nAnssulanattulUuuYeIENNIINIINTYNY

UEDAAYY AUNLIA

a CY

3mawﬁwu§§ﬁuﬁawﬁmamﬁﬁﬂmmwé’ﬂqmﬂ%zymnwmmamwwm%m
AUMVIPARAIEAT NIAIIANFIENTLAYINEINITABNNIADS
AREINEIAIANS PAIAINTAIUMINGTRY
Un1sfnwn 2562

AUANEUDIPIRINTAUNINGRE



LONG-TIME BEHAVIOR OF A NONLOCAL DISPERSAL EQUATION

Mzr. Aussacha Dintawong

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2019
Copyright of Chulalongkorn University



Thesis Title LONG-TIME BEHAVIOR OF A NONLOCAL DISPERSAL

EQUATION
By Mr. Aussacha Dintawong
Field of Study Mathematics
Thesis Advisor Associate Professor Sujin Khomrutai, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in
Partial Fulfillment of the Requirements for the Master’s Degree

................................... Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)
THESIS COMMITTEE

................................... Chairman

(Associate Professor Nataphan Kitisin, Ph.D.)

................................... Thesis Advisor
(Associate Professor Sujin Khomrutai, Ph.D.)

................................... Examiner

(Associate Professor Khamron Mekchay, Ph.D.)

................................... External Examiner

(Assistant Professor Tawikan Treeyaprasert, Ph.D.)



iv

AR AUMLIA : wqaﬂiimﬁaLammulﬂmusumammimimxmEJ (LONG-TIME
BEHAVIOR OF A NONLOCAL DISPERSAL EQUATION)
o fUSnw Inednusudn - sA.As. qun AugViE, 28 v,

[

TuAnendnustAnwaun1sN1sNIENe
wlet) = [ I =gty dy = uet) W,
R

nmuaeuluaveuliienitus nadnsveinerinusivenenadnsvesgulul 2558 lag
J luamilanansafiwe Anquliingsdu Inerlinusiigadnisinawasluinineinves

aunN1IN1INTEAY Uarigaunannsseuiigy (@wnsvaunisiwdsifeulunmunaiuas

Liudswasulumunan) nadnsndiAglunuinongAngsuvoiNalaagusIaun1IN1sN sy

14 1
= v A

eilonattulluiu Felananainduduteuluaivey

AN AMAANEASLAZINEINITABUALNDS Aaneilatalidn



4 # 6172103623 : MAJOR MATHEMATICS
KEYWORDS : NONLOCAL DISPERSAL EQUATIONS/ BOUNDARY VALUE
PROBLEM/ ASYMPTOTIC BEHAVIOR
AUSSACHA DINTAWONG : LONG-TIME BEHAVIOR OF A NONLOCAL
DISPERSAL EQUATION
ADVISOR : ASSOC PROF. SUJIN KHOMRUTAI, Ph.D., 28 pp.

In this thesis, study the nonlocal dispersal equation

wie.) = [ Ja= ety - n ki,

with a non-homogeneous boundary condition. We generalize the result of J.W. Sun
(2015), where in this work the kernel J has a non-compact support. The global
well-posedness and comparison principles (both time-dependent and stationary
problems) are established. The main result is the long-time behavior of solutions,

which is proved to depend on the boundary data.
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CHAPTER 1
INTRODUCTION

The purpose of this thesis is to study the long-time behavior of solutions to the

following boundary-initial value problem for a nonlocal dispersal equation:

(ut(a:,t) = /RJ(ZB —yu(y,t)dy — u(x,t) in Ry x (0, 00),

u(z,t) = g(x,t) in R_ x (0,00), (1.1)

\u(x, 0) = up(x) in R,

where g, ug are given bounded functions and the kernel J satisfies [, J(x)dz = 1.

Here, we denote Ry = (0,00) and R_ =R N\ R,.

Let us give a brief physical motivation for our model of study; see [1] for
a more complete description. If w(z,t) is thought of as the density of moving
particles at a point x and time ¢ and J(z — y) is the probability distribution of
jumping from a location y to x, then [, J(y — x)u(y,t) dy = J * u(z,t) is the rate
at which individuals are arriving at x from all other places. On the other hand,
—u(x,t) = — [5 J(z —y)u(z,t) dy is the rate at which they are leaving x to travel

to all other sites. Thus, (1.1) is a conservation equation.

In recent years, there have been many studies on a nonlocal dispersal equation

of the form

uy(w,t) = /Q J(z,y) (w(y,t) —u(z,t) dy + f(z,t) (1.2)

where () is an open set in some Euclidean space.



In 2007, Cortazar, Elgueta, Rossi and Wolanski [5] studied (1.2) in a bounded

domain 2 C R™ with non-homogeneous boundary conditions

(w(e.t) = [ =) (ulyt) = ulo.0) dy
in Q x (0,00),
+ /Rn\Q J(z —y)g(y.t) dy L3
u(z,t) = g(x,t) in (R™\ Q) x (0,00),
L u(x,0) = uo(2) r R,

with J : R” — R is nonegative and symmetric J(z) = J(—z) with unit integral
Jgn J(2) dz = 1. Furthermore, J is strictly positive in B(0,d) := {z € R" | |[z|| <
d} and vanishes in R" . B(0,d). They also investigated the stationary problem,

namely,

[ Ie=nem e+ [ Je-prma-o. 04
R™~
where g(x,t) = h(z) in (1.3). One of the main results of [5] is the following

Theorem.

Theorem 1.1 (see [5]). If u is a continuous solution of (1.3) with g(x,t) = h(x),

where

/Q/n\ﬂ J(z —y)h(y) dy dz = 0,

and if ¢ be the unique solution of (1.4) such that

/ng(x) dx:/Quo(x) dx,

then

lim u(z,t) = ¢(x) uniformly in Q.

t—o00



In 2012, Cortazar, Elgueta, Quirés and Wolanski [3] studied (1.2) in a bounded

open set ‘H with homogeneous boundary condition,

rut(a:,t) = /n J(x —y) (u(y,t) —u(z,t)) dy in H x (0,00),

U(I7t) =0 in  x (0, OO)7 (15)

u(z,0) = up(x) ASHINGH

where H = R"\.Q (n > 3). Under the same conditions on J in (1.3) and J(0) > 0.

For this nonlocal problem, a conservation law holds:

/ ula, t)p(e) de = / uo(@)ol) do =z M,

where ¢ is the unique solution to

/n J(x =y)o(y)dy inH,

d(z) =0 in Q, (1.6)
|l|im olx)=1.

The asymptotic behavior for (1.5) can be expressed in terms of the fundamental

solution to the heat equation with diffusivity o := - |2]2J(2) dz and Ty (z,t) =

R
2
t*"/zUa(tl%) where U, = (47Ta)*”/26_% as follows.

Theorem 1.2 (see [3]). Let u be the solution of (1.5). Then for every § > 0,

lim "2 |Ju(x,t) — M*To(, | oo (a2 sey) = 0-

t—o00

Theorem 1.3 (see [3]). Let u be the solution of (1.5) and ¢ the solution of (1.6).

Then there exists 6 > 0,

lim "2 [[u(x, 1) = M*G(2)Ca (@, )| oo (102 <ay) = O-

t—o00



After that, in 2015, Cortazar, Elgueta, Quirés and Wolanski [4] studied (1.2) on

2 = R, with homogeneous boundary condition,

(i (2,1) = [ =) ) ~ ula0) dy - in R x (0.09),

u(z,t) =0 in R_ x (0,00), (1.7)

u(z,0) = up(x) z € R,

under the same assumption on J in (1.3) with the stationary problem:

/R J(z — y)ply) dy — $(x) =0 for = € R,

o(x) =0 for x € (—d,0),d > 0.

They preserved as follow

M (t) :== / w(z, t)rde = / uo(z)x de =: M.
0 0
2 4
In terms of the fundamental solution I'(z,t) = %, the long-time behavior
of the solution is as follows.

Theorem 1.4 (see [4]). Letug € L*(R,) be such that/ up () (14+2+2%) dr < oo
R4

and let ¢ = %/RJ(I)|.I’|2 dx. If u is the solution of (1.7) and ¢ is the solution of
(1.8), then

t3/2 o
N u(z,t) + ZMT@FI(% qt)' =0 uniformly in R,.

1
t—oo I +

Now, we play attention to (1.1). Consider the BVP

(

'Ut(ajat) = Uzw(wat) in R+ X (Oa OO)

v(0,t) = g(t) t>0 (1.9)

v(x,0) = vo(z) r e Ry
\



The long-time behavior of the solution to (1.9) is uniquely determined by the
boundary value v(0,t). In fact, v(x,t) is given by

v(z,t) =v(0,t) + /OO (T(x —y,t) = T(z+y,t)) vo(y) dy

+/0 /OOO(I‘(g;—y,t—s)—F(x+y,t—s))h(s)dyds.

22
<" /X and h(t) = g/(t). Assume that g is a bounded continuous

where F(.T7t) = W

function and

lim g(t) = 0..

t—00

Then, the long-time behavior of solution is given by (see [6, 8]),

tlirn v(z,t) = 6, uniformly on R,.
—00

Hypothesis 1.5. We assume that the kernel satisfies J : R — R is continuous,
J >0, J(z) = J(—x)and [, J(z)dx = 1. We also assume that g : R_x[0,00) = R
and ug : R — R satisfying:

(A1) g is continuous and there are constants Cy, 6, > 0 such that —Cj < g < Cj

and

lim g(z,t) = 0, locally uniformly in R_.

t—o00

(A2) ug € C(R) with ug(z) = g(z,0) in R_, =Cy < up < Cy in R for some C; > 0,

and lim ug(z) = 6..
Tr—00

Sun [10] proved that the same property also holds for the nonlocal problem
(1.1), that is

Theorem 1.6 (see [10]). Assume Hypothesis 1.5 holds and that J has compact

support. Let u(x,t) be the unique solution of (1.1). Then,

tlim u(x,t) =0, locally uniformly on R.
— 00



The proof of this theorem [10] strongly depends on the assumption that J has
compact support. In this work, we generalize the concepts to the case that J can

have non-compact support.

The outline of this thesis is as follows. In Chapter II, we state some background
results used in this work. The existence and uniqueness of a solution to (1.1)
and the comparison principle are established in Chapter III. In Chapter IV, we
investigate the stationary problem. We prove the long-time behavior of the solution
to (1.1) in Chapter V. Finally, conclusion and discussion about our work in Chapter

VL



CHAPTER 11
PRELIMINARIES

2.1 Notation and function spaces

R, = (0,00) and R_ = (—00, 0]

C(Ry) N L>®(Ry) is the set of bounded continuous functions on R, .

For a function f(z,t), f(t) denotes a function of = for each ¢.
For T > 0, we denote
Xr=C([0,T]; C(Ry) N L= (Ry))

the space of functions f : Ry x [0,7] — R such that f(t) € C(Ry) N L>®(R;) for
each t € [0,7] and for ¢, € [0, 7],

lim ([ f(£) = f(to) ]| L= ) = 0.

t—to

Xr is equipped with the norm

11l = Sup Hf( M oo @y)-

We denote

X =C([0,00); C(Ry)NL®(R,)) and ||f|lx = SUP 1f )|z re)-



2.2 Basic Tools

We recall some lemmas which will be used in this work. These results can be found

in standard texts such as [2, 7, 9, 11, 12].

Definition 2.1. Let (X,d) be a metric space. A map T : X — X is called a

contraction on X if there exists A € [0,1) such that
d(T(z), T(y)) < Md(x,y) forall z,y € X.

Lemma 2.2 (Banach’s Fixed Point Theorem). IfT : X — X is a contraction on a

complete metric space X, then there exists a unique x* in X such that T(z*) = x*.

Lemma 2.3 (Gronwall’s inequality). Let «, 5,7 be non-negative continuous real-

valued functions defined on [0,T]. Suppose that

r(t) < a(t) + /Otﬁ(s)r(s) ds for allt € [0,T].

Then, t .
(0 < a0+ [ aae (e [ o) ar) ds

0
for allt € [0,T). In particular, if o« =0, then r = 0.

Lemma 2.4. Assume that 1 < p < oo. If f € LP(R"), then

|f(z+2) = f(2)|Pdz = 0.

Rn
as x — 0.

Lemma 2.5 (Dominated Convergence Theorem). Let (X, ) be a measure space.

Let { f,}5°, be a sequence of measurable functions such that
1. limy, o0 fu(2) = f(z) for all x € X and

2. there exists g € L'(u) such that | f,(z)| < g(x) for allx € X.



Then, f € L'(u) and
lim fnd,u:/ fdpu.
b X

n—s00
Definition 2.6. A sequence {f,: X — R}, of functions defined on a metric
space (X, d) is called uniformly bounded if there exists a constant M such that
|fu(z)] < M for all x € X and all n € N. {f,, : X — R}> is called uniformly
equicontinuous if given € > 0, there is a 6 > 0 that |f,(x) — f.(y)| < € for all

n € N and all z,y € X such that d(z,y) < 0.

Lemma 2.7 (Arzéla-Ascoli theorem). Let (X, d) be a metric space. Let{f, : X — R},
be a uniformly bounded and equicontinuous sequence of functions. Then, there is
a subsequence {f,, : X — R}, and a bounded continuous function f : X — R

such that

klim fn, = uniformly on any compact subsets of X.
—00

2.3 Definitions of solutions for (1.1)

To explore (1.1), it suffices to investigate the following nonlocal dispersal equation

on R+:

wie.) = [ I —yulpt)dy =)+ [ Ie=yglndy iRy x (0,00)

(2.1)

with the initial condition u(z,0) = uo on Ry.
Proposition 2.8. u solves (1.1) if and only if u solves (2.1)

Proof. Assume that u solves (1.1). Since [, J(x)dz =1 and u = g on R_ x (0, 00),

we have

—

u(, t) J(x —y)uly,t) dy — u(z,1)

J(x —y)u(y, t)dy — u(z,t) + / J(x —y)g(y, t)dy,

+ —
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Thus, u satisfies (2.1). Conversely, if u solves (2.1), setting u(z,t) = g(z,t) on
R_ x (0,00), it follows that u satisfies (1.1). O

In view of the preceding proposition, we will mainly investigate (2.1). We give
the notion of solutions for (2.1). To provide a motivation, assume that u solves

(2.1), we get

iz, t) = / J(x — yyuly,t) dy — u(z, ) + / J(x — y)g(y, 1) dy.

Multiplying e’ on both sides, we get

eluy(w,t) = et/R J(x — y)uly,t) dy — e'u(z,t) + et/ J(x—y)g(y,t)dy

Integrating from 0 to ¢ on both sides, we get
¢ t ¢
/ e‘us(z, s)ds = / es/ J(x —y)u(y,s)dyds — / e*u(z, s) ds
0 0 Ry 0
¢
+/ 65/ J(x —y)g(y,s)dyds
0 -

Integrating by parts, we have

t t
/ e*ug(x, s) ds = e'u(x, t) — up(x) — / e‘u(x, s)ds.
0 0

By substitution, we get

e'u(w,t) — up(r) — /Ot e*u(z, s) = /Ot e /]R+ J(z —y)uly,s)dyds — /Ot e, s) ds
" /Ot ¢ /_ J(x—y)g(y,s)dyds
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Thus, we obtain

¢
u(z,t) = e ug(z) —I—/ e_(t_s)/ J(z — y)uly, s)dyds
0 Ry

N / -9 / J(x = y)g(y, 5)dyds. (2:2)

Definition 2.9. By a solution to (2.1), we mean a function v € X’ that satisfies

(2.2) at each point (x,t) € Ry x (0, 00).

Proposition 2.10. The following semigroup property holds:

t+to
u(z,t+to) = e u(x, to) + / e~ (tHto=s) J(z —y)uly,s)dyds

to Ry

t+to
+ / e \H10=9) / J(x—y)g(y,s)dyds. (2.3)

to _

Proof. Fix tg > 0. Assume that u is a solution of (2.1). By (2.2), we get

to
u(w,ty) = e Pug(x) + / g~ (to=s) / J(z —y)u(y,s)dyds
0 Ry

to
+ / g~ (to—5) / J(x —y)gly,s)dyds.
0 =

Multiplying e~* on the both sides, we get

to
e~y (z) = etu(z, to) _/ e—(t+to—8)/ J(z —y)uly,s)dyds
0 R

+

to
- / e (tHo=s) / J(z — y)gly, s) dy ds,
0 _
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By substitution in (2.2) by t — t 4 to and above result, we get

t+to
u(x,t + to) = e~y (z) 4 / e_(”to_s)/ J(x —y)u(y, s)dyds
0 R

+

t+to
+/ e(t”os)/ J(x —y)g(y, s)dyds.
0

t+to
= e tu(x, to) + / e~ (tHto=9) / J(x —y)uly,s)dyds

to Ry

t+to
+/ e_(t+t°_s)/ J(x —y)g(y,s)dyds.

to _

]

To derive the comparison principles, we need the following variant of solutions.

Definition 2.11. A function u € X is called a subsolution for (2.1) if it satisfies

t
u(x,t) < e tug() —I—/ e_(t_s)/ J(x —y)u(y, s)dyds
0 Ry

t
+/ 6‘(”)/ J(x —y)g(y, s)dyds,
0 _

(2.4)

at each (x,t) in the domain. It is called a supersolution for (2.1) if it satisfies

t
u(x,t) > e tug(w) —i—/ e(ts)/ J(z — y)uly, s)dyds
0 R,

¢
+/ e_(t_s)/ J(x —y)g(y, s)dyds.
0 _

(2.5)



CHAPTER I1I1
EXISTENCE, UNIQUENESS AND COMPARISON

In this chapter, we establish our first part of the main results: the existence and
uniqueness of a solution to (2.2), which implies the result for (2.1). We also derive

the comparison principle.

3.1 Existence and uniqueness

The existence and uniqueness of solutions of (2.1) is proved by a fixed point

argument.

Theorem 3.1. Assume that the Hypothesis 1.5 holds. Then, (2.1) admits a unique

solution w € X. In particular, (1.1) has a unique solution as well.

Proof. Fix T > 0 and define M : X1 — Xr by

(Muw)(z,t) = e "ug(z) + /Ot e~ (=9 s J(z —y)w(y, s) dyds

t
+/ 6_“_5)/ J(z —y)g(y, s) dy ds,
0 _

for w € Xr. Of course, u is a fixed point for M if and only if it is a solution to
(2.1).

Let us check that Mw € Xp for all w € Xp. Let {z,}72, be a sequence in Ry
which converges to z € Ry. Since v is continuous, we get Jirrolo uo(x,) = up(x).
Let y € Ry and let J,, (y) = J(z, — y) for each n € N. Then, for each n € N,
Jr, € L*(R,) because J € L'(R). Since J > 0, we get

[T (2 = y)w(y, D] < sup fuwly, )] Jo, € L'(Ry)
+
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for each n € N and t € [0,¢]. By Lemma 2.5 and the continuity of J, we have

lim —(t- s)/ w(y, s dyds—/ —(- s)/ lim J(z, — y)w(y, s) dy ds

:/ e(ts)/ J(x —y)w(y, s)dy ds.
0 Ry

By a similarly argument, we have

lim ts/ q(y, s dyds—/ —(t- S/ (x —y)g(y,s) dyds.
n—oo

Thus, Mw(z,,t) - Muw(z,t) as n — oo. Therefore, Mw(t) € C(R,) for each
t € [0, T]. By the triangle inequality, we have

[ Muw(t)|| L@,y < sup ’6_ uo(x )|

zeRL
+ sup / ts/ (x —y)w(y,s) dyds
(EER+ RJr
+ sup /e‘(t‘s)/ J(x —y)g(y, s) dy ds
TER 0 _
< sup |ug(z)]
$€R+

t
[ e / o9 / J(@ - y)wy, 5) dy ds
z€RL JO Ry

t
- sup/ e‘(t‘s)/ J(x —y)|g(y, s)| dy ds
0 R

zeRL

t
<Cy+ sup / ) w(s) 1 a) / J(x — y) dy ds

r€eER

+C’osup/ —(t- 8/ (xr —y)dyds
zeR4

SCl—i—/ —(t= s)||w( )”Loo (Ry) dS—i-C(]/ —(t= s)dS

0 0
< Cl + (1 — eiT)(HU)HXT + Co) < 0

Thus, Mw(t) € L>*(R) for each ¢ € [0,7]. To show that Mw is continuous, let
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to € (0,T) and t > tg. Set

to

I+(x):/ e_(to_s)/ J(z —y)w(y, s)dyds — / ~(t=s / J(z y,s)dyds,
0 Ry 0 Ry
to t

I(x):/o e(tos)/ J(x—y)g(y,s)dyds — /Oe (t= 5)/R J(z y,s)dyds,

for x € R,. We write

for v € R,. Then, we have

It r<]/ 09 -H)/ I — yuly, ) dy ds

/ N S)/ (z — y)w(y, s) dy ds
R

< Hw“XT/ fartis 9T J(x —y)dyds
0 Ry

t
T ol / et / J(x — ) dyds
to R4

to t
< ||w||XT/ (6—(to—s) —6_(t_s)) ds + ||waT/ e—(t—s) ds
0

to

= Jwlla, (1 =€ —e7 +e7) +[Jw]la, (1—e)

< wllay [2(1 =€) + (e —e™)]

for all x € Ry. Similarly, we get [I_(z)] < Co[2(1 — e + (e7?0 — e7)] for all
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x € R,. By the triangle inequality, we have

[ Mu(to) = Muo(t) ey < sup [(e7 — e o) + sup | ()] + sup |1-(x)
zeElR4

zeR4 reR

<0y (e - )
+lwllay [2 (1 =€) + (7 —e7)]
+Co2(1—€") 4+ (e —e™)]
= 2(Jlwllay + Co) (1 =€)

+ (Oo + Cl) (e*to — e*t) — 0,

as t — to. For t < ty, we can show that Mw(t) — Muw(ty) using the same

argument. Therefore, Mw € X as desired.

Finally, we show that M is a contraction on Xr for small T'. Let wy,wy € Xp.

We have

[Muw;(t) — Muws(t)||~ = sup

zeRy

t
S / o= / (@ =) [wi(y,s) — wy(y, )| dyds
0 Ry
t

/Ot e /R+ J(x —y) (wi(y,s) —wa(y, s)) dyds

z€ER

<, / &y () — w51 (xy) / J(x —y) dyds

zeRL JO Ry

t
< Sup/ ei(tis)le(S) — wa(s)||Loo(my) ds
z€Ry JO
t
:/ e_(t_s)||w1(3)—w2(3)||L°°(R+) ds
0
t
< s = wall, [ e ds
0

< (1 —eNwr — walla,
Taking the supremum over all ¢ € [0, 77,

[Muw; — Mzl < (1= ™) [Jwn — wslay,
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hence by choosing T' < 1, M is a contraction on Xp. It follows by the Banach
fixed point theorem that M has a unique fixed point, which is a unique solution

for (2.2) on the time interval [0, T7].

Observe that 7" € (0, 1) can be chosen independently of the initial condition. So
by applying the same argument to the operator arisen from the right hand side in
the semigroup property (2.3), we can extend the solution to time intervals [0, 277,
0,37, and so forth. Therefore we obtain a unique solution for (2.2) on the time

interval [0, 00). O

Remark 3.2. If ug satisfies ug(z) — 0 as z — oo, then using the fact that the
space of continuous functions vanishing at infinity is closed in C'(R;) N L*(R),

then the solution in the preceding theorem also satisfies u(z,t) — 0 as * — oc.

3.2 Comparison principle

Comparison principle is a very useful tool in studying nonlocal dispersal equa-

tion.

Theorem 3.3 (Comparison principle). Suppose that uy is a subsolution to (2.1)
and uy a supersolution to (2.1). If ui(x,0) < wus(z,0) on Ry, then ui(x,t) <

ug(z,t) for all (z,t) € Ry x (0,00).

Proof. Fix (z,t) in the domain. Denote w = (u; —us), the positive part of u; —us,

and define r(t) = ||w(t)|| ~m®,). By (2.4) and (2.5), we have

uy(z,t) —ug(z,t) <wup(x,0) —ug(z,0)

/ o /R+ z —y)(ui(y, s) — ua(y, s)) dy ds
S/O e—(t=9) /R+ J(x —y)(ui(y, s) — ua(y,s)) dy ds

<[ t / =l dyds.
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Since J and w are nonnegative, we get

wet < ([ t RGO dyds)+

:/Ot/]R+ T(x — y)w(y, s) dy ds.

Taking the L*°-norm with respect to x, we have

/ot /R+ J(x —y)w(y,s)dy ds

t
< sup / J(& ~y)lwly, s)) dy ds
0 JR,

JJ€R+

t
< Sup/ r(s)/ J(z —y)dyds
z€RL JO Ry
t
< sup/ r(s)ds
0

$€R+

:/Otr(s)ds

for all £ > 0. Using Gronwall’s inequality Lemma 2.3, we obtain that » = 0. Hence

r(t) < sup
zeR

(51 S Ua. O

Lemma 3.4. —C\y — C) is a subsolution to (2.1) and Cy + Cy is a supersolution
to (2.1).

Proof. We consider
t t
e tug(z) + / e~ (=9 / J(x —y)(Co+ Ch)dyds + / e~ (=9 / J(z—v)g(y,s)dyds
0 R, 0 _
t
< Cre "+ (Co+ C’l)/ e~ (=9 / J(x —y)dyds
0 R

t
S Cl€_t + (Cg + Cl) / 6_(t_s) ds
0

S Cleft + (CO + Cl)(l — e*t)
S C’le_t + CQ + 01(1 — €_t) = CQ -+ 01.

Thus, Cy + C is a supersolution to (2.1). By a similar argument, we can show
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that —Cy — C is a subsolution to (2.1). O

Lemma 3.5. Suppose that u is a solution of (1.1). Then,

—Co - Cl S u(x,t) S Co + Cl

for (x,t) € Ry x [0, 00).

Proof. By Lemma 3.4, we have u; = —Cy — C satisfies (2.4) and uy = Cy + C}

satisfies (2.5). Applying Theorem 3.3, we conclude that u; < u < uy as desired. [



CHAPTER IV
STATIONARY PROBLEM

In this chapter, we study the following stationary problem for establishing the

long-time behavior of solution in Chapter V:
[ 3= y)ot)dy o) =0 .. (4.1)
with ¢ = 0 on R_. We show that ¢ = 0. Denote
Txla) = [ Ia = p)oty) dv

Theorem 4.1. Suppose that ¢1,p5 € C(R), ¢1(x) — ¢a(x) — 0 as v — oo and
bounded on R . If

Jx ¢1(x) — gr(x) = T+ da(x) — da(x) in Ry (4.2)
and qbl S ¢2 m R,, then qbl S qbg m R+.
Proof. By considering ¢ := (¢1 — ¢2) 4, From (4.2), we get

/R J(x = y)(1(y) — $(y)) dy > 1 (x) — ().

Since J is nonnegative, we have

[ 7= 0(nts) = )y 2 ( [ 7= et - éalo) dy)
> (61(z) — d(a))s.

+

This means J % ¢ > ¢. It suffices to prove the following assertion: if J x ¢ > ¢,
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where ¢ = 0 in R_, ¢ > 0 is continuous, and ¢(z) — 0 as z — oo, then ¢ = 0 on

R.,.

Suppose the desired conclusion is not true, so M := sup ¢ > 0 is attained at

R
some 1 > 0. Let € > 0 and define A, = {x € R | ¢(2) < M —€}. Then,

M = 6(zy) < /R J(w1 — y)6(y) dy
— / J(z1 —y)p(y) dy +/ J(z1 —y)o(y) dy
A

RN Ac

<M —¢e) | J(w—y)dy+M J(z1—y)dy

RN A:

< N
ZM/J(xl—y)dy—e/ J(zy —y)dy
R Ae

=M-—¢ | J(x—vy)dy,
Ae

which implies fAe J(x1 — y)dy = 0. This is true for all € > 0. Passing ¢ — 0, we
obtain [, J(z; —y)dy = 0, a contradiction. O

Corollary 4.2. Assume that ¢ is a continuous solution of (4.1) and ¢(x) — 0 as
x — 00. Then, » =0 in R.

Proof. Observe that 0 = J %0 — 0. By Theorem 4.1, we get that ¢ > 0 and ¢ < 0,
hence ¢ = 0. [



CHAPTER V
LONG-TIME BEHAVIOR OF SOLUTIONS

Now, we prove the last main result of this work.

Theorem 5.1. Assume that the Hypothesis 1.5 holds. Let u be the solution of
(1.1). Then,
lim u(x,t) =0,

t—o00

locally uniformly in R.

Proof. Let {t,}2°, be a sequence in [0,00) such that ¢, — oo as n — oo. By

Lemma 3.5, we have {u(z,t,)}>2, is uniformly bounded. Let H > 0.
Claim 1. {u(z,t,)}>2, is uniformly equicontinuous for = € [0, H].

Proof of Claim 1. Let 21,25 € [0, H] and 0 := |z, — x3|. By (2.2), we get

u(ry, t,) — u(we, ty) = e " ug(z1) — up(2)]

e /0 3 e(tnS)/R [J(21 —y) — J(z2,9)]uly, s) dy ds

tn
s [T [ e - v) - Sz - gl dyds.
0 _
Using Hypothesis 1.5, we have
u(@1, tn) — w2, tn)] < |uo(w1) — uo(w2)| + (Co + Ch) / (1 —y) = J(z2 —y)| dy.
R

By the triangle inequality, changing variables z = x5 — y, and applying Lemma

2.4, we have

/ ]J(xl—y)—J(xg—y)\dyg/R]J(xl—xg—i-z)—J(z)\dz—>0



23

as 0 — 0. Since ug in uniformly continuous on [0, H], we get |ug(z1) — uo(x2)| — 0

as well. Therefore, the claim is true. ]

Now, we apply Lemma 2.7 to get a subsequence {u(z,t,,)} and a continuous
function 6 : [0, H] — R such that u(z,t, ) — 6(z) as k — oo, uniformly for
x € [0, H]. By increasing H and passing to subsequences (diagonal argument),
we can extend 6 to be 6 : [0,00) — R and get a susequence, still denoted by

{u(z,ty,)}, such that

lim u(x,t,,) = 0(x) (5.1)

k—o0
locally uniformly for x € Ry. Using Remark 3.2, one can deduce that 6(z) — 60,
as T — 00.

Fix € Ry. Substitute u(z,t,,) in (2.2) to obtain u(x, t,,) = e "rug(x)+ I+

Sy, where

J(x ,s)dyds.

I, = / ~(tny, = / J(x ,8)dyds,
R
R

F
I = (tt":) with  F'(t,,) = et"’“/ J(x = y)u(y, tn,)dy
et R,
Gty
% = e(tn:) with  G'(tn,) = €™ [ J(z = y)g(y, tn,)dy.

R_
In view of the L’Hospital’s rule [9], we need to prove the following claim:

Claim 2. As k — oo, we have

/R J(x —y)uly, tn,)dy — | J(x —y)0(y) dy,

Ry

/ J(x —y)g(y, tn,)dy — 9*/ J(z —y)dy.
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Proof of Claim 2. By (5.1), we have J(x — y)u(y, t,, ) — J(x — y)0(y) for each
y € Ry, as k — oo. Also, by Lemma 3.5, |J(x —y)u(y, tn,)] < (Co+Ch)J(z—y) €
L*(R,). Thus, we obtain by Lemma 2.5 that

/R J(z —y)u(y,tn)dy — | J(z—y)0(y)dy

Ry

Similarly, we get

/ J(x—y)g(y,tn,) dy — b, [ J(z—y)dy.

_ R_
These prove the claim. [

Applying Claim 2 and the above consideration, we have

u(z,ty,) = e "moug(x) + I + Sp — J(z —y)0(y)dy + 0., / J(z —y)dy,

R, -
Thus,
0(x) = / J(z = y)0(y)dy + 0. / J(z —y)dy. (5.2)
R :
This is true for all z € R . Setting k(z) = 0(x) — 0, for x € R, From (5.2), we
have
0= [ J(x—y)0(y)dy+ 9*/ J(z —y)dy — 0(z)

+ —

J@—yﬁ@ﬂy+&/“

Ry

J(z —y)k(y)dy + 0. /R J(z —y)dy — 0(z)

J(x —y)dy + 9*/R J(z —y)dy — 0(z)

+

+

I
— T — S —

J(x —y)k(y)dy + 0, — 0(x)

+

—AJ@—@M@@—k@)

in Ry. Observe that k(z) = 0 for x € R_ and k(x) — 0 as x — oo. By Corollary
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4.2, we conclude that £ = 0. Hence, 0(x) = 6, is constant. Therefore, the theorem

is proved. [



CHAPTER VI
CONCLUSION AND DISCUSSION

We studied a nonlocal dispersal equation (1.1) in the case that J has non-
compact support, the long-time behavior of the solution is proved. The proof is
complete under the initial value and the boundary value in the Hypothesis 1.5.
Furthermore, we investigated a comparison principle and a stationary problem,

which are an important role to prove the long-time behavior of the solution.

We paid attention to the kernel J for the nonlocal dispersal equation. In the
future of our work, we may expand a kernel or a model for a nonlocal problem in

studying the long-time behavior of a solution.
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