary , there is an ideal Hy on

Y such that we have the following implications.

strongly (v, 8)-continuous == (v, )-continuous

!

(94, gp)-continuous === (g2, gj)-continuous

!

(95, 5, )-continuous.
Next, it is easy to obtain the following corollary for the composition.

Corollary 4.2.10. Let v, and o be monotonic maps such that v is restricting
and B, a are strong. Let (X,v),(Y,8) and (Z,a) be generalized topological spaces.
Assume that f: X =Y is a (g4, gg)-continuous bijective function and g :Y — Z

is a (9s, 9o )-continuous bijective function. The following statements are satisfied.

(1) If Hx is a hereditary class on X, then there are the hereditary classes Hy
onY and Hy on Z such that go f is (g:,g;)—continuous.

(2) If Hy is a hereditary class on'Y, then there are the hereditary classes Hx
on X and Hy on Z such that go [ is (g:,gZ)—continuous.

(8) If Hy is a hereditary class on Z, then there are the hereditary classes Hx on
X and Hy on'Y such that g o f is (g3, g7,)-continuous.

Proof. Apply Theorems |425| and |42£4 O

4.2.2 (g}, gj)-open maps

Similarly, we obtain the same results on open maps and homeomorphisms.
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Proposition 4.2.11. Let v be a strong map and B a monotonic on exp(X) and
exp(Y), respectively. Let (X,~) and (Y, B) be generalized topological spaces. If
f: X =Y is(gy,93)-open, then f is (v, )-open.

Proof. Let A C X. Since  is strong, v(A) is v-open. It follows that f(y(A)) is
p-open. Thus, f(v(A)) € B(f(v(A4))) € B(f(A)). Hence, fis (v, 5)-open. O

Corollary 4.2.12. Let vy be a strong map and 5 a restricting map on exp(X) and
exp(Y), respectively. Let (X,v) and (Y,B,Hy) be generalized topological spaces
and Hy a hereditary class on Y. Assume that f : X — Y is a (g,,9p)-open
bijection. Then for the hereditary class on X defined by

Hx={/7'(H) | H € Hy},

the function f is (g3, g5)-open.
Proof. Similar to Theorem , it suffices to show that f is (g:, g};)—open.
fis (g4, 95)-open = f~'is (gs, g,)-continuous (By Proposition 3.2.33)

= f~lis (g5, g%)-continuous (By Corollary 4.2.8)
= f1is (g3, 95)-open. (By Proposition 3.2.33)

]

Remark 4.2.13. Let  be a strong map and f a restricting map on exp(X) and
exp(Y), respectively. Assume that f: (X,v) — (Y, 3, Hy) is a bijection and Hy
is an ideal on Y. By Corollaries |4.1.44l and |4.2.1j, there is an ideal Hx on X such

that we have the following relationships.

strongly (7, 3)-open === (v, 8)-open

!

(Qw g@)—open — (gi, g};)—open

J

(95, 95,)-open.
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Corollary 4.2.14. Let vy be a strong map and 5 a restricting map on exp(X) and
exp(Y), respectively. Let (X,7v,Hx) and (Y, ) be generalized topological spaces
and Hx a hereditary class on X. Assume that f : X — Y is a (g,,9p)-open
bijection. Then for the hereditary class on'Y defined by

Hy ={f(H) | H € Hx},

the function f is (g3, g5)-open.
Proof. Similar to Theorem , it suffices to show that f is (g:, gg)—open.
fis (¢,,9s)-open = f~'is (gs, g,)-continuous (By Proposition 3.2.33)

= f~Vis (g5, g5)-continuous (By Corollary 4.2.5)
= f1s (g3, g5)-open. (By Proposition 3.2.33)

]

Remark 4.2.15. Let v be a strong map and f a restricting map on exp(X) and
exp(Y), respectively. Assume that f : (X,v, Hx) — (Y, ) is a bijection and Hx
is an ideal on X. By Corollaries '4.1.4d and '4.2.14!, there is an ideal Hy on Y such

that we have the following relationships.

strongly (7, 8)-open == (7, 3)-open

!

(94> gs)-open === (g3, gj3)-open

!

(95, 9y, )-open.
We finish this section with the following corollaries on homeomorphism maps.
Corollary 4.2.16. Lety and 3 be strong maps on exp(X) and exp(Y'), respectively.

Let (X,7) and (Y, B, Hy) be generalized topological spaces and Hy a hereditary
class on'Y. Assume that f : X =Y is a (g, gg)-homeomorphism. Then for the
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hereditary class on X defined by
Hx ={f"'(H) | H € Hy},

the function f is a (g3, g3)-homeomorphism.

Proof. Similar to Theorem , it suffices to show that f is a (g, g3)-homeomorphism.
By Corollary , it implies that f is (g, gg)-continuous and (g, g3)-open. By
Corollary and , fis (g3, g5)-continuous and (g7, gj3)-open. It follows
from Corollary that f is a (g7, g3)-homeomorphism. O

Corollary 4.2.17. Let and ( be strong maps on exp(X ) and exp(Y), respectively.
Let (X,7v,Hx) and (Y, ) be generalized topological spaces and Hx a hereditary
class on X. Assume that f : X —'Y is a (g5, gs)-homeomorphism. Then for the
hereditary class on'Y defined by

Hy = {f(H) | H € Hx},

the function f is a (g3, g5)-homeomorphism.

Proof. Consider f~! and apply Corollary . 0



CHAPTER V
CONCLUSION AND DISCUSSION

Let X and Y be nonempty sets. Let v and 5 be monotonic maps on exp(X) and
exp(Y), respectively, and H a hereditary class on X. In this thesis, we present the
concepts of a generalized topology induced by a monotonic map v and a hered-
itary class H, denoted by g7 ;.. Also, we show that g7, contains the collection
of all y-open sets, denoted by g,. That is, g, C g7,. After that, we study a
notion of the continuity on generalized topological spaces induced by monotonic
maps and hereditary classes. We prove that the strongly (v, 5)-continuity between
two generalized topological spaces (X, ~) and (Y, 8) implies the continuity on gen-
eralized topological spaces induced by monotonic maps and hereditary classes in
various situations. That is, given a hereditary class on either X or Y, we can find a
hereditary class on the another space that makes a given strongly (v, #)-continuous
bijective map to be (g7, g5)-continuous. By applying these theorem, we obtain the
same results on open maps. So, we get the following implications on the bijective
function:
strongly (7, 8)-continuous == (7, )-continuous == (g,, gg)-continuous

!

(93, g5)-continuous
and

strongly (7, f)-open == (7, §)-open == (g, gg)-open

!

(93, 95)-open
Let g, denote the generalized topology induced by a generalized topology g, and
a hereditary class H. In Chapter IV, we consider the properties of the monotonic

maps in two cases.
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1. On restricting maps

Let v and 3 be restricting maps. We conclude that g, C g7 5, C Gy 2 We also
obtain the continuity on the generalized topological spaces induced by monotonic
maps and hereditary classes when we reduce some conditions by replacing the
strongly (v, 5)-continuity by the (v, §)-continuity. That is, given a hereditary class
on either X or Y, we can construct a hereditary class on the another space that
makes a given (7, 8)-continuous bijective map to be (g, g5)-continuous. Similarly,
we obtain results concerning open maps. We have the following relationships on

the bijective function:

strongly (7, 8)-continuous == (, §)-continuous =———= (g,, gg)-continuous

! !

(93, g5)-continuous (95, + 95,)-continuous

and

strongly (v, 8)-open = (v, §)-open =——= (g,, gg)-open

! !

(95 95)-open (95, 95, )-open

Moreover, we prove that given an ideal on either X or Y, we can construct an
ideal on the another space that makes a given (g7, gj;)-continuous bijective map to
be (g;, ggﬁ)—continuous. Thus, we have the following relationships on the bijective

function:

strongly (v, 8)-continuous == (v, f)-continuous === (g,, gg)-continuous

! !

(95, g5)-continuous == (g; , g, )-continuous

and

strongly (v, 8)-open == (7, 8)-open = (g, gs)-open

l J

(93, g5)-open == (g ., g;,)-open
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2. On strong maps

Let v and 8 be strong maps. We let a hereditary class on either X or Y.
Similarly, we can define a hereditary class on the another space that makes a given
(94, gs)-continuous bijective map to be (g7, gj3)-continuous. Similar to 1., since
~ and [ are restricting, we also get the following implications on the bijective

function:

strongly (v, 8)-continuous == (v, [3)-continuous

!

(9, g5)-continuous == (g7, g)-continuous

!

* * 3
(95, + 95, )-continuous

and

strongly (v, B)-open =——> (v, §)-open

|

(94, 98)-open === (g3, gj;)-open

l

(95, 9, )-open

Therefore, in this thesis, we define and study generalized topological spaces
induced by monotonic maps and hereditary classes. After that, we study the conti-
nuity on generalized topological spaces induced by monotonic maps and hereditary
classes. Finally, we obtain some results of generalized topological spaces induced

by monotonic maps having particular properties and hereditary classes.
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