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Describing quantum field theory using the AdS/CFT duality can broaden

string theory applications in the context of the holographic principle. This research

study supersymmetric solutions of matter-coupled SO(4) and maximal gauged

supergravities in seven dimensions of which the dual field theories are six-

dimensional superconformal field theories (SCFTs). We find a large class of domain

wall (DW) solutions in the maximal theory with various gauge groups. For SO(5)

gauge group admitting an AdS7 vacuum, the solutions describe holographic

renormalization group (RG) flows from an N = (2, 0) SCFT to non-conformal

field theories (SQFTs) in six dimensions. For other gauge groups without AdS7

vacua, these DWs are supersymmetric vacua dual to six-dimensional N = (2, 0)

SQFTs. By coupling DWs to three-form fields, we find charged DW solutions in

both theories. The solutions with AdS3 × S3 slices are interpreted as conformal

surface defects within the dual field theories in six dimensions. We also find twisted

solutions describing holographic RG flows across dimensions from six-dimensional

field theories to SCFTs in lower dimensions. We consider solutions of the matter-

coupled theory in the presence of a three-form field and extend twisted solutions

of the maximal theory to include singularities in the form of curved DWs. In

many cases, these singularities are physically acceptable and can be interpreted

as SQFTs in lower dimensions. Many solutions can be uplifted to ten and eleven

dimensions resulting in new classes of solutions in string and M-theories.
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4.44 The behavior of ĝ00 for RG flows given in Figures 4.42 and 4.43
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ĝ00 → 0 in the region r < 50 for every case. . . . . . . . . . . . . . 189

4.52 Numerical solutions for SO(3) twists in SO(4) gauge group. The

flows start from locally flat DW to singularities in the form of

Mkw2 × CP 2-sliced DWs. . . . . . . . . . . . . . . . . . . . . . . 190

4.53 Numerical solutions for SO(3) twists in SO(4) gauge group. The

flows start from locally flat DW to singularities in the form of

Mkw2 × CH2-sliced DWs. . . . . . . . . . . . . . . . . . . . . . . 191
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CHAPTER I

INTRODUCTION

Finding a theory of quantum gravity is one of the significant issues attracting

many experimental and theoretical physicists for a long time. While three from

four fundamental forces, electromagnetic, weak, and strong, can be described

through quantum field theory (QFT) in the context of gauge theory, gravity is

still isolated and classically expressed by Einstein’s general relativity (GR). These

are recognized as the two distinguished principal theories of theoretical physics in

the twentieth century. Achieving quantum gravity will give us a huge step closer

to the final theory of everything unifying all four fundamental forces and matter

particles. Unfortunately, despite eighty years of active research, a consistent and

complete quantum theory of gravity has not yet been formulated. The most

significant problem is that we do not know a proper way to quantize gravity [1,2].

For almost five decades, string theory [3–8] has been explored in various

features as a promising candidate not only for quantum gravity but also for

the theory of all interactions. Unlike theories of point-like particles, the theory

contains one-dimensional fundamental objects, called strings, together with other

p-dimensionally extended ones, called p-branes, where their illustration is shown

in Figure 1.1. While ordinary QFT does not allow gravity to exist, string theory

requires it since there always exists a massless spin-two particle called graviton,

the quantum of gravitation, in the spectrum. However, ten-dimensional spacetime

is needed in order for string theory to be a consistent Lorentz invariant quantum

theory. To get down to four-dimensional flat spacetime R1,3, one can consider a

compactification of the theory on a product geometry R1,3 × M6 where Mn

denotes an n-dimensional compact space. Lower-dimensional interactions are also

determined by symmetry of the compact space.
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Figure 1.1: Illustration of a closed string, Dirichlet p-branes (Dp-branes), and

open strings ending on them.1

Instead of lower-dimensional flat spacetime, a remarkable result was

discovered when we consider string theory on a maximally symmetric spacetime

with negative curvature, called anti-de Sitter (AdS) space. String theory on

AdS10−n ×Mn space is dual to a supersymmetric conformal field theory (SCFT)

living on flat spacetime R1,9−n, the boundary of the AdS10−n space, in the way

that there exist one-to-one maps, called dictionary, between local fields ϕi in

the AdS bulk and operators Oi in the dual SCFT on the boundary. By the

dictionary, correlation functions governing quantum interactions of the dual SCFT

can be calculated from string theory. The first example was proposed in the late

1990s [9–11]. In this case, type IIB string theory on AdS5 × S5 spacetime, in

which S5 is a five-dimensional sphere, is dual to N = 4 Super-Yang-Mills gauge

theory living on flat spacetime R1,3. This duality is referred to as the AdS5/CFT4

correspondence, whose illustration is displayed in Figure 1.2, and has been widely

tested and confirmed by a large number of impressive results over the past twenty

years.

Although the duality is fascinating, the AdS5/CFT4 correspondence is too

complicated to perform explicit calculations for generic values of parameters.

Therefore, we need to reduce the strength of the correspondence by taking the

’t Hooft limit [12]. In this limit, there is only one free parameter on both sides:

1Katrin Becker, Melanie Becker, and John H. Schwarz, String theory and M-theory:

A modern introduction, (New York: Cambridge University Press, 2007), p.194.
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Figure 1.2: Illustration of the AdS5/CFT4 correspondence relating type IIB string

theory on AdS5 × S5 spacetime to N = 4 Super-Yang-Mills gauge theory on the

boundary of the AdS5.2

the ’t Hooft coupling λ on the field theory side and the radius of curvature L/ls,

with ls being the string length, on the string theory side. The two parameters are

related through the correspondence by (L/ls)
4 = 2λ. From this point, the most

useful duality can be obtained by taking the limit λ → ∞ on the field theory

side, indicating that the field theories are strongly-coupled. On the string theory

side, this limit corresponds to the low-energy limit where the radius of spacetime

curvature is much bigger than the string scale, ls/L → 0. In this limit, string

theory reduces to supergravity, and the AdS5/CFT4 correspondence accordingly

relates strongly-coupled N = 4 Super-Yang-Mills to type IIB supergravity on

weakly-curved AdS5 × S5 space. This strong/weak duality is known as the weak

form of the AdS5/CFT4 correspondence. Apart from this first example, there also

exits the AdS/CFT correspondence relating string theory or supergravity in the

low-energy limit on AdSD background toD−1 dimensional SCFT withD = 2, .., 7.

One of the most astonishing implications of the strong/weak duality is the

application for problems of condensed matter physics in our lower dimensions.

Many systems in condensed matter physics are strongly-coupled so that standard

perturbative calculations do not work. The AdS/CFT correspondence allows us

to map these strongly-coupled behaviors to the general covariance of gravity

2ads-cft [Online]. Available from: http:// quantum-bits.org/ wp-content/ uploads/

2015/09/ads-cft.png [2017, October 12]



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

theory that can be applied by using the standard computation of GR. In this

way, unusual behaviors of condensed matter, such as strange metals or

unconventional superconductors, can be examined in deeper detail, see [13–21]

for an incomplete list.

Apart from the above AdS5/CFT4 duality, one of the interesting cases

proposed in [9] to describe the dynamics of M5-branes in M-theory is the

AdS7/CFT6 correspondence. Among five versions of string theory: type I, type

IIA, type IIB, heterotic SO(32), and heterotic E8 × E8, M-theory is an

eleven-dimensional non-perturbative theory connecting them through a web of

dualities in Figure 1.3 [7]. The theory describes supersymmetric two- and five-

dimensionally extended objects respectively called M2- and M5-branes. In the

low-energy limit, M-theory is approximated by eleven-dimensional supergravity.

However, a complete formulation of M-theory is still unclear. Studying these

supersymmetric M-branes via the AdS/CFT correspondence has also played a

crucial role in the development of M-theory.

Figure 1.3: Five consistent string theories and eleven-dimensional supergravity are

connected through a web of dualities.3

Since we do not know much about M-theory, studying the AdS/CFT

correspondence from eleven-dimensional supergravity is a significant benefit. There

exists a unique supergravity in eleven-dimensional spacetime containing the
3Katrin Becker, Melanie Becker, and John H. Schwarz, String theory and M-theory:

A modern introduction, (New York: Cambridge University Press, 2007), p.12.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

graviton, a gravitino (a supersymmetric partner of the graviton), and a three-form

potential [22]. In general, p-branes are charged under (p + 1)-form potentials, in

the same way as in electromagnetism that a zero-brane (particle) can be charged

under a one-form potential. In this case, M2- and M5-branes are charged under

the three-form potential and their magnetic duality, a six-from potential. On the

other hand, these extended objects can be approximately described by gauged

supergravities in four and seven dimensions obtained from consistent truncations

of eleven-dimensional supergravity on seven- and four-dimensional spheres, S7 and

S4, respectively [23–27].

Therefore, the AdS7/CFT6 correspondence can be efficiently investigated by

using gauged supergravities in seven dimensions so that AdS7×S4 geometry of M-

theory, dual to N = (2, 0) SCFT in six dimensions, can be described by a vacuum

solution of seven-dimensional N = 4, SO(5) gauged supergravity. Besides, AdS7

vacua of N = 2 gauged supergravity in seven dimensions is dual to six-dimensional

N = (1, 0) SCFTs in the case of half-maximal supersymmetry [28,29]. On the CFT

side, six is the maximum possible spacetime dimensions for SCFT [30]. However,

there is no Lagrangian description for these six-dimensional SCFTs [31]. Studying

the AdS7/CFT6 correspondence from gauged supergravities also gives advantages

in describing the dynamics of these six-dimensional field theories.

The first version of the maximal SO(5) gauged supergravity has been

constructed in [32, 33]. The theory admits two AdS7 vacua, but only one of

them is supersymmetric and plays an important role in the AdS7/ CFT6

correspondence. For the half-maximal N = 2 supergravity gauged by SO(3)

gauge group [34,35], there is no AdS7 vacuum. In order for a supersymmetric AdS7

vacuum to exist, an additional mass deformation for the three-form field is needed.

The half-maximal SO(3) gauged theory with this deformation is given in [36,37].

Furthermore, SO(3) gauge group in this N = 2 theory can be enlarged by

coupling to n vector multiplets. The resulting matter-coupled theory allows many

viable gauge groups being a subgroup of the global symmetry R+ ×SO(3, n) [38].

In [39, 40], their supersymmetric AdS7 vacua have been studied. A remarkable
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matter-coupled theory is the SO(4) gauged theory, first constructed in [41]. This

theory, obtained from coupling the minimal gauged supergravity to three vector

multiplets, mediates between the maximal SO(5) and the minimal SO(3) gauged

supergravities.

In addition to the rigid AdS7 vacua, supergravity solutions being AdS7

near the boundary but differ in the interior are also attractive. These solutions

take the form of domain walls (DWs) interpolating between AdS7 vacua and

singularities. Via the AdS7/CFT6 duality, the solutions are dual to connections

between different supersymmetric conformal fixed points of field theories known

as holographic renormalization group (RG) flows [42–44]. On the CFT side,

conformal symmetry on the boundary is broken by non-vanishing one-point

functions ⟨O⟩ with O being the corresponding dual operators. These one-point

functions perturb the SCFT and induce RG flows to another SCFT or, in some

cases, to a supersymmetric non-conformal (quantum) field theory (SQFT) dual

to a singular geometry. The latter is of remarkable interest in the DW/QFT

correspondence [45–47], a generalization of the AdS/CFT duality.

Not only the same dimensions but also field theories in different

dimensions can be associated through RG flows across dimensions. In general,

twisted solutions of D-dimensional supergravity on AdSD−n ×Mn geometry are

AdS/CFT dual to RG flows across dimensions from an SCFT in D−1 dimensions

to a (D− 1− n)-dimensional one. This type of RG flows allows us to explore the

structure and dynamics of less known SCFTs in higher, especially five and six,

dimensions using the well-understood lower-dimensional SCFTs.

For the maximal SO(5) gauged supergravity, these supersymmetric

solutions have been extensively studied in [48–52] for DW and [53–59] for twisted

solutions. The solutions for the matted-coupled N = 2 gauged supergravity

have been discussed in [39, 40, 60]. For the minimal SO(3) gauged supergravity,

twisted solutions relating six-dimensional N = (1, 0) SCFT to lower-dimensional

SCFTs have been considered in [61], while DW has been reviewed in [62] where

supersymmetric solutions with all bosonic fields non-vanishing have been found.
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The latter type of solutions is called charged DW interpreted as two-dimensional

conformal defects in the six-dimensional N = (1, 0) SCFT by the AdS/CFT

correspondence.

Nonetheless, many supersymmetric solutions are still missing. There is

no charged DW found in the matter-coupled and the maximal gauged theories,

while none of the prior supersymmetric solutions from the matter-coupled theory

involve the non-vanishing three-form field. Moreover, apart from SO(5), there

are many possible gauge groups for the maximal N = 4 gauged supergravity

given by the embedding tensor formalism in [63]. Maximal gauged supergravities

with these additional gauge groups can be obtained from consistent truncations

of eleven-dimensional and type IIB supergravities see [64] and [65]. There is

no systematic analysis for supersymmetric solutions for these gauge groups so

far. In this dissertation, we want to find supersymmetric solutions that shade

the light to these missing corners. The new supersymmetric solutions will give

more advantages in the study of the AdS7/CFT6 duality and the more general

DW7/QFT6 correspondence as well.

The dissertation is organized as follows. In Chapter 2, we review the

relevant seven-dimensional supergravities, the matter-coupled N = 2 and the

maximal N = 4 gauged theories. In Chapter 3, we study new supersymmetric

solutions of the matter-coupled gauged theory, especially for SO(4) gauge group.

They are charged DWs and twisted solutions with non-vanishing three-form

potential. Supersymmetric solutions of the maximal N = 4 theory with various

gauge groups are considered in Chapter 4. We finish the dissertation with some

general conclusions and discussions in Chapter 5. In Appendices A and B, general

notations for GR and symplectic-Majorana (SM) spinor used in this dissertation

are summarized, respectively. Consistent truncations of eleven-dimensional and

type IIA supergravities giving rise to seven-dimensional gauged supergravities are

reviewed in Appendix C.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

SEVEN-DIMENSIONAL GAUGED SUPERGRAVITIES

Supergravity is GR accompanied by supersymmetry (SUSY) [66–68], the

symmetry between bosonic and fermionic fields with integer and half-integer spins,

respectively. Denoted by B(x) and F(x), bosonic and fermionic fields transform

to each other through the following general form of local SUSY transformations

δB(x) = ϵ̄(x)f1(F(x)) and δF(x) = f2(B(x))ϵ(x) (2.1)

where ϵ(x) are SUSY spinor parameters depending on spacetime coordinate x and

ϵ̄(x) refer to their Dirac conjugations. The functions f1(F) and f2(B) usually

include Dirac gamma matrices and spacetime derivatives. Supergravity actions

are invariant under these SUSY transformations. For example, the simplest

supergravity in four-dimensional spacetime was formulated in 1976 with one SUSY

(N = 1) describing interactions between the graviton together with a fermionic

field called gravitino with spin 3/2 [69, 70].

Simple supergravity can be extended by adding more SUSY. The more

SUSY, the more fields of different spins in supergravity multiplet transform into

each other within SUSY transformations (2.1). In four-dimensional spacetime,

N = 8 is the maximally extended theory in which supergravity multiplet contains

the graviton, eight gravitini, 28 vectors, 56 spinors, and 70 scalar fields with 256

degrees of freedom divided into 128 bosonic and also 128 fermionic states [71,72].

Beyond N = 8, superalgebra representations inevitably contain massless fields

with spin > 2, for which no consistent interactions exist. Note here that the

degrees of freedom for maximal supergravity are identically 256 in any

dimensions.

Not only in four-dimensional spacetime, but supergravity can also be
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formulated in various spacetime dimensions up to eleven [30]. Ten- and eleven-

dimensional supergravities are remarkable since they respectively appear as

the low-energy effective theories of string and M-theories. Consequently, the

dynamics of the lowest-energy modes and vacua of these fundamental theories

can be described by classical solutions of supergravity.

Although fermions play an important role in determining the structure

of supergravity, they do not appear in classical backgrounds. Thus, classical

solutions of supergravity are bosonic configurations satisfying Euler-Lagrange field

equations with all fermionic fields vanishing. To obtain supersymmetric solutions,

we need a non-trivial configuration of ϵ(x) for which both δB(x) and δF(x) vanish.

Since fermions disappear classically, the condition δB(x) = 0 is trivially satisfied,

so we need to consider only the fermionic variations

δF(x) = f2(B(x))ϵ(x) = 0. (2.2)

This condition gives us a set of Bogomol’nyi-Prasad-Sommerfield (BPS) equations

that are first-order differential equations involving bosonic fields and the spinors

ϵ(x). Solving BPS equations typically requires the existence of Killing spinors

with nQ real degrees of freedom where 0 ≤ nQ ≤ nQ0 and nQ0 is a total amount

of supercharges for ϵ(x). The resulting bosonic configurations are BPS solutions

preserving nQ supercharges or (nQ/nQ0)-SUSY. If nQ = nQ0 , BPS solutions are

maximally supersymmetric, while nQ = 0 means the solutions completely break

SUSY.

Although possible, finding BPS solutions directly from supergravity in ten

or eleven dimensions is extremely complicated due to substantial free parameters.

Instead, we can examine lower-dimensional gauged supergravity, the theories with

gauged R-symmetry or any subgroup thereof, which is a consistent truncation of

ten- or eleven-dimensional supergravities. By consistent truncations, solutions to

lower-dimensional gauged supergravity are also solutions to the ten- or eleven-

dimensional theories. Some notable cases are maximal SO(5) (SO(8)) gauged

supergravity in seven (four) dimensions arising from a consistent truncation of
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eleven-dimensional supergravity on S4 [25–27] (S7 [23, 24]) and five-dimensional

SO(6) gauged supergravity obtained from a truncation of type IIB theory on

S5 [73]. Finding supersymmetric solutions from this approach is more convenient

and manageable.

In this chapter, relevant formulae involving bosonic Lagrangian and SUSY

transformations of fermions will be presented in order to find BPS solutions from

gauged supergravities in seven dimensions. We will start with an introduction of

matter-coupled N = 2 gauged supergravity in which the minimal N = 2 theory

is coupled to an arbitrary number of vector multiplets by following conventions

and notations used in [38,39,60]. After that, maximal gauged supergravity in the

embedding tensor formalism [63] will be reviewed. For readers who are unfamiliar

with general notations of GR and SM spinors, these building blocks are introduced

in Appendices A and B.

2.1 Matter-Coupled N = 2 Gauged Supergravity

There are two supergravity theories in seven-dimensional spacetime called

maximal (N = 4) and minimal (N = 2) supergravities that can be respectively

gauged by SO(5) [32, 33] and SO(3) [34, 35]. Matter-coupled N = 2 gauged

supergravity can be achieved by coupling the minimal theory to an arbitrary

number n of vector multiplets [38]. Among many viable gaugings, matter-coupled

SO(4) gauged supergravity [41] is particular interested since it mediates

the minimal SO(3) and the maximal SO(5) gauged theories. A truncation

procedure of the SO(5) gauged supergravity in order to get the SO(4) gauged

theory is given in [74] and reconsidered in Appendix C.1. Besides, vanishing of all

vector-multiplet fields gives rise to the minimal SO(3) gauged supergravity.

As a bridge delivering techniques of finding supersymmetric solutions from

the minimal SO(3) gauged theory to the maximal one, matter-coupled SO(4)

gauged supergravity is our main interest. Starting from an introduction of matter-

coupled N = 2 gauged supergravity, we finish this section with SO(4) gauging
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and the corresponding supersymmetric AdS7 critical points. These critical points

are, according to AdS/CFT correspondence, dual to N = (1, 0) SCFTs in six

dimensions.

2.1.1 Bosonic Lagrangian and Fermionic SUSY Transformations

We first review the minimal SO(3) gauged supergravity in seven dimensions [34,35]

whose field content is given by

(eµ̂µ, ψ
α
µ , A

i
µ, χ

α, Bµν , σ). (2.3)

They are the graviton eµ̂µ, two gravitini ψα
µ , three vectors Ai

µ, two spin-1
2

fields χα, a two-form field Bµν , and a scalar field σ called the dilaton in the

supergravity multiplet. Curved and flat seven-dimensional spacetime indices are

denoted by µ, ν and µ̂, ν̂ respectively. The indices i, j = 1, 2, 3 and α, β = 1, 2

label triplets and doublet of SO(3)R symmetry where the latter will be suppressed

for simplicity. The two-form field will be dualized to a three-form Hµνρ, which

admits a topological mass term leading to a massive deformation of the N = 2

supergravity. Note that this additional deformation is important for the gauged

supergravity to admit AdS7 vacua [36, 37].

Matter-coupled N = 2 gauged supergravity [38] is formulated by coupling

the minimal supergravity (2.3) to an arbitrary number n of vector multiplets:

(Aµ, λ
α, ϕi)r (2.4)

in which r, s = 1, .., n. Each vector multiplet contains a vector field Aµ, two gaugini

λα, and three scalar fields ϕi. From both supergravity and vector multiplets, there

are in total (3 + n) vector fields denoted collectively by AI
µ = (Ai

µ, A
r
µ) where

I, J = 1, .., (3 + n) are SO(3, n) fundamental indices raised and lowered by the

SO(3, n) invariant tensor ηIJ = diag(−−−+ ...+).

Totally, there are 3n scalar fields ϕir in the vector multiplets parameterizing

SO(3, n)/SO(3) × SO(n) coset manifold. They can be described through the
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following coset representative

L = (LI
i, LI

r) (2.5)

together with its inverse

L−1 = (LI
i, L

I
r). (2.6)

The SO(3) and SO(n) indices, i, j and r, s, are raised and lowered by δij and δrs,

respectively. With these conventions, the following relations can be derived

LI
iLI

j = −δij, LI
rLI

s = δrs , (2.7)

and

ηIJ = −LI
iLJ

i + LI
rLJ

r. (2.8)

Gaugings of matter-coupled N = 2 supergravity can be obtained by

promoting a subgroup G0 of the global symmetry R+ × SO(3, n) to be local.

If the gauging does not involve the R+ factor, the embedding of G0 in SO(3, n)

is represented by the SO(3, n) tensor fIJK identified with the structure constants

of G0 through the gauge algebra

[TI , TJ ] = fIJ
KTK (2.9)

where TI denote the gauge generators. In the embedding tensor formalism, fIJK is

a component of the full embedding tensor, see [75] for more detail. For a consistent

gauging, preserving all of the original SUSY, fIJK must satisfy the conditions

fIJK = ηKLfIJ
L = f[IJK] and f[IJ

LfK]L
M = 0 . (2.10)

Bosonic Lagrangian for matter-coupled N = 2 gauged supergravity is given

in differential form language (see Appendix A.1 for a brief introduction) by

L =
1

2
R ∗ 1 − 1

2
eσaIJ ∗ F I

(2) ∧ F J
(2) −

1

2
e−2σ ∗G(4) ∧G(4) −

5

8
∗ dσ ∧ dσ

− 1

2
∗ P ir ∧ P ir +

1√
2
G(4) ∧ ω(3) − 4hG(4) ∧H(3) − V ∗ 1.

(2.11)

With G(4) = dH(3), the constant h describes the topological mass term for the

three-form H(3). The associated two-form field strength is defined as

F I
(2) = dAI

(2) +
1

2
fJK

IAJ
(1) ∧ AK

(1). (2.12)
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The scalar matrix aIJ appearing in the kinetic term of vector fields is

aIJ = LI
iLJ i + LI

rLJr. (2.13)

The Chern-Simons three-form satisfying dω(3) = F I
(2) ∧ F I

(2) is given by

ω(3) = F I
(2) ∧ AI

(1) −
1

6
fIJ

KAI
(1) ∧ AJ

(1) ∧ A(1)K . (2.14)

The scalar potential is

V =
1

4
e−σ

(
C irCir −

1

9
C2

)
+ 16h2e4σ − 4

√
2

3
he

3σ
2 C (2.15)

where C-functions are defined as

C =− 1√
2
fIJ

KLI
iL

J
jLKkε

ijk,

Cir =
1√
2
fIJ

KLI
jL

J
kLK

rεijk,

Crsi = fIJ
KLI

rL
J
sLKi.

(2.16)

The kinetic term of the scalar fields ϕir is written in term of the following vielbein

P ir
µ = LIr

(
δKI ∂µ + fIJ

KAJ
µ

)
LK

i. (2.17)

The following field equations are derived from the bosonic Lagrangian (2.11)

0 = d(e−2σ ∗G(4)) + 8hG(4) −
1√
2
F I
(2) ∧ F I

(2), (2.18)

0 = D(eσaIJ ∗ F I
(2))−

√
2G(4) ∧ F J

(2) + ∗P irfIJ
KLI

rLKi, (2.19)

0 = D(∗P ir)− 2eσLI
iLJ

r ∗ F I
(2) ∧ F J

(2)

−
(

1√
2
e−σCjsCrskε

ijk + 4
√
2he

3σ
2 Cir

)
∗ 1, (2.20)

0 =
5

4
d(∗dσ)− 1

2
eσaIJ ∗ F I

(2) ∧ F J
(2) + e−2σ ∗G(4) ∧G(4)

+

[
1

4
e−σ

(
CirCir −

1

9
C2

)
+ 2

√
2he

3σ
2 C − 64h2e4σ

]
∗ 1, (2.21)

0 = Rµν −
5

4
∂µσ∂νσ − aIJe

σ

(
F I
µρF

J
ν

ρ − 1

10
gµνF

I
ρσF

J ρσ

)
−P ir

µ P
ir
ν − 2

5
gµνV − 1

6
e−2σ

(
GµρσλGν

ρσλ − 3

20
gµνGρσλτG

ρσλτ

)
. (2.22)
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The last ingredients relevant for finding supersymmetric solutions are SUSY

transformations of fermions

δψµ = 2Dµϵ−
√
2

30
e−

σ
2Cγµϵ−

4

5
he2σγµϵ−

i

20
e

σ
2F i

ρσσ
i(3γµγ

ρσ − 5γρσγµ)ϵ

− 1

240
√
2
e−σGρσλτ (γµγ

ρσλτ + 5γρσλτγµ)ϵ, (2.23)

δχ = −1

2
γµ∂µσϵ+

√
2

30
e−

σ
2Cϵ− 16

5
e2σhϵ− i

10
e

σ
2F i

µνσ
iγµνϵ

− 1

60
√
2
e−σGµνρσγ

µνρσϵ, (2.24)

δλr = iγµP ir
µ σ

iϵ− 1

2
e

σ
2F r

µνγ
µνϵ− i√

2
e−

σ
2Cirσiϵ (2.25)

where σi are the usual Pauli matrices (B.3). Spacetime gamma matrices are

related to the Dirac gamma matrices γµ̂, whose explicit forms are given in (B.2),

by γµ = eµµ̂γ
µ̂. The two SO(3) and SO(n) two-form field strengths can be written

through the relations F i
(2) = LI

iF I
(2) and F r

(2) = LI
rF I

(2). The covariant derivative

of the SUSY spinor parameter ϵ is given by

Dµϵ = ∂µϵ+
1

4
ωµ

ν̂ρ̂γν̂ρ̂ϵ+
1

2
√
2
Qi

µσ
iϵ (2.26)

where Qi
µ = i√

2
εijkQjk

µ is defined in terms of the composite connection

Qij
µ = LIj

(
δKI ∂µ + fIJ

KAJ
µ

)
LK

i. (2.27)

2.1.2 SO(4) Gauging and Supersymmetric AdS7 Critical Points

Matter-coupled SO(4) gauged supergravity is obtained when the minimal N = 2

supergravity in seven dimensions is coupling to three vector multiplets. In this

case, SO(4) gauge group is equivalent to a direct product between two SO(3)

symmetries, i.e. SO(4) ∼ SO(3)R × SO(3). The first SO(3) factor is the R-

symmetry identified by SU(2)R ∼ SO(3)R, while the other one is the symmetry

under which the three vector multiplets transform. The corresponding structure

constants are separately given by

fIJK = (g1εijk,−g2εrst) (2.28)

in which g1 and g2 are SO(3)R and SO(3) gauge coupling constants, respectively.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

In [39], two supersymmetric AdS7 vacua are discovered in matter-coupled

SO(4) gauged theory. These vacua are BPS solutions preserving full symmetry

and are the critical points of the scalar potential. Instead of the nine scalars in

SO(3, 3)/SO(3)R×SO(3) coset manifold, we can find the critical points from their

subsets that are invariant under some subgroup H0 of the full gauge symmetry

SO(4), as introduced in [76]. These subsets consist of all scalars that are singlet

under the unbroken subgroup H0. All critical points found from this approach are

essentially critical points of the potential for the full scalars.

The metric on AdS7 is given by

ds2AdS7
= e2r/LAdS7dx21,5 + dr2 (2.29)

where LAdS7 is a constant AdS7 radius and dx21,5 = ηmndx
mdxn, m,n = 0, 1, .., 5

is the flat metric on six-dimensional spacetime. In the limit r → ∞, there exists

the conformal boundary, a six-dimensional Minkowski flat spacetime on which the

isometry group of the AdS7 acts as the conformal group. For r → −∞, there is a

coordinate singularity called the Poincaré horizon, as shown in Figure 2.1. Using

the vielbein formalism introduced in Appendix A.2, one can find the Ricci scalar

R = −42/L2
AdS7

corresponding to the negative curvature of the AdS7.

Figure 2.1: Illustration of anti-de Sitter space given in the metric coordinate (2.29)

where the conformal boundary and the Poincaré horizon are located at r → ∞

and r → −∞, respectively.1

1Martin Ammon and Johanna Erdmenger, Gauge/Gravity Duality Foundations

and Applications, (United Kingdom; Cambridge University Press., 2015) p. 74.
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The two AdS7 critical points have different symmetries; the full SO(4) one

and the diagonal subgroup SO(3)diag ⊂ SO(3)R × SO(3). Thus, they can be

simultaneously expressed by using an SO(3)diag singlet scalar ϕ corresponding to

the non-compact generator

YS = Y11 + Y22 + Y33 (2.30)

in which non-compact generators of SO(3, 3) are

Yir = ei,r+3 + er+3,i. (2.31)

Here, eIJ are GL(6,R) matrices defined by

(eIJ)KL = δIKδJL. (2.32)

Accordingly, the coset representative is

L = eϕYs . (2.33)

The scalar potential for the dilaton σ and the SO(3)diag singlet scalar ϕ is directly

computed as

V =
1

32
e−σ

[
(g21 + g22) (cosh(6ϕ)− 9 cosh(2ϕ)) + 8g1g2 sinh3(2ϕ)

+ 8
[
g22 − g21 + 64h2e5σ − 32e

5σ
2 h(g1 cosh3 ϕ+ g2 sinh3 ϕ)

] ]
.

(2.34)

The two supersymmetric AdS7 critical points derived from this potential using
∂V
∂σ

= ∂V
∂ϕ

= 0 condition. They are

(1) SO(4) critical point:

σ = ϕ = 0, V0 = −240h2. (2.35)

(2) SO(3)diag critical point:

σ =
1

5
ln
[

g22
g22 − 256h2

]
, ϕ =

1

2
ln
[
g2 − 16h

g2 + 16h

]
,

V0 =− 240g
8/5
2 h2

(g2 − 256h2)4/5
.

(2.36)
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We have chosen g1 = 16h to make the dilaton vanish at the SO(4) critical point.

V0 is the value of the scalar potential at the critical point. These critical points

are maximally supersymmetric with LAdS7 =
√

−15
V0

, and respectively correspond

to N = (1, 0) SCFTs in six dimensions with SO(4) and SO(3) symmetries.

An RG flow solution interpolating between these two critical points has

already been studied in [39]. Instead of the AdS7 space (2.29), in this case, the

metric takes the more general form of a flat DW ansatz

ds2DW = e2U(r)dx21,5 + dr2 (2.37)

in which U(r) is a warp factor depending on the radial coordinate r. Moreover,

the dilaton σ and the SO(3)diag singlet scalar ϕ also depend on r, in this case,

with all other fields still vanishing. Imposing the projection condition

γrϵ = ϵ, (2.38)

we can derive the following BPS equations from SUSY transformations of fermions

(2.23) to (2.25) satisfying δψm = 0, δχ = 0, and δλr = 0 conditions

U ′ =
1

40
e−

σ
2
−3ϕ

[
g2(e

2ϕ − 1)3 − g1(e
2ϕ + 1)3

]
+

4

5
he2σ, (2.39)

σ′ =
1

20

[
e−

σ
2
−3ϕ

(
g2(e

2ϕ − 1)3 − g1(e
2ϕ + 1)3

)
− 128he2σ

]
, (2.40)

ϕ′ =
1

8
e−

σ
2
−3ϕ(e4ϕ − 1)(g1 + g2 + e2ϕg1 − e2ϕg2) (2.41)

where ′ denote r-derivatives. Besides, the condition δψr = 0 provides the usual

solution for the Killing spinors

ϵ = e
U
2 ϵ0 (2.42)

with constant spinors ϵ0 satisfying γrϵ0 = ϵ0. By defining a new radial coordinate

r̃ with dr̃
dr

= e−
σ
2 , the above BPS equations can be solved to obtain

U =
1

8

[
2ϕ− σ − 2 ln(2− 2e4ϕ) + 2 ln

(
g1 + g2 + (g1 − g2)e

2ϕ
)]
, (2.43)

σ =
2

5
ln
[
− g1g2e

ϕ

8h (g1 + g2 + (g2 − g1)e2ϕ)

]
, (2.44)

g2r̃

2
= tan−1 eϕ +

√
g22 − g21
g21

tanh−1

[
eϕ
√
g2 − g1
g2 + g1

]
+

g2
2g1

ln
[
1− eϕ

1 + eϕ

]
. (2.45)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

This is the RG flow connecting the SO(4) critical point (2.35) in the UV to another

SO(3)diag one (2.36) in the IR. As r̃ → +∞, we find σ → 0 and ϕ → 0 with an

asymptotic behavior

σ ∼ ϕ ∼ e−16hr ∼ e
−4r

LAdS7 and U ∼ r

LAdS7

, with LAdS7 =
1

4h
, (2.46)

since r̃ ∼ r near σ ∼ 0. For r̃ → −∞, the solution behaves as

σ ∼ e
−4r

LAdS7 , ϕ ∼ e
4r

LAdS7 and U ∼ r

LAdS7

, with LAdS7 =
(g22 − 256h2)

2
5

4hg
4
5
2

. (2.47)

These critical points preserve AdS7 isometry as well as all SUSY, while the whole

RG flow relating them breaks AdS7 isometry and preserves only 1
2
-SUSY due

to the r-dependence of the scalar fields and the projector (2.38), respectively.

Apart from this example, non-supersymmetric AdS7 critical points and other RG

flows connecting the SO(4) critical point (2.35) to singularities in the IR are also

given in [39]. According to the usual holographic interpretation, these flows to

singularities should be dual to RG flows to SQFTs in six dimensions.

2.2 Maximal Gauged Supergravity

In this section, seven-dimensional N = 4 gauged supergravity is reviewed in

the embedding tensor formalism. Apart from the well-known SO(5) and non-

compact, SO(4, 1) and SO(3, 2), gauged theories [32, 33], there additionally

exist several gauge groups due to its irreducible embedding tensor in 15 and

40 representations of SL(5) global symmetry. After introducing all relevant

formulae, a large class of possible gauge groups for the maximal gauged theory,

together with their corresponding critical points, will be given. The complete

construction of the maximal seven-dimensional gauged supergravity can be found

in [63].
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2.2.1 Bosonic Lagrangian and Fermionic SUSY Transformations

In seven dimensions, the only N = 4 supermultiplet is the supergravity multiplet

with the following field content

(eµ̂µ, ψ
a
µ, A

MN
µ , BµνM , χ

abc,VM
ab). (2.48)

They are the graviton eµ̂µ, four gravitini ψa
µ, ten vectors AMN

µ = A
[MN ]
µ , five

two-form fields BµνM , sixteen spin-1
2

fermions χabc = χ[ab]c, and fourteen scalar

fields parametrizing SL(5)/USp(4) coset space VM
ab = VM

[ab]. Lower and

upper M,N = 1, ..., 5 indices refer to the fundamental and anti-fundamental

representations, 5 and 5, of the global SL(5) symmetry.

Under the local USp(4) R-symmetry with fundamental indices a, b = 1, ..., 4,

the gravitini transform as 4, while the spin-1
2

fields χabc transform as 16 and satisfy

the following conditions

χ[abc] = 0, Ωabχ
abc = 0. (2.49)

Here, Ωab = Ω[ab] is a USp(4) symplectic form obeying the properties

(Ωab)
∗ = Ωab, ΩacΩ

bc = δba. (2.50)

Raising and lowering of the fundamental USp(4) indices by Ωab and Ωab are

associated to complex conjugation.

As seen from the field content (2.48), all bosonic fields of the theory come

in representations of SL(5), while all fermionic fields come in representations

of USp(4). The objects mediating between them are the scalar fields described

through SL(5)/USp(4) coset representative VM
ab subject to the condition

VM
abΩab = 0. (2.51)

Besides, Vab
M will denote the inverse of VM

ab. We then have the following relations

VM
abVab

N = δNM and Vab
MVM

cd = δ[ca δ
d]
b − 1

4
ΩabΩ

cd. (2.52)
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Since USp(4) ∼ SO(5), we can convert a pair of antisymmetric USp(4) indices to

an SO(5) one, A = 1, 2, .., 5 raised and lowered by δAB, by using SO(5) gamma

matrices ΓA that satisfy

(ΓA)
ab = −(ΓA)

ba, Ωab(ΓA)
ab = 0, ((ΓA)

ab)∗ = ΩacΩbd(ΓA)
cd, (2.53)

as well as the Clifford algebra

{ΓA,ΓB} = 2δAB14. (2.54)

The coset representative of the form VM
ab and the inverse Vab

M are then

respectively related to the SL(5)/SO(5) coset representative VM
A in the

fundamental representation of SO(5) and the inverse VA
M by the relations

VM
ab =

1

2
VM

A(ΓA)
ab and Vab

M =
1

2
VA

M(ΓA)ab. (2.55)

In the embedding tensor formalism, the most general gaugings of the N = 4

supergravity are encoded in a real embedding tensor, ΘMN,P
Q = Θ[MN ],P

Q. This

tensor identifies gauge group generators XMN = X[MN ] for a gauge group G0

among the SL(5) generators tMN satisfying tMM = 0 by

XMN = ΘMN,P
QtPQ. (2.56)

SUSY restricts the embedding tensor to 15 and 40 representations of the global

SL(5) symmetry. As a result, we can parameterize the embedding tensor in

terms of a symmetric matrix YMN and a tensor ZMN,P with YMN = Y(MN),

ZMN,P = Z [MN ],P , and Z [MN,P ] = 0 so that

XMN,P
Q = ΘMN,P

Q = δQ[MYN ]P − 2ϵMNPRSZ
RS,Q (2.57)

are the corresponding gauge group generators in the fundamental representation.

Moreover, the embedding tensor needs to satisfy the so-called quadratic constraint

to ensure that the gauge generators form a closed subalgebra of the SL(5)

YMQZ
QN,P + 2εMRSTUZ

RS,NZTU,P = 0. (2.58)
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Therefore, admissible gauge groups can be classified by searching for the

embedding tensor ΘMN,P
Q in terms of YMN and ZMN,P that satisfy the quadratic

constraint (2.58).

Unlike the ungauged supergravity in which all three-form fields can be

dualized to two-forms, the field content of gauged supergravity can incorporate

massive two- and three-form fields. As in Table 2.1, the degrees of freedom in

the vector and tensor fields of the ungauged theory will be redistributed among

massless and massive vector, two-form, and three-form fields after gauge fixing

where s ≡ rank Z and t ≡ rank Y . Therefore, different gaugings lead to different

field contents in the resulting gauged supergravity. It should be noted that

t+ s ≤ 5 by the quadratic constraint (2.58).

fields # # d.o.f

massless vectors 10− s 5

massless two-forms 5− s− t 10

massive two-forms s 15

massive self-dual three-forms t 10

Table 2.1: Distribution of the tensor fields’ degrees of freedom after gauge fixing.

In order to describe every tensor field in Table 2.1 in a gauge covariant

framework, the following modified two- and three-forms are defined

FMN
(2) = FMN

(2) + gZMN,PB(2)P , (2.59)

H(3)M = gYMNS
N
(3) +DB(2)M

+εMNPQRA
NP
(1) ∧ (dAQR

(1) +
2

3
gXST,U

QARU
(1) ∧ AST

(1) ). (2.60)

The non-abelian two-form field strength is

FMN
(2) = dAMN

(1) +
g

2
(XPQ)RS

MNAPQ
(1) ∧ ARS

(1) (2.61)

where g is a gauge coupling constant and (XMN)PQ
RS = 2XMN,[P

[Rδ
S]
Q] are the

gauge group generators in 10 representation. These modified two- and three-forms
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satisfy the following deformed Bianchi’s identities

DFMN
(2) = gZMN,PH(3)P , (2.62)

DH(3)M = εMNPQRFNP
(2) ∧ FQR

(2) + gYMNGN
(4), (2.63)

with

YMNGN
(4) = YMN

[
DSN

(3) + FNP
(2) ∧B(2)P +

g

2
ZNP,QB(2)P ∧B(2)Q

+
g

6
εPQRVWXST,U

VANP
(1) ∧ AQR

(1) ∧ AST
(1) ∧ AUW

(1)

+
1

3
εPQRSTA

NP
(1) ∧ AQR

(1) ∧ dAST
(1)

]
(2.64)

being the covariant field strength of the three-form fields that always appear only

under the projection with YMN .

In terms of the modified two- and three-forms, bosonic Lagrangian of the

maximal gauged supergravity can be written as

L =
1

2
R ∗ 1 + 1

8
∗DMMN ∧DMMN − 2MMPMNQ ∗ FMN

(2) ∧ FPQ
(2)

−MMN ∗ H(3)M ∧H(3)N − LV T − V ∗ 1. (2.65)

Here, scalar fields are described by a unimodular symmetric matrix

MMN = VM
abVN

cdΩacΩbd, (2.66)

together with its inverse

(MMN)
−1 = MMN = Vab

MVcd
NΩacΩbd. (2.67)

The explicit form of the vector-tensor Lagrangian LV T can be found in [63] while

the scalar potential is given by

V =
g2

64

[
2MMNYNPMPQYQM − (MMNYMN)

2
]

+g2ZMN,PZQR,S (MMQMNRMPS −MMQMNPMRS) . (2.68)

From the Lagrangian (2.65), all bosonic Euler-Lagrange field equations can be
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derived

0 = Rµν −
1

4
MMPMNQ(DµMMN)(DνMPQ)− 2

5
gµνV

−4MMPMNQ

(
FMN

µρ FPQ
ν
ρ − 1

10
gµνFMN

ρσ FPQρσ

)
−MMN

(
HµρσMH ρσ

ν N − 2

15
gµνHρσλMHρσλ

N

)
, (2.69)

0 = Dµ(MMPDµMPN)− g2

8
MPQMRN (2YRQYPM − YPQYRM)

−4

6
MPNHµνρMHµνρ

P − 8MMPMQRFPQ
µν FRNµν

+
8

5
δNM

(
V +MSPMQRFPQ

µν FRSµν +
1

16
MPQHµνρPHµνρ

Q

)
+4g2ZQT,PZNR,SMQM(2MTRMPS −MTPMRS)

+4g2ZQT,PZRS,NMQS(2MTPMRM −MTRMPM)

−4g2δNMZ
TU,PZQR,SMTQ (MURMPS −MUPMRS) , (2.70)

0 = 4Dν(MMPMNQFPQνµ)− g

2
XMNP

QMQRD
µMPR

−2εMNPQRMPSHµνρ
SFQR

νρ +
1

9
e−1ϵµνρλστκHνρλMHστκN , (2.71)

0 = Dρ

(
MMNHρµν

N

)
− 2gZNP,MMNQMPRFQRµν

−1

3
e−1ϵµνρλστκFMN

ρλ HστκN , (2.72)

0 = ϵµνρλστκYMNGN
λστκ − 6YMNMNPHµνρ

P . (2.73)

The fermionic SUSY transformations that are essential for finding

supersymmetric solutions read

δψa
µ = Dµϵ

a − gγµA
ab
1 Ωbcϵ

c +
1

5
FMN

νρ (γµ
νρ − 8δνµγ

ρ)VM
adΩdeVN

ebΩbcϵ
c

+
1

15
HνρλM(γµ

νρλ − 9

2
δνµγ

ρλ)ΩabVbc
Mϵc, (2.74)

δχabc = 2ΩcdPµde
abγµϵe + gAd,abc

2 Ωdeϵ
e

+2FMN
µν γµνΩde

[
VM

cdVN
e[aϵb] − 1

5
(Ωabδcg − Ωc[aδb]g )VM

gfΩfhVN
hdϵe

]
−1

6
HµνρMγ

µνρVfe
M

[
ΩafΩbeϵc − 1

5
(ΩabΩcf + 4Ωc[aΩb]f )ϵe

]
. (2.75)

The covariant derivative of the SUSY parameters is defined by

Dµϵ
a = ∂µϵ

a +
1

4
ωµ

ν̂ρ̂γν̂ρ̂ϵ
a −Qµ b

aϵb. (2.76)
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The composite connection Qµ a
b and the vielbein Pµab

cd on the SL(5)/SO(5) coset

are obtained from

Pµab
cd + 2Qµ[a

[cδ
d]
b] = Vab

M(∂µVM
cd − gAPQ

µ XPQ,M
NVN

cd). (2.77)

The fermion shift matrices, A1 and A2, are

Aab
1 = − 1

4
√
2

(
1

4
BΩab +

1

5
Cab

)
, (2.78)

Ad,abc
2 =

1

2
√
2

[
ΩecΩfd(Cab

ef −Bab
ef ) +

1

4
(CabΩcd +

1

5
ΩabCcd +

4

5
Ωc[aCb]d)

]
(2.79)

where B and C tensors are functions of the scalar fields

B =

√
2

5
ΩacΩbdYab,cd, (2.80)

Bab
cd =

√
2

[
ΩaeΩbfδghcd − 1

5
(δabcd −

1

4
ΩabΩcd)Ω

egΩfh

]
Yef,gh, (2.81)

Cab = 8ΩcdZ
(ac)[bd], (2.82)

Cab
cd = 8

(
−ΩceΩdfδ

ab
gh + Ωg(cδ

ab
d)eΩfh

)
Z(ef)[gh] (2.83)

in which “dressed” components of the embedding tensor are defined by

Yab,cd = Vab
MVcd

NYMN , Z(ac)[ef ] =
√
2VM

abVN
cdVP

efΩbdZ
MN,P . (2.84)

2.2.2 Gauge Fixing and Supersymmetric Critical Points

The maximal N = 4 supergravity in seven dimensions can be gauged by gauge

groups of the form CSO(p, q, 5− p− q) and CSO(p, q, 4− p− q) corresponding to

the embedding tensor in 15 and 40 representations of the global symmetry SL(5).

These gauged supergravities can be embedded respectively in eleven-dimensional

and type IIB supergravities. Besides, from the embedding tensor with both 15 and

40 representations non-vanishing, non-semisimple SO(2, 1)⋉R4 and SO(2)⋉R4

gauge groups are considered.

2.2.2.1 Gaugings in 15 Representation

We begin with the maximal theory gauged in 15 representation. In this case,

ZMN,P = 0 makes the quadratic constraint (2.58) identically satisfied. The SL(5)
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symmetry can be applied to diagonalize YMN to be

YMN = diag(1, .., 1︸ ︷︷ ︸
p

,−1, ..,−1︸ ︷︷ ︸
q

, 0, .., 0︸ ︷︷ ︸
5−p−q

). (2.85)

Therefore, the corresponding gauge group generators take the form

(XMN)P
Q = δQ[MYN ]P , (2.86)

and give rise to the gauge group

G0 = CSO(p, q, 5− p− q) = SO(p, q)⋉ R(p+q)(5−p−q). (2.87)

Among many possible gauge groups, SO(5) and CSO(4, 0, 1) gauged theories

are remarkable since they are obtained respectively from consistent truncations

of eleven-dimensional supergravity on S4 [25–27] and type IIA theory on S3

[77]. As shown in [64], using the framework of exceptional field theory, these

CSO(p, q, 5− p− q) gauged theories can be obtained from a consistent truncation

of eleven-dimensional supergravity on a non-compact manifold Hp,q ◦ T (5−p−q).

This manifold is a product of a (p + q − 1)-dimensional hyperbolic space and a

(5 − p − q)-dimensional torus. Unfortunately, their complete truncation ansatze

have not been constructed to date.

From (2.68), the scalar potential in this case reads

V =
g2

64

(
2MMNYNPMPQYQM − (MMNYMN)

2
)
. (2.88)

This potential admits two AdS7 critical points when the theory is gauged by SO(5)

gauge group [33]. However, only one of them preserves N = 4 supersymmetry and

should be AdS/CFT dual to N = (2, 0) SCFT in six dimensions. For CSO(2, 0, 3)

gauge group, the scalar potential (2.88) is vanishing; hence the theory admits a

critical point related to a Minkowski vacuum, as pointed out in [63].

2.2.2.2 Gaugings in 40 Representation

For gaugings in 40 representation with YMN = 0, the quadratic constraint (2.58)

is reduced to

εMRSTUZ
RS,NZTU,P = 0. (2.89)
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This constraint can be solved by

ZMN,P = v[MwN ]P (2.90)

where wMN = w(MN) and vM being a five-dimensional vector. We also use the

SL(5) symmetry to fix vM = δM5 , thus, the SL(5) index splits as M = (i, 5). By

setting w55 = wi5 = 0, the remaining SL(4) symmetry can be used to diagonalize

wij to be

wij = diag(1, .., 1︸ ︷︷ ︸
p

,−1, ..,−1︸ ︷︷ ︸
q

, 0, .., 0︸ ︷︷ ︸
4−p−q

). (2.91)

The resulting gauge group generators then take the form

(Xij)k
l = 2ϵijkmw

ml (2.92)

and generate CSO(p, q, 4 − p − q) gauge groups. In analogy to the discussion of

the last section, CSO(p, q, 4−p− q) gauged theory is related to a reduction of the

type IIB theory over a non-compact manifold Hp,q ◦ T (4−p−q). This procedure has

been examined in [65] along with a partial result on the corresponding truncation

ansatze.

To compute the scalar potential for these gaugings, we decompose the

SL(5)/SO(5) coset representative as

V = ebit
iṼeϕ0t0 . (2.93)

Here, Ṽ is the SL(4)/SO(4) coset representative and t0, ti refer to SO(1, 1) and

four nilpotent generators, respectively, in the decomposition SL(5) → SL(4) ×

SO(1, 1). For the unimodular matrix MMN , this yields a block decomposition

MMN =

e−2ϕ0M̃ij + e8ϕ0 e8ϕ0bi

e8ϕ0bj e8ϕ0

 (2.94)

with M̃ij = ṼṼT and M̃ij being the inverse of M̃ij. From (2.68), we can compute

the scalar potential of the form

V =
g2

4
e14ϕ0biw

ijM̃jkw
klbl +

g2

4
e4ϕ0

(
2M̃ijw

jkM̃klw
li − (M̃ijw

ij)2
)
. (2.95)
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The presence of the dilaton prefactor eϕ0 shows that this potential does not admit

any critical points with non-vanishing potential. In particular, the potential (2.95)

of the CSO(2, 0, 2) theory admits a critical point with vanishing potential. This

critical point is also Minkowski vacuum as in the CSO(2, 0, 3) theory from gaugings

in 15 representation.

2.2.2.3 Gaugings in 15 and 40 Representations

For non-vanishing components of the embedding tensor in both 15 and 40

representations, we choose an appropriate basis such that the embedding tensor’s

components are given by

Yxy, Zxα,β = Zx(α,β), Zαβ,γ , (2.96)

in which x = 1, ..., t and α = t + 1, ..., 5 for t ≡ rank Y . On the other hand,

the SL(5) index splits into M = (x, α). In terms of these components of the

embedding tensor, the quadratic constraint (2.58) reads

YxyZ
yα,β + 2εxMNPQZ

MN,αZPQ,β = 0. (2.97)

With Yxy choosen to be

Yxy = diag(1, .., 1︸ ︷︷ ︸
p

,−1, ..,−1︸ ︷︷ ︸
q

), (2.98)

there exist real solutions for the embedding tensors that satisfy the quadratic

constraint (2.97) for SO(2, 1)⋉ R4 and SO(2)⋉ R4 gauge groups. Note that the

later can be obtained from Scherk-Schwarz reduction [78] of the maximal gauged

supergravity in eight dimensions [79].

(1) SO(2, 1)⋉ R4 gauge group

We begin with the t = 3 case in which Yxy = diag(1, 1,±1). In this case,

the component Zαβ,γ is not constrained by the quadratic constraint (2.97).

Therefore, we can set it to zero, then (2.97) becomes

εxyzZ
yα,γϵγδZ

zδ,β =
1

8
YxuZ

uα,β (2.99)
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which suggests that the (2 × 2) matrices (ζx)α
β = −16εαγZ

xγ,β satisfy the

algebra

[ζx, ζy] = 2εxyuYuzζ
z. (2.100)

In terms of ζx, the embedding tensor’s component Zxα,β takes the form

Zxα,β = − 1

16
ϵαγ(ζx)γ

β. (2.101)

As pointed out in [63], there exists a real non-vanishing solution for Zxα,β

when Yxy generates a non-compact SO(2, 1) gauge group. In this case, we

use Yxy = diag(1, 1 − 1) together with the following explicit form for ζx in

terms of Pauli matrices,

ζ1 = σ1, ζ2 = σ3, ζ3 = iσ2. (2.102)

Therefore, the corresponding gauge generators are given by

XM
N =

λz(tz)xy Q
(4)β
x

02×3
1
2
λz(ζz)α

β

 (2.103)

with λz ∈ R. Note here that the SO(2, 1) subgroup is embedded diagonally

in these gauge generators. The nilpotent generators Q(4)α
x transform as 4

under SO(2, 1). Therefore, the resulting gauge group is SO(2, 1) ⋉ R4.

None of the theories in this sector possesses a critical point from its scalar

potential.

(2) SO(2)⋉ R4 gauge group

In this case, we consider t = 2 together with Yxy = diag(1, 1). Only the

non-vanishing component Zαβ,γ is allowed by the quadratic constraint. This

component can be parametrized by a (3 × 3) traceless matrix Zα
β with

Zα
α = 0,

Zαβ,γ =
1

8
εαβδZδ

γ. (2.104)

The corresponding gauge generators are then given by

XM
N =

λtxy Qx
β

03×2 λZα
β

 (2.105)
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with λ ∈ R. Here, txy = iσ2 generates the SO(2) compact subgroup while

Qx
α ∈ R generally generate six translations R6 resulting in SO(2)⋉R6 gauge

group.* It can be checked that the scalar potential vanishes identically in

this case. Furthermore, as pointed out in [63], the number of independent

translations is reduced if there exist non-trivial solutions for Q satisfying

tQ−QZ = 0. (2.106)

We are interested in the compact case with TrZ2 = −2 in which half of

the supersymmetry (N = 2) is preserved and the gauge group is reduced to

SO(2)⋉R4 ∼ CSO(2, 0, 2). Unlike in CSO(2, 0, 3) and CSO(2, 0, 2) gauged

theories separatly obtained from gaugings in 15 and 40 representations, the

Minkowski critical point in this case is half-supersymmetric.

We finish this chapter by listing a large class of admissible gauge groups

of the maximal gauged supergravity that will be examined in this work together

with their critical points in Table 2.2. Explicit forms of these critical points will be

given in Section 4.1.1 where supersymmetric DW solutions of the maximal gauged

supergravity are considered.

*By using Yxy = diag(1,−1) corresponding to tx
y = σ1, SO(1, 1) ⋉ R6 gauge group is

also accepted. However, we are not interested in this case since the non-semisimple SO(1, 1)⋉R6

admits no compact unbroken symmetry.
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YMN Zαβ,γ Zxα,β gauge group critical points SUSY

(+ + + ++) - - SO(5) 2 AdS7 4, 0

(+ + + +−) - - SO(4, 1) -

(+ + +−−) - - SO(3, 2) -

(+ + + + 0) - - CSO(4, 0, 1) -

(+ + +− 0) - - CSO(3, 1, 1) -

(+ +−− 0) - - CSO(2, 2, 1) -

(+ + + 0 0) - - CSO(3, 0, 2) -

(+ +− 0 0) - - CSO(2, 1, 2) -

(+ +− 0 0) - 1
16
εγα(Σx)γ

β SO(2, 1)⋉R4 -

(+ + 0 0 0) - - CSO(2, 0, 3) Mkw7 0

(+− 0 0 0) - - CSO(1, 1, 3) -

(+ + 0 0 0) 1
8
εαβδZδ

γ - SO(2)⋉R4 Mkw7 2

(+ 0 0 0 0 ) - - CSO(1, 0, 4) -

( 0 0 0 0 0 ) v[αwβ]γ - CSO(p, q, r) Mkw7 0
(p+q+r=4) (p=2=r)

Table 2.2: Gaugings of the maximal gauged supergravity examined in this work.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

SUPERSYMMETRIC SOLUTIONS OF MATTER-

COUPLED SO(4) GAUGED SUPERGRAVITY

In this chapter, we enlarge the study of the AdS7/CFT6 correspondence with

sixteen supercharges. In this case, the AdS7 background is dual to an N = (1, 0)

SCFT in six dimensions. In many aspects, six-dimensional SCFTs with N = (1, 0)

supersymmetry are interesting. It has been pointed out in [80] that the theories

admit non-trivial RG fixed points. Moreover, the dynamics of these field theories

also arises from string theory [81], see also a review in [82].

In the holographic study of the above N = (1, 0) SCFTs, the half-maximal

N = 2 gauged supergravity in seven dimensions coupled to vector multiplets,

reviewed in Section 2.1, is examined. Especially in the remarkable case of SO(4)

gauge group, supersymmetric AdS7 critical points with SO(4) and SO(3)diag

symmetries together with analytic RG flows interpolating between them have been

completely studied in [39]. Holographic description for twisted compactifications

of six-dimensional N = (1, 0) SCFTs on two- and three-manifolds, Σ2 and Σ3, has

been considered in [60]. The corresponding supergravity solutions take the form

of AdS5 × Σ2 and AdS4 × Σ3, respectively. These twisted solutions interpolating

between the AdS7 vacua and AdS5 or AdS4 geometries should describe RG flows

across dimensions from six-dimensional N = (1, 0) SCFTs to SCFTs in four and

three dimensions.

With these studies, supersymmetric solutions of the SO(4) gauged

supergravity seem to be complete. However, the massive self-dual three-form H(3)

does not involve in these solutions. In this chapter, the solutions studied in [39]

and [60] are respectively generalized by including a non-vanishing three-form.
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3.1 Charged Domain Wall Solutions

For the pure N = 2 gauged supergravity in seven dimensions, supersymmetric

solutions with all bosonic fields, including the three-form and vector fields, non-

vanishing have appeared recently in [62] along with their embedding in M-theory

by using the result of [83]. Without the SU(2) gauge fields, the solution has also

been uplifted to massive type IIA theory in [84] in which the solution is interpreted

as a two-dimensional conformal defect in a six-dimensional N = (1, 0) SCFT. The

principal method to include the massive self-dual three-form into their solutions

is using the AdS3 × S3-sliced DW ansatz instead of the usual flat one (2.37). In

this geometry, dyonic profiles of the three-form potential are required in order to

support non-vanishing curvature of the background.

In the following analysis, we will find supersymmetric solutions with non-

vanishing self-dual three-form, called “charged” DWs, from the matter-coupled

SO(4) gauged supergravity. The solutions could be uplifted to eleven-dimensional

supergravity by truncation ansatze constructed in [74].

3.1.1 Solutions Flowing between AdS7 Vacua

We start with supersymmetric solutions involving only the seven-dimensional

metric, the dilaton σ, the SO(3)diag singlet scalar ϕ, and the self-dual three-form

H(3). In this case, the SO(3)diag singlet corresponding to the coset representative

(2.33) is chosen in order to find charged DW solutions interpolating between the

two AdS7 vacua.

Following [62], we take the metric ansatz to be an AdS3 × S3-sliced DW

ds2 = e2U(r)ds2AdS3
+ e2V (r)dr2 + e2W (r)ds2S3 (3.1)

with the metrics on AdS3 and S3 given by

ds2AdS3
=

1

τ 2
[
(dx1)2 + cosh2 x1(dx2)2 − (dt− sinhx1dx2)2

]
, (3.2)

ds2S3 =
1

κ2
[
(dθ2)

2 + cos2 θ2(dθ3)2 + (dθ1 + sin θ2dθ3)2
]

(3.3)
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where τ and κ are constants. The seven-dimensional spacetime coordinates are

taken to be xµ = (xa, r, xm) with a = 0, 1, 2 and m = 4, 5, 6. We always use

x0 = t, while x3 = r is chosen in this section. The S3 part is described by

Hopf coordinates xm = (θ1, θ2, θ3). The corresponding flat spacetime indices are

denoted by µ̂ = (â, 3̂, m̂). In the limit τ → 0 and κ→ 0, the AdS3 and S3 become

Minkowski space Mkw3 and flat space R3, respectively.

With the vielbeins on AdS3 and S3 of the form

e0̂ =
1

τ
(dt− sinh x1dx2), (3.4)

e1̂ =
1

τ
(cos tdx1 − sin t coshx1dx2), (3.5)

e2̂ =
1

τ
(sin tdx1 + cos t coshx1dx2) (3.6)

and

e4̂ =
1

κ
(dθ1 + sin θ2dθ3), (3.7)

e5̂ =
1

κ
(cos θ1dθ2 − sin θ1 cos θ2dθ3), (3.8)

e6̂ =
1

κ
(sin θ1dθ2 + cos θ1 cos θ2dθ3), (3.9)

the corresponding spin connections take a simple form

ωâ
â
3̂ = e−VU ′, ωâb̂ĉ =

τ

2
e−Uεâb̂ĉ, (3.10)

ωm̂
m̂

3̂ = e−VW ′, ωm̂n̂p̂ =
κ

2
e−W εm̂n̂p̂ (3.11)

with ε0̂1̂2̂ = −ε0̂1̂2̂ = ε4̂5̂6̂ = ε4̂5̂6̂ = 1.

As in the usual DW solutions, the scalar fields σ and ϕ are functions of only

the radial coordinate r, while the ansatz for the three-form field is taken to be

H(3) = k(r)VolAdS3 + l(r)VolS3 . (3.12)

With the metrics given in (3.2) and (3.3), the volume forms on AdS3 and S3 are

respectively given by

VolAdS3 =
1

τ 3
coshx1dx1∧dx2∧dx3 and VolS3 =

1

κ3
cos θ2dθ1∧dθ2∧dθ3. (3.13)
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For Killing spinors, the ansatz corresponding to the unbroken SUSY takes

the form of

ϵ = Y (r)
[
cos θ(r)18 + sin θ(r)γ 0̂1̂2̂

]
ϵ0 (3.14)

with the constant spinors ϵ0 satisfying the projection condition

γ 3̂ϵ0 = ϵ0 . (3.15)

Y (r) and θ(r) are functions of r to be determined.

To find supersymmetric solutions, we consider BPS equations obtained from

SUSY transformations of fermionic fields given in (2.23) to (2.25). Using the

Killing spinors (3.14) and the projection (3.15), we find two equations from δλr = 0

conditions

P ir
3̂

cos 2θσi − 1√
2
e−

σ
2Cirσi = 0, (3.16)

P ir
3̂
σi − 1√

2
e−

σ
2Cir cos 2θσi = 0 . (3.17)

Compatibility between these equations needs cos(2θ) = ±1 leading to sin θ = 0

or cos θ = 0. Up to a redefinition of ϵ0 to ϵ̃0 = γ 0̂1̂2̂ϵ0 and a sign change in the

projection condition (3.15), the two choices give equivalent BPS equations. For

definiteness, we will choose θ = 0. This leads to a simpler form of the Killing

spinors

ϵ = Y (r)ϵ0, (3.18)

and the BPS equation for general scalars from the vector multiples

P ir
3̂
σi − 1√

2
e−

σ
2Cirσi = 0. (3.19)

This BPS equation is the same as that obtained in the usual flat DW solutions [39],

which means the three-form field does not directly couple to scalars from the vector

multiplets. Therefore, for more general cases, including more scalars invariant

under smaller residual symmetries, similar solutions can be found in the same

way as this SO(3)diag case. Using the coset representative (2.33), we can readily

compute P ir
µ and C ir for the SO(3)diag singlet ϕ. The resulting BPS equation is

given by

ϕ′ = −eV−σ
2 (g1 coshϕ+ g2 sinhϕ) coshϕ sinhϕ . (3.20)
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We now consider δχ = 0 equation. This condition involves a contribution

from the three-form field of the form Gµνρσγ
µνρσϵ. Using the relation εâb̂ĉγâb̂ĉγ 3̂ =

−εm̂n̂p̂γ
m̂n̂p̂ derived from the identity (B.6), we find

1

4!
Gµνρσγ

µνρσϵ = (l′e−V−3W − k′e−V−3U)γ 0̂1̂2̂ϵ . (3.21)

Since there is no other term contributing γ 0̂1̂2̂ matrix in the δχ variation, this term

must vanish by itself. This can be achieved by setting

k′e−3U = l′e−3W (3.22)

which leads to the following BPS equation for σ

σ′ =
2

5
eV−σ

2

[
g1 cosh3 ϕ+ g2 sinh3 ϕ− 16he

5
2
σ
]
. (3.23)

We then move on to the BPS equations from δψµ = 0 conditions. After

using the γ 3̂ projection (3.15) and the three-form ansatz (3.12) in the conditions

δψa = 0 and δψm = 0, we find two types of terms with γ 0̂1̂2̂ and 18. The former

gives the BPS equations for k and l

k′ =
τ√
2
e2U+σ+V , l′ =

κ√
2
e2W+σ+V (3.24)

while the latter gives rise to the corresponding BPS equations for U and W

U ′ = W ′ =
1

5
eV−σ

2

[
4he

5
2
σ + g1 cosh3 ϕ+ g2 sinh3 ϕ

]
. (3.25)

The last equation implies that U = W + C1 for a constant C1. In order to find

solutions interpolating between AdS7 vacua, we require that the solutions are

asymptotically locally AdS7 at which U =W . This condition requires C1 = 0.

Imposing U = W in equation (3.22), we obtain k′ = l′ or k = l + C2 for a

constant C2. This constant can be set to zero by a suitable redefinition of k and

l. We will accordingly set k = l. With all these, the BPS equations in (3.24) give

τ = κ . (3.26)

We eventually end up with the BPS equations for U and k in the form of

U ′ =
1

5
eV−σ

2

[
4he

5
2
σ + g1 cosh3 ϕ+ g2 sinh3 ϕ

]
, (3.27)

k′ =
κ√
2
e2U+σ+V . (3.28)
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It should be noted that the contribution from H(3) is canceled by the spin

connections on AdS3 and S3. Therefore, for non-vanishing H(3) and k = l, there

can be no background with Mkw3 and R3. This result entirely agrees with

the solution considered in [62] but without the scalar from vector multiplets.

Moreover, it can also be easily checked that any solutions to the above BPS

equations solve all the field equations (2.18) to (2.22).

We finally consider the equation from δψ3 = 0 condition. This gives the

BPS equation for Y (r)

Y ′ =
1

2
Y U ′ (3.29)

which can be solved by a solution Y ∼ e
U
2 .

We are now ready to solve all of the BPS equations. To find an analytic

solution, we first choose a function V (r) = σ
2
. This is equivalent to changing to a

new radial coordinate r̃ defined by the relation dr̃
dr

= e−
σ
2 in [39]. After choosing

V (r) = σ
2
, we obtain the solution for (3.20)

g1g2r =
(g1 − g2)

2

g1 + g2
ln[g2− g1− (g1+ g2)e

2ϕ]− g1 ln(1+ e2ϕ)− g2 ln(1− e2ϕ) (3.30)

in which an integration constant has been neglected.

By treating U , σ, and k as functions of ϕ, we find the solution of equations

(3.23), (3.27), and (3.28)

σ =
2

5
ln
[

g1g2
16h(g1 sinhϕ+ g2 coshϕ)

]
, (3.31)

U =
1

4
ϕ− 1

8
σ − 1

4
ln(e4ϕ − 1) +

1

4
ln[g2 − g1 − (g1 + g2)e

2ϕ], (3.32)

k = −τ
4

[
g1
g2

+
g2
g1

+ 2 coth(2ϕ)
]

(3.33)

in which irrelevant integration constants in U and k have been removed. However,

the integration constant in σ is essential and has been chosen such that the solution

for σ interpolates between the two supersymmetric AdS7 critical points, see [39]

for more detail.

As r → ±∞, the solution is asymptotic to the AdS7 critical points with

U ∼ 4hr, σ ∼ ϕ ∼ 0, G0̂1̂2̂3̂ ∼ G3̂4̂5̂6̂ ∼ 0 (3.34)
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for r → ∞, and

U ∼ 4h

(
g22

g22 − 256h2

) 2
5

r, σ ∼ 1

5
ln
[

g22
g22 − 256h2

]
,

ϕ ∼ 1

2
ln
[
g2 − 16h

g2 + 16h

]
, G0̂1̂2̂3̂ ∼ G3̂4̂5̂6̂ ∼ 0 (3.35)

for r → −∞. In these equations, we have set g1 = 16h. It should be pointed out

that the four-form field strength does not indeed vanish in these limits, as can be

seen from the BPS equation (3.28). Moreover, the existence of H(3) is needed in

order to support the AdS3 and S3 factors, as mentioned above. However, its effect

in the limit r → ±∞ is highly suppressed compared to the scalar potential. The

solution is then asymptotically locally AdS7 as r → ±∞.

3.1.2 Solutions with Known Higher Dimensional Origin

For a particular case of g2 = g1, solutions of theN = 2, SO(4) gauged supergravity

can be uplifted to eleven dimensions. Setting g2 = g1, we find the BPS equations

ϕ′ = −eV−σ
2
−ϕg1 coshϕ sinhϕ, (3.36)

σ′ =
2

5
eV−σ

2

[
g1 cosh3 ϕ− g1 sinh3 ϕ− 16he

5
2
σ
]
, (3.37)

U ′ =
1

5
eV−σ

2

[
g1 cosh3 ϕ− g1 sinh3 ϕ+ 4he

5
2
σ
]
, (3.38)

k′ =
κ√
2
e2U+σ+V . (3.39)

As seen from the ϕ′ equation, there is only one supersymmetric AdS7 background

at ϕ = 0. The solutions interpolating between this AdS7 and physically acceptable

singular geometries dual to SQFTs in the case of k = 0 have already been studied

in [74]. In this section, we will give a solution with a non-vanishing three-form.

This solution can be found by the analysis similar to the previous section. The

resulting solution is given by

g1r = 2 tanh−1 eϕ − 2 tan−1 eϕ, (3.40)

σ =
2

5
ϕ− 2

5
ln
[
1− 12C0(e

4ϕ − 1)
]
, (3.41)

U =
1

5
ϕ− 1

4
ln(e4ϕ − 1) +

1

20
ln[1− 12C0(e

4ϕ − 1)], (3.42)
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and

k =
τ

2h

(
h4

29g41

) 1
10

√
1− 12C0(e4ϕ − 1)

e4ϕ − 1
. (3.43)

It can be seen from (3.40) that ϕ → −∞ as r → 0. Hence, the solution is

singular at this point. The integration constant C0 controls the behavior near the

singularity, see [74] for more detail.

For C0 = 0, the solution near r = 0 becomes

ϕ ∼ − ln(4hr), σ ∼ −2

5
ln(4hr), k ∼ e−2ϕ ∼ (4hr)2,

ds27 = (4hr)2
(
ds2AdS3

+ ds2S3

)
+ (4hr)−

1
5dr2 (3.44)

in which we have set g1 = 16h. For C0 ̸= 0, we find

ϕ ∼ − ln(4hr), σ ∼ 6

5
ln(4hr), k ∼ constant,

ds27 = (4hr)
3
4

(
ds2AdS3

+ ds2S3

)
+ (4hr)

3
5dr2 . (3.45)

As pointed out in [74], all of these singularities are curvature singularities that are

physically acceptable since the scalar potential is bounded from above, V → −∞,

as required by the criterion in [85].*

In this case, the solution can be embedded in eleven dimensions by using the

reduction ansatz given in Appendix C.1. The nine scalars from vector multiplets

can be equivalently described by SL(4,R)/SO(4) coset due to the isomorphism

SL(4,R) ∼ SO(3, 3). For the SO(3)diag singlet scalar, we find the SL(4,R)/SO(4)

coset representative

Vα
R = diag(e

ϕ
2 , e

ϕ
2 , e

ϕ
2 , e−

3ϕ
2 ) (3.46)

which gives a symmetric (4× 4) matrix with unit determinant

T̃αβ = diag(eϕ, eϕ, eϕ, e−3ϕ) = (δpqe
ϕ, e−3ϕ). (3.47)

Here, we use µ̂p with p, q = 1, 2, 3 to denote coordinates on the internal S2 obeying

µ̂pµ̂p = 1 together with the S3 coordinates µα = (cosψµ̂p, sinψ) with α = 1, 2, 3, 4

*In [85], it has been shown that in order for a curvature singularity in geometries of the

DW to have an event horizon, the scalar potential should be bounded from above in the solution.

This criterion is a useful rule for distinguishing good singularities from bad (unphysical) ones

that break the cosmic censorship principle and cannot be applied to the holographic principle.
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satisfying µαµα = 1.

With all these and the seven-dimensional fields given previously, we obtain

the eleven-dimensional metric

dŝ211 = ∆
1
3

[
e2U

(
ds2AdS3

+ ds2S3

)
+ e2V dr2

]
+

1

32h2
∆− 2

3 e−2σ
[
cos2 ξ + e

5
2
σ sin2 ξ(e−ϕ cos2 ψ + e3ϕ sin2 ψ)

]
dξ2

+
1

128h2
∆− 2

3 e
σ
2 cos2 ξ

[
(e3ϕ cos2 ψ + e−ϕ sin2 ξ)dψ2 + e−ϕ cos2 ψdΩ2

2

]
+

1

64h2
∆− 2

3 e
σ
2 sin ξ sinψ cosψ(e−ϕ − e3ϕ)dξdψ (3.48)

with the warped factor given by

∆ = e−
σ
2 cos2 ξ(eϕ cos2 ψ + e−3ϕ sin2 ψ) + e2σ sin2 ξ, (3.49)

and the metric on a unit two-sphere can be written as dΩ2
2 = dµ̂pdµ̂p. Note that

the S2 in the internal S3 is unchanged. Its isometry corresponds to the SO(3)diag
unbroken symmetry.

The four-form field strength of eleven-dimensional supergravity is given by

F̂(4) = sin ξ
√
2k′(dr ∧ VolAdS3 + dr ∧ VolS3)

−
√
2

8h
e−2σ cos ξk′e−V (VolAdS3 + VolS3) ∧ dξ

+
1

(8h)3
∆−2U cos3 ξ cos2 ψdξ ∧ dψ ∧ ϵ(2)

+
1

(8h)3
∆−2e

3
2
σ sin ξ cos4 ξ cos2 ψ

[
eϕ cos2 ψ

(
ϕ′ − 5

2
σ′
)

−e−3ϕ sin2 ψ

(
5

2
σ′ + 3ϕ′

)]
dr ∧ dψ ∧ ϵ(2)

− 1

(8h)3
∆−2 cos2 ξ cos3 ψ sinψ

[[
4e−2ϕ−σ cos3 ξ + e

3
2
σ(eϕ + 3e−3ϕ)

]
ϕ′

−5

2
sin2 ξe

3
2
σ(eϕ − e−3ϕ)σ′

]
dr ∧ dξ ∧ ϵ(2) (3.50)

where ϵ(2) = 1
2
εpqsµ̂

pdµ̂q ∧ dµ̂s is the volume form on S2. In this equation, we have

also used εpqs4 = εpqs. The scalar function U is given by

U = sin2 ξ(e4σ − 3eϕ+
3
2
σ − e

3
2
σ−3ϕ)− cos2 ξ

[
e

3
2
σ(eϕ cos2 ψ + e−3ϕ sin2 ψ)

+ e−σ(e2ϕ cos2 ψ + 3e2ϕ sin2 ψ + e−2ϕ cos2 ψ − e−6ϕ sin2 ψ)
]
. (3.51)
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Similar to the discussion in [62], we expect the uplifted solution to express

eleven-dimensional configurations involving M2-M5-brane bound states due to the

dyonic profile of H(3). It is also interesting to consider the (00)-component of the

eleven-dimensional metric

ĝ00 = − 1

κ2
∆

1
3 e2U(r) . (3.52)

Near the singularity at r = 0, we find that

ĝ00 ∼ (4hr)
26
15 → 0 and ĝ00 ∼ (4hr)

13
60 → 0 (3.53)

for C0 = 0 and C0 ̸= 0, respectively. According to the criterion of [86], these

singularities are physical in agreement with the seven-dimensional results obtained

from the criterion of [85]. We then expect that the solution holographically

describes a two-dimensional conformal defect in a six-dimensional N = (1, 0)

SCFT with known M-theory origin.

3.1.3 Domain Walls with Three-Form Potential and Vector Fields

In this section, we consider more general solutions with non-vanishing vector fields.

We first determine an appropriate ansatz for the SO(4) ∼ SO(3)× SO(3) gauge

fields. As in [62], we will take this ansatz in the form of

AI
(1) = AI

i dθi (3.54)

in which the components AI
i will be functions of only the radial coordinate r.

These components are given by

Ai
j =

e−Wκ

2
A(r)δij and Ar

i =
e−Wκ

2
B(r)δri . (3.55)

It is now straightforward to compute the field strength tensors F i
(2) = LI

iF I
(2) and

F r
(2) = LI

rF I
(2). Non-vanishing components of these tensors are given by

F i
3j = f δij, F i

jk = g εijk, F r
3i = f̄ δri , F r

jk = ḡ δri εijk (3.56)
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where

f = e−V−W κ

2
[A′ coshϕ+B′ sinhϕ] , (3.57)

f̄ = e−V−W κ

2
[A′ sinhϕ+B′ coshϕ] , (3.58)

g = e−2W κ2

4
[A(2− g1A) coshϕ+B(2− g2B) sinhϕ] , (3.59)

ḡ = e−2W κ2

4
[A(2− g1A) sinhϕ+B(2− g2B) coshϕ] . (3.60)

To implement SO(3)diag, we set

g2B = g1A . (3.61)

We still use the ansatz for the Killing spinors (3.14) together with the

projection (3.15). Besides, the following additional projectors are needed due to

the extra contributions from non-vanishing gauge fields,

γ 4̂5̂ϵ = −iσ3ϵ and γ 5̂6̂ϵ = −iσ1ϵ. (3.62)

Therefore, the BPS solutions (if exist) will preserve only two supercharges or
1
8
-BPS after imposing the projection (3.91).

With all these, we can now set up the BPS equations. By the relation (3.61),

the composite connection along S3 takes a very simple form

Qijk = ωi+3,j+3,k+3 (3.63)

in which ωi+3,j+3,k+3 is the spin connection given in (3.11). Using the same

procedure as in the previous section, we find the following set of BPS equations

U ′ =
eV

30 cos 2θ
[(
12he2σ + e−

σ
2C

)
(3 cos 4θ − 1) + 9e

σ
2 g(cos 4θ − 3)

+12e−Uτ sin 2θ + 9e−Wκ(g1A− 1) sin 4θ
]
, (3.64)

W ′ = − eV

15 cos 2θ
[(
12he2σ + e−

σ
2C

)
(cos 4θ − 2) + 3e

σ
2 g(cos 4θ − 8)

+9e−Uτ sin 2θ + 3e−Wκ(g1A− 1) sin 4θ
]
, (3.65)

Y ′ =
eV Y

60 cos 2θ
[(
12he2σ + e−

σ
2C

)
(3 cos 4θ − 1) + 9e

σ
2 g(cos 4θ − 3)

+12e−Uτ sin 2θ + 9e−Wκ(g1A− 1) sin 4θ
]
, (3.66)
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θ′ =
eV

2

[
−
(
4he2σ + e−

σ
2C

)
sin 2θ − 3e

σ
2 g sin 2θ + 3e−Uτ

+3e−Wκ(g1A− 1) cos 2θ
]
, (3.67)

k′ =
e3U+V eσ

3
√
2

[
2
[
12he2σ + e−

σ
2C

]
tan 2θ + 18e

σ
2 g tan 2θ

−6e−Uτ sec 2θ − 9e−Wκ(g1A− 1)
]
, (3.68)

l′ =
1√
2
e3W+V eσ

[
e−Uτ − 8he2σ sin 2θ

]
, (3.69)

σ′ =
eV

15 cos 2θ
[
Ce−

σ
2 (3 cos 4θ − 1)− 24he2σ(cos 4θ + 3) + 12e−Uτ sin 2θ

+9e
σ
2 g(cos 4θ − 3) + 9e−Wκ(g1A− 1) sin 4θ

]
, (3.70)

ϕ′ = −eV
[
e−

σ
2 C + e

σ
2 ḡ

]
cos 2θ, (3.71)

A′ = − 2g2e
V+W−σ

2

3κ(g1 sinhϕ− g2 coshϕ)
[
Ce−

σ
2 sin 2θ + 3e

σ
2 g sin 2θ

−3
[
e−Uτ + e−Wκ(g1A− 1) cos 2θ

]]
(3.72)

where the quantities C and C are defined by

C = 3
(
g1 cosh3 ϕ+ g2 sinh3 ϕ

)
, (3.73)

C =
1

2
sinh(2ϕ) (g1 coshϕ+ g2 sinhϕ) . (3.74)

In addition to these BPS equations, there also exists an algebraic constraint

arising from the fact that the SUSY transformations from the gravity multiplet

(δψµ and δχ) and those from the vector multiplets (δλr) lead to different BPS

equations for A. Consistency between these two equations results in a constraint

0 = e
σ
2 sin 2θ

[(
e−σ

3
C + g

)
+
g1 sinhϕ+ g2 coshϕ
g1 coshϕ+ g2 sinhϕ

(
e−σC + ḡ

)]
+e−Wκ(1− g1A) cos 2θ − e−Uτ . (3.75)

This means supersymmetric solutions must satisfy the above BPS equations as well

as the constraint (3.75) in order for the Killing spinors to exist. We have explicitly

verified that the BPS equations (3.64) to (3.72), together with the constraint

(3.75), imply all of the field equations.

However, it turns out that the constraint (3.75) is not compatible with the

BPS equations (3.64) to (3.72). This can be readily checked by differentiating

equation (3.75) and substituting the BPS equations (3.64) to (3.72). The result
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is given by

0 = e−2U−σ
2 k′g − 2eU+σ

2 (g22 − g21)ϕ
′f

(g1 coshϕ+ g2 sinhϕ)(g1 sinhϕ+ g2 coshϕ) . (3.76)

This equation implies that ϕ and k cannot flow independently but relate to each

other. Note that this relation is trivially satisfied for A = 0 in which f = g = 0.

This case has already been considered in the previous section. Another possibility

is to set k′ = 0 and g2 = g1, but this also leads to l′ = 0. The three-form

field then has vanishing field strength. In this case, the gauge fields are either

zero or constant. The former is the usual flat DW solutions in [39], while the

latter has already been studied in [60] in the context of twisted compactifications.

Therefore, we conclude that there are no supersymmetric solutions with non-

vanishing SO(3)diag gauge fields and non-trivial three-form field for matter-coupled

SO(4) gauged supergravity in seven dimensions.

3.2 Twisted Solutions with Three-Form Potential

In this section, we are interested in supersymmetric AdS3×M4 solutions. We will

consider a four-manifoldM4 with constant curvature of two types, a product of two

Riemann surfaces Σ2 × Σ2 and a Kahler four-cycle K4. In general, non-vanishing

spin connections on these curved internal spaces are the significant impediments

breaking all SUSY. This problem can be seen explicitly by looking at the covariant

derivative of the SUSY parameter (2.26) in the SUSY transformations of gravitini

(2.23) for the component along the internal space

Dαϵ = ∂αϵ+
1

4
ωα

ν̂ρ̂γν̂ρ̂ϵ+
1

2
√
2
Qi

ασ
iϵ (3.77)

in which α is a spacetime index on M4. In the second term, the spin connections

are generally non-vanishing and depending on the coordinates of the internal space.

Without gauge fields, only ϵ = 0 can solve BPS equations in this case since no

other terms depend on the M4 coordinates. To preserve some amount of SUSY, we

need to include the third term on the right-hand side of (3.77) by turning on some

non-vanishing gauge fields proportional to the spin connections. Then, additional
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projection conditions relating σiϵ to γ ν̂ρ̂ϵ are needed in order to twist the Killing

spinor in the way that the contributions from the curvature of the internal space

orient along the direction identified by the gauge fields. With some particular

conditions on magnetic charges of the gauge fields called twist conditions, the

second and third terms in (3.77) can be arranged to eliminate each other.

In the first case, we perform the twists by using SO(2)R ⊂ SO(3)R gauge

fields. The resulting supersymmetric twisted solutions will have SO(2) × SO(2),

SO(2)diag, and SO(2)R symmetries. For a Kahler four-cycle, sinceK4 has a U(2) ∼

SU(2) × U(1) spin connection, the twists can be performed by turning on either

SO(2)R ⊂ SO(3)R or SO(3)R gauge fields to cancel the U(1) ∼ SO(2) or the

SU(2) ∼ SO(3) parts of the spin connection, respectively. Nevertheless, a twist

by canceling the full U(2) spin connection is impossible since the SO(3)R R-

symmetry of the N = 2, SO(4) gauged supergravity is not large enough, i.e.

U(2) ̸⊂ SO(4). It should also be noted that these gauge fields always give a non-

vanishing F I
(2) ∧ F I

(2) term in the field equation of the three-form field, as can be

seen from (2.18). This term is the main reason why non-vanishing H(3) is the key

to obtain AdS3 ×M4 solutions.

For a particular case with equal SO(3) coupling constants in the SO(4)

gauge group, the resulting twisted solutions can be embedded in eleven-dimensional

supergravity via a truncation on S4 [74]. As a result, these solutions will provide

several new two-dimensional SCFTs with known M-theory dual.

3.2.1 Supersymmetric AdS3 × Σ2 × Σ2 Solutions

We first look for supersymmetric solutions of the form AdS3 ×Σ2
k1
×Σ2

k2
with Σ2

ki

for i = 1, 2 being two-dimensional Riemann surfaces. The constants ki describe

the curvature of Σ2
ki

with values ki = 1, 0,−1 corresponding to a two-dimensional

sphere S2, a flat space R2, or a hyperbolic space H2, respectively.

We choose the following ansatz for the seven-dimensional metric

ds27 = e2U(r)dx21,1 + dr2 + e2V (r)ds2Σ2
k1

+ e2W (r)ds2Σ2
k2

(3.78)
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where dx21,1 = ηabdx
adxb with a, b = 0, 1 is the flat metric on the two-dimensional

spacetime. The explicit form of the metric on Σ2
ki

can be written as

ds2Σ2
ki

= dθ2i + fki(θi)
2dφ2

i . (3.79)

The functions fki(θi) are defined as

fki(θi) =


sin θi, ki = 1

θi, ki = 0

sinh θi, ki = −1

. (3.80)

By using an obvious choice of vielbein

eâ = eUdxa, e2̂ = dr, e3̂ = eV dθ1,

e4̂ = eV fk1(θ1)dφ1, e5̂ = eWdθ2, e6̂ = eWfk2(θ2)dφ2, (3.81)

we can compute non-vanishing components of the spin connection of the form

ωâ
2̂ = U ′eâ, ω3̂

2̂ = V ′e3̂, ω4̂
2̂ = V ′e4̂, ω5̂

2̂ =W ′e5̂,

ω6̂
2̂ = W ′e6̂, ω4̂

3̂ = e−V f
′
k1
(θ1)

fk1(θ1)
e4̂, ω6̂

5̂ = e−W f ′
k2
(θ2)

fk2(θ2)
e6̂ . (3.82)

Apart from r-derivative, we also use primes to denote derivatives of a function

with respect to its explicit argument, for example, f ′
ki
(θi) = dfki(θi)/dθi.

To find supersymmetric AdS3 × Σ2
k1

× Σ2
k2

solutions with non-vanishing

Killing spinors, we perform a twist using gauge fields along Σ2
k1

× Σ2
k2

. In the

following analyses, we will examine various possible twists with different unbroken

symmetries.

3.2.1.1 AdS3 Vacua with SO(2) × SO(2) Symmetry

For the solutions with SO(2) × SO(2) symmetry, we turn on the following

SO(2)× SO(2) gauge fields on Σ2
k1
× Σ2

k2
to perform the twist

A3
(1) = −p11

k1
e−V f

′
k1
(θ1)

fk1(θ1)
e4̂ − p12

k2
e−W f ′

k2
(θ2)

fk2(θ2)
e6̂, (3.83)

A6
(1) = −p21

k1
e−V f

′
k1
(θ1)

fk1(θ1)
e4̂ − p22

k2
e−W f ′

k2
(θ2)

fk2(θ2)
e6̂ (3.84)
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where pij are constant magnetic charges.

There is only one SO(2)×SO(2) singlet scalar from SO(3, 3)/SO(3)×SO(3)

coset corresponding to the non-compact generator Y33. We then parametrize the

coset representative by

L = eϕY33 (3.85)

with ϕ depending only on the radial coordinate. By computing the composite

connection Qij
µ along Σ2

k1
× Σ2

k2
, we can cancel the spin connection (3.82) by

imposing the twist conditions

g1p11 = k1 and g1p12 = k2 (3.86)

together with the following projection conditions on the Killing spinors (2.42)

γ 3̂4̂ϵ = γ 5̂6̂ϵ = iσ3ϵ . (3.87)

It should be noted that only the gauge field A3
(1) enters the twist procedure since

A3
(1) is the gauge field of SO(2)R ⊂ SO(3)R under which SUSY parameters and

the gravitini are charged.

From the SO(2) × SO(2) gauge fields given in (3.83) and (3.84), we can

compute the corresponding two-form field strengths of the form

F 3
(2) = e−2V p11e

3̂ ∧ e4̂ + e−2Wp12e
5̂ ∧ e6̂, (3.88)

F 6
(2) = e−2V p21e

3̂ ∧ e4̂ + e−2Wp22e
5̂ ∧ e6̂ . (3.89)

We also need to turn on the three-form field associated with the four-form field

strength

G(4) =
1

8
√
2h
e−2(V+W )(p21p22 − p11p12)e

3̂ ∧ e4̂ ∧ e5̂ ∧ e6̂. (3.90)

This is very similar to the solutions of maximal SO(5) gauged supergravity

considered in [58].

By imposing an additional projector

γ 2̂ϵ = ϵ (3.91)
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required by δχ = 0 and δλr = 0 conditions, we find the following BPS equations

U ′ =
1

5
e

σ
2

[(
g1e

−σ coshϕ+ 4he
3σ
2

)
+

3

8h
e−

3σ
2
−2(V+W )(p11p12 − p21p22)

− e−2V (p11 coshϕ+ p21 sinhϕ)− e−2W (p12 coshϕ+ p22 sinhϕ)
]
, (3.92)

V ′ =
1

5
e

σ
2

[(
g1e

−σ coshϕ+ 4he
3σ
2

)
− 1

4h
e−

3σ
2
−2(V+W )(p11p12 − p21p22)

+ 4e−2V (p11 coshϕ+ p21 sinhϕ)− e−2W (p12 coshϕ+ p22 sinhϕ)
]
, (3.93)

W ′ =
1

5
e

σ
2

[(
g1e

−σ coshϕ+ 4he
3σ
2

)
− 1

4h
e−

3σ
2
−2(V+W )(p11p12 − p21p22)

− e−2V (p11 coshϕ+ p21 sinhϕ) + 4e−2W (p12 coshϕ+ p22 sinhϕ)
]
, (3.94)

σ′ =
2

5
e

σ
2

[(
g1e

−σ coshϕ− 16he
3σ
2

)
− 1

4h
e−

3σ
2
−2(V+W )(p11p12 − p21p22)

− e−2V (p11 coshϕ+ p21 sinhϕ)− e−2W (p12 coshϕ+ p22 sinhϕ)
]
, (3.95)

ϕ′ = −e
σ
2

[
e−2V (p11 sinhϕ+ p21 coshϕ) + e−2W (p12 sinhϕ+ p22 coshϕ)

]
−g1e−

σ
2 sinhϕ . (3.96)

It can be checked that these BPS equations satisfy all the field equations. At large

r, we have U ∼ V ∼ W ∼ r and ϕ ∼ σ ∼ e
− 4r

LAdS7 with the AdS7 radius given

by LAdS7 = 1
4h

, and the terms involving gauge fields and the three-form field are

highly suppressed. In this limit, we find the SO(4) AdS7 critical point from the

BPS equations. The solutions are then asymptotically locally AdS7 as r → ∞.

We now look for supersymmetric AdS3 solutions satisfying V ′ =W ′ = σ′ =

ϕ′ = 0 and U ′ = 1
LAdS3

as r → −∞. We find a class of AdS3 fixed point solutions

e
5
2
σ =

g1Ze
ϕ

4h(p21(p12 − 3p22) + p11(p12 + p22))
, (3.97)

eϕ =

√
p21(p12 − 3p22) + p11(p12 + p22)

p11(p12 − p22)− p21(p12 + 3p22)
, (3.98)

e2V =
p21 − p11 − (p11 + p21)e

2ϕ

8heϕ+
3
2
σ

, (3.99)

e2W =
p22 − p12 − (p12 + p22)e

2ϕ

8heϕ+
3
2
σ

, (3.100)

LAdS3 =
8heσ+2V+2W

p11p12 − p21p22 + 32h2e2V+2W+3σ
(3.101)
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where

Z =
(p12(p

2
11 + p221)− 2p11p21p22)(−2p12p21p22 + p11(p

2
12 + p222))

(p211(3p
2
12 + p222) + p221(p

2
12 + 3p222)− 8p11p12p21p22)

. (3.102)

To achieve real solutions, e2V > 0, e2W > 0, eσ > 0, and eϕ > 0 are required.

These conditions are possible if and only if one of the two ki is equal to −1.

Besides, there are only two parameters p21 and p22 characterizing the solutions

since the charges p11 and p12 are fixed by the twist conditions (3.86). Regions

in the parameter space (p21, p22) for good AdS3 vacua are shown in Figure 3.1

for g1 = 16h and h = 1. It should be noted that these regions are the same

as those given in [58] for supersymmetric AdS3 × Σ2 × Σ2 solutions of maximal

seven-dimensional SO(5) gauged supergravity.

-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

Figure 3.1: Regions (blue) in the parameter space (p21, p22) where good AdS3

vacua exist for g1 = 16h and h = 1. From left to right, these are the cases of

(k1 = k2 = −1), (k1 = −1, k2 = 0), and (k1 = −k2 = −1), respectively. The

orange regions correspond to exchanging k1 and k2.

These AdS3 fixed points preserve four supercharges due to the two

projectors in (3.87) and correspond to N = (2, 0) SCFTs in two dimensions with

SO(2) × SO(2) symmetry. On the other hand, the entire RG flow solutions,

interpolating between the SO(4) AdS7 critical point and these AdS3 geometries,

preserve only two supercharges due to the extra projector (3.91). Examples of

these RG flows from the AdS7 critical point to AdS3×H2×H2, AdS3×H2×R2,

and AdS3 ×H2 ×S2 fixed points with g1 = 16h, h = 1, and different values of p21
and p22 are shown in Figures 3.2, 3.3, and 3.4, respectively.
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(a) V solution
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W (r)

(b) W solution
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(c) σ solution
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(d) ϕ solution

Figure 3.2: Numerical solutions from the SO(4) AdS7 vacuum in UV as r → 3

to AdS3 × H2 × H2 fixed points in IR as r → −3 for g1 = 16h, h = 1, and

(p21, p22) = ( 1
12
,−1

2
), ( 1

12
,−1

7
), (1

3
,−1

7
), (−1

4
, 1
3
) (blue, yellow, green, and red).

As seen in the above solutions, the coupling constant g2 does not appear so

that the solutions can be uplifted to eleven dimensions by setting g2 = g1. Since

the solutions involve all seven-dimensional fields, the eleven-dimensional four-form

field strength is very complicated. For brevity, we omit an explicit form of the

four-form and give only the uplifted eleven-dimensional metric.

Using the S3 coordinates

µα = (cos ψ̃ cos α̃, cos ψ̃ sin α̃, sin ψ̃ cos β̃, sin ψ̃ sin β̃), (3.103)

and the SL(4,R)/SO(4) matrix of the form

T̃−1
αβ = diag(eϕ, eϕ, e−ϕ, e−ϕ), (3.104)
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(a) V solution
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(b) W solution
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(c) σ solution
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(d) ϕ solution

Figure 3.3: Numerical solutions from the SO(4) AdS7 vacuum in UV as r → 4

to AdS3 × H2 × R2 fixed points in IR as r → −4 for g1 = 16h, h = 1, and

(p21, p22) = ( 1
16
,−1

4
), (1

8
,− 1

10
), (1

4
,− 1

10
), (−1

2
, 1
3
) (blue, yellow, green, and red).

we find the eleven-dimensional metric

dŝ211 = ∆
1
3

[
e2Udx21,1 + dr2 + e2V ds2Σ2

k1

+ e2Wds2Σ2
k2

]
+

2

g2
∆− 2

3

[
e−2σ cos2 ξ + e

σ
2 sin2 ξ(eϕ cos2 ψ̃ + e−ϕ sin2 ψ̃)

]
dξ2

+
1

2g2
∆− 2

3 e
σ
2 cos2 ξ

[
(eϕ sin2 ψ̃ + e−ϕ cos2 ψ̃)dψ̃2

+eϕ cos2 ψ̃(dα̃− gA12)2 + e−ϕ sin2 ψ̃(dβ̃ − gA34)2
]

(3.105)

with A12 = A3
(1) + A6

(1), A34 = A3
(1) − A6

(1), and

∆ = e2σ sin2 ξ + e−
σ
2 cos2 ξ

(
e−ϕ cos2 ψ̃ + eϕ sin2 ψ̃

)
. (3.106)

From this metric, we notice that the SO(2)×SO(2) residual symmetry corresponds

to the isometry along the α̃ and β̃ directions.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51

-4 -2 2 4
r

5

10

15

20

25

V (r)

(a) V solution
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(b) W solution
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Figure 3.4: Numerical solutions from the SO(4) AdS7 vacuum in UV as r → 4

to AdS3 × H2 × S2 fixed points in IR as r → −4 for g1 = 16h, h = 1, and

(p21, p22) = ( 1
14
,−2), (1

9
,−5), (1

6
,−2), (−1

3
, 9) (blue, yellow, green, and red).

3.2.1.2 AdS3 Vacua with SO(2)diag Symmetry

We now consider AdS3 solutions with SO(2)diag ⊂ SO(2) × SO(2) ⊂ SO(3) ×

SO(3) symmetry. In this case, there are three scalars invariant under SO(2)diag
corresponding to non-compact generators

Ŷ1 = Y11 + Y22, Ŷ2 = Y33, Ŷ3 = Y12 − Y21 . (3.107)

The coset representative takes the form of

L = eϕ1Ŷ1eϕ2Ŷ2eϕ3Ŷ3 . (3.108)
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The ansatz for SO(2)diag gauge fields is obtained from the SO(2)×SO(2) ones in

(3.83) and (3.84) by setting g2A6 = g1A
3 or, equivalently,

g2p21 = g1p11 and g2p22 = g1p12 . (3.109)

We also simplify the notation by redefining the magnetic charges p1 = p11 and

p2 = p12. In this case, the four-form field strength is given by

G(4) =
p1p2

8
√
2hg22

e−2(V+W )(g21 − g22)e
3̂ ∧ e4̂ ∧ e5̂ ∧ e6̂, (3.110)

and the twist conditions read

g1p1 = k1 and g1p2 = k2 . (3.111)

Using the projection conditions (3.87) and (3.91), we find the corresponding

BPS equations. It turns out that compatibility between these BPS equations and

the field equations requires either ϕ1 = 0 or ϕ3 = 0. Furthermore, setting ϕ3 = 0

gives the same BPS equations as setting ϕ1 = 0 with ϕ3 and ϕ1 interchanged.

We will then consider only the ϕ3 = 0 case with the following BPS equations

U ′ =
1

10
e

σ
2

[
cosh 2ϕ1(g1e

−σ coshϕ2 + g2e
−σ sinhϕ2) + 8he

3σ
2

−2p1e
−2V

(
coshϕ2 +

g1
g2

sinhϕ2

)
− 2p2e

−2W

(
coshϕ2 +

g1
g2

sinhϕ2

)
+g1e

−σ coshϕ2 − g2e
−σ sinhϕ2 −

3

4hg22
e−

3σ
2
−2(V+W )(g21 − g22)p1p2

]
, (3.112)

V ′ =
1

10
e

σ
2

[
cosh 2ϕ1(g1e

−σ coshϕ2 + g2e
−σ sinhϕ2) + 8he

3σ
2

+8p1e
−2V

(
coshϕ2 +

g1
g2

sinhϕ2

)
− 2p2e

−2W

(
coshϕ2 +

g1
g2

sinhϕ2

)
+g1e

−σ coshϕ2 − g2e
−σ sinhϕ2 +

1

2hg22
e−

3σ
2
−2(V+W )(g21 − g22)p1p2

]
, (3.113)

W ′ =
1

10
e

σ
2

[
cosh 2ϕ1(g1e

−σ coshϕ2 + g2e
−σ sinhϕ2) + 8he

3σ
2

−2p1e
−2V

(
coshϕ2 +

g1
g2

sinhϕ2

)
+ 8p2e

−2W

(
coshϕ2 +

g1
g2

sinhϕ2

)
+g1e

−σ coshϕ2 − g2e
−σ sinhϕ2 +

1

2hg22
e−

3σ
2
−2(V+W )(g21 − g22)p1p2

]
, (3.114)
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σ′ =
1

5
e

σ
2

[
cosh 2ϕ1(g1e

−σ coshϕ2 + g2e
−σ sinhϕ2)− 32he

3σ
2

−2p1e
−2V

(
coshϕ2 +

g1
g2

sinhϕ2

)
− 2p2e

−2W

(
coshϕ2 +

g1
g2

sinhϕ2

)
+g1e

−σ coshϕ2 − g2e
−σ sinhϕ2 +

1

2hg22
e−

3σ
2
−2(V+W )(g21 − g22)p1p2

]
, (3.115)

ϕ′
1 = −1

2
e−

σ
2 sinh 2ϕ1(g1 coshϕ2 + g2 sinhϕ2), (3.116)

ϕ′
2 = e

σ
2

[
e−σ

2
[g2 coshϕ2 − g1 sinhϕ2 − cosh 2ϕ1(g2 coshϕ2 + g1 sinhϕ2)]

−p1e−2V

(
sinhϕ2 +

g1
g2

coshϕ2

)
− p2e

−2W

(
sinhϕ2 +

g1
g2

coshϕ2

)]
. (3.117)

In this case, the BPS solutions are asymptotic to the two supersymmetric AdS7

vacua with SO(4) and SO(3)diag symmetries at large r.

There exist only AdS3 × H2 × H2 fixed point solutions preserving four

supercharges and corresponding to N = (2, 0) SCFTs with SO(2)diag symmetry in

two dimensions. We begin with a class of AdS3 fixed points for ϕ1 = 0

σ =
2

5
ϕ2 +

2

5
ln
[

g1g
2
2

12h(g22 + 2g1g2 − 3g21)

]
, (3.118)

ϕ2 =
1

2
ln
[
3g21 − 2g1g2 − g22
3g21 + 2g1g2 − g22

]
, (3.119)

V = W =
1

10
ln
[
27(g1 − g2)

4(g1 + g2)
4

16h2g81g
6
2(g

2
2 − 9g21)

]
, (3.120)

LAdS3 =

[
8(9g41g2 − 10g21g

3
2 + g52)

2

3hg41(g
2
2 − 3g21)

5

] 1
5

(3.121)

with g2 > 3g1 or g2 < −3g1 for AdS3 vacua to exist. An example of RG flows

from the SO(4) AdS7 critical point to this fixed point for g2 = 4g1, g1 = 16h, and

h = 1 is shown in Figure 3.5 with ϕ1 set to zero along the flow.

Another class of AdS3 ×H2 ×H2 solutions with ϕ1 ̸= 0 is given by

σ =
2

5
ln
[

g1g2

12h
√
(g2 + g1)(g2 − g1)

]
, (3.122)

ϕ1 = ϕ2 =
1

2
ln
[
g2 − g1
g2 + g1

]
,

V = W =
1

10
ln
[
27(g21 − g22)

4

16h2g81g
8
2

]
, (3.123)

LAdS3 =

[
8(g21 − g22)

2

3hg41g
4
2

] 1
5

(3.124)
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Figure 3.5: A numerical solution from the SO(4) AdS7 vacuum in UV as r → 4

to an AdS3 ×H2 ×H2 fixed point with SO(2)diag symmetry in IR as r → −4 for

g2 = 4g1, g1 = 16h, h = 1, and ϕ1 = 0 along the flow.

with the condition g2 > g1 for good AdS3 vacua. Examples of RG flows from the

SO(4) and SO(3)diag AdS7 critical points to this AdS3 ×H2 ×H2 fixed point are

respectively shown in Figures 3.6 and 3.7 for g2 = 4g1, g1 = 16h, and h = 1.

Moreover, with a suitable set of boundary conditions, there also exists an

RG flow from the SO(4) AdS7 to the SO(3)diag AdS7 critical points and then

to this AdS3 × H2 × H2 fixed point as shown in Figure 3.8. Unfortunately, all

AdS3 vacua and RG flows in this case with g1 ̸= g2 cannot be uplifted to eleven

dimensions.
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Figure 3.6: A numerical solution from the SO(4) AdS7 vacuum in UV as r → 25

to an AdS3 ×H2 ×H2 fixed point with SO(2)diag symmetry in IR as r → −30 for

g2 = 4g1, g1 = 16h, and h = 1.
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Figure 3.7: A numerical solution from the SO(3)diag AdS7 vacuum in UV as r → 10

to an AdS3 ×H2 ×H2 fixed point with SO(2)diag symmetry in IR as r → −4 for

g2 = 4g1, g1 = 16h, and h = 1.
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Figure 3.8: A numerical solution from the SO(4) AdS7 vacuum in UV as r → 2

to the SO(3)diag AdS7 critical point and then to an AdS3 ×H2 ×H2 fixed point

with SO(2)diag symmetry in IR as r → −5 for g2 = 4g1, g1 = 16h, and h = 1.

3.2.1.3 AdS3 Vacua with SO(2)R Symmetry

We now move on to AdS3 solutions with SO(2)R ⊂ SO(3)R symmetry. There are

three SO(2)R singlet scalars corresponding to non-compact generators Y31, Y32,

and Y33. Therefore, the coset representative can be written as

L = eϕ1Y31eϕ2Y32eϕ3Y33 . (3.125)

To perform the twist, we use the following SO(2)R gauge field

A3
(1) = −p1

k1
e−V f

′
k1
(θ1)

fk1(θ1)
e4̂ − p2

k2
e−W f ′

k2
(θ2)

fk2(θ2)
e6̂. (3.126)

The four-form field strength in this case is given by

G(4) = − 1

8
√
2h
e−2(V+W )p1p2e

3̂ ∧ e4̂ ∧ e5̂ ∧ e6̂ . (3.127)

We can now repeat the same procedure to find the corresponding BPS

equations. In this case, it turns out that compatibility between the BPS equations

and the field equations allows only one of the ϕi, i = 1, 2, 3, to be non-vanishing.
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We have verified that any of the ϕi leads to the same set of BPS equations. We

will choose ϕ1 = ϕ2 = 0 and ϕ3 ̸= 0 for definiteness so that the BPS equations are

U ′ =
1

5
e

σ
2

[
g1e

−σ + 4he
3σ
2 − e−2V p1 − e−2Wp2 +

3

8h
e−2(V+W )p1p2

]
, (3.128)

V ′ =
1

5
e

σ
2

[
g1e

−σ + 4he
3σ
2 + 4e−2V p1 − e−2Wp2 −

1

4h
e−2(V+W )p1p2

]
, (3.129)

W ′ =
1

5
e

σ
2

[
g1e

−σ + 4he
3σ
2 − e−2V p1 + 4e−2Wp2 −

1

4h
e−2(V+W )p1p2

]
, (3.130)

σ′ =
2

5
e

σ
2

[
g1e

−σ − 16he
3σ
2 − e−2V p1 − e−2Wp2 −

1

4h
e−2(V+W )p1p2

]
, (3.131)

ϕ′
3 = −e−

σ
2

[
g1 + eσ(e−2V p1 + e−2Wp2)

]
sinhϕ3 . (3.132)

From these BPS equations, there exist AdS3 fixed points only for k1 = k2 = −1.

The resulting AdS3 ×H2 ×H2 solution is given by

ϕ3 = 0, σ =
2

5
ln
[ g1
12h

]
,

V = W =
1

10
ln
[

27

16h2g81

]
, LAdS3 =

[
8

3hg41

] 1
5

. (3.133)

This solution preserves four supercharges and corresponds to a two-dimensional

N = (2, 0) SCFT with SO(2)R symmetry. An example of RG flow solutions from

the SO(4) AdS7 vacuum to this fixed point for g1 = 16h, h = 1, and ϕ3 = 0 is

shown in Figure 3.9. Note that this AdS3 ×H2 ×H2 fixed point and the RG flow

are also solutions of pure N = 2 gauged supergravity with SO(3) gauge group.
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Figure 3.9: A numerical solution from the SO(4) AdS7 vacuum in UV as r → 4

to an AdS3 × H2 × H2 fixed point with SO(2)R symmetry in IR as r → −4 for

g1 = 16h, h = 1, and ϕ3 = 0 along the flow.
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As in the case of AdS3 solutions with SO(2)× SO(2) symmetry, the above

solution can be uplifted to eleven dimensions by setting g2 = g1. The eleven-

dimensional metric can be obtained from (3.105) by setting ϕ = 0 and A6
(1) = 0,

or equivalently A12 = A34 ≡ A3. The result is given by

dŝ211 = ∆
1
3

[
e2Udx21,1 + dr2 + e2V ds2Σ2

k1

+ e2Wds2Σ2
k2

]
+

2

g2
∆− 2

3

(
e−2σ cos2 ξ + e

σ
2 sin2 ξ

)
dξ2 +

1

2g2
∆− 2

3 e
σ
2 cos2 ξ

[
dψ2

+ cos2 ψ(dα− gA3)2 + sin2 ψ(dβ − gA3)2
]

(3.134)

with

∆ = e2σ sin2 ξ + e−
σ
2 cos2 ξ . (3.135)

Note also that the seven-dimensional solution in this case has recently been

discussed in [87] in the context of massive type IIA theory.

3.2.2 Supersymmetric AdS3 × K4 Solutions

We repeat the same analysis forM4 being a Kahler four-cycle and look for solutions

of the form AdS3 × K4
k . For the constant k = 1, 0,−1, the Kahler four-cycle

becomes a two-dimensional complex space CP 2, a four-dimensional flat space R4,

or a two-dimensional complex hyperbolic space CH2, respectively. Apart from an

SO(2)R gauge field used in the previous case, supersymmetric AdS3×K4 solutions

can be obtained from the twist using the full SO(3)R gauge fields.

3.2.2.1 AdS3 Vacua with SO(2) × SO(2) Symmetry

As in Σ2×Σ2 case, we begin with AdS3 vacua with SO(2)×SO(2) symmetry and

take the following ansatz for the seven-dimensional metric

ds27 = e2U(r)dx21,1 + dr2 + e2V (r)ds2K4
k
. (3.136)

The metric on the Kahler four-cycle K4
k is given by

ds2K4
k
=

dφ2

f̃ 2
k (φ)

+
φ2

f̃k(φ)
(τ 21 + τ 22 ) +

φ2

f̃ 2
k (φ)

τ 23 (3.137)
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with φ ∈ [0, π
2
] and the function f̃k(φ) defined by

f̃k(φ) = 1 + kφ2 . (3.138)

τi, i = 1, 2, 3, are SU(2) left-invariant one-forms satisfying dτi = 1
2
εijlτj ∧ τl. Their

explicit form is given by

τ1 = − sinχdθ + cosχ sin θdψ,

τ2 = cosχdθ + sinχ sin θdψ,

τ3 = dχ+ cos θdψ . (3.139)

The ranges of the coordinates are θ ∈ [0, π], ψ ∈ [0, 2π], and χ ∈ [0, 4π].

By choosing the following choice of vielbein

eâ = eUdxa, e3̂ = eV
φ√
f̃k(φ)

τ1, e4̂ = eV
φ√
f̃k(φ)

τ2,

e2̂ = dr, e5̂ = eV
φ

f̃k(φ)
τ3, e6̂ = eV

1

f̃k(φ)
dφ, (3.140)

we find non-vanishing components of the spin connection of the form

ωâ
2̂ = U ′eâ, ωm̂

2̂ = V ′em̂, m = 3, 4, 5, 6,

ω3̂
6̂ = ω4̂

5̂ = e−V 1√
f̃k(φ)

τ1, ω3̂
4̂ = e−V (2kφ2 + 1)

f̃k(φ)
τ3,

ω4̂
6̂ = ω5̂

3̂ = e−V 1√
f̃k(φ)

τ2, ω6̂
5̂ = e−V (kφ2 − 1)

f̃k(φ)
τ3 . (3.141)

We can now perform the twist by turning on SO(2) × SO(2) gauge fields

with the following ansatz

A3
(1) = e−V p1

3φ2√
f̃k(φ)

τ3 and A6
(1) = e−V p2

3φ2√
f̃k(φ)

τ3 . (3.142)

The corresponding two-form field strengths are given by

F 3
(2) = 3e−2V p1J(2) and F 6

(2) = 3e−2V p2J(2) (3.143)

where J(2) is the Kahler structure defined by

J(2) = e3̂ ∧ e4̂ − e5̂ ∧ e6̂ . (3.144)
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To implement the twist, we impose the projectors on the Killing spinors (2.42)

γ 3̂4̂ϵ = −γ 5̂6̂ϵ = iσ3ϵ (3.145)

together with the following twist condition

g1p1 = k . (3.146)

As in the previous cases, we need to turn on the three-form field corresponding to

G(4) =
9

8
√
2h
e−4V (p21 − p22)e

3̂ ∧ e4̂ ∧ e5̂ ∧ e6̂. (3.147)

With all these and the γr projector (3.91), we find the following BPS

equations

U ′ =
1

5
e

σ
2

[
(g1e

−σ coshϕ+ 4he−
5σ
2 )− 6e−2V (p1 coshϕ+ p2 sinhϕ)

+
27

8h
e−

3σ
2
−4V (p21 − p22)

]
, (3.148)

V ′ =
1

5
e

σ
2

[
(g1e

−σ coshϕ+ 4he−
5σ
2 ) + 9e−2V (p1 coshϕ+ p2 sinhϕ)

− 9

4h
e−

3σ
2
−4V (p21 − p22)

]
, (3.149)

σ′ =
2

5
e

σ
2

[
(g1e

−σ coshϕ− 16he−
5σ
2 )− 6e−2V (p1 coshϕ+ p2 sinhϕ)

− 9

4h
e−

3σ
2
−4V (p21 − p22)

]
, (3.150)

ϕ′ = −g1e−
σ
2 sinhϕ− 6e

σ
2
−2V (p1 sinhϕ+ p2 coshϕ) (3.151)

with ϕ being the SO(2)× SO(2) singlet scalar in (3.85).

The BPS equations admit an AdS3 × CH2 fixed point given by

σ =
2

5
ln
[

g1p
2
1

12h
√
p41 − 10p21p

2
2 + 9p42

]
, ϕ =

1

2
ln
[
p21 + 2p1p2 − 3p22
p21 − 2p1p2 − 3p22

]
,

V =
1

10
ln
[

38(p21 − p22)
4

16h2g31(9p1p
2
2 − p31)

]
, LAdS3 =

[
8(p51 − 10p31p

2
2 + 9p1p

4
2)

2

3hg41(p
2
1 − 3p22)

5

] 1
5

.(3.152)

This AdS3 solution preserves four supercharges and exists for

− 1

48h
< p2 <

1

48h
(3.153)

with g1 = 16h, k = −1, and h > 0. The AdS3 × CH2 fixed point is dual to a

two-dimensional N = (2, 0) SCFT with SO(2)× SO(2) symmetry.
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Examples of RG flows from the SO(4) AdS7 critical point to these fixed

points for g1 = 16h, h = 1, and different values of p2 are shown in Figure 3.10. As

in the Σ2 × Σ2 case, the AdS3 × CH2 fixed points and the associated RG flows

can be uplifted to eleven dimensions by setting g2 = g1. The eleven-dimensional

metric can be obtained from (3.105) by replacing e2V ds2
Σ2

k1

+ e2Wds2
Σ2

k2

by e2V ds2
K4

k

and using the gauge fields in (3.142). We will not repeat it here.
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Figure 3.10: Numerical solutions from the SO(4) AdS7 vacuum in UV as r → 4

to AdS3 × CH2 fixed points with SO(2) × SO(2) symmetry in IR as r → −4

for g1 = 16h and h = 1. The blue, orange, green, and red curves refer to

p2 = − 1
64
,− 1

80
,− 1

120
, 1
580

.

3.2.2.2 AdS3 Vacua with SO(2)diag Symmetry

We next consider the solutions with smaller unbroken symmetry SO(2)diag ⊂

SO(2)× SO(2) by imposing g2p2 = g1p1 and using the coset representative given

by (3.108). As in the previous cases, ϕ1 = 0 or ϕ3 = 0 is required in order to have

compatibility between BPS equations and the field equations. We will consider

the case of ϕ3 = 0 with the following BPS equations

U ′ =
1

5
e

σ
2

[(
g1e

−σ cosh2 ϕ1 coshϕ2 + g2e
−σ sinh2 ϕ1 sinhϕ2 + 4he

3σ
2

)
−6e−2V

(
coshϕ2 +

g1
g2

sinhϕ2

)
p1 −

27

8hg22
e−

3σ
2
−4V (g21 − g22)p

2
1

]
,(3.154)

V ′ =
1

5
e

σ
2

[(
g1e

−σ cosh2 ϕ1 coshϕ2 + g2e
−σ sinh2 ϕ1 sinhϕ2 + 4he

3σ
2

)
+9e−2V

(
coshϕ2 +

g1
g2

sinhϕ2

)
p1 +

9

4hg22
e−

3σ
2
−4V (g21 − g22)p

2
1

]
,(3.155)
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σ′ =
2

5
e

σ
2

[(
g1e

−σ cosh2 ϕ1 coshϕ2 + g2e
−σ sinh2 ϕ1 sinhϕ2 − 16he

3σ
2

)
−6e−2V

(
coshϕ2 +

g1
g2

sinhϕ2

)
p1 +

9

4hg22
e−

3σ
2
−4V (g21 − g22)p

2
1

]
, (3.156)

ϕ′
1 = −e−

σ
2 coshϕ1 sinhϕ1(g1 coshϕ2 + g2 sinhϕ2), (3.157)

ϕ′
2 = −e

σ
2

[(
g1e

−σ cosh2 ϕ1 sinhϕ2 + g2e
−σ sinh2 ϕ1 coshϕ2

)
+6e−2V

(
sinhϕ2 +

g1
g2

coshϕ2

)
p1

]
. (3.158)

There exist two classes of AdS3 × CH2 fixed points preserving four

supercharges and corresponding to N = (2, 0) SCFTs with SO(2)diag symmetry in

two dimensions. The first class is given by

ϕ1 = 0, σ =
2

5
ϕ2 +

2

5
ln
[

g1g
2
2

12h(g22 + 2g1g2 − 3g21)

]
,

ϕ2 =
1

2
ln
[
3g21 − 2g1g2 − g22
3g21 + 2g1g2 − g22

]
,

V =
1

10
ln
[

38(g21 − g22)
4

16h2g81g
6
2(g

2
2 − 9g21)

]
,

LAdS3 =

[
8(9g41g2 − 10g21g

3
2 + g52)

2

3hg41(g
2
2 − 3g21)

5

] 1
5

(3.159)

with g2 > 3g1 or g2 < −3g1 for good AdS3 vacua to exist. An RG flow from the

SO(4) AdS7 crtical point to this fixed point is given in Figure 3.11 with g2 = 4g1,

g1 = 16h, and h = 1.
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Figure 3.11: A numerical solution from the SO(4) AdS7 vacuum in UV as r → 10

to an AdS3 × CH2 fixed point in IR as r → −4 with SO(2)diag symmetry for

g2 = 4g1, g1 = 16h, h = 1, and ϕ1 = 0 along the flow.
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Another class of AdS3 × CH2 fixed points is given by

σ =
2

5
ln
[

g1g2

12h
√
(g2 + g1)(g2 − g1)

]
, ϕ1 = ϕ2 =

1

2
ln
[
g2 − g1
g2 + g1

]
,

V =
1

5
ln
[
34(g21 − g22)

2

4hg41g
4
2

]
, LAdS3 =

[
8(g21 − g22)

2

3hg41g
4
2

] 1
5

. (3.160)

To obtain good AdS3 vacua, g2 > g1 is needed. Examples of RG flows from the

SO(4) and SO(3)diag AdS7 vacua to these fixed points for g2 = 4g1, g1 = 16h, and

h = 1 are shown in Figures 3.12, 3.13, and 3.14. All of these AdS3 × CH2 fixed

points and RG flows cannot be uplifted to eleven dimensions due to g1 ̸= g2, so

we also do not have a clear holographic interpretation in this case.
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Figure 3.12: A numerical solution from the SO(4) AdS7 vacuum in UV as r → −25

to an AdS3 × CH2 fixed point with SO(2)diag symmetry in IR as r → −30 for

g2 = 4g1, g1 = 16h, and h = 1.
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Figure 3.13: A numerical solution from the SO(3)diag AdS7 vacuum in UV as

r → 10 to an AdS3 ×CH2 fixed point with SO(2)diag symmetry in IR as r → −4

for g2 = 4g1, g1 = 16h, and h = 1.

3.2.2.3 AdS3 Vacua with SO(2)R Symmetry

By setting p2 = 0 in the SO(2)× SO(2) case, we obtain solutions with SO(2)R ⊂

SO(3)R symmetry. As in the previous case, the three SO(2)R singlet scalars need

to vanish in order for AdS3 fixed points to exist. We will accordingly set all vector

multiplet scalars to zero for brevity. The resulting BPS equations are given by

U ′ =
1

5
e

σ
2

[
g1e

−σ + 4he
3σ
2 − 6e−2V p1 +

27

8h
e−4V p21

]
, (3.161)

V ′ =
1

5
e

σ
2

[
g1e

−σ + 4he
3σ
2 + 9e−2V p1 −

9

4h
e−4V p21

]
, (3.162)

σ′ =
2

5
e

σ
2

[
g1e

−σ − 14he
3σ
2 − 6e−2V p1 −

9

4h
e−4V p21

]
. (3.163)
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Figure 3.14: A numerical solution from the SO(4) AdS7 vacuum in UV as r → 4

to the SO(3)diag AdS7 critical point and then to an AdS3 ×CH2 fixed point with

SO(2)diag symmetry in IR as r → −4 for g2 = 4g1, g1 = 16h, and h = 1.

Imposing the twist condition (3.146), we find an AdS3 solution for k = −1,

σ =
2

5
ln
[ g1
12h

]
, V =

1

10
ln
[

38

16h2g81

]
, LAdS3 =

[
8

3hg41

] 1
5

. (3.164)

An RG flow from the SO(4) AdS7 critical point to this AdS3 × CH2 fixed point

for g1 = 16h and h = 1 is given in Figure 3.15.

3.2.2.4 AdS3 Vacua with SO(3)diag Symmetry

For Kahler four-cycles with SU(2)×U(1) spin connection, we can also perform the

twist by identifying SO(3) ∼ SU(2) ⊂ SU(2)×U(1) with the unbroken symmetry

SO(3)diag ⊂ SO(3)× SO(3). In this case, we use the metric on K4
k in the form

ds2K4
k
= dφ2 + fk(φ)

2(τ 21 + τ 22 + τ 23 ) (3.165)
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Figure 3.15: A numerical solution from the SO(4) AdS7 vacuum in UV as r → 4 to

an AdS3 ×CH2 fixed point with SO(2)R symmetry in IR as r → −4 for g1 = 16h

and h = 1.

with τi, i = 1, 2, 3, being the SU(2) left-invariant one-forms given in (3.139) and

fk(φ) defined in (3.80).

With the seven-dimensional vielbein

eâ = eUdxa, e2̂ = dr, e3̂ = eV fk(φ)τ1,

e4̂ = eV fk(φ)τ2, e5̂ = eV fk(φ)τ3, e6̂ = eV dφ, (3.166)

we can compute the following non-vanishing components of the spin connection

ωâ
2̂ = U ′eâ, ωm̂

2̂ = V ′em̂, m = 3, 4, 5, 6,

ω3̂
6̂ = e−V f ′

k(φ)τ1, ω4̂
6̂ = e−V f ′

k(φ)τ2, ω5̂
6̂ = e−V f ′

k(φ)τ3,

ω4̂
5̂ = e−V τ1 ω5̂

3̂ = e−V τ2 ω3̂
4̂ = e−V τ3. (3.167)

We then turn on the SO(3)diag gauge fields as follow

Ai
(1) =

g2
g1
Ai+3

(1) =
p

k
e−V (f ′

k(φ) + 1)τi (3.168)

with the two-form field strengths given by

F 1
(2) =

g2
g1
F 4
(2) = e−2V p (e3̂ ∧ e6̂ + e4̂ ∧ e5̂), (3.169)

F 2
(2) =

g2
g1
F 5
(2) = e−2V p (e3̂ ∧ e5̂ + e4̂ ∧ e6̂), (3.170)

F 3
(2) =

g2
g1
F 6
(2) = e−2V p (e3̂ ∧ e4̂ + e5̂ ∧ e6̂). (3.171)
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As in the previous cases, we also need a non-vanishing four-form field strength

G(4) =
3

8
√
2hg22

e−4V (g21 − g22)p
2e3̂ ∧ e4̂ ∧ e5̂ ∧ e6̂ (3.172)

together with the twist condition

g1p = k, (3.173)

and the following projectors

γrϵ = −γ 3̂4̂5̂6̂ϵ = ϵ, γ 3̂4̂ϵ = iσ3ϵ, and γ 4̂5̂ϵ = iσ1ϵ. (3.174)

Hence, the resulting AdS3 fixed points preserve two supercharges corresponding

to N = (1, 0) superconformal symmetry in two dimensions.

With all these and the SO(3)diag coset representative (2.33), we find the

following BPS equations

U ′ =
1

5
e

σ
2

[
(g1e

−σ cosh3 ϕ+ g2e
−σ sinh3 ϕ+ 4he

3σ
2 )− 9p2

8hg22
e−

3σ
2
−4V (g21 − g22)

−6pe−2V

(
coshϕ+

g1
g2

sinhϕ
)]

, (3.175)

V ′ =
1

5
e

σ
2

[
(g1e

−σ cosh3 ϕ+ g2e
−σ sinh3 ϕ+ 4he

3σ
2 ) +

3p2

4hg22
e−

3σ
2
−4V (g21 − g22)

+9pe−2V

(
coshϕ+

g1
g2

sinhϕ
)]

, (3.176)

σ′ =
2

5
e

σ
2

[
(g1e

−σ cosh3 ϕ+ g2e
−σ sinh3 ϕ− 16he

3σ
2 ) +

3p2

4hg22
e−

3σ
2
−4V (g21 − g22)

−6pe−2V

(
coshϕ+

g1
g2

sinhϕ
)]

, (3.177)

ϕ′ = − 1

2g2
e−

σ
2 (g1 coshϕ+ g2 sinhϕ)(g2 sinh 2ϕ+ 4peσ−2V ). (3.178)

We now look for AdS3 fixed points for the case of g2 = g1 that can be

embedded in eleven dimensions. Setting g2 = g1 in the above equations, we find

the following AdS3 × CH2 fixed point

σ =
2

5
ln
[
3

3
4 g1
16h

]
, ϕ =

1

4
ln 3, V =

1

5
ln
[
18

hg41

]
, LAdS3 =

[
64

27hg41

] 1
5

. (3.179)

An RG flow interpolating between the SO(4) AdS7 vacuum and this AdS3×CH2

fixed point is shown in Figure 3.16 for g1 = 16h and h = 1.
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Figure 3.16: A numerical solution from the SO(4) AdS7 vacuum in UV as r → 4

to an AdS3 × CH2 fixed point with SO(3)diag symmetry in IR as r → −4 for

g1 = g2 = 16h and h = 1.

We can uplift this solution to eleven dimensions by first choosing the S3

coordinates

µα = (cosψµ̂p, sinψ), p, q, . . . = 1, 2, 3 (3.180)

with µ̂p being coordinates on S2 satisfying µ̂pµ̂p = 1. Using the SL(4,R)/SO(4)

matrix

T̃−1
αβ = diag(eϕ, eϕ, eϕ, e−3ϕ) = (δpqe

ϕ, e−3ϕ), (3.181)

we find the eleven-dimensional metric

dŝ211 = ∆
1
3

[
e2Udx21,1 + dr2 + e2V [dφ2 + fk(φ)

2(τ 21 + τ 22 + τ 23 )]
]

+
2

g2
∆− 2

3 e−2σ
[
cos2 ξ + e

5
2
σ sin2 ξ(eϕ cos2 ψ + e−3ϕ sin2 ψ)

]
dξ2

+
1

2g2
∆− 2

3 e
σ
2 cos2 ξ

[
(e−3ϕ cos2 ψ + eϕ sin2 ψ)dψ2 + eϕ cos2 ψDµ̂aDµ̂a

]
+

1

g2
∆− 2

3 e
σ
2 sin ξ sinψ cosψ(eϕ − e−3ϕ)dξdψ (3.182)

with ∆ given by

∆ = e−
σ
2 cos2 ξ(e−ϕ cos2 ψ + e3ϕ sin2 ψ) + e2σ sin2 ξ (3.183)

and Dµ̂p = dµ̂p + gApqµ̂q. The gauge fields Apq are given by

A12 = 2A3
(1), A13 = −2A2

(1), A23 = −2A1
(1) . (3.184)
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For g2 ̸= g1, we find the following AdS3 fixed points

σ =
2

5
ln
[

3g1g2

28h
√
(g2 + g1)(g2 − g1)

]
, ϕ =

1

2
ln
[
g2 − g1
g2 + g1

]
,

V =
1

10
ln
[
3087(g21 − g22)

4

16h2g81g
8
2

]
, LAdS3 =

[
24(g21 − g22)

2

7g41g
4
2h

] 1
5

. (3.185)

These are AdS3 × CH2 solutions with the condition g2 > g1. Finally, we can

numerically find RG flow solutions connecting these fixed points to the AdS7 vacua

with SO(4) and SO(3)diag symmetries. Examples of these solutions for g2 = 1.1g1,

g1 = 16h, and h = 1 are given in Figures 3.17, 3.18, and 3.19.
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Figure 3.17: A numerical solution from the SO(4) AdS7 vacuum in UV as r → −20

to an AdS3 × CH2 fixed point with SO(3)diag symmetry in IR as r → −30 for

g2 = 1.1g1, g1 = 16h, and h = 1.
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Figure 3.18: A numerical solution from the SO(3)diag AdS7 vacuum in UV as

r → 4 to an AdS3 × CH2 fixed point with SO(3)diag symmetry in IR as r → −4

for g2 = 1.1g1, g1 = 16h, and h = 1.
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Figure 3.19: A numerical solution from the SO(4) AdS7 vacuum in UV as r → 2

to the SO(3)diag AdS7 critical point and then to an AdS3 ×CH2 fixed point with

SO(3)diag symmetry in IR as r → −5 for g2 = 1.1g1, g1 = 16h, and h = 1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

SUPERSYMMETRIC SOLUTIONS OF MAXIMAL

GAUGED SUPERGRAVITY

In the maximal case with thirty-two supercharges, the AdS7/CFT6 correspondence

has been explored in great detail both from the M-theory point of view and the

effective N = 4, SO(5) gauged supergravity in seven dimensions. In the context of

M-theory, a six-dimensional N = (2, 0) SCFT emerges as a world-volume theory of

M5-branes in the near horizon limit. On the other hand, in the low-energy limit,

this N = (2, 0) SCFT is dual to the maximally supersymmetric AdS7 vacuum of

the SO(5) gauged supergravity, see [88] for example. General discussions about

supersymmetric DWs in the SO(5) gauged theory have already been given in

[48–52]. Moreover, supersymmetric solutions of the SO(5) gauged supergravity

corresponding to holographic RG flows across dimensions from the six-dimensional

N = (2, 0) SCFT to SCFTs in lower dimensions have been extensively studied

in [53–59,86] in the context of wrapped M5-branes.

Apart from SO(5), seven-dimensional maximal N = 4 supergravity can be

gauged by various possible gauge groups in the embedding tensor formalism, as

reviewed in Section 2.2. Among many viable gauge groups, only the SO(5) gauged

theory admits a maximally supersymmetricAdS7 vacuum. For other gauge groups,

their vacua are given by supersymmetric (flat) DWs dual to N = (2, 0) SQFTs in

six dimensions according to the DW/QFT correspondence. However, as pointed

out in [52], a systematic study of these DWs in other gauge groups has not appeared

so far.
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We will look for a complete classification of supersymmetric solutions of

seven-dimensional maximal gauged supergravity with several gauge groups within

this chapter. Starting from finding a large class of supersymmetric (flat) DW

solutions, charged DWs and twisted solutions can be obtained by extending

from these vacua. Supersymmetric solutions found in this chapter may give a

huge comprehension of the AdS7/CFT6 correspondence and also the general

DW7/QFT6 duality. Moreover, the solutions with CSO(p, q, 5 − p − q) and

CSO(p, q, 4 − p − q) gauge groups are of particular interest since they can be

embedded in eleven-dimensional supergravity and type IIB theory by consistent

truncations on Hp,q ◦ T 5−p−q [64] and Hp,q ◦ T 4−p−q [65], respectively. These

solutions have higher dimensional origins and could be interpreted as different

brane configurations in string/M-theory.

4.1 Flat Domain Wall Solutions

As pointed out in [52], each of the two components of the embedding tensor

transforming in 15 and 40 representations leads to half-supersymmetric DWs of

seven-dimensional maximal gauged supergravity. These 15 and 40 parts give

rise to DWs respectively supporting tensor and vector multiplets on their world-

volumes. Moreover, when both representations of the embedding tensor are present

simultaneously, the DWs are only 1
4
-supersymmetric. We provide a systematic

study of these supersymmetric DWs from several gauge groups in this section.

Although solutions with CSO(p, q, 5−p− q) and CSO(p, q, 4−p− q) gauge

groups can be embedded respectively in eleven and ten dimensions, their complete

truncation ansatze have not been constructed. In the following analyses, we will

give uplifted solutions of the DWs only for SO(5) and CSO(4, 0, 1) gauge groups in

which the truncation ansatze have been completely constructed long ago in [26,27]

and [77]. We leave uplifting the solutions from other gauge groups for future work.
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4.1.1 Gaugings in 15 Representation

In this section, we consider supersymmetric DWs from CSO(p, q, 5− p− q) gauge

groups resulting from the embedding tensor in 15 representation. As in other

standard DWs, all tensor fields vanish while the metric takes the standard form

given in (2.37) with the vielbein

em̂ = eU(r)dxm, e6̂ = dr (4.1)

in which xm with m = 0, 1, ..., 5 are the coordinates on six-dimensional

Minkowski space. For scalar fields, we follow the approach introduced in [76] by

restricting ourselves to a subset of scalars invariant under a certain residual

symmetry H0 ⊂ G0 = CSO(p, q, 5− p− q). To obtain an explicit parametrization

of the SL(5)/SO(5) coset representative VM
A, we introduce GL(5) matrices of

the form

(eMN)K
L = δMKδ

L
N . (4.2)

Non-compact generators of SL(5) are symmetric traceless matrices defined in

terms of these GL(5) matrices.

We use the following convenient choice of SO(5) gamma matrices

Γ1 = −σ2 ⊗ σ2, Γ2 = 12 ⊗ σ1, Γ3 = 12 ⊗ σ3,

Γ4 = σ1 ⊗ σ2, Γ5 = σ3 ⊗ σ2 (4.3)

together with the USp(4) symplectic form given by

Ωab = Ωab = 12 ⊗ iσ2 (4.4)

where 12 is a (2× 2) identity matrix and {σ1, σ2, σ3} are the usual Pauli matrices

(B.3). We are now in a position to set up BPS equations and look for DW solutions

with different unbroken symmetries.

4.1.1.1 SO(4) Symmetric Domain Walls

We start with a simple solution with SO(4) unbroken symmetry. The gauge

groups that contain SO(4) as a subgroup are SO(5), SO(4, 1), and CSO(4, 0, 1).
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To incorporate all of these gauge groups in a single framework, we write the

embedding tensor in the form

YMN = diag(1, 1, 1, 1, ρ) (4.5)

with ρ = 1,−1, 0 corresponding to SO(5), SO(4, 1), and CSO(4, 0, 1) gauge

groups, respectively.

There exists one SO(4) singlet scalar ϕ corresponding to the non-compact

generator

Ŷ = e11 + e22 + e33 + e44 − 4e55 . (4.6)

The SL(5)/SO(5) coset representative can be written as

V = eϕŶ . (4.7)

For this SO(4) singlet scalar, the scalar potential is given by

V = −g
2

64
e−4ϕ(8 + 8ρe10ϕ − ρ2e20ϕ). (4.8)

This potential admits two AdS7 critical points with SO(5) and SO(4) unbroken

symmetries only for ρ = 1 corresponding to SO(5) gauge group. These vacua and

their cosmological constants are given respectively by

ϕ = 0 and V0 = −15

64
g2 (4.9)

and

ϕ =
1

10
ln 2 and V0 = − 5g2

16× 22/5
. (4.10)

According to the previous studied [33], the former preserves all SUSY while the

latter is non-supersymmetric and unstable.

To setup BPS equations, we impose

γ 6̂ϵa = ϵa, (4.11)

and obtain the following BPS equations from δψa
m = 0 and δχabc = 0 conditions

U ′ =
g

40
e−2ϕ(4 + ρe10ϕ), (4.12)

ϕ′ =
g

20
e−2ϕ(1− ρe10ϕ). (4.13)
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The condition δψa
r = 0 gives the usual solution for the Killing spinors

ϵa = e
U
2 ϵa0 (4.14)

with ϵa0 being constant SM spinors satisfying γ 6̂ϵa0 = ϵa0. The solution is then half-

supersymmetric.

With the new radial coordinate r̃ defined by dr̃
dr

= e3ϕ, the above BPS

equations can be readily solved with the solution

U = 2ϕ− 1

4
ln(1− ρe10ϕ), (4.15)

e5ϕ =
1
√
ρ

tanh
[√

ρ

4
(gr̃ + C)

]
. (4.16)

The integration constant C can be eliminated by shifting the radial coordinate

r̃. We have also neglected an additive integration constant for U since it can be

absorbed by rescaling the flat coordinates xm.

Note that for ρ = −1, the solution for ϕ can be written as

e5ϕ = tan
[
1

4
(gr̃ + C)

]
. (4.17)

For ρ = 0, we find

e5ϕ =
1

4
(gr̃ + C). (4.18)

4.1.1.2 SO(3) × SO(2) Symmetric Domain Walls

We now consider SO(3)×SO(2) symmetric case, which is possible only for SO(5)

and SO(3, 2) gauge groups. The embedding tensor, in this case, is written as

YMN = diag(1, 1, 1, σ, σ) (4.19)

with σ = 1 and σ = −1 corresponding to SO(5) and SO(3, 2), respectively.

There again exists only one SO(3)× SO(2) singlet scalar corresponding to

the non-compact generator

Ỹ = 2e11 + 2e22 + 2e33 − 3e44 − 3e55 . (4.20)

With the coset representative

V = eϕỸ , (4.21)
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we find the scalar potential admitting an AdS7 critical point at ϕ = 0 for σ = 1

V = − 3

64
g2e−8ϕ(1 + 4σe10ϕ). (4.22)

The BPS equations are given by

ϕ′ = − 1

20
ge−4ϕ(σe10ϕ − 1), (4.23)

U ′ =
1

40
ge−4ϕ(3 + 2σe10ϕ). (4.24)

Defining a new radial coordinate r̃ by the relation dr̃
dr

= eϕ, we obtain the solution

very similar to the previous SO(4) case

U =
3

2
ϕ− 1

4
ln(1− σe10ϕ), (4.25)

e5ϕ =
1√
σ

tanh
[√

σ

4
(gr̃ + C)

]
. (4.26)

4.1.1.3 SO(3) Symmetric Domain Walls

We then find more interesting solutions when the residual symmetry of the

solutions is smaller. Supersymmetric DW solutions with SO(3) symmetry are

considered in this case. There are many gauge groups containing an SO(3)

subgroup corresponding to the embedding tensor given by

YMN = diag(1, 1, 1, σ, ρ). (4.27)

There are three scalar fields invariant under SO(3) symmetry generated by

gauge generators XMN , M,N = 1, 2, 3. These singlets correspond to the following

non-compact generators of SL(5)

Ŷ1 = 2e1,1 + 2e2,2 + 2e3,3 − 3e4,4 − 3e5,5,

Ŷ2 = e4,5 + e5,4,

Ŷ3 = e4,4 − e5,5 . (4.28)

Using the parametrization of the coset representative

V = eϕ1Ŷ1+ϕ2Ŷ2+ϕ3Ŷ3 , (4.29)
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we obtain the scalar potential

V = −g
2

64

[
3e−8ϕ1 + 6e2ϕ1 [(ρ+ σ) cosh 2ϕ2 cosh 2ϕ3 + (ρ− σ) sinh 2ϕ3]

+
1

4
e12ϕ1

[
ρ2 + 10ρσ + σ2 − (3ρ2 − 2ρσ + 3σ2) cosh 4ϕ3

−(ρ+ σ)2 cosh 4ϕ2(1 + cosh 4ϕ3)− 4(ρ2 − σ2) cosh 2ϕ2 sinh 4ϕ3

]]
. (4.30)

This potential admits two AdS7 critical point for ρ = σ = 1. The first one is at

ϕ1 = ϕ2 = ϕ3 = 0 corresponding to the N = 4 supersymmetric AdS7 with SO(5)

symmetry given in (4.9). Another critical point is given by

ϕ1 =
1

20
ln 2, ϕ2 =

1

4
ln 2, ϕ3 = 0, V0 = − 5g2

16× 22/5
. (4.31)

This is the same non-supersymmetric and unstable critical point given in (4.10)

for which the residual symmetry is enlarged to SO(4) due to ϕ2 = 5ϕ1.

Using the same procedure as in the previous cases, we find the following

BPS equations

U ′ =
g

40
e−4ϕ1

[
3 + e10ϕ1 [(ρ+ σ) cosh 2ϕ2 cosh 2ϕ3 + (ρ− σ) sinh 2ϕ3]

]
, (4.32)

ϕ′
1 =

g

40
e−4ϕ1

[
2− e10ϕ1 [(ρ+ σ) cosh 2ϕ2 cosh 2ϕ3 − (ρ− σ) sinh 2ϕ3]

]
, (4.33)

ϕ′
2 = −g

8
e6ϕ1(ρ+ σ) sinh 2ϕ2 sech2ϕ3, (4.34)

ϕ′
3 = −g

8
e6ϕ1 [(ρ− σ) cosh 2ϕ3 + (ρ+ σ) cosh 2ϕ2 sinh 2ϕ3] . (4.35)

Explicit solutions to these equations can be obtained when we examine various

specific values of ρ and σ separately.

(1) Domain walls in CSO(3, 0, 2) gauge group

We begin with the simplest case for ρ = σ = 0 corresponding to non-

semisimple CSO(3, 0, 2) gauge group. In this case, we find ϕ′
2 = ϕ′

3 =

0. Furthermore, it can be checked that ∂V
∂ϕ2

= ∂V
∂ϕ3

= 0 at ϕ2 = ϕ3 = 0.

Therefore, the scalars ϕ2 and ϕ3 can be consistently truncated out. After

setting ϕ2 = ϕ3 = 0, we find a DW solution

ϕ1 =
1

4
ln
[gr
5

+ C
]

and U =
3

8
ln
[gr
5

+ C
]
. (4.36)
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(2) Domain walls in CSO(4, 0, 1) and CSO(3, 1, 1) gauge groups

For ρ = 0 and σ ̸= 0, the gauge group is either CSO(4, 0, 1) or CSO(3, 1, 1)

depending on the value of σ = 1 or σ = −1. With a new radial coordinate

r̃ defined by dr̃
dr

= e6ϕ1 , a DW solution to the BPS equations can be found

ϕ2 =
1

4
ln
[
g2r̃2 + (C2 − 8)2

g2r̃2 + C2
2

]
, (4.37)

ϕ3 =
1

4
ln
[
e2ϕ2 − e4ϕ2+C3 + eC3 + 1

e2ϕ2 + e4ϕ2+C3 − eC3 − 1

]
, (4.38)

ϕ1 =
1

10
ln
[

2(eC1 − e4ϕ2+C1 − 1)

σ
√

(e4ϕ2 − 1)(1 + 2eC3 + e2C3 − e4ϕ2+2C3)

]
, (4.39)

U = −ϕ1 − ln(e4ϕ2 − 1) + ln(eC1 − e4ϕ2+C1 − 1). (4.40)

(3) Domain walls in SO(4, 1) gauge group

In this case with σ = −ρ = 1, we find that ϕ2 can be consistently truncated

out in the same way as in the CSO(3, 0, 2) case. With ϕ2 = 0 and the new

radial coordinate r̃ defined by dr̃
dr

= e6ϕ1 , we find a DW solution

e2ϕ3 = tan
[
gr̃

4
+ C3

]
, (4.41)

ϕ1 = −1

5
ϕ3 +

1

10
ln
[
C1(1 + e4ϕ3)− 1

]
, (4.42)

U =
1

5
ϕ3 −

1

4
ln(1 + e4ϕ3) +

3

20
ln
[
C1(1 + e4ϕ3)− 1

]
. (4.43)

(4) Domain walls in SO(5) and CSO(3, 2) gauge groups

We now look at the last possibility ρ = σ = ±1 corresponding to SO(5) and

SO(3, 2) gauge groups. In term of the new radial coordinate r̃ as defined in

the previous cases, we obtain a DW solution

ϕ2 =
1

4
ln
[
1 + egσr̃ + 4egσr̃+2C3 − 2e

1
2
gσr̃

1 + egσr̃ + 4egσr̃+2C3 + 2e
1
2
gσr̃

]
, (4.44)

ϕ3 =
1

4
ln
[
e2ϕ2 + e4ϕ2+C3 − eC3

e2ϕ2 − e4ϕ2+C3 + eC3

]
, (4.45)

ϕ1 =
1

10
ln
[
σ
[
1 + C1(e

4ϕ2 − 1)
]√

e8ϕ2+2C3 + e2C3 − e4ϕ2 − 2e4ϕ2+2C3

]
, (4.46)

U = −ϕ1 +
1

4
ln(e4ϕ2 − 1)− 1

4
ln[1 + C1(e

4ϕ2 − 1)]. (4.47)
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4.1.1.4 SO(2) × SO(2) Symmetric Domain Walls

We finally consider supersymmetric DWs with SO(2)×SO(2) symmetry generated

by gauge generators X12 and X34. There are two SO(2)×SO(2) invariant scalars

corresponding to the non-compact generators

Ỹ1 = e11 + e22 − 2e55 and Ỹ2 = e33 + e44 − 2e55 . (4.48)

In this case, the embedding tensor takes the form of

YMN = diag(1, 1, σ, σ, ρ) (4.49)

which give rise to various gauge groups with an SO(2)×SO(2) subgroup i.e. SO(5)

(σ = ρ = 1), SO(4, 1) (σ = −ρ = 1), SO(3, 2) (σ = −ρ = −1), CSO(4, 0, 1)

(σ = 1, ρ = 0), and CSO(2, 2, 1) (σ = −1, ρ = 0).

With the parametrization of the coset representative

V = eϕ1Ỹ1+ϕ2Ỹ2 , (4.50)

we find the scalar potential

V = − 1

64
g2e−2(ϕ1+ϕ2)

[
8σ − ρ2e10(ϕ1+ϕ2) + 4ρ(e4ϕ1+6ϕ2 + σe6ϕ1+4ϕ2)

]
. (4.51)

Only for SO(5) gauge group, there are N = 4 supersymmetric and non-

supersymmetric AdS7 critical points given in (4.9) and (4.10) at ϕ1 = ϕ2 = 0

and ϕ1 = ϕ2 =
1
10

ln 2, respectively.

The BPS equations, in this case, read

U ′ =
g

40

[
2e−2ϕ1 + 2σe−2ϕ2 + ρe4(ϕ1+ϕ2)

]
, (4.52)

ϕ′
1 =

g

20

[
3e−2ϕ1 − ρe4(ϕ1+ϕ2) − 2σe−2ϕ2

]
, (4.53)

ϕ′
2 =

g

20

[
3σe−2ϕ2 − 2e−2ϕ1 − ρe4(ϕ1+ϕ2)

]
. (4.54)

Defining a new radial coordinate r̃ by dr̃
dr

= e−2ϕ1 , we find a DW solution

ϕ2 = −3

2
ϕ1 −

1

4
ln
[
ρ− ρeC2− gr̃

2

]
, (4.55)

ϕ1 = − 1

10
ln
[
ρ− ρeC1− gr̃

2

]
− 1

5
ln
[
σ − σeC2− gr̃

2

]
, (4.56)

U =
gr̃

8
+

1

10
ln
[
1− eC1− gr̃

2

]
+

1

20
ln
[
1− eC2− gr̃

2

]
. (4.57)
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4.1.1.5 Uplift to Eleven Dimensions and Holographic RG Flows

For the SO(5) gauge group, supersymmetric DW solutions obtained previously are

asymptotic to the N = 4 supersymmetric AdS7 vacuum dual to a six-dimensional

N = (2, 0) SCFT with SO(5) symmetry. According to the AdS/CFT duality, the

solutions can be interpreted as holographic RG flows from the N = (2, 0) SCFT

to six-dimensional SQFTs in the IR, see [42,43] for examples. Furthermore, these

DWs can be uplifted to be solutions of eleven-dimensional supergravity. We will

consider these holographic RG flows together with their uplift to eleven dimensions

in this section.

4.1.1.5.1 RG Flow Preserving SO(4) Symmetry

We first consider a simple SO(4) symmetric solution. With dr̃
dr

= e3ϕ, the DW

solution for SO(5) gauge group reads

ϕ =
1

5
ln
[
1− e

1
2
(C−gr̃)

1 + e
1
2
(C−gr̃)

]
, (4.58)

U = 2ϕ− 1

4
ln
(
1− e10ϕ

)
. (4.59)

As r̃ → ∞, we find ϕ→ 0 and r̃ ∼ r with an asymptotic behavior

ϕ ∼ e−
1
2
gr ∼ e−

4r
L and U ∼ 1

8
gr ∼ r

LAdS7

, LAdS7 =
8

g
(4.60)

which indicates that the solution is asymptotic to the N = 4 supersymmetric AdS7

critical point. As gr̃ → C, the solution is singular with the following behavior

ϕ ∼ 1

5
ln(gr̃ − C) and U ∼ 2ϕ ∼ 2

5
ln(gr̃ − C) . (4.61)

We can verify that the scalar potential is bounded above with V → −∞ as ϕ →

−∞. According to the criterion of [85], this singularity is physically acceptable.

Moreover, we can use the truncation ansatz, reviewed in Appendix C.1, to

uplift this solution to eleven dimensions. Using the SL(5)/SO(5) coset

MMN = diag(e−8ϕ, e2ϕ, e2ϕ, e2ϕ, e2ϕ), (4.62)
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and the coordinates on S4

µM = (µ0, µi) = (cos ξ, sin ξµ̂i), i = 1, 2, 3, 4 (4.63)

with µ̂i being coordinates on S3 satisfying µ̂iµ̂i = 1, we find the eleven-dimensional

metric and four-form field strength tensor

dŝ211 = ∆
1
3

(
e2Udx21,5 + dr2

)
+

16

g2
∆− 2

3

[
e−8ϕ sin2 ξdξ2

+e2ϕ(cos2 ξdξ2 + sin2 ξdΩ2
(3))

]
, (4.64)

F̂(4) =
64

g3
∆−2 sin4 ξ

(
U sin ξdξ − 10e6ϕϕ′ cos ξdr

)
∧ ϵ(3) (4.65)

with dΩ2
(3) being the metric on a unit S3 and

∆ = e8ϕ cos2 ξ + e−2ϕ sin2 ξ, ϵ(3) =
1

3!
εijklµ̂

idµ̂j ∧ dµ̂k ∧ dµ̂l,

U = (e16ϕ − 4e6ϕ) cos2 ξ − (e6ϕ + 2e−4ϕ) sin2 ξ . (4.66)

We see that the internal S4 is deformed by leaving an S3 inside the S4 unchanged.

The isometry of this S3 is the SO(4) residual symmetry of the seven-dimensional

solution.

With this uplifted solution, we can examine the behavior of the metric

component ĝ00 = e2U∆
1
3 near the IR singularity. A straightforward computation

gives

ĝ00 ∼ e
10
3
ϕ → 0 (4.67)

which implies the singularity is physical according to the criterion given in [86].

This solution accordingly describes a holographic RG flow from the N = (2, 0)

SCFT with SO(5) symmetry to a six-dimensional SQFT in the IR. With the

presence of the normalizable mode in (4.60), this RG flow is induced by a vacuum

expectation value of an operator of dimension ∆ = 4 breaking conformal symmetry

and preserving only SO(4) ⊂ SO(5) R-symmetry. Note that this RG flow has

also been studied in [89] in the context of a consistent truncation to half-maximal

N = 2 gauged supergravity.
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4.1.1.5.2 RG Flow Preserving SO(3) × SO(2) Symmetry

With dr̃
dr

= eϕ, the flow solution with SO(3)× SO(2) symmetry reads

ϕ =
1

5
ln
[
1− e−

1
2
(gr̃−C)

1 + e−
1
2
(gr̃−C)

]
, (4.68)

U =
3

2
ϕ− 1

4
ln(1− e10ϕ). (4.69)

As r̃ → ∞, we find ϕ→ 0 and r̃ ∼ r with the same asymptotic behavior given in

(4.60). As gr̃ → C, the solution becomes singular

ϕ ∼ 1

5
ln(gr̃ − C) and U ∼ 3

2
ϕ ∼ 3

10
ln(gr̃ − C). (4.70)

Near this singularity, we find that the scalar potential is bounded above, V → −∞.

The uplifted solution can be obtained by using the S4 coordinates

µM = (sin ξµ̂a, cos ξ cosα, cos ξ sinα), a = 1, 2, 3 (4.71)

with µ̂aµ̂a = 1 and the scalar matrix

MMN = diag(e4ϕ, e4ϕ, e4ϕ, e−6ϕ, e−6ϕ). (4.72)

We find the eleven-dimensional solution

dŝ211 = ∆
1
3

(
e2Udx21,5 + dr2

)
+

16

g2
[
e−6ϕ cos2 ξdα2 + (e4ϕ cos2 ξ + e−6ϕ sin2 ξ)dξ2

+e4ϕ sin2 ξdµ̂adµ̂a
]
, (4.73)

F̂(4) =
64

3g3
U sin3 ξ cos ξ∆−2

(
sin ξdξ + 2e2ϕ cos ξϕ′dr

)
∧ dα ∧ ϵ(2) (4.74)

where

ϵ(2) =
1

2
εabcµ̂

adµ̂b ∧ dµ̂c . (4.75)

We can see that the SO(3) × SO(2) unbroken symmetry corresponds to the

isometry of the S2 inside the S4 and the isometry of the S1 parametrized by

the coordinate α.

From the eleven-dimensional metric, we find

ĝ00 ∼ e
5
3
ϕ → 0 . (4.76)

The singularity is accordingly physical [86], and the entire solution describes an

RG flow from the N = (2, 0) SCFT to an SQFT with SO(3) × SO(2) symmetry

in six dimensions.
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4.1.1.5.3 RG Flow Preserving SO(2) × SO(2) Symmetry

With dr̃
dr

= e−2ϕ1 , a DW solution preserving SO(2) × SO(2) symmetry in SO(5)

gauge group is given by

ϕ1 = − 1

10
ln(1− eC1− gr̃

2 )− 1

5
ln(1− eC2− gr̃

2 ), (4.77)

ϕ2 = −3

2
ϕ1 −

1

4
ln(1− eC1− gr̃

2 ), (4.78)

U =
1

8
gr̃ +

1

20
ln(1− eC1− gr̃

2 ) +
1

10
ln(1− eC2− gr̃

2 ). (4.79)

We can perform an uplift by using

µM = (cos ξ, sin ξ cosψ cosα, sin ξ cosψ sinα, sin ξ sinψ cos β, sin ξ sinψ sin β),

MMN = diag(e−4(ϕ1+ϕ2), e2ϕ1 , e2ϕ1 , e2ϕ2 , e2ϕ2). (4.80)

The corresponding eleven-dimensional metric is

dŝ211 = ∆
1
3

(
e2Udx21,5 + dr2

)
+

16

g2
∆− 2

3

[
e2ϕ2

(
cos2 ξ sin2 ψdξ2

+ cos2 ψ sin2 ξdψ2 + sin2 ξ sin2 ψdβ2 + 2 cos ξ cosψ sin ξ sinψdξdψ
)

+e2ϕ1
(
cos2 ξ cos2 ψdξ2 + sin2 ξ sin2 ψdψ2 + sin2 ξ cos2 ψdα2

−2 cos ξ cosψ sin ξ sinψdξdψ) + e−4(ϕ1+ϕ2) sin2 ξdξ2
]

(4.81)

where

∆ = e4(ϕ1+ϕ2) cos2 ξ + e−2ϕ1 sin2 ξ cos2 ψ + e−2ϕ2 sin2 ξ sin2 ψ . (4.82)

Here, we neglect an explicit form of the four-form field strength, which is much

more complicated than the previous cases. The unbroken symmetry SO(2)×SO(2)

corresponds to the isometry of S1 × S1 parametrized by coordinates α and β.

As r̃ → ∞, the solution becomes

ϕ1 ∼ ϕ2 ∼ e−
4r̃
L with r̃ ∼ r (4.83)

which again implies that ϕ1 and ϕ2 are dual to operators of dimension ∆ = 4 in

the dual N = (2, 0) SCFT.

For the IR behaviors, there are two possibilities. As gr̃ → 2C1, we have

ϕ1 ∼ ϕ2 ∼ − 1

10
ln(gr̃ − 2C1) and U ∼ −1

2
ϕ1 ∼

1

20
ln(gr̃ − 2C1). (4.84)
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Near this singularity, the scalar potential is unbounded above, V → ∞, and the

eleven-dimensional metric gives

ĝ00 ∼ e
5
3
ϕ1 → ∞ . (4.85)

This singularity is then unphysical.

As gr̃ → 2C2, we have

ϕ1 ∼ −1

5
ln(gr̃ − 2C2), ϕ2 ∼ −3

2
ϕ1 ∼

3

10
ln(gr̃ − 2C2),

U ∼ −1

2
ϕ1 ∼

1

10
ln(gr̃ − 2C2). (4.86)

Near the singularity, we find V → −∞ and

ĝ00 ∼ constant . (4.87)

In this case, the singularity is physical, and the DW solution describes an RG flow

from the N = (2, 0) SCFT to a six-dimensional SQFT in the IR with SO(2) ×

SO(2) symmetry.

4.1.1.5.4 RG Flow Preserving SO(3) Symmetry

The solution is rather complicated in this case. Therefore, we will examine only a

truncation of the full solution. By making a consistent truncation ϕ3 = 0, we find

a simple solution to the truncated BPS equations

U =
1

5
ϕ2 −

1

4
ln(1− e4ϕ2) +

3

20
ln
[
1 + C1(e

4ϕ2 − 1)
]
, (4.88)

ϕ1 = −1

5
ϕ2 +

1

10
ln
[
1 + C1(e

4ϕ2 − 1)
]
, (4.89)

ϕ2 =
1

2
ln
[
1− e

1
2
(C−gr̃)

1 + e
1
2
(C−gr̃)

]
(4.90)

in which the new radial coordinate r̃ is defined by dr̃
dr

= e6ϕ1 .

Near the N = 4 supersymmetric AdS7 critical point in the UV as r̃ → ∞,

we find, as in the previous cases,

ϕ1 ∼ ϕ2 ∼ e−
4r̃
L with r̃ ∼ r, (4.91)
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and, near the IR singularity as gr̃ → C, the solution becomes singular

ϕ2 ∼ 1

2
ln(gr̃ − C), ϕ1 ∼ −1

5
ϕ2 ∼ − 1

10
ln(gr̃ − C),

U ∼ 1

5
ϕ2 ∼

1

10
ln(gr̃ − C). (4.92)

In this case, V → ∞ near the singularity, and the (00)-component of the eleven-

dimensional metric is

ĝ00 ∼ e−
2
3
ϕ2 → ∞ . (4.93)

The singularity is then unphysical. We will not give the corresponding eleven-

dimensional solution in this case. Moreover, it can be checked that another

truncation with ϕ2 = 0 also gives a similar result.

4.1.1.6 Uplifted Solutions to Type IIA Supergravity

We now consider the uplift to type IIA supergravity of the DW solutions in

CSO(4, 0, 1) gauge group. Relevant formulae, including the truncation ansatze

and useful relations, are summarized in Appendix C.2. As gaugings in 40

representation, we also decompose the SL(5)/SO(5) coset MMN into the

SL(4)/SO(4) submanifold M̃ij given in (2.94) in this case. Moreover, all axion

scalars disappear, bi = χi = 0, in these solutions so that only the metric,

dilaton, and three-form field strength in type IIA supergravity are non-vanishing.

As expected for DWs in seven dimensions, the resulting solutions should describe

Neveu Schwarz five-branes (NS5-branes) in the transverse space with different

symmetries.

4.1.1.6.1 Solution with SO(4) Symmetry

In this case, we simply have M̃ij = δij and

dŝ210 = e
3
2
ϕ0
(
e2Udx21,5 + dr2

)
+

16

g2
e−

5
2
ϕ0dΩ2

(3),

F̂(3) =
128

g3
ϵ(3), φ̂ = 5ϕ0 . (4.94)
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Solving the BPS equations in (4.12) and (4.13) by renaming ϕ to ϕ0 and setting

ρ = 0, we find the following solution

ϕ0 =
1

2
ln
[gr
10

+ C
]

and U = ln
[gr
10

+ C
]
. (4.95)

We identify the resulting ten-dimensional solution with the “near horizon”

geometry of NS5-branes in the transverse space R4.

4.1.1.6.2 Solution with SO(3) Symmetry

With ρ = 0 and σ = 1, the following SO(3) symmetric solution can be obtained

from the BPS equations (4.32) to (4.35) by setting ϕ2 = 0

U =
1

5
ϕ3 +

3

20
ln(C1 + e4ϕ3), (4.96)

ϕ1 = −1

5
ϕ3 +

1

10
ln(C1 + e4ϕ3), (4.97)

2gC
3
5 r = 5e

16
5
ϕ3

2F1

(
3

5
,
4

5
,
9

5
,−e

4ϕ3

C1

)
. (4.98)

In this solution, 2F1 is the hypergeometric function.

To uplift the solution, we parametrize the SL(4)/SO(4) coset by

M̃ij = diag(e2ϕ, e2ϕ, e2ϕ, e−6ϕ). (4.99)

In this case, the dilaton ϕ0 and the SO(3) singlet ϕ are related to ϕ1 and ϕ3 by

ϕ0 = −1

4
(3ϕ1 + ϕ3) and ϕ =

1

4
(5ϕ1 − ϕ3). (4.100)

Choosing a specific form of the S3 coordinates to be

µi = (sin ξµ̂a, cos ξ), a = 1, 2, 3 (4.101)

with µ̂a being the coordinates on S2 subject to the condition µ̂aµ̂a = 1, we find

the following ten-dimensional fields

dŝ210 =
16

g2
e−

5
2
ϕ0∆− 3

4

[(
e−6ϕ sin2 ξ + e2ϕ cos2 ξ

)
dξ2 sin2 ξe2ϕdµ̂adµ̂a

]
+e

3
2
ϕ0∆

1
4

(
e2Udx21,5 + dr2

)
, e2φ̂ = ∆−1e10ϕ0 ,

F̂(3) =
64

g3
∆−2 sin3 ξ

(
U sin ξdξ + 8e4ϕ cos ξϕ′dr

)
∧ ϵ(2) (4.102)
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in which

∆ = e6ϕ cos2 ξ + e−2ϕ sin2 ξ, ϵ(2) =
1

2
εabcµ̂

adµ̂b ∧ dµ̂c,

U = e12ϕ cos2 ξ − e−4ϕ sin2 ξ − e4ϕ(sin2 ξ + 3 cos2 ξ). (4.103)

The residual symmetry SO(3) corresponds to the isometry of S2 ⊂ S3.

4.1.1.6.3 Solution with SO(2) × SO(2) Symmetry

Setting σ = 1 and ρ = 0 and using dr̃
dr

= e−2ϕ2 , we find the following SO(2)×SO(2)

symmetric DW from the BPS equations given in Section 4.1.1.4

U =
1

20
gr̃ +

1

10
ln(C1 + e

1
2
gr̃), (4.104)

ϕ1 = C2 −
1

10
gr̃ +

3

10
ln(C1 + e

1
2
gr̃), (4.105)

ϕ2 = C2 +
3

20
gr̃ − 1

5
ln(C1 + e

1
2
gr̃). (4.106)

To uplift the solution, we use the following parametrization of SL(4)/SO(4)

coset

M̃ij = diag(e2ϕ, e2ϕ, e−2ϕ, e−2ϕ) (4.107)

where ϕ0 and ϕ are associated to ϕ1 and ϕ2 through the relations

ϕ0 = −1

2
(ϕ1 + ϕ2) and ϕ =

1

2
(ϕ1 − ϕ2). (4.108)

Choosing the coordinates on S3 to be

µi = (cos ξ cosα, cos ξ sinα, sin ξ cos β, sin ξ sin β), (4.109)

we find

dŝ210 = ∆
1
4 e

3
2
ϕ0
(
e2Udx21,5 + dr2

)
+

16

g2
∆− 3

4 e−
5
2
ϕ0
[
(e2ϕ sin2 ξ + e−2ϕ cos2 ξ)dξ2

+e2ϕ cos2 ξdα2 + e−2ϕ sin2 ξdβ2
]
,

e2φ̂ = ∆−1e10ϕ0 , F̂(3) =
128

g3
∆−2 cos ξ sin ξdα ∧ dξ ∧ dβ (4.110)

with

∆ = e−2ϕ cos2 ξ + e2ϕ sin2 ξ . (4.111)

In this case, the unbroken SO(2)× SO(2) symmetry corresponds to the isometry

of S1 × S1 parametrized by coordinates α and β.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88

4.1.2 Gaugings in 40 Representation

In this section, we repeat the same analysis for CSO(p, q, 4− p− q) gauge groups

obtained from gaugings in 40 representation. As in Section 2.2.2.2, we decompose

the SL(5)/SO(5) coset in term of the SL(4)/SO(4) submanifold given in (2.94).

After setting YMN = 0 and using the inverse matrix MMN of the form

MMN =

e2ϕ0M̃ij −e2ϕ0bi

−e2ϕ0bj e−8ϕ0 + e2ϕ0bkb
k

 (4.112)

with M̃ij being the inverse of M̃ij and bi = M̃ijbj, we can rewrite the scalar

Lagrangian as

e−1Lscalar = −8∂µϕ0∂
µϕ0 +

1

8
∂µM̃ij∂

µM̃ij − 1

4
e10ϕ0M̃ij∂µbi∂

µbj − V (4.113)

in which the scalar potential is given in (2.95). Note here that the nilpotent scalars

bi appear quadratically in this Lagrangian so we can consistently truncate them

out throughout this section.

4.1.2.1 SO(4) Symmetric Domain Walls

We first consider DW solutions with the largest residual symmetry, SO(4) ⊂

CSO(p, q, 4 − p − q). Only SO(4) gauge group contains an SO(4) subgroup. In

this case, there are no SO(4) invariant scalars from the SL(4)/SO(4) submanifold,

while the embedding tensor is simply wij = δij. Taking the SL(4)/SO(4) coset

representative to be Ṽ = 14, we find the scalar potential in a particularly simple

form

V = −2g2e4ϕ0 . (4.114)

To setup BPS equations, we use the same Killing spinors (4.14). However,

the appropriate projector for this type of gaugings is different from that in the

previous cases in 15 representation and given by

(Γ5)
a
bϵ

b
0 = −γ 6̂ϵa0 . (4.115)
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Note that the appearance of Γ5 rather than other ΓA with A = 1, 2, 3, 4 in this

projection is due to the specific choice of vM = δM5 in the embedding tensor ZMN,P .

It is now straightforward to derive the corresponding BPS equations

U ′ =
2g

5
e−2ϕ0 , ϕ′

0 =
g

5
e−2ϕ0 . (4.116)

We can readily find the DW solution

ϕ0 =
1

2
ln
[
2gr

5
+ C

]
, U = ln

[
2gr

5
+ C

]
. (4.117)

4.1.2.2 SO(3) Symmetric Domain Walls

In this section, we look for more complicated solutions preserving SO(3) unbroken

symmetry generated by Xij with i, j = 1, 2, 3. Gauge groups containing an SO(3)

subgroup are SO(4), SO(3, 1), and CSO(3, 0, 1) corresponding to

wij = diag(1, 1, 1, ρ) (4.118)

with ρ = 1,−1, 0, respectively.

For simplicity, we truncate axions bi out and consider only ϕ0 and scalars

parameterizing the SL(4)/SO(4) coset. With an explicit form of the SL(4)/SO(4)

coset representative

Ṽ = diag(eϕ, eϕ, eϕ, e−3ϕ), (4.119)

we obtain the scalar potential

V = −g
2

4
e−4(ϕ0+3ϕ)(3e16ϕ + 6ρe8ϕ + ρ2). (4.120)

Using the projector in (4.115), we can derive the following set of BPS equations

U ′ =
g

10
e−2(ϕ0+3ϕ)(3e8ϕ + ρ), (4.121)

ϕ′
0 =

g

20
e−2(ϕ0+3ϕ)(3e8ϕ + ρ), (4.122)

ϕ′ = −g
4
e−2(ϕ0+3ϕ)(e8ϕ − ρ). (4.123)

The solutions for U and ϕ0 are given by

U =
2

5
ϕ− 1

5
ln(e8ϕ − ρ), (4.124)

ϕ0 =
1

5
ϕ− 1

10
ln(e8ϕ − ρ) + C0 . (4.125)
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The solution for ϕ(r) is given by

ϕ = − 5

16
ln
[
2

5
(e−2C0gr − C)

]
(4.126)

for ρ = 0 and

4grρ(e8ϕ − ρ)
1
5 = 5e2C+ 32

5
ϕ

[
4− 3

(
1− ρe8ϕ

) 1
5

2F1

(
1

5
,
4

5
,
9

5
, ρe8ϕ

)]
(4.127)

for ρ = ±1.

4.1.2.3 SO(2) × SO(2) Symmetric Domain Walls

We now consider DW solutions with SO(2) × SO(2) symmetry in SO(4) and

SO(2, 2) gauge groups. These gauge groups are altogether characterized by the

component of the embedding tensor in the form of

wij = diag(1, 1, σ, σ), σ = ±1 . (4.128)

With the parametrization for the SL(4)/SO(4) coset representative

Ṽ = diag(eϕ, eϕ, e−ϕ, e−ϕ), (4.129)

the scalar potential and the BPS equations are given by

V = −2g2σe−4ϕ0 (4.130)

and

U ′ =
1

5
ge−2ϕ0−2ϕ(e4ϕ + σ), (4.131)

ϕ′
0 =

1

10
ge−2ϕ0−2ϕ(e4ϕ + σ), (4.132)

ϕ′ =
1

2
ge−2ϕ0−2ϕ(e4ϕ − σ). (4.133)

The DW solution can be straightforwardly obtained

U = 2ϕ0, (4.134)

ϕ0 =
1

5
ϕ− 1

10
ln(e4ϕ − σ) + C0, (4.135)

6grσ(e4ϕ − σ)
1
5 = 5e2C0+

12
5
ϕ

[
3− 2

(
1− σe4ϕ

) 1
5

2F1

(
1

5
,
3

5
,
8

5
, σe4ϕ

)]
. (4.136)
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4.1.2.4 SO(2) Symmetric Domain Walls

We examine SO(2) symmetric solutions as a final example for DW solutions from

gaugings in 40 representation. Again, we truncate axions bi out and parametrize

the SL(4)/SO(4) coset representative as

Ṽ = eϕ1Y1+ϕ2Y2+ϕ3Y3 (4.137)

in which Yi, i = 1, 2, 3, are non-compact generators commuting with the SO(2)

symmetry generated by X12. The explicit form of these generators is given by

Y1 = e11 + e22 − e33 − e44, Y2 = e34 + e43, Y3 = e33 − e44 . (4.138)

Several gauge groups containing an SO(2) subgroup are uniformly characterized

by the following component of the embedding tensor

wij = diag(1, 1, σ, ρ). (4.139)

The scalar potential is computed to be

V = −g
2

16
e−4(ϕ0+ϕ1+ϕ3)

[
8e4ϕ1+2ϕ3 [ρ− σ + (ρ+ σ) cosh 2ϕ2]

− [ρ− σ + (ρ+ σ) cosh 2ϕ2]
2 − 8e4ϕ1+6ϕ3 [ρ− σ − (ρ+ σ) cosh 2ϕ2]

+e4ϕ3
[
ρ2 + 10ρσ + σ2 − (ρ+ σ)2 cosh 4ϕ2

]
+e8ϕ3 [ρ− σ − (ρ+ σ) cosh 2ϕ2]

2] . (4.140)

It should be noted that the scalar potential with σ = ρ = 0 vanish identically.

This leads to a Minkowski vacuum for CSO(2, 0, 2) gauge group.

In this case, the corresponding BPS equations are much more complicated

than those obtained in the previous cases

U ′ =
1

10
ge−2(ϕ0+ϕ1)

[
2e4ϕ1 − (ρ− σ) sinh 2ϕ3 + (ρ+ σ) cosh 2ϕ3 cosh 2ϕ2

]
, (4.141)

ϕ′
0 =

1

20
ge−2(ϕ0+ϕ1)

[
2e4ϕ1 − (ρ− σ) sinh 2ϕ3 + (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3

]
, (4.142)

ϕ′
1 = −1

4
ge−2(ϕ0+ϕ1)

[
2e4ϕ1 + (ρ− σ) sinh 2ϕ3 − (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3

]
,(4.143)

ϕ′
2 = −1

2
ge−2(ϕ0+ϕ1)(ρ+ σ) sinh 2ϕ2 sech 2ϕ3, (4.144)

ϕ′
3 =

1

2
ge−2(ϕ0+ϕ1) [(ρ− σ) cosh 2ϕ3 − (ρ+ σ) cosh 2ϕ2 sinh 2ϕ3] . (4.145)
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We are unable to solve these equations completely for arbitrary values of the

parameters ρ and σ. However, the solutions can be separately found for specific

values of ρ and σ.

(1) Domain walls from CSO(2, 0, 2) gauge group

The simplest case is CSO(2, 0, 2) gauge group with ρ = σ = 0. In this case,

ϕ′
2 = ϕ′

3 = 0 and the remaining BPS equations considerably simplify

U ′ =
1

5
ge−2ϕ0+ϕ1 , ϕ′

0 =
1

10
ge−2ϕ0+ϕ1 , ϕ′

1 = −1

2
ge−2ϕ0+ϕ1 . (4.146)

Here, scalars ϕ2 and ϕ3 can be consistently truncated out. Thus, the solution

for the remaining fields can be readily found

U = −1

5
ϕ1, ϕ0 = −1

5
ϕ1 + C0, ϕ1 = − 5

12
ln
[
6

5
(e−2C0gr − C)

]
. (4.147)

(2) Domain walls from SO(3, 1) gauge group

In the case with σ = −ρ = 1, the BPS equations give ϕ′
2 = 0. Similar to the

previous case, ϕ2 does not appear in any BPS equations. After truncating

out ϕ2 and redefining r to r̃ by dr̃
dr

= e−2ϕ0−2ϕ1 , we find a DW solution

ϕ1 =
1

2
ϕ3 −

1

4
ln
[
1 + C1(1 + e4ϕ3)

]
, (4.148)

ϕ0 = C0 +
1

10
ϕ3 −

1

10
ln(1 + e4ϕ3) +

1

20
ln
[
1 + C1(1 + e4ϕ3)

]
,(4.149)

ϕ3 =
1

2
ln tan(C3 − gr̃), (4.150)

U = 2ϕ0. (4.151)

(3) Domain walls from CSO(3, 0, 1) and CSO(2, 1, 1) gauge groups

In this case, we set ρ = 0 and σ = ±1 corresponding CSO(3, 0, 1) and

CSO(2, 1, 1) gauge groups. All scalar fields are now non-vanishing and the

DW solution is given by

U = 2ϕ0, (4.152)

ϕ0 =
1

20
ln
[
1

4
gr̃

(
C0 − g2r̃2e4C1 − 4e4C1+C3g2r̃2 − 4e4C1+2C3g2r̃2

)]
,(4.153)
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ϕ1 = C1 − 5ϕ0 −
1

4
ln(1− e4ϕ2) +

1

4
ln(1 + 2eC3 + e2C3 − e2C3+4ϕ2),(4.154)

ϕ2 =
1

4
ln
[
4(1 + eC3)2 + (1 + 2eC3)2g2r̃2

4e2C3 + (1 + 2eC3)2g2r̃2

]
, (4.155)

ϕ3 =
1

4
ln
[
(e2ϕ2 − 1)(1 + eC3 + eC3+2ϕ2)

1 + eC3 + e2ϕ2 − eC3+4ϕ2

]
(4.156)

with dr̃
dr

= e−2ϕ0−2ϕ1 . In this solution, we have shifted the coordinate r̃ to

r̃ + C
gσ

with C being an integration constant in ϕ2 solution.

(4) Domain walls from SO(4) and SO(2, 2) gauge groups

In this case, we set ρ = σ = ±1 corresponding to SO(4) and SO(2, 2) gauge

groups. The DW solution can be obtained as in the previous case

U = 2ϕ0, (4.157)

ϕ0 = C0 +
1

10
ln
[
1 + 4e2C3 − e−2gσr̃

]
+

1

40
(4σ + e20C1 + 4e20C1+2C3)gr̃

− σ

160
e20C1−2gσr̃(16e4(C3+gσr̃) + 8e2C3+4gσr̃ + e4gσr̃ − 1), (4.158)

ϕ1 = 5C1 −
1

2
ln(1− e4ϕ2) +

1

4
ln
[
e2C3 − e4ϕ2 + e2C3+4ϕ2(e4ϕ2 − 2)

]
,(4.159)

ϕ2 =
1

4
ln
[
1− 2egσr̃ + e2gσr̃ + 4e2C3+2gσr̃

1 + 2egσr̃ + e2gσr̃ + 4e2C3+2gσr̃

]
, (4.160)

ϕ3 =
1

4
ln
[
e2ϕ2 + eC3+4ϕ2 − eC3

e2ϕ2 + eC3 − eC3+4ϕ2

]
(4.161)

with dr̃
dr

= e−2ϕ0−2ϕ1 .

4.1.3 Gaugings in 15 and 40 Representations

We close this flat DW section by looking for the solutions in SO(2, 1) ⋉ R4 and

SO(2)⋉R4 gauge groups. Besides, we also explicitly demonstrate that DWs from

these gaugings in both 15 and 40 representations are 1
4
-supersymmetric.

4.1.3.1 1
4
-BPS Domain Wall from SO(2, 1)⋉R4 Gauge Group

We start with SO(2, 1)⋉R4 gauge group. In this case, we consider solutions that

are invariant under the maximal compact subgroup SO(2) ⊂ SO(2, 1). Among the
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fourteen scalars in SL(5)/SO(5) coset, there are four SO(2) singlets corresponding

to the following non-compact generators

Y1 = 2e1,1 + 2e2,2 + 2e3,3 − 3e4,4 − 3e5,5,

Y2 = e1,1 + e2,2 − 2e3,3,

Y3 = e1,4 + e2,5 + e4,1 + e5,2,

Y4 = e1,5 − e2,4 − e4,2 + e5,1 . (4.162)

With the SL(5)/SO(5) coset representative

V = eϕ0Y1+ϕ1Y2+ϕ2Y3+ϕ3Y4 , (4.163)

we obtain the scalar potential

V =
g2

64
e−2(4ϕ0−ϕ1)

[
6 cosh 2ϕ2 cosh 2ϕ3 + e6ϕ1

]
(4.164)

which does not admit any critical points.

Contrary to the previous cases, we need to impose two projection conditions

on the Killing spinors (4.14) in order to obtain a consistent set of BPS equations

in this case. This is because A1 and A2 matrices consist of two parts separately

corresponding to YMN and ZMN,P . While the latter comes with an extra SO(5)

gamma matrices Γ3, the former does not. The resulting two projections are

γ 6̂ϵa0 = −(Γ3)
a
bϵ

b
0 = ϵa0, (4.165)

which reduce the number of SUSY to 1/4 of the original amount or eight

supercharges.

Following the same procedure as in the previous cases, we find the BPS

equations

U ′ =
g

40
e−2(2ϕ0+ϕ1)

(
3 cosh 2ϕ2 cosh 2ϕ3 − e6ϕ1

)
, (4.166)

ϕ′
0 =

g

240
e−2(ϕ0+ϕ1)

(
15sech2ϕ2sech2ϕ3 − 3 cosh 2ϕ2 cosh 2ϕ3 − 4e6ϕ1

)
, (4.167)

ϕ′
1 =

g

48
e−2(ϕ0+ϕ1)

(
3sech2ϕ2sech2ϕ3 + 3 cosh 2ϕ2 cosh 2ϕ3 + 4e6ϕ1

)
, (4.168)

ϕ′
2 = −3g

16
e−2(2ϕ0+ϕ1) sinh 2ϕ2sech2ϕ3, (4.169)

ϕ′
3 = −3g

16
e−2(2ϕ0+ϕ1) cosh 2ϕ2 sinh 2ϕ3 . (4.170)
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Introducing a new radial coordinate r̃ via dr̃
dr

= e−4ϕ0−2ϕ1 , we can find a DW

solution to these equations

ϕ0 = C0 +
2

45
(e3ϕ1 − 3) ln(1− e4ϕ2)− 1

60
ln(e2C3 − e4ϕ2 + e8ϕ2+2C3 − 2e4ϕ2+2C3)

− 2

45
ln
(
1 + e4ϕ2 + 2

√
e4ϕ2 − e2C3 − e8ϕ2+2C3 + 2e4ϕ2+2C3

)
+
1

6
ln(1 + e4ϕ2), (4.171)

ϕ1 = C1 − 5ϕ0 − ln(1− e4ϕ2) + ln(1 + e4ϕ2), (4.172)

ϕ2 =
1

4
ln
[
1 + 4e2C3 − 2e

3
8
gr̃ + e

3
4
gr̃

1 + 4e2C3 + 2e
3
8
gr̃ + e

3
4
gr̃

]
, (4.173)

ϕ3 =
1

4
ln
[
e2ϕ2 − eC3 + e4ϕ2+C3

e2ϕ2 + eC3 − e4ϕ2+C3

]
, (4.174)

U =
1

15
(e6ϕ1 − 3) ln(1− e4ϕ2) +

1

10
ln
(
e2C3 − e4ϕ2 + e2C3+8ϕ2 − 2e2C3+4ϕ2

)
− 1

15
e6ϕ1 ln

(
2
√
e4ϕ2 − e2C3 − e8ϕ2+2C3 + 2e2C3+4ϕ2 + e4ϕ2 + 1

)
(4.175)

in which Ci, i = 0, 1, 3, are integration constants for ϕi solutions. It should be

noted that C2 and another integration constant for U solution are neclected by

shifting the radial coordinate r̃ and rescaling the flat coordinates xm, respectively.

4.1.3.2 1
4
-BPS Domain Wall from SO(2)⋉R4 Gauge Group

As the final case, we consider SO(2) ⋉ R6 gauge group with TrZ2 = −2. As

expressed before, this case admits a half-supersymmetric (N = 2) Minkowski

vacuum, and the gauge group is reduced to SO(2)⋉R4. For definiteness, we take

an explicit form of Zα
β to be

Zα
β =


0 0 0

0 0 −1

0 1 0

 . (4.176)

There are four SO(2) singlet scalars corresponding to the following SL(5)
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non-compact generators

Y 1 = 3e1,1 + 3e2,2 − 2e3,3 − 2e4,4 − 2e5,5,

Y 2 = e4,4 + e5,5 − 2e3,3,

Y 3 = e1,4 + e2,5 + e4,1 + e5,2,

Y 4 = e1,5 − e2,4 − e4,2 + e5,1 . (4.177)

Using the parametrization of the SL(5)/SO(5) coset representative in the form

V = eϕ0Y 1+ϕ1Y 2+ϕ2Y 3+ϕ3Y 4 , (4.178)

we find that the scalar potential vanishes identically. This is in agreement with

CSO(2, 0, 2) gauge group considered in the previous section.

With the projectors (4.165), we can derive the following BPS equations

U ′ =
g

10
e−6ϕ0 cosh 2ϕ2 cosh 2ϕ3, (4.179)

ϕ′
0 =

g

60
e−6ϕ0 (cosh 2ϕ2 cosh 2ϕ3 + 5sech2ϕ2sech2ϕ3) , (4.180)

ϕ′
1 =

g

12
e−6ϕ0 (cosh 2ϕ2 cosh 2ϕ3 − sech2ϕ2sech2ϕ3) , (4.181)

ϕ′
2 = −g

4
e−6ϕ0 sinh 2ϕ2sech2ϕ3, (4.182)

ϕ′
3 = −g

4
e−6ϕ0 cosh 2ϕ2 sinh 2ϕ3 . (4.183)

By using a new radial coordinate r̃ defined by dr̃
dr

= e−6ϕ0 , we find a DW solution

to the above equations

ϕ0 = C0 −
1

5
ln(1− e4ϕ2) +

1

6
ln(1 + e4ϕ2)

+
1

60
ln
[
e2C3 − e4ϕ2 + e2C3+8ϕ2 − 2e2C3+4ϕ2

]
, (4.184)

ϕ1 = C1 −
1

6
ln(1 + e4ϕ2) +

1

12
ln
[
e2C3 − e4ϕ2 + e2C3+8ϕ2 − 2e2C3+4ϕ2

]
, (4.185)

ϕ2 =
1

4
ln
[
1 + 4e2C3 − 2e

1
2
gr̃ + egr̃

1 + 4e2C3 + 2e
1
2
gr̃ + egr̃

]
, (4.186)

ϕ3 =
1

4
ln
[
e2ϕ2 + e4ϕ2+C3 − eC3

e2ϕ2 − e4ϕ2+C3 + eC3

]
, (4.187)

U = −1

5
ln(1− e4ϕ2) +

1

10
ln
[
e2C3 − e4ϕ2 + e2C3+8ϕ2 − 2e2C3+4ϕ2

]
. (4.188)
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4.2 Charged Domain Wall Solutions

We subsequently extend the (flat) DW solutions found in the previous section

by coupling them to non-vanishing modified three-forms H(3)M in this section.

Similar to Section 3.1, the solutions under consideration here also take the form of

AdS3 × S3-sliced DWs. In addition to H(3)M , it is also possible to further couple

SO(3) gauge fields to the solutions in some cases.

For SO(5) gauge group with a supersymmetric AdS7 vacuum, charged DW

solutions should be interpreted as two-dimensional conformal defects within the

dual N = (2, 0) SCFT in six dimensions. For other gauge groups, their vacua take

the form of supersymmetric flat DWs given in Section 4.1. We expect these charged

DW solutions to describe surface defects in the dual six-dimensional N = (2, 0)

SQFTs. Moreover, as in the previous case, we will also give uplifted solutions

only for SO(5) and CSO(4, 0, 1) gauge groups in which the complete truncation

ansatze of eleven-dimensional supergravity on S4 and type IIA theory on S3 are

known.

4.2.1 Gaugings in 15 Representation

As in the flat DW section, we begin with gaugings in 15 representation. To

couple the modified three-forms to the DWs, we take the metric ansatz to be the

AdS3 × S3-sliced DW (3.1). In order to preserve some amount of SUSY on this

metric, we use the ansatz for Killing spinors similar to (3.14)

ϵa = e
U(r)
2 ϵa0

[
cos θ(r)18 + sin θ(r)γ 0̂1̂2̂

]
ϵa0 (4.189)

in which ϵa0 are constant SM spinors.

For the modified three-forms, we use the ansatz following (3.12)

Hm̂n̂p̂M = kM(r)e−3U(r)εm̂n̂p̂ and Hîĵk̂M = lM(r)e−3W (r)εîĵk̂ (4.190)

or, equivalently, with volAdS3 and volS3 given in (3.13),

H(3)M = kMvolAdS3 + lMvolS3 . (4.191)
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As seen from their definitions, all tensor fields are involved in the modified three-

forms. These contributions can come from either massive three-form or two-

form fields depending on the non-vanishing components of the embedding tensor.

Therefore, in order to identify which tensor fields determine non-vanishing H(3)M ,

we need to consider gauge group by gauge group.

4.2.1.1 SO(4) Symmetric Charged Domain Walls

We first consider charged DW solutions with SO(4) symmetry. To preserve SO(4)

symmetry, we keep only the following components of H(3)M non-vanishing

Hm̂n̂p̂5 = k(r)e−3U(r)εm̂n̂p̂ and Hîĵk̂5 = l(r)e−3W (r)εîĵk̂ . (4.192)

For SO(5) and SO(4, 1) gauge groups corresponding to the non-degenerate

YMN from (4.5), the field content of the gauged supergravity contains five massive

three-form fields SM
(3). For vanishing gauge and two-form fields, the modified three-

form is then given by

H(3)5 = gρS5
(3) (4.193)

with ρ = Y55 = ±1. Therefore, the massive three-form field S5
(3) determines the

H(3)5 in these gauge groups.

For CSO(4, 0, 1) gauge group with Y55 = 0, the S5
(3) does not contribute to

H(3)5, but there is a massless two-form field B(2)5 with the field strength

H(3)5 = DB(2)5 . (4.194)

In this case, k′(r) = l′(r) = 0 is needed in order to satisfy the Bianchi’s identity

DH(3)M = 0. Taking this condition into account, we can write the ansatz for the

two-form field as

B(2)5 = k ω(2) + l ω̃(2) (4.195)

in which k and l are now constants. With the metrics given in (3.2) and (3.3), the

explicit form of ω(2) and ω̃(2) is given by

ω(2) = − 1

τ 3
sinhx1dt ∧ dx2 and ω̃(2) = − 1

κ3
sin x5dx4 ∧ dx6 . (4.196)
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It can be readily verified that volAdS3 = dω(2) and volS3 = dω̃(2).

Using the scalar coset representative (4.7), and imposing two projection

conditions

γ 3̂ϵa0 = (Γ5)
a
bϵ

b
0 = ϵa0, (4.197)

we find the following BPS equations from the conditions δψa
µ = 0 and δχabc = 0

U ′ =
eV−2ϕ

80 cos 2θ
[
g(8− ρe10ϕ) + 3gρe10ϕ cos 4θ − 16τe2ϕ−U sin 2θ

]
, (4.198)

W ′ =
eV−2ϕ

40 cos 2θ
[
g(4 + 2ρe10ϕ)− gρe10ϕ cos 4θ − 8τe2ϕ−U sin 2θ

]
, (4.199)

ϕ′ =
eV−2ϕ

80 cos 2θ
[
g(4− 3ρe10ϕ)− gρe10ϕ cos 4θ − 8τe2ϕ−U sin 2θ

]
, (4.200)

θ′ = − 1

16
gρeV+8ϕ sin 2θ, (4.201)

k =
1

8
e2U−4ϕ(4τ − gρeU+8ϕ sin 2θ), (4.202)

l =
1

8
e3W−6ϕ

[
g(ρe10ϕ − 2) tan 2θ + 4τe2ϕ−U sec 2θ

]
(4.203)

together with an algebraic constraint

0 = e−Wκ− e−Uτ sec 2θ + 1

2
ge−2ϕ tan 2θ . (4.204)

Since the four-form field strengths do not enter the SUSY transformations of

fermions, the functions k(r) and l(r) appear algebraically in the resulting BPS

equations. This is in contrast to the pure N = 2 gauged supergravity considered

in [62] and the matter-coupled SO(4) theory in Section 3.1 in which the four-form

field strength of the massive three-form field obviously appears in the fermionic

SUSY transformations. In those cases, the BPS conditions result in differential

equations for k(r) and l(r).

It should be noted here that the appearance of the SO(5) gamma matrix

Γ5 in the projection conditions (4.197) is due to the non-vanishing H(3)5. We

then consider various possible solutions to the BPS equations, these solutions are
1
4
-BPS since the Killing spinors are subject to two projectors (4.197).
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4.2.1.1.1 Mkw3 × R3-Sliced Domain Walls

We start with a simple case of Mkw3 × R3-sliced DWs with vanishing τ and κ.

Imposing τ = κ = 0 into the constraint (4.204) gives

0 =
1

2
ge−2ϕ tan 2θ . (4.205)

Setting g = 0 corresponds to ungauged N = 4 supergravity and gives rise to a

supersymmetric Mkw3 × R× R3 ∼Mkw7 background as expected.

Another possibility to satisfy the condition (4.205) is to set tan 2θ = 0 which

implies θ = nπ
2

, n = 0, 1, 2, 3, . . .. For even n, we have sin θ = 0 and, from (4.189),

the Killing spinors take the simple form given in (4.14). For odd n with cos θ = 0,

the Killing spinors become

ϵa = e
U
2 γ 0̂1̂2̂ϵa0 . (4.206)

We can redefine ϵa0 to ϵ̃a0 = γ 0̂1̂2̂ϵa0 satisfying the projection conditions

−γ 3̂ϵa0 = (Γ5)
a
bϵ

b
0 = ϵa0 . (4.207)

This differs from the projectors in (4.197) only by a minus sign in the γ 3̂

projector. Therefore, the two possibilities obtained from the condition tan 2θ = 0

are equivalent by flipping the sign of γ 3̂ projector. We can accordingly choose

θ = 0 without losing generality.

With θ = 0, the BPS equations (4.198) to (4.203) become

U ′ = W ′ =
1

40
geV−2ϕ(4 + ρe10ϕ), (4.208)

ϕ′ =
1

20
geV−2ϕ(1− ρe10ϕ), (4.209)

k = l = 0 . (4.210)

By choosing V = −3ϕ, we find the following solution

U = W = 2ϕ− 1

4
ln
[
1− ρe10ϕ

]
, (4.211)

e5ϕ =
1
√
ρ

tanh
[√

ρ

4
(gr + C)

]
(4.212)
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with an integration constant C. Since k = l = θ = 0, the Γ5 projection in (4.197)

is not needed. This solution is then half-supersymmetric with vanishing three-

form fluxes and is exactly the SO(4) symmetric DW studied in Section 4.1.1.1.

Therefore, the Mkw3 × R3-sliced solution is just the standard flat DW.

4.2.1.1.2 Mkw3 × S3-Sliced Domain Walls

We now look for DW solutions with a Mkw3 × S3 slice. In this case, the follwing

gauge choice is chosen as in [62]

e−V =
1

16
e8ϕ . (4.213)

For ρ ̸= 0, we can solve the BPS equations (4.198) to (4.203) by setting τ = 0.

The resulting solution is given by

U = 2ϕ− ln (sin 2θ) , (4.214)

W = 2ϕ− ln (tan 2θ) , (4.215)

e10ϕ = 2C(cos 4θ − 3) + (4C + ρ) sec2 2θ, (4.216)

k = −g
8

(
4ρC + csc4 2θ

)
tan2 2θ, (4.217)

l =
g

16
[ρC(cos 8θ + 3)− 2(2ρC + 1) cos 4θ] csc2 2θ, (4.218)

θ = arctan
(
e−2gρr

)
(4.219)

with κ = −g/2 and C being an integration constant in the solution for ϕ.

For SO(5) gauge group with ρ = 1, the solution is locally asymptotic to the

N = 4 supersymmetric AdS7 in the limit r → ∞ with

U ∼ W ∼ 2gr, ϕ ∼ θ ∼ 0 . (4.220)

In this limit, the main contribution to the solution is obtained from the scalar

field, while the contribution from the modified three-forms is highly suppressed,

as can be seen from (4.192). On the other hand, in the limit r → 0, the solution

is singular similar to the solution studied in [62].
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For SO(4, 1) gauge group with ρ = −1, there is no AdS7 asymptotic since

this gauge group does not admit a supersymmetric AdS7 vacuum. In this case, the

solution is the SO(4) symmetric flat DW studied in Section 4.1.1.1 with a dyonic

profile of the three-form flux.

For CSO(4, 0, 1) gauge group with ρ = 0, imposing τ = 0 into the

constraint (4.204) gives

κ = −1

2
geW−2ϕ tan 2θ, (4.221)

and the BPS equations from (4.198) to (4.203) with τ = 0 become

U ′ = W ′ =
1

10
geV−2ϕ sec 2θ, (4.222)

ϕ′ =
1

20
geV−2ϕ sec 2θ, (4.223)

θ′ = k = 0, (4.224)

l = −1

4
ge3W−6ϕ tan 2θ. (4.225)

The equation (4.224) implies that θ is constant. Note that these BPS equations

will reduce to those of the Mkw3 × R3-sliced DW if θ = 0.

In this case, the constraint (4.221) implies that θ cannot be zero since we

keep κ ̸= 0. Furthermore, a non-vanishing θ gives a non-trivial three-form flux

according to (4.225) to support the S3 part. For constant θ ̸= 0, we find the

following solution, after choosing V = 0 gauge choice,

U = W = 2ϕ, k = 0, (4.226)

l = −1

4
g tan 2θ, (4.227)

e2ϕ =
1

10
gr sec 2θ + 2C (4.228)

with an integration constant C. The constant θ is given by

θ = −1

2
tan−1 2κ

g
. (4.229)

It can be verified that this charged DW solution is the SO(4) symmetric flat DW

of CSO(4, 0, 1) gauge group given in Section 4.1.1.1 with a magnetic profile of a

constant three-form flux obtained from a constant θ.
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4.2.1.1.3 AdS3 × S3-Sliced Domain Walls

We move on to more complicated solutions with an AdS3×S3 slice. As in [62], we

begin with a more straightforward solution with U = W . From the BPS equations

(4.198) to (4.203), imposing U ′ =W ′ gives

θ = 0, k = l, κ = τ . (4.230)

Setting θ = 0, we find that the BPS equations become

U ′ =
g

40
eV−2ϕ(4 + ρe10ϕ), (4.231)

ϕ′ =
g

20
eV−2ϕ(1− ρe10ϕ), (4.232)

k =
1

2
e2U−4ϕτ . (4.233)

Choosing V = −3ϕ, we obtain the following solution

U = 2ϕ− 1

4
ln
(
1− ρe10ϕ

)
, (4.234)

e5ϕ =
1
√
ρ

tanh
[√

ρ

4
(gr + C)

]
, (4.235)

k =
1

2
τ cosh

[√
ρ

4
(gr + C)

]
(4.236)

with an integration constant C. This solution is the SO(4) symmetric flat DW

coupled to a dyonic profile of the three-form flux.

For SO(5) gauge group, the solution is locally asymptotic to the N = 4

supersymmetric AdS7 vacuum. We expect this solution to describe a surface

defect, corresponding to the AdS3 part, in the six-dimensional N = (2, 0) SCFT.

For SO(4, 1) and CSO(4, 0, 1) gauge groups, we similarly interpret the solutions

as conformal surface defects within six-dimensional N = (2, 0) SQFTs dual to flat

DW vacua without the three-form flux.

In the more general case with U ̸= W , we will separately find the solutions

for the cases of ρ = ±1 and ρ = 0. With the same gauge choice given in (4.213),
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the BPS equations (4.198) to (4.203) for ρ ̸= 0 are solved by

U = 2ϕ− ln (sin 2θ) , (4.237)

W = 2ϕ− ln (tan 2θ) , (4.238)

e10ϕ =
3gC + 2gρ− 4τρ+ 4(τρ− gC) cos 4θ + gC cos 8θ

g(cos 4θ + 1)
, (4.239)

k =
1

8

(
4τ csc2 2θ − g csc4 2θ − 4gρC

)
tan2 2θ, (4.240)

l =
1

8

(
g csc2 2θ − 2g cot2 2θ − 4τ + 4gρC sin2 2θ

)
, (4.241)

θ = arctan
(
e−2gρr

)
(4.242)

together with the following relation obtained from the constraint (4.204)

κ = −g
2
+ τ . (4.243)

Again, the solution is locally asymptotic to the AdS7 vacuum for SO(5) gauge

group, and being a charged DW with a non-vanishing three-form flux for SO(4, 1)

gauge group. In general, these solutions respectively describe holographic RG

flows from an N = (2, 0) SCFT and an N = (2, 0) SQFT to a singularity at r = 0

except for a special case with τ = g(ρC+1)/4. This is very similar to the solutions

of pure N = 2 gauged supergravity studied in [62].

As r → 0 for τ = g(ρC + 1)/4, the scalar potential is constant and the

solution turns out to be described by a locally AdS3 × T 4 geometry with the

following leading profile

e2U ∼ (ρ− 4C)
2
5 , e2W ∼ 0, ϕ ∼ 1

10
ln (ρ− 4C) ,

θ ∼ π

4
, k ∼ g

8
(4ρC − 1), l ∼ 0 . (4.244)

To obtain real solutions in SO(5) and SO(4, 1) gauge groups, we respectively

choose the integration constant C < 1
4

and C < −1
4
.

For CSO(4, 0, 1) gauge group with ρ = 0, after setting V = 0, we find the

following BPS solution

U = W = 2ϕ, k =
1

2
τ, (4.245)

l =
1

4
(2τ − g sin 2θ) sec 2θ, (4.246)

e2ϕ =
1

10
r (g sec 2θ − 2τ tan 2θ) + 2C (4.247)
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where the constant κ is given by

κ = τ sec 2θ − 1

2
g tan 2θ. (4.248)

In this case, θ is constant since the BPS equation (4.201) with ρ = 0 gives θ′ = 0.

4.2.1.1.4 Coupling to SO(3) Gauge Fields

We extend our analysis by coupling the previously obtained solutions to SO(3)

gauge fields in this section. With the identity Γ1 . . .Γ5 = 14 and the projector

(Γ5)
a
bϵ

b
0 = ϵa0, we turn on the gauge fields on the S3 corresponding to the anti-self-

dual SO(3) ⊂ SO(4). The ansatz for these gauge fields is chosen to be

A23
(1) = −A14

(1) = e−W (r)κ

4
p(r)e4̂, (4.249)

A31
(1) = −A24

(1) = e−W (r)κ

4
p(r)e5̂, (4.250)

A12
(1) = −A34

(1) = e−W (r)κ

4
p(r)e6̂ . (4.251)

The function p(r) is the magnetic charge depending on the radial coordinate. The

corresponding two-form field strengths are given by

F 23
(2) = −F 14

(2) = e−V−W κ

4
p′e3̂ ∧ e4̂ + e−2W κ2

8
p(2− gp)e5̂ ∧ e6̂, (4.252)

F 31
(2) = −F 24

(2) = e−V−W κ

4
p′e3̂ ∧ e5̂ + e−2W κ2

8
p(2− gp)e6̂ ∧ e4̂, (4.253)

F 12
(2) = −F 34

(2) = e−V−W κ

4
p′e3̂ ∧ e6̂ + e−2W κ2

8
p(2− gp)e4̂ ∧ e5̂ . (4.254)

Since ZMN,P = 0 in the 15 representation, the modified two-forms are precisely

the SO(3) field strengths, FMN
(2) = FMN

(2) , in this case.

To preserve some amount of SUSY, we need to impose additional projection

conditions on the constant SM spinors ϵa0 as follow

γ 4̂5̂ϵa0 = −(Γ12)
a
bϵ

b
0, γ 5̂6̂ϵa0 = −(Γ23)

a
bϵ

b
0. (4.255)

Therefore, together with the projectors given in (4.197), there are four independent

projectors on ϵa0, and the residual SUSY consists of two supercharges.
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With all these, the resulting BPS equations for the AdS3 × S3-sliced DW

coupling to non-vanishing SO(3) gauge fields are given by

U ′ =
eV−2(W+ϕ)

80 cos 2θ
[
e2W

(
g(4 + ρe10ϕ)(3 cos 4θ − 1) + 32e2ϕ−Uτ sin 2θ

)
+12e4ϕ

(
κ2p(gp− 2)(cos 4θ − 3) + 2eW−2ϕκ(gp− 1) sin 4θ

)]
, (4.256)

W ′ =
eV−2(W+ϕ)

40 cos 2θ
[
e2W

(
g(4 + ρe10ϕ)(2− cos 4θ) + 24e2ϕ−Uτ sin 2θ

)
+4e4ϕ

(
κ2p(gp− 2)(cos 4θ − 8)− 2eW−2ϕκ(gp− 1) sin 4θ

)]
, (4.257)

ϕ′ =
eV−2(W+ϕ)

80 cos 2θ
[
e2W

(
g(6 cos 4θ − 2− ρe10ϕ(cos 4θ + 3)) + 16e2ϕ−Uτ sin 2θ

)
+6e4ϕ

(
κ2p(gp− 2)(3− cos 4θ) + 2eW−2ϕκ(gp− 1) sin 4θ

)]
, (4.258)

θ′ =
eV−2(W+ϕ)

16

[
24eW+2ϕ

(
eW−Uτ + κ(gp− 1) cos 2θ

)
−
(
ge2W (12 + ρe10ϕ)− 12e4ϕκ2p(gp− 2)

)
sin 2θ

]
, (4.259)

k =
1

8
e3U−4ϕ(4e−Uτ − gρe8ϕ sin 2θ), (4.260)

l =
1

8
e3W−6ϕ

[
g(4 + ρe10ϕ) tan 2θ − 8e2ϕ−Uτ sec 2θ

−12e4ϕ−2W
(
κ2p(gp− 2) tan 2θ + eW−2ϕκ(gp− 1)

)]
, (4.261)

p′ =
eV−W−4ϕ

2κ

[
2eW+2ϕ

(
eW−Uτ + κ(gp− 1) cos 2θ

)
−
(
ge2W − e4ϕκ2p(gp− 2)

)
sin 2θ

]
. (4.262)

It can be verified that these equations satisfy all the field equations (2.69) to (2.73)

without imposing any constraint. Moreover, by setting τ = 0, we obtain the BPS

equations for the case with a Mkw3 × S3 slice.

Since the BPS equations are much more complicated, we are not able to

find analytic flow solutions in this case. Instead, we look for numerical solutions

with some appropriate boundary conditions. We first consider the asymptotic

AdS7 vacuum in SO(5) gauge group. With ρ = 1, the following locally AdS7

configuration solves the above BPS equations at the leading order as r → ∞

U ∼ W ∼ r

LAdS7

, ϕ ∼ θ ∼ 0, p ∼ 1

g

(
1− τ

κ

)
(4.263)

with LAdS7 =
8
g
. Choosing V = 0 gauge choice, we find some examples of the BPS

flow solutions from this locally AdS7 geometry as r → ∞ to the singularity at

r = 0, as shown in Figures 4.1 and 4.2 for g = 16 and κ = 2. Note that, in these
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solutions, we have not imposed the boundary conditions on k and l since their

BPS equations are algebraic. This is rather different from the solutions in [62] in

which the BPS equations for k and l are differential.

0.2 0.4 0.6 0.8 1.0
r
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2.0
U(r)

(a) U solution

0.2 0.4 0.6 0.8 1.0
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W (r)

(b) W solution

0.2 0.4 0.6 0.8 1.0
r

0.02

0.04

0.06

0.08

0.10

0.12
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(c) ϕ solution
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(d) p solution
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(e) k solution
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(f) l solution

Figure 4.1: A numerical solution with g = 16, κ = 2, and τ = 0 from the locally

AdS7 configuration in UV as r → 1 to a singularity in the form of a Mkw3 × S3-

sliced DW in IR at r = 0 for SO(5) gauge group.

From the numerical solution in Figure 4.2, the solutions for k and l seem to

be diverging as k ∼ e2U and l ∼ e2W when r → ∞. However, the contribution

from the three-form flux is highly suppressed in this limit since the terms involving

H(3)5 in the BPS equations behave as ke−3U + le−3W .

We then look for numerical solutions of the BPS equations (4.256) to (4.262)

in the form of a BPS flow from the charged DW without the SO(3) gauge fields

given previously to the singularity at r = 0. With the gauge choice V = −3ϕ, we

find the following behavior at the leading order when gr → C, for a constant C,

U ∼ W ∼ 2

5
ln(gr − C), ϕ ∼ 1

5
ln(gr − C),

θ ∼ p ∼ 0, and k ∼ l ∼ τ

2
(4.264)

with κ = τ . It can be verified that this configuration solves the BPS equations

(4.198) to (4.203), and (4.204) in the limit gr → C for all SO(5), SO(4, 1), and
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(a) U solution
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(b) W solution

0.2 0.4 0.6 0.8 1.0
r

0.02

0.04

0.06

0.08

0.10

0.12
ϕ(r)

(c) ϕ solution
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Figure 4.2: A numerical solution with g = 16, κ = 2, and τ = 1 from the locally

AdS7 configuration in UV as r → 1 to a singularity in the form of an AdS3 × S3-

sliced DW in IR at r = 0 for SO(5) gauge group.

CSO(4, 0, 1) gauge groups.

Examples of the BPS flows from the charged DW in (4.264) as gr → C to

the singularity at r = 0 in SO(5), SO(4, 1), and CSO(4, 0, 1) gauge groups are

respectively given in Figures 4.3, 4.4, and 4.5 for C = −1, g = 1, and κ = τ = 2.

These solutions should describe surface defects within six-dimensional N = (2, 0)

SQFTs. For the solution in Figure 4.5, we can see that k is constant along the flow

since the BPS equations (4.256) and (4.258) give constant U − 2ϕ when ρ = 0.

For SO(5) gauge group, it is also possible to find BPS flow solutions

interpolating between the asymptotically locally AdS7 geometry and the charged

DW configuration with an intermediate singularity in the presence of non-vanishing

SO(3) gauge fields at r = 0. With C = −1, g = 1, κ = τ = 2, and the gauge fixing

V = −3ϕ, an example of these flow solutions is shown in Figure 4.6 in which the

SO(3) gauge fields vanish at both ends of the flow and become singular at r = 0.
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Figure 4.3: A numerical solution with C = −1, g = 1, κ = τ = 2, and V = −3ϕ

from a charged DW without the SO(3) gauge fields at r = −1 to a singularity in

the form of an AdS3 × S3-sliced DW at r = 0 for SO(5) gauge group.
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Figure 4.4: A numerical solution with C = −1, g = 1, κ = τ = 2, and V = −3ϕ

from a charged DW without the SO(3) gauge fields at r = −1 to a singularity in

the form of an AdS3 × S3-sliced DW at r = 0 for SO(4, 1) gauge group.
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Figure 4.5: A numerical solution with C = −1, g = 1, κ = τ = 2, and V = −3ϕ

from a charged DW without the SO(3) gauge fields at r = −1 to a singularity in

the form of an AdS3 × S3-sliced DW at r = 0 for CSO(4, 0, 1) gauge group.
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Figure 4.6: A numerical solution with C = −1, g = 1, κ = τ = 2, and V = −3ϕ

between a charged DW without the SO(3) gauge fields at r = −1 and the locally

AdS7 configuration as r → 10 with a singularity at r = 0 for SO(5) gauge group.
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4.2.1.2 SO(3) Symmetric Charged Domain Walls

By repeating the same procedure, we can look for charged DWs preserving SO(3)

residual symmetry. The SO(3) residual symmetry allows only two non-vanishing

H(3)4 and H(3)5. We will choose the following ansatz

Hm̂n̂p̂4 = k4(r)e
−3U(r)εm̂n̂p̂, Hîĵk̂4 = l4(r)e

−3W (r)εîĵk̂, (4.265)

Hm̂n̂p̂5 = k5(r)e
−3U(r)εm̂n̂p̂, Hîĵk̂5 = l5(r)e

−3W (r)εîĵk̂ . (4.266)

With H(3)4 non-vanishing, the SO(5) gamma matrix Γ4 will appear in the BPS

conditions. To evade a further projector, which will break more SUSY, we impose

the following conditions

k4(r) = k5(r) tanhϕ2 and l4(r) = l5(r) tanhϕ2 , (4.267)

which make the coefficient of Γ4 in the BPS equations vanish.

With the projection conditions (4.197), the coset representative (4.29), and

the embedding tensor (4.27), we can find a consistent set of BPS equations if

θ = 0 and τ = eU−Wκ . (4.268)

The latter forbids the possibility of setting τ = 0 or κ = 0 without ending up with

τ = κ = 0. Thus, the solutions can be only AdS3 × S3-sliced DWs in this case.

The resulting BPS equations take the form

U ′ =
g

40
eV+6ϕ1

(
3e−10ϕ1 + (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3 + (ρ− σ) sinh 2ϕ3

)
, (4.269)

W ′ =
g

40
eV+6ϕ1

(
3e−10ϕ1 + (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3 + (ρ− σ) sinh 2ϕ3

)
, (4.270)

ϕ′
1 =

g

40
eV+6ϕ1

(
2e−10ϕ1 − (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3 − (ρ− σ) sinh 2ϕ3

)
, (4.271)

ϕ′
2 = −g

8
eV+6ϕ1(ρ+ σ) sinh 2ϕ2 sech 2ϕ3, (4.272)

ϕ′
3 = −g

8
eV+6ϕ1 ((ρ+ σ) cosh 2ϕ2 sinh 2ϕ3 + (ρ− σ) cosh 2ϕ3), (4.273)

k5 =
1

2
e3U−W−3ϕ1−ϕ3 coshϕ2κ, (4.274)

l5 =
1

2
e2W−3ϕ1−ϕ3 coshϕ2κ. (4.275)
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However, these BPS equations are compatible with the field equations if and only

if ϕ2 = 0 or ϕ3 = 0. It should be noted that setting ϕ3 = 0 is consistent with

the BPS equation (4.273) only for ρ = σ, so solutions with vanishing ϕ3 can be

obtained only in SO(5), SO(3, 2), and CSO(3, 0, 2) gauge groups. We will find

explicit solutions by separately considering various possible values of ρ and σ.

(1) Charged domain walls in CSO(3, 0, 2) gauge group

For the simplest CSO(3, 0, 2) gauge group with ρ = σ = 0, ϕ2 and ϕ3 can

be consistently truncated out since ϕ′
2 = ϕ′

3 = 0 in this case. From (4.267),

setting ϕ2 = 0 directly gives k4 = l4 = 0. By choosing V = 0 gauge choice,

we find the following charged DW solution

U = W =
3

8
ln
[gr
5

+ C
]
, ϕ1 =

1

4
ln
[gr
5

+ C
]
, k5 = l5 =

1

2
τ

(4.276)

with an integration constant C.

(2) Charged domain walls in CSO(4, 0, 1) and CSO(3, 1, 1) gauge groups

In this case with ρ = 0, we consider CSO(4, 0, 1) and CSO(3, 1, 1) gauge

groups corresponding to σ = 1,−1, respectively. Choosing V = −6ϕ1, we

find a charged DW solution, with ϕ2 = 0,

ϕ3 =
1

2
ln
[gσr

4
+ C1

]
, (4.277)

ϕ1 = −1

5
ϕ3 +

1

10
ln
[
C2 + e4ϕ3

]
, (4.278)

U = W =
1

5
ϕ3 +

3

20
ln
[
C2 + e4ϕ3

]
, (4.279)

k4 = l4 = 0, and k5 = l5 =
1

2
τ (4.280)

where C1 and C2 are integration constants. As stated above, it is not possible

to find solutions with ϕ3 = 0 in these gauge groups.

(3) Charged domain walls in SO(4, 1) gauge group

As in the previous case, it is also not possible to set ϕ3 = 0 in non-compact

SO(4, 1) gauge group with σ = −ρ = 1. Therefore, we only consider BPS
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solutions with ϕ2 = 0 in this case. Using the same gauge choice V = −6ϕ1,

we find the following solution

e2ϕ3 = tan
[gr
4

+ C1

]
, (4.281)

ϕ1 = −1

5
ϕ3 +

1

10
ln
[
C2(e

4ϕ3 + 1)− 1
]
, (4.282)

U = W =
1

5
ϕ3 −

1

4
ln
[
e4ϕ3 + 1

]
+

3

20
ln
[
C2(e

4ϕ3 + 1)− 1
]
, (4.283)

k4 = l4 = 0, (4.284)

k5 = l5 =
1

2
τ cos

[gr
4

+ C1

]
. (4.285)

(4) Charged domain walls in SO(5) and SO(3, 2) gauge groups

We finally look at the last possibility with ρ = σ = ±1 corresponding to

SO(5) and SO(3, 2) gauge groups in which either ϕ2 = 0 or ϕ3 = 0 is

possible. With ϕ2 = 0 and V = −6ϕ1, we find the following solution

ϕ3 =
1

2
ln
[
e

gρr
2 − C1

e
gρr
2 + C1

]
, (4.286)

ϕ1 = −1

5
ϕ3 +

1

10
ln
[
C2(e

4ϕ3 − 1) + 1
]
, (4.287)

U = W =
1

5
ϕ3 −

1

4
ln
[
e4ϕ3 − 1

]
+

3

20
ln
[
C2(e

4ϕ3 − 1) + 1
]

(4.288)

together with

k4 = l4 = 0 and k5 = l5 =
τ

2
√
e4ϕ3 − 1

. (4.289)

For ϕ3 = 0, we find the same solution as in (4.286) to (4.288) with ϕ3 replaced

by ϕ2, but the solution for k4, k5, l4 and l5 is now given by

k4 = l4 =
(e2ϕ2 − 1)τ

4
√
e4ϕ2 − 1

and k5 = l5 =
(e2ϕ2 + 1)τ

4
√
e4ϕ2 − 1

. (4.290)

Unlike the other cases, this solution has two non-vanishing three-form fluxes.

We end this section by commenting on solutions with non-vanishing SO(3)

gauge fields. Repeating the same procedure as in the SO(4) symmetric case leads

to a set of BPS equations together with the following two constraints

p′ = 0 and p =
κ− τeW−U

gκ
. (4.291)
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It turns out that the compatibility between the resulting BPS equations and the

second-order field equations needs

τ(eW τ − eUκ) = 0 . (4.292)

For τ = 0, the magnetic charge p is constant as required by the second condition

in (4.291), but the three-form flux vanishes in this case due to (4.268). This τ = 0

case corresponds to performing a topological twist along the S3 part. We will

return to this type of supersymmetric solutions in Section 4.3. On the other hand,

setting τ = eU−Wκ leads to non-vanishing three-form fluxes, but equation (4.291)

gives vanishing SO(3) gauge fields. This τ ̸= 0 case corresponds to the charged

DWs without the SO(3) gauge fields given above. Similar to the result obtained

in Section 3.1.3 for the matter-coupled SO(4) gauged supergravity, there does not

seem to be solutions with both non-vanishing SO(3) gauge fields and three-form

fluxes, at least for the ansatz considered here.

4.2.1.3 SO(2) × SO(2) Symmetric Charged Domain Walls

We finally consider charged DWs with SO(2) × SO(2) residual symmetry using

the scalar coset representative (4.48) and the embedding tensor (4.49). As in

the previous case, we find that a consistent set of BPS equations can be found

if and only if θ = 0 and τ = eU−Wκ. With the three-form flux (4.192), which is

manifestly invariant under SO(2)× SO(2) symmetry, and the projectors given in

(4.197), the resulting BPS equations read

U ′ = W ′ =
g

40
eV (2e−2ϕ1 + ρe4(ϕ1+ϕ2) + 2σe−2ϕ2), (4.293)

ϕ′
1 =

g

20
eV (3e−2ϕ1 − ρe4(ϕ1+ϕ2) − 2σe−2ϕ2), (4.294)

ϕ′
2 =

g

20
eV (3σe−2ϕ2 − ρe4(ϕ1+ϕ2) − 2e−2ϕ1), (4.295)

k =
1

2
e2U−2(ϕ1+ϕ2)τ, (4.296)

l =
1

2
e3W−U−2(ϕ1+ϕ2)τ . (4.297)
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By choosing V = 2ϕ1, we obtain the solution

ϕ1 = − 1

10
ln
[
eC1− gr

2 + ρ
]
− 1

5
ln
[
eC2− gr

2 + σ
]
, (4.298)

ϕ2 = −3

2
ϕ1 −

1

4
ln
[
eC1− gr

2 + ρ
]
, (4.299)

U = W =
1

8
gr +

1

20
ln
[
eC1− gr

2 + ρ
]
+

1

10
ln
[
eC2− gr

2 + σ
]
, (4.300)

k = l =
1

2
τe

gr
4

√
eC1− gr

2 + ρ (4.301)

with two integration constants C1 and C2. This solution is the SO(2) × SO(2)

symmetric flat DW found in Section 4.1.1.4 including a dyonic profile for the

three-form flux. Note that coupling the solution to SO(3) gauge fields is not

possible in this case due to the absence of any unbroken SO(3) gauge symmetry.

4.2.1.4 Uplifted Solutions in Ten and Eleven Dimensions

In this section, we give the uplifted solutions for SO(5) and CSO(4, 0, 1) gauge

groups using consistent truncations of eleven-dimensional supergravity on S4 and

type IIA theory on S3, respectively. However, we will not consider uplifting of the

solutions with non-vanishing SO(3) gauge fields since the uplifted solutions are

not really useful in this case due to the lack of analytic solutions.

4.2.1.4.1 Uplift to Eleven Dimensions

We first consider uplifting the seven-dimensional solutions in SO(5) gauge group

to eleven-dimensional supergravity. We start from the SO(4) symmetric solution

with the SL(5)/SO(5) scalar matrix

MMN = diag(e2ϕ, e2ϕ, e2ϕ, e2ϕ, e−8ϕ), (4.302)

and the coordinates on S4 given by

µM = (µi, µ5) = (sin ξµ̂i, cos ξ), i = 1, 2, 3, 4 (4.303)

where µ̂i are S3 coordinates satisfying µ̂iµ̂i = 1. With the formulae given in

Appendix C.1, the eleven-dimensional metric and the four-form field strength are
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given by

dŝ211 = ∆
1
3

(
e2U(r)ds2M3

+ e2V (r)dr2 + e2W (r)ds2S3

)
+
16

g2
∆− 2

3

[
e−8ϕ sin2 ξdξ2 + e2ϕ(cos2 ξdξ2 + sin2 ξdΩ2

(3))
]
, (4.304)

F̂(4) =
64

g3
∆−2 sin4 ξ

(
U sin ξdξ − 10e6ϕϕ′ cos ξdr

)
∧ ϵ(3)

−2 cos ξe8ϕ
(
ke3W+V−3Udr ∧ volS3 − le3U+V−3Wdr ∧ volM3

)
−8

g
sin ξ(kvolM3 + lvolS3) ∧ dξ (4.305)

with dΩ2
(3) = dµ̂idµ̂i being the metric on a unit S3 and

∆ = e8ϕ cos2 ξ + e−2ϕ sin2 ξ, (4.306)

U = (e16ϕ − 4e6ϕ) cos2 ξ − (e6ϕ + 2e−4ϕ) sin2 ξ, (4.307)

ϵ(3) =
1

3!
εijklµ̂

idµ̂j ∧ dµ̂k ∧ dµ̂l. (4.308)

We can see that the SO(4) unbroken symmetry of the seven-dimensional solution

is the isometry of the S3 inside the S4. In this case, the three-manifold M3 can

be either Mkw3 or AdS3. This solution should describe a bound state of M2- and

M5-branes similar to the solutions considered in [62] due to the dyonic solution of

the three-form field.

We can repeat a similar procedure for the SO(3) symmetric solutions. With

the index M = (a, 4, 5), a = 1, 2, 3, the SL(5)/SO(5) scalar matrix is given by

M =

e4ϕ1I3 0

0 e−6ϕ1M2

 (4.309)

with the 2× 2 matrix M2 given by

M2 =

 e2ϕ3 cosh2 ϕ2 + sinh2 ϕ2 sinhϕ2 coshϕ2(1 + e−2ϕ3)

sinhϕ2 coshϕ2(1 + e2ϕ3) e−2ϕ3 cosh2 ϕ2 + sinh2 ϕ2

 . (4.310)

We now separately consider the uplifted solutions for the two cases with ϕ2 = 0

and ϕ3 = 0. We will also rename k5 = k and l5 = l together with k4 = k tanhϕ2

and l4 = l tanhϕ2. Recall also that we only have M3 = AdS3 in this case.

For ϕ2 = 0 and the S4 coordinates

µM = (cos ξµ̂a, sin ξ cosψ, sin ξ sinψ) (4.311)
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with µ̂aµ̂a = 1, we find the eleven-dimensional metric

dŝ211 = ∆
1
3

(
e2Uds2AdS3

+ e2V dr2 + e2Wds2S3

)
+

16

g2
∆− 2

3

[
e4ϕ1(sin2 ξdξ2

+ cos2 ξdµ̂adµ̂a) + e−6ϕ1
{

sin2 ξ(e2ϕ3 sin2 ψ + e−2ϕ3 cos2 ψ)dψ2

− sin 2ψ sin 2ξ sinh 2ϕ3dξdψ + cos2 ξ(e2ϕ3 cos2 ψ + e−2ϕ3 sin2 ψ)dξ2
}]
,

(4.312)

and the four-form field strength

F̂(4) = −2e6ϕ1+2ϕ3 sin ξ sinψdr ∧ (ke3W+V−3UvolS3 − le3U+V−3WvolAdS3)

+
8

g
(kvolAdS3 + lvolS3) ∧ (cos ξ sinψdξ + sin ξ cosψdψ)

−64

g3
∆−2ϵ(2) ∧

[
cos2 ξ sin ξUdξ ∧ dψ + ϕ′

3e
12ϕ1 sin3 ξ cos2 ξ sin 2ψdr ∧ dξ

−e2ϕ1−2ϕ3 sin ξ cos3 ξdr ∧ {(6ϕ′
1 sin ξ + 2ϕ′

3 sin ξ cosψ)dψ − 2ϕ′
3 cos ξ ×

sinψdξ} − 2ϕ′
1e

2ϕ1 sin 2ξ cos2 ξdr ∧
{
(e−2ϕ3 − e2ϕ3) sinψ cosψ cos ξdξ

+ sin ξ(e2ϕ3 sin2 ψ + e−2ϕ3 cos2 ψ)dψ
}]

(4.313)

in which

∆ = e−4ϕ1 cos2 ξ + e6ϕ1 sin2 ξ(e−2ϕ3 cos2 ψ + e2ϕ3 sin2 ψ), (4.314)

U =
1

2
e2ϕ1

[
sin2 ξ(1− e−4ϕ3){3e2ϕ3 cos 2ψ − e10ϕ1(1 + cos 2ψ − 2e4ϕ3 sin2 ψ)}

+(cos 2ξ − 5) cosh 2ϕ3]− e−8ϕ1 cos2 ξ, (4.315)

ϵ(2) =
1

2
εabcµ̂

adµ̂b ∧ µ̂c. (4.316)

For ϕ3 = 0, we obtain the eleven-dimensional metric

dŝ211 = ∆
1
3

(
e2Uds2AdS3

+ e2V dr2 + e2Wds2S3

)
+

16

g2
∆− 2

3

[
e4ϕ1(sin2 ξdξ2

+ cos2 ξdµ̂adµ̂a) + e−6ϕ1 sinh 2ϕ2{sin 2ψ(cos2 ξdξ2 − sin2 ξdψ2)

+ sin 2ξ cos 2ψdψdξ}+ e−6ϕ1 cosh 2ϕ2(cos2 ξdξ2 + sin2 ξdψ2)
]

(4.317)

where

∆ = e−4ϕ1 cos2 ξ + e6ϕ1 sin2 ξ(cosh 2ϕ2 − sin 2ψ sinh 2ϕ2), (4.318)
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together with the four-form field strength

F̂(4) = 2 sin ξe6ϕ1+V (cosψ tanhϕ2 − sinψ)dr ∧ (ke3W−3UvolS3 − le3U−3WvolAdS3)

+
8

g
(kvolAdS3 + lvolS3) ∧ [(tanhϕ2 cosψ + sinψ) cos ξdξ

+ sin ξ(cosψ − tanhϕ2 sinψ)]− 64

g3
U∆−2 sin ξ cos2 ξϵ(2) ∧ dξ ∧ dψ

+
64

g3
∆−2dr ∧ ϵ(2) ∧

[
1

2
e12ϕ1ϕ′

2 sin ξ sin2 2ξ cos 2ψdξ

+
1

2
e−4ϕ1 cos2 ξ sin 2ξ

{
sin2 ξ

(
e6ϕ1 cosh 2ϕ2

)′
dψ

+(e6ϕ1 sinh 2ϕ2

)′
(cos ξ cos 2ψdξ − sin ξ sin 2ψdψ)

}
+2ϕ′

1e
2ϕ1 cos2 ξ sin 2ξ {sin ξ cosh 2ϕ2dψ

− sinh 2ϕ2(sin ξ sin 2ψdψ − cos 2ψdξ)}
]

(4.319)

in which

U = sin2 ξ
[
3e2ϕ1 sin 2ψ sinh 2ϕ2 + e12ϕ1(6 cosh2 2ϕ2 − sin 2ψ sinh 4ϕ2)

]
+(2e−4ϕ1 − 3e−8ϕ1) cos2 ξ + 1

2
e2ϕ1 cosh 2ϕ2(cos 2ξ − 5). (4.320)

These uplifted solutions should describe bound states of M2- and M5-branes

with different transverse spaces and are expected to be dual to surface defects in

the six-dimensional N = (2, 0) SCFT. The solution with SO(2)×SO(2) symmetry

can similarly be uplifted, but we will not give them here due to their complexity.

4.2.1.4.2 Uplift to Type IIA Theory

We now provide a similar analysis for CSO(4, 0, 1) gauge group in order to find

uplifted solutions in type IIA supergravity. Relevant formulae are collected in

Appendix C.2. In this case, gauge fields, massive three-forms, and axions vanish.

The ten-dimensional fields are then only the metric, the dilaton, and the NS-NS

two-form field. We expect the uplifted solutions to describe bound states of NS5-

branes and the fundamental strings.

We begin with the solution with SO(4) symmetry in which the SL(4)/SO(4)

scalar matrix is given by M̃ij = δij. The ten-dimensional metric, NS-NS three-
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form flux, and the dilaton are given by

dŝ210 = e
3
2
ϕ0
(
e2Uds2M3

+ e2V dr2 + e2Wds2S3

)
+

16

g2
e−

5
2
ϕ0dΩ2

(3), (4.321)

Ĥ(3) =
128

g3
ϵ(3) +

8

g
(kvolM3 + lvolS3), (4.322)

φ̂ = 5ϕ0 . (4.323)

It should be noted that we have a constant NS-NS flux in this case.

For the solutions with SO(3) unbroken symmetry, we parametrize the

SL(4)/SO(4) scalar matrix as

M̃ij = diag(e2ϕ, e2ϕ, e2ϕ, e−6ϕ), (4.324)

and choose the S3 coordinates to be

µi = (sin ξµ̂a, cos ξ), a = 1, 2, 3 (4.325)

with µ̂a being the coordinates on S2 subject to the condition µ̂aµ̂a = 1. With all

these ingredients and writing k = k5 and l = l5, we find that the ten-dimensional

fields are given by

dŝ210 =
16

g2
e−

5
2
ϕ0∆− 3

4

[(
e−6ϕ sin2 ξ + e2ϕ cos2 ξ

)
dξ2 + sin2 ξe2ϕdµ̂adµ̂a

]
+e

3
2
ϕ0∆

1
4

(
e2Uds2AdS3

+ e2V dr2 + e2Wds2S3

)
, (4.326)

Ĥ(3) =
64

g3
∆−2 sin3 ξ

(
U sin ξdξ + 8e4ϕ cos ξϕ′dr

)
∧ ϵ(2)

+
8

g
(kvolAdS3 + lvolS3), (4.327)

e2φ̂ = ∆−1e10ϕ0 (4.328)

in which

∆ = e6ϕ cos2 ξ + e−2ϕ sin2 ξ, ϵ(2) =
1

2
εabcµ̂

adµ̂b ∧ dµ̂c,

U = e12ϕ cos2 ξ − e−4ϕ sin2 ξ − e4ϕ(sin2 ξ + 3 cos2 ξ). (4.329)

The solutions for ϕ0 and ϕ are obtained from ϕ1 and ϕ3 respectively given in

(4.278) and (4.277) with σ = 1 by the following relations

ϕ =
1

4
(5ϕ1 − ϕ3) and ϕ0 = −1

4
(ϕ3 + 3ϕ1). (4.330)
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4.2.2 Gaugings in 40 Representation

We repeat the same analysis for gaugings from 40 representation in this section.

To find charged DW solutions in the following analyses, we will use the same

ansatz as in the previous case. However, for gaugings in 40 representation, there

are no massive three-form fields SM
(3). The modified three-forms given in (4.190)

correspond solely to the two-form fields B(2)M in this case.

4.2.2.1 SO(4) Symmetric Charged Domain Walls

Since only SO(4) gauge group can accommodate SO(4) residual symmetry, the

embedding tensor component, in this case, takes the simple form of wij = δij with

i, j = 1, . . . , 4. In the SO(4) gauged theory, there are four massive two-form fields

B(2)i and one massless two-form field B(2)5 with the latter being an SO(4) singlet.

We take the ansatz for B(2)5 as given in (4.195). With the projection conditions

γ 3̂ϵa0 = −(Γ5)
a
bϵ

b
0 = ϵa0, (4.331)

and M̃ij = δij, the BPS equations are given by

U ′ = W ′ =
1

5
eV

(
2e−2ϕ0g sec 2θ − e−Uτ tan 2θ

)
, (4.332)

ϕ′
0 =

1

10
eV

(
2e−2ϕ0g sec 2θ − e−Uτ tan 2θ

)
, (4.333)

k = −1

2
e2U−4ϕ0τ, θ′ = 0, (4.334)

l = −1

2
e2U−4ϕ0τ sec 2θ + 3e3U−6ϕ0g tan 2θ (4.335)

together with an algebraic constraint

κ = τ sec 2θ − 2eU−2ϕ0g tan 2θ . (4.336)

We find that θ is constant in this case. Choosing V = 0, we find the solution

U = W = 2ϕ0, (4.337)

e2ϕ0 =
2

5
gr sec 2θ − 1

5
τr tan 2θ + C, (4.338)

k = −1

2
τ, (4.339)

l = −1

2
τ sec 2θ + g tan 2θ (4.340)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

121

with an integration constant C. For a particular value of θ = 0, we find the

following solution

U = W = 2ϕ0, e2ϕ0 =
2

5
gr + C, k = l = −1

2
τ . (4.341)

4.2.2.1.1 Coupling to SO(3) Gauge Fields

We now couple the charged DW solutions to SO(3) gauge fields. From (4.331), the

projector (Γ5)
a
bϵ

b
0 = −ϵa0 implies that the non-vanishing gauge fields correspond

to the self-dual SO(3) ⊂ SO(4) in this case. We then choose

A23
(1) = A14

(1) =
κ

16
p(r)e−W (r)e4̂, (4.342)

A31
(1) = A24

(1) =
κ

16
p(r)e−W (r)e5̂, (4.343)

A12
(1) = A34

(1) =
κ

16
p(r)e−W (r)e6̂ (4.344)

with the two-form field strengths given by

F 12
(2) = F 34

(2) = e−V−W κ

16
p′e3̂ ∧ e6̂ + e−2W κ2

32
p(2− gp)e4̂ ∧ e5̂, (4.345)

F 23
(2) = F 14

(2) = e−V−W κ

16
p′e3̂ ∧ e4̂ + e−2W κ2

32
p(2− gp)e5̂ ∧ e6̂, (4.346)

F 31
(2) = F 24

(2) = e−V−W κ

16
p′e3̂ ∧ e5̂ + e−2W κ2

32
p(2− gp)e6̂ ∧ e4̂ . (4.347)

Since Zij,5 components vanish in this case, the two-form field B(2)5 does not

contribute to the modified two-forms so that F ij
(2) = F ij

(2).

Imposing the projection conditions (4.255) and (4.331), we find BPS

equations of the form

U ′ =
eV−2(W+ϕ0)

80 cos 2θ
[
16e2W

(
g(3 cos 4θ − 1) + 2e2ϕ0−Uτ sin 2θ

)
−3e4ϕ0

(
κ2p(gp− 2)(cos 4θ − 3)− 8eW−2ϕ0κ(gp− 1) sin 4θ

)]
, (4.348)

W ′ =
eV−2(W+ϕ0)

40 cos 2θ
[
8e2W

(
2g(2− cos 4θ)− 3e2ϕ0−Uτ sin 2θ

)
+e4ϕ0

(
κ2p(gp− 2)(cos 4θ − 8)− 8eW−2ϕ0κ(gp− 1) sin 4θ

)]
, (4.349)

ϕ′
0 =

eV−2(W+ϕ0)

160 cos 2θ
[
16e2W

(
g(3 cos 4θ − 1) + 2e2ϕ0−Uτ sin 2θ

)
+3e4ϕ0

(
κ2p(gp− 2)(3− cos 4θ) + 8eW−2ϕ0κ(gp− 1) sin 4θ

)]
, (4.350)
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θ′ =
eV−2(W+ϕ0)

16

[
24eW+2ϕ0

(
eW−Uτ + κ(gp− 1) cos 2θ

)
−3

(
16ge2W − e4ϕ0κ2p(gp− 2)

)
sin 2θ

]
, (4.351)

k = −1

2
e2U−4ϕ0τ, (4.352)

l =
1

8
e3W−6ϕ0

[
−16g tan 2θ + 8e2ϕ0−Uτ sec 2θ

+3e4ϕ0−2W
(
κ2p(gp− 2) tan 2θ + 4eW−2ϕ0κ(gp− 1)

)]
, (4.353)

p′ =
eV−W−4ϕ0

2κ

[
8eW+2ϕ0

(
eW−Uτ + κ(gp− 1) cos 2θ

)
−
(
16ge2W − e4ϕ0κ2p(gp− 2)

)
sin 2θ

]
. (4.354)

It can be verified that these equations fully satisfy the field equations without any

additional constraint.

Since, in SO(4) gauge group, there is no an asymptotically locally AdS7

configuration, we will consider only flow solutions from the charged DW

without SO(3) gauge fields given in (4.337) to (4.340) to a singular solution with

SO(3) gauge fields non-vanishing. To find numerical solutions, we will consider

the charged DW with θ = 0 given in (4.341) for simplicity. As r → −5C
2g

, we

impose the following boundary conditions

U ∼ W ∼ ln
[
2gr

5
+ C

]
, ϕ ∼ 1

2
ln
[
2gr

5
+ C

]
,

p ∼ 0, k ∼ l ∼ −τ
2

(4.355)

with κ = τ . An example of these BPS flows is shown in Figure 4.7. From this

solution, we can see that k is constant along the flow since the above BPS equations

give U ′ = 2ϕ′
0 that implies the constancy of U − 2ϕ0. It should be noted that this

solution is similar to that in CSO(4, 0, 1) gauge group given in Figure 4.5. We also

expect this solution to describe a conformal surface defect within a six-dimensional

N = (2, 0) SQFT.

4.2.2.2 SO(3) Symmetric Charged Domain Walls

We now look for more complicated solutions with SO(3) symmetry. Gauge groups

with an SO(3) subgroup are SO(4), SO(3, 1), and CSO(3, 0, 1) corresponding to

ρ = 1,−1, 0 in the embedding tensor wij from (4.118).
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(a) U solution
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-1.0
W (r)

(b) W solution
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(c) ϕ solution
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-0.1
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(d) p solution
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-0.9
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(e) k solution

-1.0 -0.8 -0.6 -0.4 -0.2
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-1.01

-1.00

l(r)

(f) l solution

Figure 4.7: A numerical solution with g = 1, κ = τ = 2, C = 2
5
, and V = 0 from

a charged DW without the SO(3) gauge fields at r = −1 to a singularity at r = 0

for SO(4) gauge group.

In this case, there are two two-form fields, B(2)4 and B(2)5, which are SO(3)

singlets. For CSO(3, 0, 1) gauge group, both of them are massless. For the other

two gauge groups, B(2)4 is massive while B(2)5 is massless. However, we are not able

to consistently incorporate B(2)4 in the BPS equations. We accordingly restrict

ourselves to the solutions with only H(3)5 non-vanishing.

To find BPS equations, we use the same ansatze for the SL(4)/SO(4) coset

(4.119) and the modified three-forms (4.192), and impose the projection conditions

(4.331). Consistency with the field equations also gives rise to the conditions given

in (4.268). With all these, the resulting BPS equations are given by

U ′ = W ′ =
g

10
eV−6ϕ−2ϕ0(3e8ϕ1 + ρ), (4.356)

ϕ′
0 =

g

20
eV−6ϕ−2ϕ0(3e8ϕ1 + ρ), (4.357)

ϕ′ = −g
4
eV−6ϕ−2ϕ0(3e8ϕ1 − ρ), (4.358)

k = −1

2
e3U−W−4ϕ0κ, (4.359)

l = −1

2
e2W−4ϕ0κ . (4.360)
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Setting W = U and V = 0, we find the solutions for U and ϕ0 as functions of ϕ

together with the constant solutions for k and l

U =
2

5
ϕ− 1

5
ln
(
e8ϕ − ρ

)
, (4.361)

ϕ0 =
1

5
ϕ− 1

10
ln
(
e8ϕ − ρ

)
+ C0, (4.362)

k = l = −1

2
e−4C0κ (4.363)

in which C0 is an integration constant.

The solution for ϕ(r) is given by

ϕ = − 5

16
ln
[
4

5
(e−2C0gr − C1)

]
(4.364)

for ρ = 0 and

4gρr(e8ϕ − ρ)1/5 = 5e2C1+
32
5
ϕ

[
4− 3(1− ρe8ϕ)1/52F1(

1

5
,
4

5
,
9

5
, ρe8ϕ)

]
(4.365)

for ρ = ±1. This solution is again the flat DW found in Section 4.1.2.2 with a

non-vanishing constant three-form flux.

As in the previous SO(3) case in 15 representation, coupling this solution

to SO(3) gauge fields does not lead to new solutions. Consistency with the field

equations also implies either vanishing two-form fields or vanishing gauge fields.

Moreover, repeating the same analysis for finding SO(2) × SO(2) and SO(2)

symmetric solutions, we respectively obtain the flat DWs given in Sections 4.1.2.3

and 4.1.2.4 with a constant three-form flux

k = l = −1

2
τ . (4.366)

To avoid a repetition, we will not give further detail for these cases.

4.2.3 Gaugings in 15 and 40 Representations

We now consider charged DW solutions for gaugings in both 15 and 40

representations. We start by finding the solutions with SO(2) residual symmetry

in SO(2, 1)⋉R4 gauge group. From the gauge generators (2.103), we can see that

the SO(2) symmetry under consideration here is embedded diagonally along the
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1, 2, 4, 5 directions. Therefore, only the modified three-form H(3)3 is singlet under

the SO(2) unbroken symmetry. With Y33 ̸= 0, this SO(2) singlet H(3)3 is then

described by a massive three-form field S(3)3 in SO(2, 1)⋉ R4 gauge group.

We take the ansatz for the modified three-forms to be

Hm̂n̂p̂3 = k(r)e−3U(r)εm̂n̂p̂ and Hîĵk̂3 = l(r)e−3W (r)εîĵk̂ . (4.367)

After imposing the projection conditions

γ 3̂ϵa0 = −(Γ3)
a
bϵ

b
0 = ϵa0, (4.368)

and using the SL(5)/SO(5) coset representative (4.163), we find the following

BPS equations

U ′ = W ′ =
g

40
e−2(2ϕ1+ϕ2)+V

(
3 cosh 2ϕ3 cosh 2ϕ4 − e6ϕ2

)
, (4.369)

ϕ′
1 =

g

240
e−2(ϕ1+ϕ2)+V

(
15 sech2ϕ3 sech2ϕ4 − 3 cosh 2ϕ3 cosh 2ϕ4 − 4e6ϕ2

)
,(4.370)

ϕ′
2 =

g

48
e−2(ϕ1+ϕ2)+V

(
3 sech2ϕ3 sech2ϕ4 + 3 cosh 2ϕ3 cosh 2ϕ4 + 4e6ϕ2

)
, (4.371)

ϕ′
3 = −3g

16
e−2(2ϕ1+ϕ2)+V sinh 2ϕ3 sech2ϕ4, (4.372)

ϕ′
4 = −3g

16
e−2(2ϕ1+ϕ2)+V cosh 2ϕ3 sinh 2ϕ4, (4.373)

k = −1

2
e2U+2ϕ1−2ϕ2τ, (4.374)

l = −1

2
e3W−U+2ϕ1−2ϕ2τ . (4.375)

In these BPS equations, we have imposed the conditions (4.268) for consistency.

By taking W = U and choosing V = 4ϕ1 + 2ϕ2, we obtain a charged DW

solution

ϕ1 =
2

15
ϕ3 +

1

5
C2 −

1

60
ln
[
9

16
(e2C4 − e4ϕ3 − 2e2C4+4ϕ3 + e2C4+8ϕ3)

]
+

1

10
ln
[
e4ϕ3 + 1

]
− 1

5
ln
[
e4ϕ3 − 1

]
, (4.376)

ϕ2 = −5ϕ1 + C2 + ln
[
e3ϕ3 + 1

]
− ln

[
e3ϕ3 − 1

]
, (4.377)

ϕ3 =
1

4
ln
[
1 + 4e2C4 − 2e

3gr
8 + e

3gr
4

1 + 4e2C4 + 2e
3gr
8 + e

3gr
4

]
, (4.378)

ϕ4 =
1

4
ln
[
e2ϕ3 − eC4 + eC4+4ϕ3

e2ϕ3 + eC4 − eC4+4ϕ3

]
, (4.379)
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U = −1

5
ϕ3 −

1

20
C2 +

3

20
ln
[
e2C4 − e4ϕ3 − 2e2C4+4ϕ3 + e2C4+8ϕ3

]
− ln

[
16

9

]
− 1

5
ln
[
e4ϕ3 − 1

]
, (4.380)

k = l = −e
3
10

(C2+4ϕ3)τ

22/5 × 33/10
(e2C4 − e4ϕ3 − 2e2C4+4ϕ3 + e2C4+8ϕ3)1/10

(e4ϕ3 − 1)4/5
. (4.381)

This solution is the 1
4
-BPS DW obtained in Section 4.1.3.1 together with the

running dyonic profile of the three-form flux. We emphasize here that, unlike

charged DWs from gaugings only in 15 or 40 representation, this solution with

a non-vanishing three-form flux do not break SUSY any further. Therefore both

charged and flat DWs are 1
4
-supersymmetric in SO(2, 1)⋉ R4 gauge group.

We finish this section by commenting on another case with SO(2)⋉R4 gauge

group. Repeating the same procedure also leads to a 1
4
-supersymmetric charged

DW given by the flat DW solution found in Section 4.1.3.2 and a constant three-

form flux given in (4.366). In contrast to SO(2, 1)⋉R4 gauge group, the three-form

flux is due to the massless two-form field B(2)3 in this case since we have Y33 = 0

for SO(2)⋉ R4 gauge group. We will not give the full detail of this analysis here

as it closely follows that of the previous cases.

4.3 Twisted Solutions

In this section, we are interested in supersymmetric solutions of the maximal

gauged supergravity in the form of AdSn × Σ7−n geometries with Σ7−n being a

(7−n)-dimensional compact manifold for n = 2, 3, 4, 5. This type of solutions can

be obtained by the twist procedure in the same way as those found in Section 3.2

for the matter-coupled SO(4) gauged theory. By the AdS/CFT correspondence,

these AdSn × Σ7−n solutions describe conformal fixed points corresponding to

(n − 1)-dimensional SCFTs. For SO(5) gauge group with the supersymmetric

AdS7 vacuum, these fixed points are dual to (n− 1)-dimensional SCFTs obtained

from twisted compactifications of the six-dimensional N = (2, 0) SCFT on Σ7−n.

For other gauge groups, their vacua are the flat DWs given in Section 4.1

DW/QFT dual to N = (2, 0) SQFTs in six dimensions. We accordingly interpret
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the resulting AdSn×Σ7−n solutions as conformal fixed points in lower-dimensions

of these N = (2, 0) SQFTs.

In the following sections, we will study this type of supersymmetric

solutions in CSO(p, q, 5− p− q) and CSO(p, q, 4− p− q) gauge groups. Besides,

various possible RG flows from both conformal and non-conformal six-dimensional

field theories to SCFTs in lower dimensions, as well as to non-conformal ones, are

also considered. The final results will extend the previously known solutions in

SO(5) gauge group mentioned before.

4.3.1 Gaugings in 15 Representation

We again start from considering supersymmetric AdSn × Σ7−n solutions with

CSO(p, q, 5 − p − q) gauge group obtained from gaugings in 15 representation.

From n = 5 to n = 2, we look for the solutions preserving different unbroken

symmetries.

4.3.1.1 Supersymmetric AdS5 × Σ2 Solutions with SO(2) × SO(2)

Symmetry

As the first case, we consider AdS5 × Σ2 solutions preserving SO(2) × SO(2)

symmetry in this section. The coset representative for the two SO(2) × SO(2)

singlet scalars are given in (4.50), while the embedding tensor for gauge groups

containing an SO(2)× SO(2) subgroup can be found from (4.49). For the seven-

dimensional metric, we take the ansatz of the form

ds27 = e2U(r)dx21,3 + dr2 + e2V (r)ds2Σ2
k
. (4.382)

In this ansatz, dx21,3 = ηmndx
mdxn with m,n = 0, .., 3 is the metric on the four-

dimensional flat spacetime and Σ2
k is a Riemann surface whose metric is given in

(3.79). Recall that Σ2
k = S2,R2, H2 corresponding to k = 1, 0,−1, respectively.

With the following choice of vielbein

em̂ = eUdxm, e4̂ = dr, e5̂ = eV dθ, e6̂ = eV fk(θ)dφ, (4.383)
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we find the following non-vanishing components of the spin connection

ωm̂4̂
(1) = U ′em̂, ω î4̂

(1) = V ′eî, î = 5̂, 6̂, ω6̂5̂
(1) =

f ′
k(θ)

fk(θ)
e−V e6̂ . (4.384)

The function fk(θ) is given in (3.80) with f ′
k(θ) = dfk(θ)/dθ.

To perform the twist on Σ2
k, we turn on the following SO(2)× SO(2) gauge

fields

A12
(1) = −e−V p1

k

f ′
k(θ)

fk(θ)
e6̂ and A34

(1) = −e−V p2
k

f ′
k(θ)

fk(θ)
e6̂ (4.385)

with p1 and p2 being constant magnetic charges, and set all other tensor fields to

zero. By imposing the twist condition

g(p1 + σp2) = k (4.386)

together with the following projection conditions on the Killing spinors (4.14)

γ 5̂6̂ϵa = −(Γ12)
a
bϵ

b = −(Γ34)
a
bϵ

b (4.387)

and

γrϵa = ϵa, (4.388)

we can derive the BPS equations

U ′ =
g

40
(2e−2ϕ1 + ρe4(ϕ1+ϕ2) + 2σe−2ϕ2)− 2

5
e−2V (e2ϕ1p1 + e2ϕ2p2), (4.389)

V ′ =
g

40
(2e−2ϕ1 + ρe4(ϕ1+ϕ2) + 2σe−2ϕ2) +

8

5
e−2V (e2ϕ1p1 + e2ϕ2p2), (4.390)

ϕ′
1 =

g

20
(3e−2ϕ1 − ρe4(ϕ1+ϕ2) − 2σe−2ϕ2)− 2

5
e−2V (3e2ϕ1p1 − 2e2ϕ2p2), (4.391)

ϕ′
2 =

g

20
(3σe−2ϕ2 − ρe4(ϕ1+ϕ2) − 2e−2ϕ1) +

2

5
e−2V (2e2ϕ1p1 − 3e2ϕ2p2). (4.392)

It can be verified that these BPS equations together with the twist condition

(4.386) imply the second-ordered field equations.

Imposing the conditions V ′ = ϕ′
1 = ϕ′

2 = 0 and U ′ = 1
LAdS5

on the BPS

equations, we find a class of AdS5 fixed point solutions given by

e2V = −8(e4ϕ1p1 + 2e2(ϕ1+ϕ2)p2)

g
, (4.393)

e10ϕ1 =
12p21 − 24σp21p2 + 22σ2p1p

2
2 − 8σ3p32 − 2K

3p31ρσ
2

, (4.394)
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e2ϕ2 =
6p31 − 15σp21p2 + 13σ2p1p

2
2 − 4σ3p32 +K

p2(9σp1p2 − 6p21 − 4σ2p22)
e2ϕ1 , (4.395)

LAdS5 =
4(e4ϕ1p1 + 2e2(ϕ1+ϕ2)p2)

g (e2ϕ1p1 + e2ϕ2p2)
(4.396)

where

K = (6p21 − 9σp1p2 + 4p22σ
2)
√
(p21 − σp1p2 + σ2p22) . (4.397)

It turns out that good AdS5 fixed points exist only in SO(5) and SO(3, 2) gauge

groups with ρ = σ = 1 and ρ = −σ = 1, respectively.

Since one of the magnetic charges is fixed by the twist condition (4.386),

we will choose p2 to characterize the solutions. In SO(5) gauge group, there exist

good AdS5 fixed points when

gp2 ̸= −1, 0, gp2 ̸= 0, and gp2 < 0 ∪ gp2 > 1, (4.398)

for g > 0 and Σ2 = H2,R2, S2, respectively. We find that the AdS5 × R2 fixed

point preserves sixteen supercharges while the others preserve only eight. This

is because there is no spin connection on R2 so that the γ 5̂6̂ projector is not

needed. Note that all of these AdS5×Σ2 fixed points and their RG flows from the

supersymmetric AdS7 vacuum have been previously discussed in [57] in the

context of four-dimensional SCFTs from M5-branes.

In this work, we consider more general RG flows from the AdS7 critical

point to these AdS5 × Σ2 fixed points and then to singularities in the form

of curved DWs with Mkw4 × Σ2 slices. According to the usual holographic

interpretation, these singular geometries should correspond to SQFTs in four

dimensions obtained through the RG flows from four-dimensional SCFTs dual

to AdS5 × Σ2 fixed points. The latter are, in turn, obtained from twisted

compactifications of the six-dimensional N = (2, 0) SCFT dual to the AdS7

vacuum. For AdS5 × H2, AdS5 × R2, and AdS5 × S2 fixed points, examples

of these RG flows are given in figures 4.8, 4.9, and 4.10, respectively. In these

numerical solutions, we have chosen the position of the AdS5 ×Σ2 fixed points to

be r = 0 and set g = 16.

From the eleven-dimensional metric ansatz given in (C.4), we can determine
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Figure 4.8: Numerical solutions for SO(2) × SO(2) twists with g = 16 in SO(5)

gauge group. The flows start from the AdS7 critical point as r → 10 to AdS5 ×

H2 fixed points at r = 0 and then to singularities in the form of Mkw4 × H2-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to

p2 = −1
4
,− 1

24
, 1
4
, 4.

whether these IR singularities are physical by examining the (00)-component

ĝ00 = ∆
1
3 g00 . (4.399)

In this case, the warped factor ∆ is given by

∆ = MMNδMP δNQµ
PµQ (4.400)

in which µM with M = 1, . . . , 5 are the S4 coordinates satisfying µMµM = 1.

Using the coset representative given in (4.50) and the S4 coordinates

µM = (cos ξ, sin ξ cosψ cosα, sin ξ cosψ sinα, sin ξ sinψ cos β, sin ξ sinψ sin β) ,

(4.401)
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Figure 4.9: Numerical solutions for SO(2) × SO(2) twists with g = 16 in SO(5)

gauge group. The flows start from the AdS7 critical point as r → 10 to AdS5 ×

R2 fixed points at r = 0 and then to singularities in the form of Mkw4 × R2-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to

p2 = −6,−2, 1
4
, 4.

we find the behavior of ĝ00 along the flows given in Figure 4.11. Since ĝ00 → 0

near the singularities, as can be seen from Figure 4.11, these IR singularities are all

physical according to the criterion given in [86]. Therefore, the singularities can be

interpreted as holographic duals of non-conformal phases of the four-dimensional

SCFTs obtained from twisted compactifications of the six-dimensional N = (2, 0)

SCFT on Σ2.

For SO(3, 2) gauge group, we find new AdS5 × S2 fixed points in a small

range, with g > 0,

−1

2
< gp2 < 0 . (4.402)
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Figure 4.10: Numerical solutions for SO(2)× SO(2) twists with g = 16 in SO(5)

gauge group. The flows start from the AdS7 critical point as r → 10 to AdS5 ×

S2 fixed points at r = 0 and then to singularities in the form of Mkw4 × S2-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to

p2 = −12,−1, 1
8
, 1.

-4 -2 0 2 4 6 8 10
r

2×1016

4×1016

6×1016

8×1016

1×1017
g00

(a) Σ2 = H2

-2 0 2 4 6 8 10
r

2×1013

4×1013

6×1013

8×1013

1×1014
g00

(b) Σ2 = R2

-2 0 2 4 6 8 10
r

2×1014

4×1014

6×1014

8×1014

1×1015
g00

(c) Σ2 = S2

Figure 4.11: The behavior of ĝ00 for RG flows given in Figures 4.8, 4.9, and 4.10,

respectively, where ĝ00 → 0 in the region r < 0 for every case.
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These AdS5 × S2 solutions preserve eight supercharges and are dual to N = 1

SCFTs in four dimensions. Since the vacuum solution in SO(3, 2) gauge group

is given by a half-supersymmetric flat DW in Section 4.1.1.4 DW/QFT dual to

an N = (2, 0) SQFT in six dimensions, the above AdS5 × S2 fixed points can

be regarded as conformal fixed points in four dimensions arising from twisted

compactifications of the six-dimensional N = (2, 0) SQFT on S2. In Figure 4.12,

we give examples of RG flows between the AdS5 × S2 fixed points and curved

DWs with the world-volume given by Mkw4 × S2. The latter should describe

non-conformal phases of the four-dimensional N = 1 SCFTs. The two ends of

the flows in Figure 4.12 represent two possible non-conformal phases with (ϕ1 →

+∞, ϕ2 → −∞) and (ϕ1 → −∞, ϕ2 → +∞). In all of these flow solutions, we

have set g = 16.

The behavior of the eleven-dimensional metric component ĝ00 along the flows

are given in Figure 4.13. This can be obtained by using the consistent truncation

of eleven-dimensional supergravity on Hp,q given in [64]. The explicit form of ĝ00
is similar to that given in (4.399) but with the warped factor

∆ = MMNηMPηNQµ
PµQ . (4.403)

The tensor ηMN = diag(1, . . . , 1,−1, . . . ,−1) is the SO(p, q) invariant tensor, and

µM are Hp,q coordinates satisfying µMµNηMN = 1. For SO(3, 2) gauged theory,

we have a consistent truncation of eleven-dimensional supergravity on H3,2 with

ηMN = diag(1, 1, 1,−1,−1). We can see from Figure 4.13 that ĝ00 → 0 on both

sides of the flows. Therefore, all of these singularities are physically acceptable.

We accordingly interpret these solutions as RG flows between N = 1 SCFTs

and SQFTs in four dimensions obtained from twisted compactifications of the

six-dimensional N = (2, 0) SQFT on S2.

4.3.1.2 Supersymmetric AdS4 × Σ3 Solutions with SO(3) Symmetry

We now carry on our analysis for AdS4 × Σ3 solutions with Σ3 being a three-

manifold with constant curvature. In this case, the ansatz for the seven-dimensional
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Figure 4.12: Numerical flows for SO(2) × SO(2) twists with g = 16 in SO(3, 2)

gauge group. The flows start from AdS5×S2 fixed points at r = 0 to singularities

in the form of Mkw4 × S2-sliced DWs on both r ̸= 0 sides. The blue, orange,

green, and red curves refer to p2 = − 1
36
,− 1
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Figure 4.13: The behavior of ĝ00 for RG flows given in Figure 4.12 where ĝ00 → 0

on both sides.
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metric takes the form of

ds27 = e2U(r)dx21,2 + dr2 + e2V (r)ds2Σ3
k

(4.404)

where dx21,2 = ηmndx
mdxn, m,n = 0, 1, 2, is the metric on the three-dimensional

flat spacetime. The metric on Σ3
k is given by

ds2Σ3
k
= dψ2 + fk(ψ)

2(dθ2 + sin2 θdφ2) (4.405)

with the function fk(ψ) defined similarly in (3.80). As a Riemann surface in the

previous case, this three-manifold Σ3
k can be a three-dimensional sphere S3, a flat

space R3, or a hyperbolic space H3 depending on k = 1, 0,−1, respectively.

Using the vielbein

em̂ = eUdxm, e3̂ = dr, e4̂ = eV dψ,

e5̂ = eV fk(ψ)dθ, e6̂ = eV fk(ψ) sin θdφ, (4.406)

we find non-vanishing components of the spin connection as follow

ωm̂3̂
(1) = U ′em̂, ω î3̂

(1) = V ′eî, î = 4̂, 5̂, 6̂, ω5̂4̂
(1) =

f ′
k(ψ)

fk(ψ)
e−V e5̂,

ω6̂4̂
(1) =

f ′
k(ψ)

fk(ψ)
e−V e6̂, ω6̂5̂

(1) =
cot θ
fk(ψ)

e−V e6̂ (4.407)

We will perform the twist on Σ3
k using gauge fields corresponding to SO(3) ⊂

SO(3)× SO(2) ⊂ SO(5)R and SO(3)+ ⊂ SO(3)+ × SO(3)− ∼ SO(4) ⊂ SO(5)R

with SO(5)R denoting the R-symmetry.

4.3.1.2.1 Solutions with SO(3) Twists

We first consider twisted solutions with SO(3) ⊂ SO(3) × SO(2) ⊂ SO(5)R

residual symmetry by turning on the following SO(3) gauge fields

A12
(1) = −e−V p

k

f ′
k(ψ)

fk(ψ)
e5̂, A13

(1) = −e−V p

k

f ′
k(ψ)

fk(ψ)
e6̂, A23

(1) = −e−V p

k

cot θ
fk(ψ)

e6̂.

(4.408)

In this case, we also use the three SO(3) singlet scalars corresponding to the SL(5)

non-compact generators (4.28), and the embedding tensor (4.27) for gauge groups
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with an SO(3) subgroup.

We now impose a simple twist condition

gp = k, (4.409)

together with the following projectors on the Killing spinors (4.14)

γ 4̂5̂ϵa = −(Γ12)
a
bϵ

b and γ 5̂6̂ϵa = −(Γ23)
a
bϵ

b . (4.410)

With all these and the γr projector given in (4.388), we obtain the BPS equations

U ′ =
g

40
e6ϕ1

[
3e−10ϕ1 + (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3 + (ρ− σ) sinh 2ϕ3

]
−6

5
e−2(V−2ϕ1)p, (4.411)

V ′ =
g

40
e6ϕ1

[
3e−10ϕ1 + (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3 + (ρ− σ) sinh 2ϕ3

]
+
14

5
e−2(V−2ϕ1)p, (4.412)

ϕ′
1 =

g

40
e6ϕ1

[
2e−10ϕ1 + (ρ− σ) sinh 2ϕ3 − (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3

]
−4

5
e−2(V−2ϕ1)p, (4.413)

ϕ′
2 = −g

8
e6ϕ1(ρ+ σ) sinh 2ϕ2sech2ϕ3, (4.414)

ϕ′
3 = −g

8
e6ϕ1 ((ρ+ σ) cosh 2ϕ2 sinh 2ϕ3 + (ρ− σ) cosh 2ϕ3) . (4.415)

From these BPS equations, we find an AdS4×H3 fixed point only for SO(5)

gauge group with ρ = σ = 1 given by

ϕ1 =
1

10
ln 2, ϕ2 = ϕ3 = 0, V = ln

[
163/5

g

]
, LAdS4 =

4× 22/5

g
. (4.416)

This is the same solution studied in [53]. The AdS4 × H3 fixed point preserves

eight supercharges and corresponds to an N = 2 SCFT in three dimensions. As

in the previous case, we also consider general RG flows from the supersymmetric

AdS7 vacuum to this AdS4 × H3 fixed point and then to curved DWs with a

Mkw3 ×H3 slice dual to three-dimensional N = 2 SQFTs.

When ϕ2 = ϕ3 = 0 along the flows, we find examples of the RG flows in

which ϕ1 → +∞ and ϕ1 → −∞ in the IR as respectively shown in Figures 4.14

and 4.15. Both types of singularities are physically acceptable as can be seen from



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

137

the behavior of ĝ00 in Figure 4.16. These singular geometries are then dual to

three-dimensional N = 2 SQFTs obtained from twisted compactifications of the

N = (2, 0) SCFT in six dimensions on H3.
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Figure 4.14: Numerical solutions for SO(3) twists in SO(5) gauge group. The

flows start from the AdS7 critical point as r → 15 to the AdS4 ×H3 fixed point

at r = 0 and then to singularities in the form of Mkw3 × H3-sliced DWs with

ϕ1 → +∞ in the region r < 0. The blue, orange, green, and red curves refer to

g = 8, 16, 24, 32.
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Figure 4.15: Numerical solutions for SO(3) twists in SO(5) gauge group. The

flows start from the AdS7 critical point as r → 15 to the AdS4 ×H3 fixed point

at r = 0 and then to singularities in the form of Mkw3 × H3-sliced DWs with

ϕ1 → −∞ in the region r < 0. The blue, orange, green, and red curves refer to

g = 8, 16, 24, 32.

Although ϕ2 and ϕ3 vanish at both AdS7 vacuum and AdS4 × H3 fixed

point, we can consider the RG flows to curved DWs with non-vanishing ϕ2 and

ϕ3. Various examples of these RG flows are given in Figure 4.17. However, the
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behavior of ĝ00 near the singularities, ĝ00 → +∞, indicates that these singularities

are unphysical by the criterion of [86].
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(a) To r < 0 singularities with ϕ1 → +∞
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(b) To r < 0 singularities with ϕ1 → −∞

Figure 4.16: The behavior of ĝ00 for RG flows given in Figures 4.14 and 4.15 in

which ĝ00 → 0 in the region r < 0 for both cases.

4.3.1.2.2 Solutions with SO(3)+ Twists

We now consider another twist by turning on the following SO(3)+ gauge fields

A12
(1) = A34

(1) = −e−V p

2k

f ′
k(ψ)

fk(ψ)
e5̂,

A13
(1) = A24

(1) = −e−V p

2k

f ′
k(ψ)

fk(ψ)
e6̂,

A23
(1) = A14

(1) = −e−V p

2k

cot θ
fk(ψ)

e6̂ . (4.417)

In this case, the SO(3)+ is identified with the self-dual SO(3) subgroup of SO(4) ∼

SO(3)+ × SO(3)− ⊂ SO(5). Therefore, the gauge groups containing SO(3)+

are given by SO(5), SO(4, 1), and CSO(4, 0, 1) with the embedding tensor (4.5).

There is only one SO(3)+ singlet scalar corresponding to the non-compact

generator (4.6) that is also invariant under a larger symmetry SO(4).

To implement the twist, we impose the projection conditions given in (4.410)

and

(Γ12)
a
bϵ

b = (Γ34)
a
bϵ

b . (4.418)
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Figure 4.17: Numerical solutions for SO(3) twists in SO(5) gauge group. The

flows start from the AdS7 critical point as r → 10 to the AdS4×H3 fixed point at

r = 0 and then to unphysical singularities in the form of Mkw3 ×H3-sliced DWs

with ϕ1, ϕ2, and ϕ3 non-vanishing in the region r < 0. The blue, orange, green,

and red curves refer to g = 8, 16, 24, 32.

Together with the twist condition (4.409) and the γr projection condition (4.388),

we find the following BPS equations

U ′ =
g

40
(4e−2ϕ + ρe8ϕ)− 6

5
e−2(V−ϕ)p, (4.419)

V ′ =
g

40
(4e−2ϕ + ρe8ϕ) +

14

5
e−2(V−ϕ)p, (4.420)

ϕ′ =
g

20
(e−2ϕ − ρe8ϕ)− 3

5
e−2(V−ϕ)p . (4.421)

These equations admit an AdS4×H3 fixed point only for SO(5) gauge group with

ρ = 1. This AdS4 ×H3 vacuum is given by

V =
1

2
ln
[
8× 21/5 × 53/5

g2

]
, ϕ =

1

10
ln
[
8

5

]
, LAdS4 =

23/5 × 54/5

g
(4.422)

which does not seem to appear in the previously known results.

Unlike the SO(3) twist, this AdS4 × H3 fixed point preserves only four

supercharges and corresponds to a three-dimensional N = 1 SCFT. Examples of
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general RG flows, from the supersymmetric AdS7 vacuum to this AdS4×H3 fixed

point and curved DWs dual to N = 1 SQFTs in three dimensions, are given in

Figure 4.18. In these solutions, the IR singularities are physical, as can be seen

from ĝ00 → 0 near the singularities.
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Figure 4.18: Numerical solutions for SO(3)+ twists in SO(5) gauge group. The

flows start from the AdS7 critical point as r → 15 to the AdS4×H3 fixed point at

r = 0 and then to physical singularities in the form of Mkw3 ×H3-sliced DWs in

the region r < 0. The blue, orange, green, and red curves refer to g = 8, 16, 24, 32.

When ρ = 0, we can analytically solve the BPS equations for CSO(4, 0, 1)

gauge group. With the new radial coordinate r̃ defined by dr̃
dr

= e−V , the resulting

solution is given by

ϕ = C0 +
g

160p
(4pr̃ + C1)

2 − 3

20
ln(4pr̃ + C1), (4.423)
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V = 2ϕ+ ln(4pr̃ + C1), (4.424)

U = V − ln(4pr̃ + C1) + C2. (4.425)

The integration constants C1 and C2 can be neglected by shifting the radial

coordinate r̃ and rescaling the coordinates xm on Mkw3, respectively.

Setting C1 = C2 = 0, we find the following leading behavior of the solution

at large r̃

ϕ ∼ r̃2 and U ∼ V ∼ 2ϕ . (4.426)

Due to V → ∞, the contribution from the gauge fields to the BPS equations is

highly suppressed in this limit. The asymptotic behavior is then identified with

the flat DW found in Section 4.1.1.1. Similar to the case of solutions with an

asymptotically locally AdS7 space, we will call this limit an asymptotically locally

flat DW.

On the other hand, as r̃ → 0, we find an IR singularity with

ϕ ∼ − 3

20
ln(4pr̃), V ∼ 7

10
ln(4pr̃), U ∼ − 3

10
ln(4pr̃). (4.427)

This solution can be embedded in type IIA supergravity using the complete

truncation ansatz collected in Appendix C.2. However, in this section, we are only

interested in the time component of the ten-dimensional metric given by

ĝ00 = e2U+ 3
2
ϕ . (4.428)

Using this result, we find that ĝ00 → ∞, as r̃ → 0, so the IR singularity, in this

case, is unphysical.

4.3.1.3 Supersymmetric AdS3 × M4 Solutions with SO(4) Symmetry

In this section, we move on to the analysis of AdS3 ×M4 solutions. In this case,

the internal space is a Riemannian four-manifold M4 with constant curvature.

Labeled by k = 1,−1, 0, M4
k can be a four-dimensional sphere S4, a flat space R4,

or a hyperbolic space H4, respectively.

With the embedding tensor (4.5) and the coset representative (4.7), we will

consider SO(4) symmetric solutions for SO(5), SO(4, 1), and CSO(4, 0, 1) gauge
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groups. To find AdS3 ×M4
k solutions, we use the following ansatz for the seven-

dimensional metric

ds27 = e2U(r)dx21,1 + dr2 + e2V (r)ds2M4
k

(4.429)

with dx21,1 = ηmndx
mdxn for m,n = 0, 1 being the metric on two-dimensional

Minkowski space. The explicit form of the metric on M4
k is given by

ds2Σ4
k
= dχ2 + fk(χ)

2
[
dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)

]
(4.430)

in which χ, ψ, θ ∈ [0, π
2
], φ ∈ [0, 2π], and fk(χ) is the function defined in (3.80).

With the vielbein basis of the form

em̂ = eUdxm, e2̂ = dr, e3̂ = eV dχ, e4̂ = eV fk(χ)dψ,

e5̂ = eV fk(χ) sinψdθ, e6̂ = eV fk(χ) sinψ sin θdφ, (4.431)

we obtain the following non-vanishing components of the spin connection

ωm̂2̂
(1) = U ′em̂, ω î2̂

(1) = V ′eî, î = 3̂, ..., 6̂, ω4̂3̂
(1) =

f ′
k(χ)

fk(χ)
e−V e4̂,

ω5̂3̂
(1) =

f ′
k(χ)

fk(χ)
e−V e5̂, ω6̂3̂

(1) =
f ′
k(χ)

fk(χ)
e−V e6̂, ω5̂4̂

(1) =
cotψ
fk(χ)

e−V e5̂,

ω6̂4̂
(1) =

cotψ
fk(χ)

e−V e6̂, ω6̂5̂
(1) =

cot θ
fk(χ) sinψe

−V e6̂. (4.432)

To cancel the spin connection ωîĵ
(1), we perform the twist on M4

k by turning

on SO(4) gauge fields as follow

AIJ
(1) = −p

k
δI+2

[̂i
δJ+2

ĵ]
ωîĵ
(1), I, J = 1, ..., 4. (4.433)

The corresponding modified two-forms are exactly the SO(4) gauge field strengths

given by

F IJ
îĵ

= F IJ
îĵ

= 2δI+2

[̂i
δJ+2

ĵ]
e−2V p . (4.434)

In this case, the modified three-forms cannot vanish in order to satisfy

the Bianchi’s identity since the above SO(4) gauge fields lead to non-vanishing

ϵMNPQRFNP
(2) ∧ FQR

(2) terms in (2.63). To preserve the residual SO(4) symmetry,

only H(3)5 is allowed. We also note that for SO(5) and SO(4, 1) gauge groups,
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their embedding tensor YMN is non-degenerate. For these gauge groups, there are

in total five massive three-form fields SM
(3), so H(3)5 is obtained by turning on the

massive three-form field S5
(3). On the other hand, we have Y55 = 0 for CSO(4, 0, 1)

gauge group, so the contribution to H(3)5 comes from the massless two-form field

B(2)5 in this case. However, we are not able to determine a suitable ansatz for

B(2)5 in order to find a consistent set of BPS equations that are compatible with

the second-ordered field equations. Accordingly, in the following analysis, we will

not consider the non-semisimple CSO(4, 0, 1) gauge group.

For SO(5) and SO(4, 1) gauge groups, the appropriate ansatz for the

modified three-form is given by

Hm̂n̂2̂5 = −96

g
ρe−4(V+2ϕ)p2εm̂n̂ . (4.435)

Imposing the twist condition (4.409) and the projector in (4.388) together with

additional projectors of the form

γ 3̂4̂ϵa = −(Γ12)
a
bϵ

b, γ 4̂5̂ϵa = −(Γ23)
a
bϵ

b, γ 5̂6̂ϵa = −(Γ34)
a
bϵ

b, (4.436)

we find the BPS equations

U ′ =
g

40
(4e−2ϕ + ρe8ϕ)− 12

5
e−2V+2ϕp+

288

5g
ρe−4(V+ϕ)p2, (4.437)

V ′ =
g

40
(4e−2ϕ + ρe8ϕ) +

18

5
e−2V+2ϕp− 192

5g
ρe−4(V+ϕ)p2, (4.438)

ϕ′ =
g

20
(e−2ϕ − ρe8ϕ)− 6

5
e−2V+2ϕp− 96

5g
ρe−4(V+ϕ)p2 . (4.439)

From these BPS equations, we find an AdS3 fixed point only for k = −1 and

ρ = 1. The resulting AdS3 ×H4 solution is given by

V =
1

2
ln
[
16× 23/5 × 32/5

g2

]
, ϕ =

1

10
ln
[
3

2

]
, LAdS3 =

29/5 × 31/5

g
. (4.440)

This is the AdS3 × H4 fixed point given in [53] for the maximal SO(5) gauged

supergravity. The solution preserves four supercharges and corresponds to a two-

dimensional N = (1, 1) SCFT with SO(4) symmetry. As in the previous cases,

we also consider general RG flows from the supersymmetric AdS7 vacuum to this

AdS3 ×H4 fixed point and then to curved DWs. Examples of these RG flows are

given in Figure 4.19. Unlike the previous cases, the IR singularities are unphysical

in this case due to the behavior ĝ00 → ∞ near the singularities.
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Figure 4.19: Numerical solutions for SO(4) twists in SO(5) gauge group. The

flows start from the AdS7 critical point as r → 10 to the AdS3×H4 fixed point at

r = 0 and then to unphysical singularities in the form of Mkw2×H4-sliced DWs in

the region r < 0. The blue, orange, green, and red curves refer to g = 8, 16, 24, 32.

4.3.1.4 Supersymmetric AdS3×Σ2×Σ2 Solutions with SO(2)×SO(2)

Symmetry

We now consider the internal four-manifold as a product of two Riemann surfaces

Σ2 × Σ2. The ansatz for the seven-dimensional metric takes the form of

ds27 = e2U(r)dx21,1 + dr2 + e2V (r)ds2Σ2
k1

+ e2W (r)ds2Σ2
k2

(4.441)

in which the metrics on the Riemann surfaces Σ2
k1

and Σ2
k2

are given in (3.79).
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Using the following choice for the vielbein

em̂ = eUdxm, e2̂ = dr, e3̂ = eV dθ1,

e4̂ = eV fk1(θ1)dφ1, e5̂ = eWdθ2, e6̂ = eWfk2(θ2)dφ2, (4.442)

we obtain all non-vanishing components of the spin connection as follow

ωm̂2̂
(1) = U ′em̂, ω î12̂

(1) = V ′eî1 , ω î22̂
(1) = W ′eî2 ,

ω4̂3̂
(1) =

f ′
k1
(θ1)

fk1(θ1)
e−V e4̂, ω6̂5̂

(1) =
f ′
k2
(θ2)

fk2(θ2)
e−W e6̂ (4.443)

with î1 = 3̂, 4̂ and î2 = 5̂, 6̂ being flat indices on Σ2
k1

and Σ2
k2

, respectively.

As in other cases, we consider gauge groups of the form CSO(p, q, 5− p− q)

with an SO(2) × SO(2) subgroup. These gauge groups are obtained from the

embedding tensor given in (4.49). To perform the twist, we turn on the following

SO(2)× SO(2) gauge fields

A12
(1) = −p11

k1

f ′
k1
(θ1)

fk1(θ1)
e−V e4̂ − p12

k2

f ′
k2
(θ2)

fk2(θ2)
e−W e6̂,

A34
(1) = −p21

k1

f ′
k1
(θ1)

fk1(θ1)
e−V e4̂ − p22

k2

f ′
k2
(θ2)

fk2(θ2)
e−W e6̂ . (4.444)

The corresponding modified two-forms are given by

F12
(2) = F 12

(2) = e−2V p11e
3̂ ∧ e4̂ + e−2Wp12e

5̂ ∧ e6̂, (4.445)

F34
(2) = F 34

(2) = e−2V p21e
3̂ ∧ e4̂ + e−2Wp22e

5̂ ∧ e6̂ . (4.446)

We also need to turn on the modified three-form

Hm̂n̂2̂5 = αe−2(V+W+2ϕ1+2ϕ2)εm̂n̂ (4.447)

where α is a constant related to the magnetic charges by the relation

gρα = −32(p12p21 + p11p22) . (4.448)

For CSO(2, 2, 1) and CSO(4, 0, 1) gauge groups with ρ = 0, we need to impose

an additional relation on the magnetic charges

p12p21 + p11p22 = 0 (4.449)
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in order to ensure that the resulting BPS equations are compatible with all the

second-ordered field equations.

Using the projection conditions (4.388) and

γ 3̂4̂ϵa = γ 5̂6̂ϵa = −(Γ12)
a
bϵ

b = −(Γ34)
a
bϵ

b (4.450)

together with the twist conditions

g(p11 + σp21) = k1 and g(p12 + σp22) = k2, (4.451)

we obtain the following BPS equations

U ′ =
g

40
(2e−2ϕ1 + ρe4(ϕ1+ϕ2) + 2σe−2ϕ2)− 3α

5g
e−2(V+W+ϕ1+ϕ2)

−2

5

[
e−2V (e2ϕ1p11 + e2ϕ2p21) + e−2W (e2ϕ1p12 + e2ϕ2p22)

]
, (4.452)

V ′ =
g

40
(2e−2ϕ1 + ρe4(ϕ1+ϕ2) + 2σe−2ϕ2) +

2α

5g
e−2(V+W+ϕ1+ϕ2)

+
2

5

[
4e−2V (e2ϕ1p11 + e2ϕ2p21)− e−2W (e2ϕ1p12 + e2ϕ2p22)

]
, (4.453)

W ′ =
g

40
(2e−2ϕ1 + ρe4(ϕ1+ϕ2) + 2σe−2ϕ2) +

2α

5g
e−2(V+W+ϕ1+ϕ2)

−2

5

[
e−2V (e2ϕ1p11 + e2ϕ2p21)− 4e−2W (e2ϕ1p12 + e2ϕ2p22)

]
, (4.454)

ϕ′
1 =

g

20
(3e−2ϕ1 − ρe4(ϕ1+ϕ2) − 2σe−2ϕ2) +

α

5g
e−2(V+W+ϕ1+ϕ2)

−2

5

[
3e2ϕ1(e−2V p11 + e−2Wp12)− 2e2ϕ2(e−2V p21 + e−2Wp22)

]
, (4.455)

ϕ′
2 =

g

20
(3σe−2ϕ2 − ρe4(ϕ1+ϕ2) − 2e−2ϕ1) +

α

5g
e−2(V+W+ϕ1+ϕ2)

+
2

5

[
2e2ϕ1(e−2V p11 + e−2Wp12)− 3e2ϕ2(e−2V p21 + e−2Wp22)

]
. (4.456)

In deriving these BPS equations, we have used the coset representative given in

(4.50) for SO(2)× SO(2) singlet scalars.

We find a class ofAdS3×Σ2×Σ2 fixed point solutions from the BPS equations

e2V = −16(e2ϕ1p11 + e2ϕ2p21)

ge4(ϕ1+ϕ2)ρ
, (4.457)

e2W = −16(e2ϕ1p12 + e2ϕ2p22)

ge4(ϕ1+ϕ2)ρ
, (4.458)

e10ϕ1 =
64Θ [32(p12p21 + p11p22)− gρα− 64σp21p22]

2

[32σ(p12p21 + p11p22)− gρσα− 64p11p12]
3 , (4.459)
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e10ϕ2 =
64Θ [32σ(p12p21 + p11p22)− gρσα− 64p11p12]

2

[32(p12p21 + p11p22)− gρα− 64σp21p22]
3 , (4.460)

LAdS3 =
8e2(ϕ1+ϕ2)

g(e2ϕ2 + e2ϕ1σ)
(4.461)

with

Θ =
Ξ [32 (p12p22(p11 + p21σ)− p212p21 − p11p

2
22σ) + gρα(p12 + p22σ)]

ρ [1024p212p
2
21 + (32p11p22 − gρα)2 − 64p12p21(32p11p22 + gρα)]

, (4.462)

Ξ = 32
[
p11p21(p12 + p22σ)− p211p22 − p12p

2
21σ

]
+ gρα(p11 + p21σ). (4.463)

It turns out that good AdS3 × Σ2 × Σ2 solutions are possible only for SO(5) and

SO(3, 2) gauge groups with ρ = σ = 1 and ρ = −σ = 1, respectively. For SO(5)

gauge group, the solutions have been extensively studied in [58]. For SO(3, 2)

gauge group, all the AdS3 × Σ2 × Σ2 fixed points given here are new.

Following [58], we define the following two parameters to characterize the

AdS3 × Σ2 × Σ2 solutions

z1 = g(p11 − σp21) and z2 = g(p12 − σp22) (4.464)

in which we have set ρ = 1. In order for good AdS3 fixed points to exist in SO(5)

gauge group with σ = 1, one of the Riemann surfaces needs to be negatively

curved, and AdS3 × H2 × Σ2 solutions can be found within the regions in the

parameter space (z1, z2) shown in Figure 4.20. These regions are the same as

those given in [58] and Figure 3.1. The AdS3×H2×Σ2 fixed points preserve four

supercharges and correspond to two-dimensional N = (2, 0) SCFTs with SO(2)×

SO(2) symmetry. Examples of RG flows with g = 16, from the supersymmetric

AdS7 vacuum to AdS3×H2×Σ2 fixed points and curved DWs in the IR, are given

in Figures 4.21, 4.22, and 4.23 for Σ2 = H2,R2, and S2, respectively. All the IR

singularities are physical since ĝ00 → 0 near the singularities.

For SO(3, 2) gauge group, we find good AdS3 fixed points only for at least

one of the two Riemann surfaces is positively curved. Using the parameters z1
and z2 defined in (4.464) with σ = −1, we find regions in the parameter space

(z1, z2) for good AdS3 vacua to exist in the SO(3, 2) gauged supergravity as shown

in Figure 4.24.
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Figure 4.20: Regions (blue) in the parameter space (z1, z2) where good AdS3 vacua

exist in SO(5) gauge group for g = 16. From left to right, these figures correspond

to the cases of (k1 = k2 = −1), (k1 = −1, k2 = 0), and (k1 = −k2 = −1),

respectively. The orange regions are obtained from interchanging k1 and k2.

We will consider RG flows between the AdS3 × S2 × Σ2 fixed points and

curved DWs with Mkw2×S2×Σ2 slices in this case since there is no asymptotically

locally AdS7 geometry for SO(3, 2) gauge group. Examples of these RG flows with

g = 16 and different values of z1 and z2 are given in Figures 4.25, 4.26, and 4.27 for

Σ2 = H2,R2, and S2, respectively. We see that all singularities in the flows from

AdS3×S2×R2 fixed points are unphysical, while only the singularities on the left

(right) with ϕ1 → −∞ and ϕ2 → +∞ (ϕ1 → +∞ and ϕ2 → −∞) of the flows

from AdS3×S2×H2 (AdS3×S2×S2) fixed points are physical. These singularities

are expected to describe two-dimensional SQFTs with SO(2)× SO(2) symmetry

obtained from twisted compactifications of the six-dimensional N = (2, 0) SQFT.

4.3.1.5 Supersymmetric AdS3 × K4 Solutions

Apart from M4 and Σ2 × Σ2, we are also interested in supersymmetric solutions

with AdS3 vacua in the case of the internal four-manifold being a Kahler four-cycle

K4. As expressed in Section 3.2.2, we can perform a topological twist on K4 using

either SO(2) ∼ U(1) or SO(3) ∼ SU(2) gauge fields in order to cancel the U(1)

or SU(2) parts of the U(2) spin connection.
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Figure 4.21: Numerical solutions for SO(2)× SO(2) twists with g = 16 in SO(5)

gauge group. The flows start from the AdS7 critical point as r → 15 to AdS3 ×

H2 × H2 fixed points at r = 0 and then to physical singularities in the form of

Mkw2 × H2 × H2-sliced DWs in the region r < 0. The blue, orange, green, and

red curves refer to (z1, z2) = (0, 0), (0.3, 0.3), (−0.3,−0.3), (−1, 0.5).
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Figure 4.22: Numerical solutions for SO(2)× SO(2) twists with g = 16 in SO(5)

gauge group. The flows start from the AdS7 critical point as r → 10 to AdS3 ×

H2 × R2 fixed points at r = 0 and then to physical singularities in the form of

Mkw2 × H2 × R2-sliced DWs in the region r < 0. The blue, orange, green, and

red curves refer to (z1, z2) = (1,−0.5), (−1, 1), (1,−2), (−8, 1).
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Figure 4.23: Numerical solutions for SO(2)× SO(2) twists with g = 16 in SO(5)

gauge group. The flows start from the AdS7 critical point as r → 10 to AdS3 ×

H2 × S2 fixed points at r = 0 and then to physical singularities in the form of

Mkw2 × H2 × S2-sliced DWs in the region r < 0. The blue, orange, green, and

red curves refer to (z1, z2) = (−1, 5), (1,−2), (1,−4), (−3, 8).
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Figure 4.24: Regions (blue) in the parameter space (z1, z2) where good AdS3

vacua exist in SO(3, 2) gauge group for g = 16. From left to right, these figures

correspond to the cases of (k1 = k2 = 1), (k1 = 1, k2 = 0), and (k1 = −k2 = 1),

respectively. The orange regions are obtained from interchanging k1 and k2.

A general ansatz for the seven-dimensional metric in this section takes the

form of

ds27 = e2U(r)dx21,1 + dr2 + e2V (r)ds2K4
k

(4.465)

in which the explicit form for the metric on the Kahler four-cycle K4
k will be

specified separately in each case.

4.3.1.5.1 Solutions with SO(3) Twists

We begin with performing the twist along the SU(2) ∼ SO(3) part of the spin

connection by choosing the metric on K4
k given in (3.165). With the following

choice of vielbein

em̂ = eUdxm, e2̂ = dr, e3̂ = eV fk(ψ)τ1,

e4̂ = eV fk(ψ)τ2, e5̂ = eV fk(ψ)τ3, e6̂ = eV dψ, (4.466)

we find non-vanishing components of the spin connection

ωm̂2̂
(1) = U ′em̂, ω î2̂

(1) = V ′eî, ω3̂6̂
(1) = f ′

k(ψ)τ1, ω4̂5̂
(1) = τ1,

ω4̂6̂
(1) = f ′

k(ψ)τ2, ω5̂3̂
(1) = τ2, ω5̂6̂

(1) = f ′
k(ψ)τ3, ω3̂4̂

(1) = τ3 (4.467)

where î = 3̂, ..., 6̂ is a flat index on K4
k , and ωîĵ

(1) are the SU(2) parts of the spin

connection.
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Figure 4.25: Numerical flows for SO(2) × SO(2) twists with g = 16 in SO(3, 2)

gauge group. The flows start from AdS3 × S2 × H2 fixed points at r = 0

to (un)physical singularities in the form of Mkw2 × S2 × H2-sliced DWs in

the region r < 0 (r > 0). The blue, orange, green, and red curves refer to

(z1, z2) = ( 1
24
,−18), ( 1

16
,−12), ( 1

24
,−24), ( 1

16
,−24).
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Figure 4.26: Numerical flows for SO(2) × SO(2) twists with g = 16 in SO(3, 2)

gauge group. The flows start from AdS3 × S2 × R2 fixed points at r = 0 to

unphysical singularities in the form of Mkw2 × S2 × R2-sliced DWs on both

r ̸= 0 sides. The blue, orange, green, and red curves refer to (z1, z2) =

( 1
34
,− 1

34
), ( 1

34
,− 1

26
), ( 1

24
,− 1

18
), ( 1

36
,−1

8
).
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Figure 4.27: Numerical flows for SO(2) × SO(2) twists with g = 16 in SO(3, 2)

gauge group. The flows start from AdS3 × S2 × S2 fixed points at r = 0 to

(un)physical singularities in the form of Mkw2 × S2 × S2-sliced DWs in the

region r > 0 (r < 0). The blue, orange, green, and red curves refer to

(z1, z2) = (−0.55,−0.55), (−0.55,−0.6), (−0.35,−0.87), (−1,−0.3).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

156

To implement the twist, we turn on the following SO(3) gauge fields

AIJ
(1) = −p

k
(f ′

k(ψ)− 1)εIJKτK , I, J,K = 1, 2, 3 (4.468)

with the modified two-forms given by

F12
(2) = F 12

(2) = e−2V p(e3̂ ∧ e4̂ − e5̂ ∧ e6̂), (4.469)

F23
(2) = F 23

(2) = e−2V p(e4̂ ∧ e5̂ − e3̂ ∧ e6̂), (4.470)

F31
(2) = F 31

(2) = e−2V p(e5̂ ∧ e3̂ − e4̂ ∧ e6̂). (4.471)

Unlike the previous case, we do not need to turn on the modified three-forms since

ϵMNPQRFNP
(2) ∧ FQR

(2) = 0 in this case.

We then impose the twist condition (4.409) together with the following three

projection conditions

γ 3̂4̂ϵa = −(Γ12)
a
bϵ

b, γ 4̂5̂ϵa = −(Γ23)
a
bϵ

b, γ 3̂4̂ϵa = −γ 5̂6̂ϵa . (4.472)

Using the scalar coset representative (4.29) and the projection (4.388), we find the

following BPS equations

U ′ =
g

40
e6ϕ1

[
3e−10ϕ1 + (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3 + (ρ− σ) sinh 2ϕ3

]
−12

5
e−2(V−2ϕ1)p, (4.473)

V ′ =
g

40
e6ϕ1

[
3e−10ϕ1 + (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3 + (ρ− σ) sinh 2ϕ3

]
+
18

5
e−2(V−2ϕ1)p, (4.474)

ϕ′
1 =

g

40
e6ϕ1

[
2e−10ϕ1 + (ρ− σ) sinh 2ϕ3 − (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3

]
−8

5
e−2(V−2ϕ1)p, (4.475)

ϕ′
2 = −g

8
e6ϕ1(ρ+ σ) sinh 2ϕ2 sech2ϕ3, (4.476)

ϕ′
3 = −g

8
e6ϕ1 ((ρ+ σ) cosh 2ϕ2 sinh 2ϕ3 + (ρ− σ) cosh 2ϕ3) . (4.477)

It turns out that only SO(5) gauge group admits an AdS3×CH2 fixed point

given by

V =
1

2
ln
[
16× 34/5

g2

]
, ϕ1 =

1

10
ln 3,

ϕ2 = ϕ3 = 0, LAdS3 =
8

33/5g
. (4.478)
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This is the AdS3 × CH2 solution found in [53]. The solution preserves four

supercharges and corresponds to a two-dimensionalN = (2, 0) SCFT with SO(3)×

SO(2) symmetry. Note here that the scalar coset representative is invariant under

SO(3)× SO(2) ⊂ SO(5) for ϕ2 = ϕ3 = 0. Various examples of general RG flows,

from the supersymmetric AdS7 critical point to this AdS3 ×CH2 fixed point and

then to curved DWs, are shown in Figures 4.28, 4.29, and 4.30. From these figures,

we find that both singularities for ϕ1 → ±∞ in the flows with ϕ2 = ϕ3 = 0 are

physical. In the flows with ϕ1, ϕ2, and ϕ3 non-vanishing, the IR singularities are

unphysical because of ĝ00 → ∞ near the singularities.
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Figure 4.28: Numerical solutions for SO(3) twists with ϕ2 = ϕ3 = 0 along the flows

in SO(5) gauge group. The flows start from the AdS7 critical point as r → 10

to the AdS3 × CH2 fixed point at r = 0 and then to physical singularities in the

form of Mkw2 × CH2-sliced DWs with ϕ1 → +∞ in the region r < 0. The blue,

orange, green, and red curves refer to g = 8, 16, 24, 32.
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Figure 4.29: Numerical solutions for SO(3) twists with ϕ2 = ϕ3 = 0 along the flows

in SO(5) gauge group. The flows start from the AdS7 critical point as r → 10

to the AdS3 × CH2 fixed point at r = 0 and then to physical singularities in the

form of Mkw2 × CH2-sliced DWs with ϕ1 → −∞ in the region r < 0. The blue,

orange, green, and red curves refer to g = 8, 16, 24, 32.

4.3.1.5.2 Solutions with SO(3)+ Twists

We now move to AdS3×K4 solutions with the twist given by identifying the SU(2)

parts of the spin connection with the self-dual SO(3)+ ⊂ SO(3)+ × SO(3)− ∼

SO(4) ⊂ SO(5)R. Starting from SO(3)× SO(3) gauge fields of the form

AIJ
(1) = − p

2k
(f ′

k(ψ)− 1)ϵIJKτK and AI4
(1) = − p

2k
(f ′

k(ψ)− 1)δIJτJ , (4.479)

the self-dual SO(3)+ gauge fields can be defined as

AI
(1) =

1

2
ϵIJKAJK

(1) + AI4
(1) = −p

k
(f ′

k(ψ)− 1)τI . (4.480)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

159

-2 2 4 6 8 10
r

-40

-20

20

40

U(r)

(a) U solution

-2 2 4 6 8 10
r

-20

-10

10

20

30

V (r)

(b) V solution

-2 2 4 6 8 10
r

0.05

0.10

0.15

ϕ1(r)

(c) ϕ1 solution

-2 2 4 6 8 10
r

-0.0010

-0.0005

0.0005

0.0010
ϕ2(r)

(d) ϕ2 solution

-2 2 4 6 8 10
r

-0.0010

-0.0005

0.0005

0.0010
ϕ3(r)

(e) ϕ3 solution

-2.0 -1.5 -1.0 -0.5 0.0
r

1

2

3

4

5

6
g00

(f) Profiles of ĝ00

Figure 4.30: Numerical solutions for SO(3) twists in SO(5) gauge group. The

flows start from the AdS7 critical point as r → 10 to the AdS3 ×CH2 fixed point

at r = 0 and then to unphysical singularities in the form of Mkw2 × CH2-sliced

DWs with ϕ1, ϕ2, and ϕ3 non-vanishing in the region r < 0. The blue, orange,

green, and red curves refer to g = 8, 16, 24, 32.

Using these gauge fields, we can perform the twist by imposing the twist condition

(4.409) and the three projections given in (4.472) together with an additional

projection condition for the self-duality of SO(3)+

(Γ12)
a
bϵ

b = (Γ34)
a
bϵ

b . (4.481)

Furthermore, by turning on the above SO(3)+ gauge fields, we also need to turn

on the modified three-forms of the form

Hm̂n̂2̂5 = −192

g
ρe−4(V+2ϕ)p2εm̂n̂ . (4.482)

We will consider only SO(5) and SO(4, 1) gauge groups with ρ ̸= 0 as in the case

of SO(4) symmetric solutions.

Using the embedding tensor (4.5) and the coset represenvative (4.7) for the
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SO(4) invariant scalar, we find the following BPS equations

U ′ =
g

40
(4e−2ϕ + ρe8ϕ)− 12

5
e−2(V−ϕ)p+

144

5g
ρe−4(V+ϕ)p2, (4.483)

V ′ =
g

40
(4e−2ϕ + ρe8ϕ) +

18

5
e−2(V−ϕ)p− 96

5g
ρe−4(V+ϕ)p2, (4.484)

ϕ′ =
g

20
(e−2ϕ − ρe8ϕ)− 6

5
e−2(V−ϕ)p− 48

5g
ρe−4(V+ϕ)p2 (4.485)

in which we have also imposed the γr projection (4.388). From these equations, an

AdS3 fixed point is obtained only in SO(5) gauge group with k = −1 and ρ = 1.

This AdS3 × CH2 solution is given by

V =
1

2
ln
[
47/5 × 32/5 × 73/5

g2

]
, ϕ =

1

10
ln
[
12

7

]
, LAdS3 =

46/5 × 31/5

g271/5
(4.486)

which is the AdS3 × CH2 fixed point found in [53]. The solution preserves two

supercharges and corresponds to a two-dimensional N = (1, 0) SCFT with SO(3)

symmetry. Supersymmetric RG flows, from the AdS7 vacuum to this AdS3×CH2

fixed point and curved DWs in the IR, are given in Figure 4.31. The IR singularities

are physically acceptable, as indicated by the behavior ĝ00 → 0.

4.3.1.5.3 Solutions with SO(2) × SO(2) Twists

As a final case for AdS3 × K4 solutions, we perform another twist by canceling

the U(1) part of the spin connection on the Kahler four-cycle. To make this U(1)

part manifest, we choose the metric on K4
k in (3.137) together with the following

choice of vielbein

em̂ = eUdxm, e2̂ = dr, e3̂ =
eV ψ√
kψ2 + 1

τ1,

e4̂ =
eV ψ√
kψ2 + 1

τ2, e5̂ =
eV ψ

(kψ2 + 1)
τ3, e6̂ =

eV dψ

(kψ2 + 1)
. (4.487)

All non-vanishing components of the spin connection, in this case, are given by

ωm̂2̂
(1) = U ′em̂, ω î2̂

(1) = V ′eî, î = 3̂, ..., 6̂,

ω3̂6̂
(1) = ω4̂5̂

(1) =
τ1√

kψ2 + 1
, ω3̂4̂ =

(2kψ2 + 1)

(kψ2 + 1)
τ3,

ω5̂6̂
(1) =

(1− kψ2)

(kψ2 + 1)
τ3, ω5̂3̂

(1) = ω4̂6̂
(1) =

τ2√
kψ2 + 1)

. (4.488)
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Figure 4.31: Numerical solutions for SO(3)+ twists in SO(5) gauge group. The

flows start from the AdS7 critical point as r → 15 to the AdS3×CH2 fixed point at

r = 0 and then to physical singularities in the form of Mkw2×CH2-sliced DWs in

the region r < 0. The blue, orange, green, and red curves refer to g = 8, 16, 24, 32.

We perform the twist by turning on the SO(2)× SO(2) gauge fields

A12
(1) = p1

3ψ2√
kψ2 + 1

τ3 and A34
(1) = p2

3ψ2√
kψ2 + 1

τ3 (4.489)

and imposing the following projection conditions

γ 3̂4̂ϵa = −γ 5̂6̂ϵa = −(Γ12)
a
bϵ

b = −(Γ34)
a
bϵ

b (4.490)

together with the twist condition (4.386). The associated modified two-forms are

F12
(2) = F 12

(2) = 3e−2V p1(e
3̂ ∧ e4̂ − e5̂ ∧ e6̂), (4.491)

F34
(2) = F 34

(2) = 3e−2V p2(e
3̂ ∧ e4̂ − e5̂ ∧ e6̂). (4.492)
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With the above non-vanishing SO(2) × SO(2) gauge fields, we need to turn on

the modified three-form

Hm̂n̂2̂5 =
576

g
ρe−4(V+ϕ1+ϕ2)p1p2εm̂n̂ (4.493)

with ρ being the parameter in the embedding tensor (4.49) for gauge groups with

an SO(2) × SO(2) subgroup. As in the previous cases, the appearance of ρ in

(4.493) implies that the resulting BPS equations are not compatible with the field

equations for the case of ρ = 0. We will accordingly consider only gauge groups

with ρ ̸= 0 in the following analysis.

With the γr projector (4.388) and the scalar coset representative (4.50), the

corresponding BPS equations read

U ′ =
g

40
(2e−2ϕ1 + ρe4(ϕ1+ϕ2) + 2σe−2ϕ2)− 12

5
e−2V (e2ϕ1p1 + e2ϕ2p2)

+
1728

5g
ρe−2(2V+ϕ1+ϕ2)p1p2, (4.494)

V ′ =
g

40
(2e−2ϕ1 + ρe4(ϕ1+ϕ2) + 2σe−2ϕ2) +

18

5
e−2V (e2ϕ1p1 + e2ϕ2p2)

−1152

5g
ρe−2(2V+ϕ1+ϕ2)p1p2, (4.495)

ϕ′
1 =

g

20
(3e−2ϕ1 − ρe4(ϕ1+ϕ2) − 2σe−2ϕ2)− 12

5
e−2V (3e2ϕ1p1 − 2e2ϕ2p2)

−576

5g
ρe−2(2V+ϕ1+ϕ2)p1p2, (4.496)

ϕ′
2 =

g

20
(3σe−2ϕ2 − ρe4(ϕ1+ϕ2) − 2e−2ϕ1) +

12

5
e−2V (2e2ϕ1p1 − 3e2ϕ2p2)

−576

5g
ρe−2(2V+ϕ1+ϕ2)p1p2 . (4.497)

From these BPS equations, we find the following AdS3 fixed points

e2V = −48(p1e
2ϕ1 + p2e

2ϕ2)

gρe4(ϕ1+ϕ2)
, (4.498)

e10ϕ1 =
p22ρ ((p1 + p1ρ

2 − p2σ)(p1 + p2σ))
2

p31(2 + ρ2)(p2(1 + ρ2)σ − p1)3
, (4.499)

e10ϕ2 =
p21ρ (p1 − p2(1 + ρ2)σ)(p1 + p2σ))

2

p32(2 + ρ2)(p1 + p1ρ2 − p2σ)3
, (4.500)

LAdS3 =
8e−4(ϕ1+ϕ2)(p1e

2ϕ1 + p2e
2ϕ2)2

gρ (p21e
4ϕ1 + p22e

4ϕ2 + 2p1p2e2(ϕ1+ϕ2)(1 + ρ2))
. (4.501)

These solutions preserve four supercharges and are dual to N = (2, 0) SCFTs in

two dimensions with SO(2)× SO(2) symmetry.
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For SO(5) gauge group, there exist AdS3 × CH2 fixed points in the range

−2

3
< gp2 < −1

3
(4.502)

in which we have taken g > 0 for convenience. Up to some differences in notations,

these AdS3×CH2 fixed points are the same as the solutions studied in [58]. As in

the previous cases, we also study RG flows from the supersymmetric AdS7 critical

point to the AdS3×CH2 fixed points and curved DWs in the IR. Some examples of

these flows are given in Figure 4.32 for g = 16 and different values of p2. In these

examples, the behaviors of the eleven-dimensional metric component ĝ00 indicate

that the singularities are physical, as shown in Figure 4.33.

Apart from the AdS3 × CH2 solutions, we find new AdS3 × CP 2 fixed

points in non-compact SO(4, 1) and SO(3, 2) gauge groups respectively within

the following ranges, with g > 0,

gp2 < 0 ∪ gp2 > 1 and − (3−
√
3)

6
< gp2 < −2

3
. (4.503)

Recall that there is no supersymmetricAdS7 critical point for SO(4, 1) and SO(3, 2)

gauge groups. We will study supersymmetric RG flows between these AdS3×CP 2

fixed points and curved DWs with SO(2) × SO(2) symmetry. With g = 16 and

different values of p2, examples of these RG flows in SO(4, 1) and SO(3, 2) gauge

groups are shown respectively in Figures 4.34 and 4.35. From the behaviors of ĝ00
in Figure 4.36, we find that the singularities on the left (right) with ϕ1 → ±∞

and ϕ2 → ∓∞ (ϕ1 → +∞ and ϕ2 → −∞) of the flows in SO(4, 1) (SO(3, 2))

gauge group are physically acceptable.

4.3.1.6 Supersymmetric AdS2×Σ3×Σ2 Solutions with SO(3)×SO(2)

Symmetry

We end this section by considering solutions with AdS2 vacua. For the five-

manifold Σ5 being S5 or H5, AdS2 × Σ5 solutions have been given in [53] by

performing the twist using SO(5) gauge fields. These solutions are possible only

for SO(5) gauge group. Besides, there is no scalar in SL(5)/SO(5) coset invariant
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Figure 4.32: Numerical solutions for SO(2)× SO(2) twists with g = 16 in SO(5)

gauge group. The flows start from the AdS7 critical point as r → 10 to AdS3×CH2

fixed points at r = 0 and then to singularities in the form of Mkw2 × CH2-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to

p2 = − 1
25
,− 1

31
,− 1

40
,− 1

46
.
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Figure 4.33: The behavior of ĝ00 for RG flows given in Figure 4.32 where ĝ00 → 0

in the region r < 0.
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Figure 4.34: Numerical solutions for SO(2)×SO(2) twists with g = 16 in SO(4, 1)

gauge group. The flows start from AdS3×CP 2 fixed points at r = 0 to singularities

in the form of Mkw2 × CP 2-sliced DWs on both r ̸= 0 sides. The blue, orange,

green, and red curves refer to p2 = 1
2
,−1

4
, 4,−8,− 1

47
.

under SO(5) unbroken symmetry, so the solutions are purely given in terms of the

seven-dimensional metric. The corresponding RG flows from the supersymmetric

AdS7 vacuum to the AdS2 × H5 or AdS2 × S5 fixed points have already been

analytically given in [53]. We will not repeat the analysis for this case here.

However, if we consider Σ5 as a product of Riemannian three- and two-

manifolds Σ3 ×Σ2, it is possible to perform a twist by turning on SO(3)× SO(2)

gauge fields along Σ3 × Σ2. In this case, there are two gauge groups with an

SO(3)× SO(2) subgroup, namely SO(5) and SO(3, 2). The ansatz for the seven-

dimensional metric takes the form of

ds27 = −e2U(r)dt2 + dr2 + e2V (r)ds2Σ3
k1

+ e2W (r)ds2Σ2
k2

. (4.504)
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Figure 4.35: Numerical solutions for SO(2)×SO(2) twists with g = 16 in SO(3, 2)

gauge group. The flows start from AdS3×CP 2 fixed points at r = 0 to singularities

in the form of Mkw2 × CP 2-sliced DWs on both r ̸= 0 sides. The blue, orange,

green, and red curves refer to p2 = − 1
23
,− 1

22
,− 1

21
,− 2

41
.

The explicit form of the metrics on the Σ3
k1

and Σ2
k2

are given in (4.405) and (3.79),

respectively.

Using the vielbein

e0̂ = eUdt, e1̂ = dr, e2̂ = eV dψ1, e3̂ = eV fk1(ψ1)dθ1,

e4̂ = eV fk1(ψ1) sin θ1dφ1, e5̂ = eWdθ2, e6̂ = eWfk2(θ2)dφ2, (4.505)

we find non-vanishing components of the spin connection as follow

ω0̂1̂
(1) = U ′e0̂, ω î11̂

(1) = V ′eî1 , ω î21̂
(1) = W ′eî2 , ω3̂2̂

(1) =
f ′
k1
(ψ1)

fk1(ψ1)
e−V e3̂,

ω4̂2̂
(1) =

f ′
k1
(ψ1)

fk1(ψ1)
e−V e4̂, ω4̂3̂

(1) =
cot θ1
fk1(ψ1)

e−V e4̂, ω6̂5̂
(1) =

f ′
k2
(θ2)

fk2(θ2)
e−W e6̂ (4.506)
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(a) SO(4, 1) gauge group
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Figure 4.36: The behavior of ĝ00 for RG flows given in Figures 4.34 and 4.35 where

ĝ00 → 0 in the region r < 0 (r > 0) for SO(4, 1) (SO(3, 2)) gauge group.

where î1 = 2̂, 3̂, 4̂ and î2 = 5̂, 6̂ are flat indices on Σ3
k1

and Σ2
k2

, respectively.

We now turn on the SO(3)× SO(2) gauge fields of the form

A12
(1) = −p1

k1

f ′
k1
(ψ1)

fk1(ψ1)
e−V e3̂, A13

(1) = −p1
k1

f ′
k1
(ψ1)

fk1(ψ1)
e−V e4̂,

A23
(1) = −p1

k1

cot(θ1)
fk1(ψ1)

e−V e4̂, A45
(1) = −p2

k2

f ′
k2
(θ2)

fk2(θ2)
e−W e6̂ (4.507)

with the modified two-forms given by

F12
2̂3̂

= F 12
2̂3̂

= e−2V p1, F23
3̂4̂

= F 23
3̂4̂

= e−2V p1,

F31
4̂2̂

= F 31
4̂2̂

= e−2V p1, F45
5̂6̂

= F 45
5̂6̂

= e−2Wp2 . (4.508)

With these SO(3) × SO(2) gauge fields non-vanishing, we need to turn on the

modified three-forms

H0̂1̂̂i1M
= −32

g
δî1,M+1e

4ϕ−2V−2Wp1p2 (4.509)

in which ϕ is the SO(3)× SO(2) invariant scalar field corresponding to the coset

representative (4.20).

We then impose the twist conditions

gp1 = k1 and σgp2 = k2 (4.510)

and the following projection conditions on the Killing spinors

γ 2̂3̂ϵa = −(Γ12)
a
bϵ

b, γ 3̂4̂ϵa = −(Γ23)
a
bϵ

b, γ 5̂6̂ϵa = −(Γ45)
a
bϵ

b . (4.511)
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Using the embedding tensor (4.19), we can derive the following BPS equations

U ′ =
g

40
(3e−4ϕ + 2σe6ϕ) +

288e2ϕp1p2
5ge2(V+W )

− 2

5
(3e−2V+4ϕp1 + e−2W−6ϕp2), (4.512)

V ′ =
g

40
(3e−4ϕ + 2σe6ϕ)− 32e2ϕp1p2

5ge2(V+W )
+

2

5
(7e−2V+4ϕp1 − e−2W−6ϕp2), (4.513)

W ′ =
g

40
(3e−4ϕ + 2σe6ϕ)− 192e2ϕp1p2

5ge2(V+W )
− 2

5
(3e−2V+4ϕp1 − 2e−2W−6ϕp2), (4.514)

ϕ′ =
g

20
(e−4ϕ − σe6ϕ) +

32e2ϕp1p2
5ge2(V+W )

− 2

5
(2e−2V+4ϕp1 − e−2W−6ϕp2) (4.515)

in which we have also used the γr projector in (4.388).

From these BPS equations, we find an AdS2 fixed point only for σ = 1 and

k1 = k2 = −1. The resulting AdS2 ×H3 ×H2 fixed point is given by

V =
1

2
ln
[
16× 24/5

g2

]
, W =

1

2
ln
[

16

g221/5

]
,

ϕ =
1

10
ln 2, LAdS2 =

2× 22/5

g
(4.516)

which is the solution found in [54]. The three projectors in (4.511) imply that

this AdS2 × H3 × H2 fixed point preserves four supercharges. The solution is

dual to superconformal quantum mechanics. Examples of RG flows, from the

supersymmetric AdS7 critical point to this AdS2 × H3 × H2 fixed point and

curved DWs in the IR, are given in Figure 4.37. From the behaviors of the

eleven-dimensional metric component ĝ00, we see that the singularities are

physically acceptable. Therefore, these singularities are expected to describe

supersymmetric quantum mechanics obtained from twisted compactifications of

the six-dimensional N = (2, 0) SCFT on H3 ×H2.

4.3.2 Gaugings in 40 Representation

We repeat the same analysis for gaugings from 40 representation in this section.

As in the case of gaugings in 15 representation, the modified three-forms need to

be turned on when the compact manifold has dimension more than three in order

to satisfy the corresponding Bianchi’s identity. However, with YMN = 0, there are

no massive three-form fields. In this case, the contribution to H(3)M arises solely
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Figure 4.37: Numerical solutions for SO(3)×SO(2) twists in SO(5) gauge group.

The flows start from the AdS7 critical point as r → 10 to the AdS2 × H3 × H2

fixed point at r = 0 and then to physical singularities in the form of R×H3×H2-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to

g = 8, 16, 24, 32.

from the two-form fields. For s = rankZ, there are respectively 5 − s massless

and s massive two-form fields. The latter also appear in the modified two-forms.

In particular, with the embedding tensor given in (2.90), we find

F ij
(2) = F ij

(2) and F5i
(2) =

g

2
wijB(2)j (4.517)

in which B(2)j are massive two-form fields. However, we are unable to find a

consistent set of BPS equations that are compatible with the field equations for

non-vanishing massive two-form fields. Therefore, we will truncate out all the

massive two-form fields in the following analysis. Finally, we point out here that

the CSO(p, q, 4− p− q) gauge group is not large enough to accommodate SO(5)

or SO(3)×SO(2) subgroup so that it is not possible to have AdS2×Σ5 or AdS2×

Σ3 × Σ2 solutions in this section.
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4.3.2.1 Solutions with the Twists on Σ2

We first look for AdS5×Σ2 solutions with Σ2 being a Riemann surface. The ansatz

for the seven-dimensional metric is given in (4.382). We will consider solutions

obtained from SO(2)×SO(2) and SO(2) twists on Σ2. The procedure is the same

as in the gaugings in 15 representation, so we will not give all the details here to

avoid repetition.

4.3.2.1.1 Solutions with SO(2) × SO(2) Twists

We now perform the twist by turning on the following SO(2)×SO(2) gauge fields

A12
(1) = e−V p2

4k

f ′
k(θ)

fk(θ)
e6̂ and A34

(1) = e−V p1
4k

f ′
k(θ)

fk(θ)
e6̂ (4.518)

and imposing the projection conditions given in (4.387) and

γrϵa = −(Γ5)
a
bϵ

b (4.519)

together with the twist condition (4.386).

With the embedding tensor (4.128) and the coset representative (4.129), we

find the following BPS equations

U ′ =
g

5
e−2(ϕ0+ϕ)(e4ϕ + σ)− 1

10
e−2(V−ϕ0)(e−2ϕp1 + e2ϕp2), (4.520)

V ′ =
g

5
e−2(ϕ0+ϕ)(e4ϕ + σ) +

2

5
e−2(V−ϕ0)(e−2ϕp1 + e2ϕp2), (4.521)

ϕ′
0 =

g

10
e−2(ϕ0+ϕ)(e4ϕ + σ)− 1

20
e−2(V−ϕ0)(e−2ϕp1 + e2ϕp2), (4.522)

ϕ′ = −g
2
e−2(ϕ0+ϕ)(e4ϕ − σ) +

1

4
e−2(V−ϕ0)(e−2ϕp1 − e2ϕp2). (4.523)

From these BPS equations, there are no AdS5 fixed point solutions satisfying the

conditions ϕ′ = ϕ′
0 = V ′ = 0 and U ′ = 1

LAdS5
. In the following analysis, we will

consider RG flows interpolating between an asymptotically locally flat DW and

curved DWs in SO(4) gauge group. Note that similar solutions can also be found

in SO(2, 2) gauge group.

When V is large, the contribution from the gauge fields is highly suppressed.
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In this limit, we find

ϕ ∼ 1

r5
, ϕ0 ∼ − 1

10
logϕ, U ∼ V ∼ 2ϕ0 (4.524)

which implies U ∼ V → ∞ as r → ∞. Examples of the flow solutions with

this asymptotic behavior are given in Figures 4.38, 4.39, and 4.40 for g = 16 and

Σ2 = S2,R2, H2, respectively. We note here that the flows to the flat Mkw4×R2-

sliced DWs given in Figure 4.39 are possible by setting p2 = −p1 as required from

the twist condition. It should be pointed out that the green curve in Figure 4.39

is simply the usual flat DW since p1 = p2 = k = 0. Due to the vanishing of

the SO(2) × SO(2) singlet scalar ϕ, the solution preserves the full SO(4) gauge

symmetry in this case. This solution has already been given analytically in Section

4.1.2.3.

As shown in [65], the maximal gauged supergravity in seven dimensions

with CSO(p, q, 4 − p − q) gauge group can be embedded in type IIB theory via

a truncation on Hp,q ◦ T 4−p−q. For the present analysis, we only need the ten-

dimensional metric which is given by

ĝµν = K
3
4∆

1
4 gµν (4.525)

in which

∆ = µiµjη
ikηjlM̃kl, i, j = 1, . . . p+ q. (4.526)

ηij is the SO(p, q) invariant tensor, and µi are coordinates on Hp,q satisfying

µiµjη
ij = 1. In term of the parametrization (2.93), K is identified as follows

K = e2ϕ0 . (4.527)

For the present case with SO(4) gauge group, we simply have ηij = δij for

i, j = 1, 2, 3, 4. For the flow solutions in Figures 4.38, 4.39, and 4.40, the behaviors

of the of the ten-dimensional metric component ĝ00 are shown in Figure 4.41. We

find that the IR singularities are physically acceptable since ĝ00 → 0 near the

singularities.
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Figure 4.38: Numerical solutions for SO(2)× SO(2) twists with g = 16 in SO(4)

gauge group. The flows start from locally flat DW as r → 50 to singularities in

the form of Mkw4 ×S2-sliced DWs in the region r < 50. The blue, orange, green,

red, and purple curves refer to p2 = −0.5,−0.03, 0.03, 0.06, 0.25.

4.3.2.1.2 Solutions with SO(2) Twists

We then consider another twist on Σ2 by turning on only an SO(2) gauge field.

From the SO(2) × SO(2) gauge fields given in (4.518), this can be achieved by

setting p2 = 0 and p1 = p. In this case, the SL(4)/SO(4) coset representative and

the embedding tensor are the same as in Section 4.1.2.4.

Imposing the twist condition (4.409) and the projector (4.519) together with

γ 5̂6̂ϵa = −(Γ12)
a
bϵ

b, (4.528)
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Figure 4.39: Numerical solutions for SO(2)× SO(2) twists with g = 16 in SO(4)

gauge group. The flows start from locally flat DW as r → 50 to singularities in

the form of Mkw4 ×R2-sliced DWs in the region r < 50. The blue, orange, green,

red, and purple curves refer to p2 = −0.5,−0.03, 0, 0.06, 0.25.

we find the BPS equations

U ′ =
g

10
e−2(ϕ0+ϕ1)

[
2e4ϕ1 − (ρ− σ) sinh 2ϕ3 + (ρ+ σ) cosh 2ϕ3 cosh 2ϕ2

]
− 1

10
pe−2(V−ϕ0+ϕ1), (4.529)

V ′ =
g

10
e−2(ϕ0+ϕ1)

[
2e4ϕ1 − (ρ− σ) sinh 2ϕ3 + (ρ+ σ) cosh 2ϕ3 cosh 2ϕ2

]
+
2

5
pe−2(V−ϕ0+ϕ1), (4.530)

ϕ′
0 =

g

20
e−2(ϕ0+ϕ1)

[
2e4ϕ1 − (ρ− σ) sinh 2ϕ3 + (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3

]
− 1

20
pe−2(V−ϕ0+ϕ1), (4.531)

ϕ′
1 = −g

4
e−2(ϕ0+ϕ1)

[
2e4ϕ1 + (ρ− σ) sinh 2ϕ3 − (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3

]
+
1

4
pe−2(V−ϕ0+ϕ1), (4.532)
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Figure 4.40: Numerical solutions for SO(2)× SO(2) twists with g = 16 in SO(4)

gauge group. The flows start from locally flat DW as r → 50 to singularities in

the form of Mkw4×H2-sliced DWs in the region r < 50. The blue, orange, green,

red, and purple curves refer to p2 = −0.5,−0.12,−0.03, 0, 0.25.

45 46 47 48 49 50
r

5000

10000

15000

20000

g00

(a) Σ2 = S2

44 45 46 47 48 49 50
r

5000

10000

15000

20000

g00

(b) Σ2 = R2

45 46 47 48 49 50
r

5000

10000

15000

20000

g00

(c) Σ2 = H2

Figure 4.41: The behavior of ĝ00 for RG flows given in Figures 4.38, 4.39, and

4.40, respectively, where ĝ00 → 0 in the region r < 50 for every case.
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ϕ′
2 = −g

2
e−2(ϕ0+ϕ1)(ρ+ σ) sinh 2ϕ2 sech 2ϕ3, (4.533)

ϕ′
3 =

g

2
e−2(ϕ0+ϕ1) [(ρ− σ) cosh 2ϕ3 − (ρ+ σ) cosh 2ϕ2 sinh 2ϕ3] . (4.534)

As in the previous case, there do not exist any AdS5 ×Σ2 fixed points from these

BPS equations. Moreover, the numerical solutions interpolating between locally

asymptotically flat DWs and Mkw4×Σ2-sliced curved DWs, in this case, can also

be obtained in the same way.

4.3.2.2 Solutions with the Twists on Σ3

In this section, we repeat the same analysis for AdS4×Σ3 solutions with the ansatz

for the seven-dimensional metric given in (4.404). As in the cases with gaugings

from 15 representation, we also consider two different twists by turning on SO(3)

and SO(3)+ gauge fields.

4.3.2.2.1 Solutions with SO(3) Twists

With the embedding tensor (4.118) and the SL(4)/SO(4) coset (4.119), we turn

on the following SO(3) gauge fields in order to perform the twist,

A34
(1) = e−V p

4k

f ′
k(ψ)

fk(ψ)
e5̂, A42

(1) = e−V p

4k

f ′
k(ψ)

fk(ψ)
e6̂, A14

(1) = e−V p

4k

cot(θ)
fk(ψ)

e6̂ (4.535)

and impose the projectors (4.410) on the Killing spinors together with the twist

condition (4.409). With all these and the γr projector (4.519), the resulting BPS

equations read

U ′ =
g

10
e−2(ϕ0+3ϕ)(3e8ϕ + ρ)− 3

10
e−2(V−ϕ0+ϕ)p, (4.536)

V ′ =
g

10
e−2(ϕ0+3ϕ)(3e8ϕ + ρ) +

7

10
e−2(V−ϕ0+ϕ)p, (4.537)

ϕ′
0 =

g

20
e−2(ϕ0+3ϕ)(3e8ϕ + ρ)− 3

20
e−2(V−ϕ0+ϕ)p, (4.538)

ϕ′ = −g
4
e−2(ϕ0+3ϕ)(e8ϕ − ρ) +

1

4
e−2(V−ϕ0+ϕ)p. (4.539)

As in the previous case, there do not exist any AdS4 fixed points from these BPS

equations. We then look for flow solutions interpolating between asymptotically
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locally flat DWs and Mkw3 × Σ3-sliced curved DWs.

For CSO(3, 0, 1) gauge group with ρ = 0, these BPS equations can be solved

analytically. First of all, the BPS equations (4.536) and (4.538) give

U = 2ϕ0 . (4.540)

We have set an additive integration constant for U to zero. This corresponds to

rescaling the coordinates on Mkw3. When ρ = 0, we find that ϕ′
0 +

3
5
ϕ′ = 0 which

gives

ϕ0 = −3

5
ϕ+ C0 (4.541)

with an integration constant C0.

Taking a linear combination V ′ + 6
5
ϕ′ and changing to a new radial

coordinate r̃ defined by dr̃
dr

= e−
4
5
ϕ, we find

V =
1

2
ln(2pr̃ + C1)−

6

5
ϕ . (4.542)

The integration constant C1 can also be neglected by shifting the coordinate r̃.

With all these results, the equation for ϕ′ gives

ϕ = −1

4
ln
[
2

3
gr̃ − C2

p
√
pr̃

]
(4.543)

in which we have set C1 = 0 for simplicity, and C2 is another integration constant.

As r̃ → 0, we find that the above solution becomes a locally flat DW with

U ∼ V → ∞. The asymptotic behavior is given by

ϕ ∼ 1

8
ln r̃, ϕ0 ∼ − 3

40
ln r̃, U ∼ V ∼ − 3

20
ln r̃ . (4.544)

For r̃ → ∞, we find

ϕ ∼ −1

4
ln r̃, ϕ0 ∼

3

20
ln r̃, V ∼ 4

5
ln r̃, U ∼ 3

10
ln r̃ . (4.545)

Computing the (00)-component of type IIB metric, we obtain

ĝ00 ∼ e2U+ 3
2
ϕ0+

1
2
ϕ ∼ r̃

7
10 → ∞, (4.546)

as r̃ → ∞, which indicates that the singularity is unphysical.

For ρ ̸= 0, the solutions can be obtained numerically. When V is large as
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r → ∞, we find

ϕ ∼ 1

r5
, ϕ0 ∼ − 1

10
logϕ, U ∼ V ∼ 2ϕ0 . (4.547)

Examples of the flow solutions with this asymptotic behavior for SO(4) gauge

group are given in Figures 4.42 and 4.43 for Σ2 = S2, H2, respectively. The

behavior of the ten-dimensional metric ĝ00 for these flow solutions is shown in

Figure 4.44, from which only the IR singularities of Mkw3 × H3-sliced DWs are

physical. For Mkw3 ×R3-sliced DWs with k = 0, the twist condition gives p = 0,

resulting in the usual flat DWs.
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Figure 4.42: Numerical solutions for SO(3) twists in SO(4) gauge group. The flows

start from locally flat DW as r → 10 to singularities in the form of Mkw3 × S3-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to

g = 4, 8, 16, 32.
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Figure 4.43: Numerical solutions for SO(3) twists in SO(4) gauge group. The flows

start from locally flat DW as r → 10 to singularities in the form of Mkw3 ×H3-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to

g = 4, 8, 16, 32.

4.3.2.2.2 Solutions with SO(3)+ Twists

We now move on to another twist by turning on the self-dual SO(3)+ gauge fields

A12
(1) = A34

(1) = e−V p

8k

f ′
k(ψ)

fk(ψ)
e5̂,

A13
(1) = A42

(1) = e−V p

8k

f ′
k(ψ)

fk(ψ)
e6̂,

A23
(1) = A14

(1) = e−V p

8k

cot(θ)
fk(ψ)

e6̂ . (4.548)

Only the dilaton scalar field ϕ0 is singlet under SO(3)+, so we have M̃ij = δij.

Moreover, we consider only SO(4) gauge group in this case since this is the only
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(a) Σ3 = S3

-10 -5 5 10
r

500000

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106
g00

(b) Σ3 = H3

Figure 4.44: The behavior of ĝ00 for RG flows given in Figures 4.42 and 4.43 where

ĝ00 → 0 in the region r < 0 only for the case with Σ3 = H3.

gauge group containing the SO(3)+ subgroup.

With the projectors (4.410), (4.481), and (4.519) together with the twist

condition (4.409), the resulting BPS equations are given by

U ′ =
2g

5
e−2ϕ0 − 3

10
e−2(V−ϕ0)p, (4.549)

V ′ =
2g

5
e−2ϕ0 +

7

10
e−2(V−ϕ0)p, (4.550)

ϕ′
0 =

g

5
e−2ϕ0 − 3

20
e−2(V−ϕ0)p . (4.551)

As in the previous case with SO(3) twist, we do not find any AdS4 fixed points.

However, these BPS equations can be analytically solved. Starting from

(4.549) and (4.551), we again find that U = 2ϕ0. Defining a new radial coordinate

r̃ by dr̃
dr

= e−V and taking a linear combination V ′ − 2ϕ′
0, we obtain

V = ln(pr̃ + C) + 2ϕ0 . (4.552)

Using ϕ0 from (4.552) in equation (4.550) and changing to the new radial

coordinate r̃, we find

V =
g

5p
(pr̃ + C)2 +

7

10
ln(pr̃ + C). (4.553)

With C set to zero by shifting r̃, as r̃ → ∞, we find

U ∼ V ∼ 1

5
gpr̃2 and ϕ0 ∼

1

10
gpr̃2 (4.554)
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which is identified with the flat DW solution given in Section 4.1.2.1. On the other

hand, as r̃ → 0, the solution becomes singular

U ∼ −3

5
ln(pr̃), V ∼ 7

10
ln(pr̃), ϕ0 ∼ − 3

10
ln(pr̃). (4.555)

This singularity is unphysical since the ten-dimensional metric gives

ĝ00 ∼ e2U+ 3
2
ϕ0 → ∞ . (4.556)

Note here that this solution is the same as that given in Section 4.3.1.2.2 for

CSO(4, 0, 1) gauge group. The two gauged supergravities can be obtained from

consistent truncations on S3 of type IIB and type IIA theories, respectively. As

pointed out in [65], there is a duality between these solutions.

4.3.2.3 Solutions with the Twists on Σ4

We finally look for solutions obtained from the twists on a four-manifold Σ4. In

this section, we consider two types of Σ4, a product of two Riemann surfaces

Σ2 ×Σ2 and a Kahler four-cycle K4. For the case with the internal space being a

Riemannian four-manifold M4, we do not find any consistent set of BPS equations

that are compatible with the field equations, especially the deformed Bianchi’s

identity for the modified three-forms.

4.3.2.3.1 Solutions with SO(2) × SO(2) Twists on Σ2 × Σ2

For the twists on Σ2 × Σ2, we consider solutions with SO(2) × SO(2) unbroken

symmetry in SO(4) and SO(2, 2) gauge groups corresponding to the embedding

tensor (4.128). The ansatz for the metric is given in (4.441). To cancel the spin

connection on Σ2
k1
× Σ2

k2
, we turn on the following SO(2)× SO(2) gauge fields

A12
(1) =

p11
4k1

f ′
k1
(θ1)

fk1(θ1)
e−V e4̂ +

p12
4k2

f ′
k2
(θ2)

fk2(θ2)
e−W e6̂,

A34
(1) =

p21
4k1

f ′
k1
(θ1)

fk1(θ1)
e−V e4̂ +

p22
4k2

f ′
k2
(θ2)

fk2(θ2)
e−W e6̂ (4.557)
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with the corresponding modified two-forms

F12
(2) = F 12

(2) = −e−2V p11
4
e3̂ ∧ e4̂ − e−2W p12

4
e5̂ ∧ e6̂,

F34
(2) = F 34

(2) = −e−2V p21
4
e3̂ ∧ e4̂ − e−2W p22

4
e5̂ ∧ e6̂ . (4.558)

Following a similar analysis for gaugings in 15 representation, we also turn

on the modified three-forms using the ansatz

Hm̂n̂2̂5 = βe−2(V+W+4ϕ0)εm̂n̂ (4.559)

in which β is a constant. We now impose the twist conditions

g(σp11 + p21) = k1 and g(σp12 + p22) = k2 (4.560)

together with the projection conditions (4.450) and (4.519).

With all these and the coset representative given in (4.129), the resulting

BPS equations are given by

U ′ = −e
2ϕ0

10

[
e−2(V+ϕ)(e4ϕp11 + p21) + e−2(W+ϕ)(e4ϕp12 + p22)

]
+
g

5
e−2(ϕ0+ϕ)(e4ϕ + σ) +

3

5
e−2(V+W+2ϕ0)β, (4.561)

V ′ = −e
2ϕ0

10

[
4e−2(V+ϕ)(e4ϕp11 + p21)− e−2(W+ϕ)(e4ϕp12 + p22)

]
+
g

5
e−2(ϕ0+ϕ)(e4ϕ + σ)− 2

5
e−2(V+W+2ϕ0)β, (4.562)

W ′ = −e
2ϕ0

10

[
e−2(V+ϕ)(e4ϕp11 + p21)− 4e−2(W+ϕ)(e4ϕp12 + p22)

]
+
g

5
e−2(ϕ0+ϕ)(e4ϕ + σ)− 2

5
e−2(V+W+2ϕ0)β, (4.563)

ϕ′
0 = −e

2ϕ0

20

[
e−2(V+ϕ)(e4ϕp11 + p21) + e−2(W+ϕ)(e4ϕp12 + p22)

]
+
g

10
e−2(ϕ0+ϕ)(e4ϕ + σ)− 1

5
e−2(V+W+2ϕ0)β, (4.564)

ϕ′ = −e
2ϕ0

4

[
e−2(V+ϕ)(e4ϕp11 − p21) + e−2(W+ϕ)(e4ϕp12 − p22)

]
−g
2
e−2(ϕ0+ϕ)(e4ϕ − σ). (4.565)

Unlike the similar case in Section 4.3.1.4, it turns out that compatibility between

these BPS equations and the field equations requires

p12p21 + p11p22 = 0 (4.566)
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for any values of β. This implies that the constant β is a free parameter in this

case. However, we do not find any AdS3 fixed points from the BPS equations.

For SO(4) gauge group, examples of flow solutions between asymptotically

locally flat and curved DWs for various forms of Σ2 × Σ2 are shown in Figures

4.45 to 4.50. In these numerical solutions, we have set g = 16 and β = 2. Note

also that the green curve in Figure 4.48 is the flat DW solution given in Section

4.1.2.3. All of the IR singularities are physical, as can be seen from the behavior

of the ten-dimensional metric given in Figure 4.51.

We have also examined SO(2) twists on Σ2 × Σ2 by setting p11 = p12 = 0

and obtain more complicated BPS equations. However, we will not give further

detail on this analysis since there do not exist any AdS3 fixed points.
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Figure 4.45: Numerical solutions for SO(2) × SO(2) twists with g = 16 and

β = 2 in SO(4) gauge group. The flows start from locally flat DW as r → 50 to

singularities in the form of Mkw2 × S2 × S2-sliced DWs when r < 50. The blue,

orange, green, red, and purple curves refer to p21 = −0.5,−0.12, 0, 0.12, 0.25.
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Figure 4.46: Numerical solutions for SO(2) × SO(2) twists with g = 16 and

β = 2 in SO(4) gauge group. The flows start from locally flat DW as r → 50 to

singularities in the form of Mkw2 × S2 × R2-sliced DWs when r < 50. The blue,

orange, green, red, and purple curves refer to p21 = −0.5,−0.12, 0.03, 0.06, 0.25.

4.3.2.3.2 Solutions with SO(3) Twists on K4

For Σ4 being a Kahler four-cycle K4, we perform an SO(3) twist to cancel the

SU(2) part of the spin connection, given in (4.467), by turning on the SO(3) gauge

fields

Ai4
(1) =

p

4k
(f ′

k(ψ)− 1)δijτj, i, j = 1, 2, 3 (4.567)

with the modified two-forms given by

F14
(2) = F 14

(2) = −p
4
e−2V (e4̂ ∧ e5̂ − e3̂ ∧ e6̂),

F24
(2) = F 24

(2) = −p
4
e−2V (e5̂ ∧ e3̂ − e4̂ ∧ e6̂),

F34
(2) = F 34

(2) = −p
4
e−2V (e3̂ ∧ e4̂ − e5̂ ∧ e6̂) . (4.568)

These modified two-forms do not lead to any problematic terms in the deformed

Bianchi’s identity for the modified three-forms. However, we can have a non-

vanishing modified three-form by using the following ansatz

Hm̂n̂2̂5 = βe−4(V+ϕ0)εm̂n̂. (4.569)
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Figure 4.47: Numerical solutions for SO(2) × SO(2) twists with g = 16 and

β = 2 in SO(4) gauge group. The flows start from locally flat DW as r → 50 to

singularities in the form of Mkw2 × S2 ×H2-sliced DWs when r < 50. The blue,

orange, green, red, and purple curves refer to p21 = −0.5,−0.03, 0, 0.08, 0.25.

which is a manifestly closed three-form for a constant β.

With the SL(4)/SO(4) coset representative and the embedding tensor given

in (4.119) and (4.118) together with the projections (4.472) and (4.519), we find

the following BPS equations

U ′ =
g

10
e−2(ϕ0+3ϕ)(3e8ϕ + ρ)− 3

5
e−2(V−ϕ0+ϕ)p− 3

5
e−4(V+ϕ0)β, (4.570)

V ′ =
g

10
e−2(ϕ0+3ϕ)(3e8ϕ + ρ) +

9

10
e−2(V−ϕ0+ϕ)p+

2

5
e−4(V+ϕ0)β, (4.571)

ϕ′
0 =

g

20
e−2(ϕ0+3ϕ)(3e8ϕ + ρ)− 3

10
e−2(V−ϕ0+ϕ)p+

1

5
e−4(V+ϕ0)β, (4.572)

ϕ′ = −g
4
e−2(ϕ0+3ϕ)(e8ϕ − ρ) +

1

2
e−2(V−ϕ0+ϕ)p (4.573)

in which we have used the twist condition (4.409). We again do not find any AdS3

fixed points from these BPS equations. Examples of supersymmetric flows with

β = −2 are given in Figures 4.52 and 4.53 for k = 1 and k = −1, respectively.

From the behavior of the ten-dimensional metric component ĝ00 given in Figure

4.54, we find that the IR singularities are physical for k = −1. For k = 0, we have
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Figure 4.48: Numerical solutions for SO(2) × SO(2) twists with g = 16 and

β = 2 in SO(4) gauge group. The flows start from locally flat DW as r → 50 to

singularities in the form of Mkw2 × R2 × R2-sliced DWs when r < 50. The blue,

orange, green, red, and purple curves refer to p21 = −0.5,−0.12, 0, 0.03, 0.25.

p = 0 by the twist condition resulting in the standard flat DW solutions.

4.3.2.3.3 Solutions with SO(2) Twists on K4

As the finale case, we briefly consider the SO(2) twist canceling the U(1) part of

the spin connection in (4.488). This procedure can be achieved by turning on an

SO(2) gauge field of the form

A34
(1) = −p 3kψ2

4
√
fk(ψ)

τ3 . (4.574)

The embedding tensor for gauge groups containing an SO(2) subgroup is given

in (4.139). Moreover, we can also turn on the modified three-form (4.569) in this

case. With the coset representative (4.137), the twist condition (4.409), and the

projections (4.519) together with

γ 3̂4̂ϵa = −γ 5̂6̂ϵa = −(Γ12)
a
bϵ

b, (4.575)
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Figure 4.49: Numerical solutions for SO(2) × SO(2) twists with g = 16 and

β = 2 in SO(4) gauge group. The flows start from locally flat DW as r → 50 to

singularities in the form of Mkw2 ×H2 × R2-sliced DWs when r < 50. The blue,

orange, green, red, and purple curves refer to −0.5,−0.12,−0.03, 0, 0.25.

the corresponding BPS equations are given by

U ′ =
g

10
e−2(ϕ0+ϕ1)

[
2e4ϕ1 − (ρ− σ) sinh 2ϕ3 + (ρ+ σ) cosh 2ϕ3 cosh 2ϕ2

]
−3

5
e−2(V−ϕ0+ϕ1)p− 3

5
e−4(V+ϕ0)β, (4.576)

V ′ =
g

10
e−2(ϕ0+ϕ1)

[
2e4ϕ1 − (ρ− σ) sinh 2ϕ3 + (ρ+ σ) cosh 2ϕ3 cosh 2ϕ2

]
+

9

10
e−2(V−ϕ0+ϕ1)p+

2

5
e−4(V+ϕ0)β, (4.577)

ϕ′
0 =

g

20
e−2(ϕ0+ϕ1)

[
2e4ϕ1 − (ρ− σ) sinh 2ϕ3 + (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3

]
− 3

10
e−2(V−ϕ0+ϕ1)p+

1

5
e−4(V+ϕ0)β, (4.578)

ϕ′
1 = −g

4
e−2(ϕ0+ϕ1)

[
2e4ϕ1 + (ρ− σ) sinh 2ϕ3 − (ρ+ σ) cosh 2ϕ2 cosh 2ϕ3

]
+
3

2
e−2(V−ϕ0+ϕ1)p, (4.579)

ϕ′
2 = −g

2
e−2(ϕ0+ϕ1)(ρ+ σ) sinh 2ϕ2 sech 2ϕ3, (4.580)

ϕ′
3 =

g

2
e−2(ϕ0+ϕ1) [(ρ− σ) cosh 2ϕ3 − (ρ+ σ) cosh 2ϕ2 sinh 2ϕ3] . (4.581)

As in other previous cases, there are no AdS3 fixed points from these equations.
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Figure 4.50: Numerical solutions for SO(2) × SO(2) twists with g = 16 and

β = 2 in SO(4) gauge group. The flows start from locally flat DW as r → 50 to

singularities in the form of Mkw2 ×H2 ×H2-sliced DWs when r < 50. The blue,

orange, green, red, and purple curves refer to p21 = −0.5,−0.12,−0.01, 0.25, 0.6.
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Figure 4.51: The behavior of ĝ00 for RG flows given in Figures 4.45 to 4.50 where

ĝ00 → 0 in the region r < 50 for every case.
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Figure 4.52: Numerical solutions for SO(3) twists in SO(4) gauge group. The flows

start from locally flat DW as r → 10 to singularities in the form of Mkw2 ×CP 2-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to

g = 4, 8, 16, 32, respectively.

We end this chapter by commenting on the cases for gaugings in both 15

and 40 representations with SO(2, 1) ⋉ R4 and SO(2) ⋉ R4 gauge groups. In

these gauge groups, the SO(2) twists are also possible on Σ2, Σ2 × Σ2, and K4

internal spaces. However, we do not find any fixed points from the resulting BPS

equations. Therefore, we will not give further detail on these analyses.
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Figure 4.53: Numerical solutions for SO(3) twists in SO(4) gauge group. The flows

start from locally flat DW as r → 10 to singularities in the form of Mkw2×CH2-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to

g = 4, 8, 16, 32, respectively.
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Figure 4.54: The behavior of ĝ00 for RG flows given in Figures 4.52 and 4.53 where

ĝ00 → 0 in the region r < 0 only the case with k = −1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS AND DISCUSSIONS

Throughout this dissertation, we have studied several supersymmetric solutions

of seven-dimensional gauged supergravities, namely the matter-coupled N = 2,

SO(4) gauged theory and the maximal N = 4 gauged theory with various gauge

groups. In many cases, the resulting solutions have higher dimensional origins and

could be interpreted as different brane configurations in string/M-theory. This

feature makes applications of these solutions in the holographic context more

intriguing. We now end the dissertation with some comments on the results

together with the remaining problems, which will give us some directions for future

works.

In Section 3.1, we have found charged DW solution preserving SO(3)diag

residual symmetry from the matter-coupled SO(4) gauged supergravity. Unlike

the solutions of the minimal SO(3) gauged theory in [62], this solution is more

restrictive. For vanishing gauge fields, only analytic solution in the form of an

AdS3 × S3-sliced DW is possible. The solution interpolates between the two

N = 2 supersymmetric AdS7 critical points dual to N = (1, 0) SCFTs with SO(4)

and SO(3) symmetries in six dimensions. We expect this solution to describe a

supersymmetric conformal surface defect within the six-dimensional N = (1, 0)

SCFTs with SO(3) flavor symmetry in the same way as in [84].

We have also coupled the solution to non-vanishing SO(3)diag gauge fields

and obtained a consistent set of BPS equations together with an algebraic

constraint. In this case, we have performed the investigation and showed that

supersymmetric solutions do not exist, at least within the truncation considered

here. This is because BPS solutions of the flow equations, in general, violate the

constraint arising from the SUSY transformations of the gaugini.
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Supersymmetric AdS3 ×M4 solutions of the matter-coupled SO(4) gauged

supergravity have been studied in Section 3.2. For M4 being a product of two

Riemann surfaces, there exist a large class of AdS3 × H2 × Σ2 solutions with

SO(2)×SO(2) symmetry for Σ2 = S2,R2, H2 similar to the solutions of maximal

SO(5) gauged supergravity. Besides, we have found a number of AdS3×H2×H2

solutions with SO(2)diag and SO(2)R symmetries. We have also given various

numerical solutions from both N = 2 supersymmetric AdS7 vacua to these AdS3

fixed points. The solutions describe holographic RG flows across dimensions from

the N = (1, 0) SCFTs in six dimensions to N = (2, 0) SCFTs in two dimensions.

For M4 being a Kahler four-cycle with U(2) ∼ SU(2) × U(1) connection,

we have found AdS3×CH2 solutions with SO(2)×SO(2), SO(2)diag, and SO(2)R
symmetries via performing the twist by U(1) ∼ SO(2)R ⊂ SO(3)R. These

fixed points preserve four supercharges and correspond to N = (2, 0) SCFTs

in two dimensions. Moreover, we have performed the twist along the SU(2) ∼

SO(3) part by turning on the SO(3)diag gauge fields. Unlike the previous cases,

the AdS3 solutions, in this case, preserve only two supercharges and dual to

N = (1, 0) SCFTs in two dimensions. We have studied RG flows from both

N = 2 supersymmetric AdS7 vacua to these geometries as well. These flow

solutions can be interpreted as supersymmetric black strings in asymptotically

AdS7 space. Our solutions should be useful in the study of black string entropy

using twisted indices of N = (1, 0) SCFTs along the line of [90].

Supersymmetric solutions obtained in Chapter 3 can be embedded in

eleven-dimensional supergravity using truncation ansatze constructed in [74] for a

particular case with equal SO(3) coupling constants. We have performed these

uplifts and given the explicit forms of the eleven-dimensional metric and, in some

simple cases, the four-form field strength. These solutions with clear M-theory

origins are of particular interest in the study of M5-branes. For solutions with

different SO(3) coupling constants, there is no known embedding in string and

M-theories. Therefore, in this case, the holographic interpretation in the dual

N = (1, 0) SCFTs should be done with some caveats.
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In Chapter 4, supersymmetric solutions of the maximal N = 4 gauged

supergravity with various gauge groups have been studied. We have started from

classifying flat DW solutions in Section 4.1. There are both half-supersymmetric

and 1
4
-supersymmetric flat DWs depending on which components of the

embedding tensor in 15 and 40 representations of the SL(5) global symmetry

lead to the gauging. Only in SO(5) gauge group, there exist flat DWs that are

asymptotic to the N = 4 supersymmetric AdS7 vacuum and can be described as

holographic RG flows from the dual N = (2, 0) SCFT to SQFTs in six dimensions.

Supersymmetric charged DWs with M3 × S3 slices, for M3 = Mkw3, AdS3,

and non-vanishing three-form fluxes are considered in Section 4.2. All of these

solutions can be obtained analytically. Moreover, the charged DWs preserving

SO(4) residual symmetry can couple to SO(3) ⊂ SO(4) gauge fields, but the

resulting solutions can only be obtained numerically. For SO(3) symmetric

solutions, coupling to SO(3) gauge fields does not lead to a new BPS solution.

Only solutions with vanishing three-form fluxes or gauge fields are possible in this

case. Apart from these solutions, we have also given a number of SO(2)× SO(2)

and SO(2) symmetric charged DWs that cannot couple to SO(3) gauge fields due

to the absence of any unbroken SO(3) gauge symmetry.

For SO(5) gauge group, charged DW solutions with an AdS3 × S3 slice can

be interpreted as surface defects within the N = (2, 0) SCFT. For other gauge

groups, their supersymmetric vacua take the form of flat DWs DW/QFT dual to

N = (2, 0) SQFTs in six dimensions. We then expect these AdS3 ×S3-sliced DWs

to describe 1
4
-BPS surface defects in N = (2, 0) SQFTs. We have found that a

number of charged DW solutions are given in terms of the flat DWs in Section

4.1 attached with three-form fluxes. However, the charged DWs preserve only 1/4

of the original SUSY as opposed to the flat ones, which are 1
2
-supersymmetric,

except for the DWs from gaugings in both 15 and 40 representations in which

both charged and flat DWs are 1
4
-supersymmetric.
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We have performed the uplift for flat and charged DW solutions for SO(5)

and CSO(4, 0, 1) gauge groups. In these cases, the complete truncation ansatze

of eleven-dimensional supergravity on S4 and type IIA theory on S3 are given

in [26, 27] and [77], respectively. These uplifted solutions would be useful in the

study of the AdS/CFT correspondence and several dynamical aspects of M5-

branes and NS5-branes in different transverse spaces. Furthermore, the uplift

of charged DW solutions in these two gauge groups should respectively describe

bound states of M2- and M5-branes and of fundamental strings and NS5-branes

similar to the solutions in [62].

Supersymmetric AdSn×Σ7−n solutions of the maximal gauged supergravity

have been extensively studied in Section 4.3. For SO(5) gauge group, all the

previous results on AdSn×Σ7−n fixed points with n = 2, 3, 4, 5 have been recovered.

We have provided numerical RG flows from the N = 4 supersymmetric AdS7

vacuum in the UV to all these fixed points and then to singular geometries in the

IR. These IR singularities take the form of curved DWs with Mkwn−1×Σ7−n slices

and can be interpreted as (n−1)-dimensional SQFTs. The extended flows suggest

that they describe non-conformal phases of the SCFTs in n− 1 dimensions, dual

to the AdSn × Σ7−n fixed points, obtained from twisted compactifications of the

six-dimensional N = (2, 0) SCFT.

In addition to the previously known results from SO(5) gauge group, we

have discovered novel classes of AdS5 × S2, AdS3 × S2 × Σ2, and AdS3 × CP 2

solutions in SO(3, 2) gauge group. There are no supersymmetric AdS7 critical

points in this gauge group, so we have studied RG flow solutions interpolating

between these new fixed points and curved DWs. A number of the singularities

are physically acceptable and can be interpreted as SQFTs obtained from twisted

compactifications of the N = (2, 0) SQFTs in six dimensions. We have further

carried out a similar analysis for SO(4, 1) gauge group and found a new class of

AdS3 ×CP 2 solutions. For convenience, we summarize all the AdSn ×Σ7−n fixed

points in table 5.1.
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Gauge group

AdSn Unbroken symmetry Σ7−n SO(5) SO(4, 1) SO(3, 2)

AdS5 SO(2)× SO(2) S2 8 8

R2 16

H2 8

AdS4 SO(3) H3 8

SO(3)+ H3 4

AdS3 SO(4) H4 4

SO(2)× SO(2) S2 × Σ2 4

H2 × Σ2 4

SO(3) CH2 4

SO(3)+ CH2 2

SO(2)× SO(2) CP 2 4 4

CH2 4

AdS2 SO(3)× SO(2) H3 ×H2 4

SO(5) S5 2

H5 2

Table 5.1: AdSn × Σ7−n fixed points from maximal gauged supergravity in seven

dimensions together with the corresponding symmetries and numbers of unbroken

supercharges. Σ2 can be S2, R2 or H2.

Similar to four-dimensional black hole solutions with curved DW

asymptotics studied in [91], the novel AdS5 and AdS3 fixed points in SO(3, 2)

and SO(4, 1) gauge groups can be respectively interpreted as black three-branes

and black strings in asymptotically curved DW spacetime. It has also been pointed

out in [92] that, from a higher-dimensional perspective, the four-dimensional black

holes should be seen as black string solutions in AdS5 spacetime studied in [58].

However, our solutions cannot be related to any supersymmetric black objects

in eight dimensions with asymptotically AdS8 spacetime. This is because of the

absence of supersymmetric AdSd vacua for d > 7.
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For other gauge groups, we have performed a similar analysis but have not

found any AdSn fixed points. Instead, in CSO(p, q, 4 − p − q) gauge group, we

have studied supersymmetric flow solutions interpolating between asymptotically

locally flat DWs, in which the effect of magnetic charges is highly suppressed, and

curved DWs with Mkwn−1 ×Σ7−n world-volume. By the DW/QFT duality, these

solutions should be interpreted as RG flows across dimensions between SQFTs in

six and n−1 dimensions. Our results suggest that these six-dimensional N = (2, 0)

field theories have no conformal fixed points in lower dimensions. It could be

interesting to study these field theories on the world-volume of five-branes in type

IIB theory and find a definite conclusion whether this is true in general.

Apart from intriguing investigations in field theories, many works remain to

be done on the supergravity side. It would be interesting to find the embedding

of solutions, from the matter-coupled SO(4) gauged theory in cases with different

SO(3) coupling constants, in ten or eleven dimensions. This could provide the full

holographic duals of the effective theories on five-branes. Besides, supersymmetric

solutions in seven-dimensional matter-coupled N = 2 gauged supergravity with

other gauge groups are worth considering.

It is also interesting to look for flat DWs from the maximal gauged

supergravity with CSO(1, 0, 4) and CSO(1, 0, 3) gauge groups. These solutions,

called elementary DWs in [52], would probably involve many non-vanishing scalars.

Since we have not found any AdSn fixed points in other gauge groups, it would

also be interesting to extend our analysis by using more general ansatz including

non-vanishing massive two-form fields and find new classes of AdSn × Σ7−n

solutions of seven-dimensional gauged supergravity. Moreover, it is natural to

extend our study by constructing the complete truncation ansatze of eleven-

dimensional supergravity on Hp,q ◦ T 5−p−q and type IIB theory on Hp,q ◦ T 4−p−q.

These ansatze can be used to uplift the solutions in CSO(p, q, 5 − p − q) and

CSO(p, q, 4 − p − q) gauge groups for any values of p and q leading to the full

holographic interpretation.
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Finally, finding supersymmetric solutions of six-dimensional maximal

N = (2, 2) gauged supergravity is very interesting. It was shown in [93] that

SO(5) gauged supergravity in six dimensions is inherited from circle reduction

of the seven-dimensional SO(5) gauged theory. Besides, by using the embedding

tensor formalism, the most general gauging of the maximal gauged supergravity in

six dimensions has been classified in [94]. Some consistent gaugings are related to

circle reductions of seven-dimensional CSO(p, q, r) gauged theory. Nevertheless,

there is no N = (2, 2) supersymmetric AdS6 vacuum admitted in this theory, as

pointed out in [30, 95]. Therefore, supersymmetric solutions of six-dimensional

N = (2, 2) gauged supergravity will be useful to study a non-conformal extension

of the AdS/CFT correspondence.
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APPENDIX A

EINSTEIN’S GENERAL RELATIVITY

Einstein’s general relativity (GR) is one of the cornerstones of classical physics

describing gravity as curvature of spacetime encoded in symmetric metric tensor

gµν = gνµ. In this appendix, µ, ν = 0, 1, ..., D − 1 refer to D-dimensional curved

spacetime indices lowered and raised by gµν and its inverse gµν , respectively. For

examples,

Uµ = gµνU
ν and Uµν = gµρgνσUρσ (A.1)

for any tensor U . Throughout this dissertation, we regularly apply Einstein’s

summation convention in which a pair of upper and lower repeated indices are

summed

gµνU
ν = ΣD−1

ν=0 gµνU
ν . (A.2)

To decode the information on curvature, we use vielbein formalism in the

language of differential forms. In this appendix, we start with a brief introduction

of differential forms. After that, the vielbein formalism used to compute spacetime

curvature will be reviewed.

A.1 Differential Forms

For an integer p such that 0 ≤ p ≤ D, a differential p-form is a mathematical

object in D dimensional spacetime defined by

Ω(p) ≡
1

p!
Ωµ1...µpdx

µ1 ∧ ... ∧ dxµp (A.3)

where the component Ωµ1...µp is totally antisymmetric

Ωµ1...µi...µj ...µp = −Ωµ1...µj ...µi...µp (A.4)
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in any pair of indices µi and µj. The basis of a p-form is also totally antisymmetric

described by the wedge product

dxµ1 ∧ ... ∧ dxµp = p! dx[µ1 ⊗ ...⊗ dxµp] (A.5)

in which xµ are some coordinates parameterizing the spacetime and ⊗ is the usual

tensor product. Besides, antisymmetrization and symmetrization in spacetime

indices µ1...µp of any tensor T are denoted by

T [µ1...µp] =
1

p!
(T µ1...µp + (−1)P all permutations of µ1...µp), (A.6)

T (µ1...µp) =
1

p!
(T µ1...µp + all permutations of µ1...µp) (A.7)

with P = 0, 1 for even or odd permutation, respectively.

In particular, zero-forms are scalars

Ω(0) = Ω, (A.8)

and one-forms are vectors

Ω(1) = Ωµdx
µ = Ωµ′dxµ

′ (A.9)

where xµ′ refer to other coordinate systems.

Some useful operations of differential forms are reviewed as follows:

• Wedge product

If p+ q ≤ D, a p-form and a q-form can be multiplied to give a (p+ q)-form

through a wedge product

Ω(p) ∧ Π(q) =

(
1

p!
Ωµ1...µpdx

µ1 ∧ ... ∧ dxµp

)
∧
(
1

q!
Πν1...νqdx

ν1 ∧ ... ∧ dxνq
)

=
1

p!q!
Ωµ1...µpΠν1...νqdx

µ1 ∧ ... ∧ dxµp ∧ dxν1 ∧ ... ∧ dxνq

(A.10)

satisfying

Ω(p) ∧ Π(q) = (−1)pqΠ(q) ∧ Ω(p). (A.11)
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• Exterior derivative

Denoted by d, exterior derivative is a linear operation mapping a p-form to

be a (p+ 1)-form

dΩ(p) =
1

p!
∂µΩµ1...µpdx

µ ∧ dxµ1 ∧ ... ∧ dxµp , (A.12)

and satisfying the following conditions

d(Ω(p) ∧ Ω(q)) = dΩ(p) ∧ Ω(q) + (−1)pΩ(p) ∧ dΩ(q), (A.13)

d2Ω(p) = ddΩ(p) = 0 (A.14)

for any p- and q-froms, Ω(p) and Ω(q).

• Hodge duality

From the definition of the Hodge duality of a p-form’s basis

∗(dxµ1 ∧ ... ∧ dxµp) ≡ 1

(D − p)!
ϵµp+1...µD

µ1...µpdxµp+1 ∧ ... ∧ dxµD , (A.15)

the Hodge duality of a p-form in D-dimensional spacetime is the following

(D − p)-form

∗Ω(p) =
1

p!(D − p)!
Ωµ1...µpϵµp+1...µD

µ1...µpdxµp+1 ∧ ... ∧ dxµD . (A.16)

Thorough this work, ϵµ1...µD
is a totally antisymmetric Levi-Civita tensor in

D dimensions given by

ϵµ1...µD
=

√
|g|εµ1...µD

(A.17)

in which g = det gµν and εµ1...µD
is a totally antisymmetric Levi-Civita

symbol defined as

εµ1...µD
=


+1 if µ1...µD is an even permutation of 0, 1, ..., D − 1,

−1 if µ1...µD is an odd permutation of 0, 1, ..., D − 1,

0 otherwise.
(A.18)

Note also that the Levi-Civita tensor becomes the Levi-Civita symbol in flat

spacetime where gµν = ηµν = diag(−,+, ...,+) with det ηµν = −1.
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We can see that Hodge duality of a pure number 1 (zero-form) is a D-form

whose component is the Levi-Civita tensor,

∗1 = ϵ(D) =
1

D!
ϵµ1...µD

dxµ1 ∧ ... ∧ dxµD

=
√

|g|dx0 ∧ ... ∧ dxD−1.

(A.19)

In the second line, the Levi-Civita tensor is changed to be the Levi-Civita symbol

thus ∗1 is the generally coordinate invariant volume element on D-dimensional

spacetime M called volume form,

V olM =
√
|g|dDx =

√
|g|dx0 ∧ ... ∧ dxD−1. (A.20)

This volume form always appears in Lagrangian densities in the language of

differential forms. To obtain the corresponding action, one should integrate a

Lagrangian density over the spacetime. However, in the differential-form point

of view, a scalar (zero-form) cannot be integrated over a D-dimensional

spacetime but a D-form can. Consequently, in the language of differential forms,

the Lagrangian density in D-dimensional spacetime is a D-form. For example, the

Einstein-Hilbert Lagrangian density is written as

LEH =
1

2
R ∗ 1 (A.21)

where R is called Ricci scalar representing the curvature of spacetime that will be

introduced in the following section.

Moreover, an inner product between any two p-forms, A and B, can be given

by using the wedge product and Hodge duality as

∗A ∧B = ∗B ∧ A =
1

p!
|A ·B| ∗ 1 (A.22)

in which

|A ·B| = Aµ1...µpB
µ1...µp . (A.23)

This is an inner product between two tensors that always appears as kinetic terms

in Lagrangian densities.
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A.2 Spacetime Curvature from Vielbein Formalism

To deal with curved D-dimensional spacetime, general relativity considers curved

spacetime as a D-dimensional differentiable real manifold M, a smooth and

continuous topological space that locally looks like Minkowski flat spacetime

MkwD. Parameterized by some coordinate system, any distance on D-dimensional

curved spacetime called metric or line element is written as

ds2 = gµν(x)dx
µdxν (A.24)

where gµν = gµν(x) is the metric tensor depending on coordinates xµ. Since a

differentiable real manifold locally looks like flat spacetime, there exists a

Minkowski flat space called tangent space or Lorentz frame described by vielbein

basis eµ̂(x) at each point p ∈ M. Here, µ̂, ν̂ = 0̂, 1̂, ..., D̂ − 1 are D-dimensional

flat spacetime indices raised and lowered by ηµ̂ν̂ = ηµ̂ν̂ = diag (−,+, ...,+). The

metric in this tangent space is given by

ds2 = ηµ̂ν̂e
µ̂(x)eν̂(x) = ηµ̂ν̂e

µ̂
µ(x)e

ν̂
ν(x)dx

µdxν . (A.25)

In the last step, we have used

eµ̂(x) = eµ̂µ(x)dx
µ (A.26)

to describe the vielbein basis as a one-form in D-dimensional curved spacetime

with components called vielbein eµ̂µ(x). Since the metric ds2 is the same in every

coordinate system (general coordinate transformation invariant), the following

relation between the metric tensor and the vielbein can be derived

gµν = ηµ̂ν̂e
µ̂
µe

ν̂
ν (A.27)

in which and also in the following we have suppressed an argument (x) for

simplicity. As seen from (A.27), the vielbein can be interpreted as a

“square-root” of the metric tensor so that
√

|g| = e = det eµ̂µ. It should be noted

that curved and flat spacetime indices are related to each other via the vielbein
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component eµ̂µ and its inverse eµµ̂. Moreover, we practically use relation (A.27) to

find vielbein components of a given tensor.

Unlike the usual formulation with the metric tensor gµν , vielbein formalism

extract the curvature of spacetime from the vielbein one-from. We start from the

vielbein postulate

deµ̂ = −ωµ̂
ν̂ ∧ eν̂ (A.28)

in which ωµ̂ν̂ = −ων̂µ̂ = ωρ
µ̂ν̂dxρ is also a one-form called spin connection. This

postulate describes an exterior derivative of the vielbein one-from as a change of

tangent space with respect to positions in curved spacetime represented by the

spin connection.

To find the curvature of spacetime, we need the following curvature

two-form calculated from the spin connection by

Rµ̂ν̂
(2) = dωµ̂ν̂ + ωµ̂

ρ̂ ∧ ωρ̂ν̂ . (A.29)

This two-form is defined as

Rµ̂ν̂
(2) =

1

2
Rρσ

µ̂ν̂dxρ ∧ dxσ =
1

2
Rρ̂σ̂

µ̂ν̂eρ̂ ∧ eσ̂ (A.30)

where the component Rρ̂σ̂
µ̂ν̂ = eρρ̂e

σ
σ̂Rρσ

µ̂ν̂ is called Riemann curvature tensor

measuring the curvature of spacetime as a deviation from flat spacetime.

By taking traces, the two quantities playing essential roles in the

descriptions of curved spacetime can be derived. The first one is Ricci tensor

Rµ̂ν̂ = Rµ̂ρ̂ν̂
ρ̂, (A.31)

and the second one is called Ricci scalar

R = ηµ̂ν̂Rµ̂ν̂ . (A.32)

These two quantities appear in Einstein’s field equations describing the relation

between the curvature of spacetime and the distribution of energy and mass

Rµ̂ν̂ −
1

2
ηµ̂ν̂R = Tµ̂ν̂ (A.33)

in which Tµ̂ν̂ is the energy-momentum tensor representing all energies,

momentums, and also stresses in spacetime that can be sources of gravity.
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APPENDIX B

SYMPLECTIC-MAJORANA SPINORS

Spinors in seven-dimensional spacetime are generally Dirac spinors carrying eigth

complex components for each. These spinors are the corresponding representations

of the Clifford algebra. The Clifford algebra is generated by Dirac gamma (8× 8)

matrices and can be written as

{γµ̂, γ ν̂} = γµ̂γ ν̂ + γ ν̂γµ̂ = 2ηµ̂ν̂18 (B.1)

where ηµ̂ν̂ = diag(− + + + + + +). As in [62], we use the following explicit

representation for the Dirac gamma matrices

γ 0̂ = iσ2 ⊗ 12 ⊗ 12, γ 1̂ = σ1 ⊗ 12 ⊗ 12,

γ 2̂ = σ3 ⊗ σ1 ⊗ 12, γ 3̂ = σ3 ⊗ σ3 ⊗ 12,

γ 4̂ = σ3 ⊗ σ2 ⊗ σ1, γ 5̂ = σ3 ⊗ σ2 ⊗ σ2,

γ 6̂ = σ3 ⊗ σ2 ⊗ σ3

(B.2)

in which {σ1, σ2, σ3} are the usual Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (B.3)

The higher-rank gamma matrices are defined as an antisymmetric product

γµ̂1...µ̂n = γ[µ̂1 ...γµ̂n]. (B.4)

For µ̂1 ̸= µ̂2 ̸= ... ̸= µ̂n, it can be written as a product

γµ̂1µ̂2...µ̂n = γµ̂1γµ̂2 ...γµ̂n (B.5)

due to the Clifford algebra (B.1). Moreover, one can check that the representation

given in (B.2) satisfies the following identity

γ∗ = γ 0̂1̂2̂3̂4̂5̂6̂ = γ 0̂γ 1̂γ 2̂γ 3̂γ 4̂γ 5̂γ 6̂ = 18. (B.6)
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With this explicit representation, Dirac, complex, and charge conjugation matrices

can be respectively given by

A = γ 0̂, B = −iγ 4̂6̂, C = iγ 0̂4̂6̂ (B.7)

satisfying the following definitions

(γµ̂)† = −Aγµ̂A−1, (γµ̂)∗ = Bγµ̂B−1, (γµ̂)T = −Cγµ̂C−1 (B.8)

as well as the properties

BT = CA−1, B∗B = −18, CT = −C−1 = −C† = C. (B.9)

For seven-dimensional N = 2 gauged supergravity, fermionic fields and

SUSY parameters are described by symplectic-Majorana (SM) spinors labeled

by an SU(2)R doublet index α = 1, 2. These SM spinors satisfy the following

pseudo-reality condition in order to make sure that the amount of on-shell real

degrees of freedom is sixteen

ζα = (ζα)∗ = εαβBζ
β (B.10)

in which ζα is any SM spinor, εαβ denotes the SU(2)-invariant Levi-Civita symbol,

and B is the matrix involved in the complex conjugation of the Dirac gamma

matrices given in (B.7).

For the maximal N = 4 theory, fermionic fields and SUSY parameters

transform in representations of the local SO(5)R ∼ USp(4)R R-symmetry under

which the total amount of on-shell real degrees of freedom is thirty-two. In this

case, SM spinors carry an USp(4) index a = 1, 2, 3, 4 and are subject to the

condition

ζ
T

a = ΩabCζ
b (B.11)

where Ωab is the USp(4) symplectic form, C is the charge conjugation matrix given

in (B.7), and the Dirac conjugate for an instant USp(4) SM spinor ζa is defined

by ζ ≡ ζ†γ0.
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APPENDIX C

TRUNCATION ANSATZE

Essential formulae for truncations of eleven-dimensional supergravity on S4 and

type IIA theory on S3 are assembled in this appendix. These truncations give rise

to maximal SO(5) and CSO(4, 0, 1) gauged supergravities in seven dimensions.

The complete S4 and S3 truncation ansatze have been given in [26, 27], and [77],

respectively. By describing higher-dimensional fields in terms of lower-dimensional

ones, truncation ansatze map field equations from the eleven- or ten-dimensional

theory to the theories in seven dimensions. On the other hand, solutions to the

seven-dimensional theories are also solutions to the higher-dimensional ones and

vice versa. For the minimal N = 2 matter-coupled SO(4) gauged theory, we can

also embed the solutions into eleven-dimensional supergravity using the formula

given in [74] where the S4 truncation is further truncated.

C.1 Eleven-Dimensional Supergravity on S4

In eleven-dimensional spacetime, there exists a unique supergravity theory [22]

consists of a graviton ĝMN , a gravitino Ψ̂M, and a three-form potential Â(3). In

this appendix, M, N , ... refer to higher-dimensional spacetime indices. The

Lagrangian for the bosonic sector is given in the following differential form

L11 = R∗̂1− 1

2
∗̂F̂(4) ∧ F̂(4) −

1

6
F̂(4) ∧ F̂(4) ∧ Â(3) (C.1)

where the four-form field strength is F̂(4) = dÂ(3). The associated field equations

derived from this Lagrangian are

0 = RMN − 1

12

(
F̂MPQRF̂

PQR
N − 1

12
gMN F̂PQRSF̂

PQRS
)
, (C.2)

0 = d∗̂F̂(4) −
1

2
F̂(4) ∧ F̂(4). (C.3)
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Here, we are using ∗̂ to denote a Hodge duality in eleven-dimensional spacetime

in contrast to ∗, which refers to seven-dimensional Hodge duality.

To truncate the eleven-dimensional supergravity on S4 leading to the

maximal SO(5) gauged supergravity in seven dimensions, the following ansatz

for the eleven-dimensional metric is needed

dŝ211 = ∆
1
3ds27 +

1

ĝ2
∆− 2

3T−1
MNDµ

MDµN (C.4)

where µM , M = 1, 2, 3, 4, 5, are coordinates on S4 satisfying µMµM = 1. The

warped factor is defined by

∆ = TMNµ
MµN (C.5)

in which TMN is a unimodular 5× 5 symmetric matrix describing scalar fields in

SL(5)/SO(5) coset. The ansatz for the four-form field strength reads

F̂(4) =
1

ĝ3
∆−2

[
1

3!
εM1...M5µ

MµNTM1MDTM2N ∧DµM3 ∧DµM4 ∧DµM5

]
− 1

ĝ3
∆−2Uϵ(4) +

1

4ĝ2
∆−1εM1...M5F̃

M1M2

(2) ∧DµM3 ∧DµM4TM5NµN

+
1

ĝ
S̃M
(3) ∧DµM − TMN ∗ S̃M

(3)µ
N . (C.6)

In these equations, we have used the following definitions

U = 2TMNTNPµ
MµP −∆TMM , (C.7)

ϵ(4) =
1

4!
εM1...M5µ

M1DµM2 ∧DµM3 ∧DµM4 ∧DµM5 , (C.8)

DµM = dµM + ĝÃMN
(1) µ

N , F̃MN
(2) = dÃMN

(1) + ĝÃMP
(1) ∧ ÃPN

(1) , (C.9)

DTMN = dTMN + ĝÃMP
(1) TPN + ĝÃNP

(1) TMP . (C.10)

In this appendix, the vector, two-form, and massive three-form fields in seven-

dimensional truncated theories are denoted by ÃMN
(1) , F̃MN

(2) , and S̃M
(3) to avoid

confusion with those appearing in (2.65).

Imposing these ansatze into the field equations, (C.2) - (C.3), we can find

the seven-dimensional field equations given in [77] that can be derived from the
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following Lagrangian

LS4 =
1

2
R ∗ 1 + 1

8
∗DT−1

MN ∧DTMN − 1

4
ĝ2

[
2TMNTMN − (TMM)2

]
∗ 1

+
1

4ĝ
S̃M
(3) ∧ H̃M

(4) −
1

16ĝ
εMN1...N4S̃

M
(3) ∧ F̃

N1N2

(2) ∧ F̃N4N4

(2) +
1

2ĝ
Ω(7)

−1

8
T−1
MPT

−1
NQ ∗ FMN

(2) ∧ F PQ
(2) − 1

4
TMN ∗ S̃M

(3) ∧ S̃N
(3) (C.11)

in which Ω(7) is the Chern-Simons term whose explicit form can be found in [32]

and

H̃M
(4) = dS̃M

(3) + ĝÃMN
(1) ∧ S̃N

(3). (C.12)

Comparing this Lagrangian with (2.65) together with YMN = δMN and ZMN,P = 0

for SO(5) gauge group, we can find the following relations between the seven-

dimensional fields and parameters obtained from the S4 truncation and those in

seven-dimensional gauged supergravity of [63]

TMN = MMN , S̃M
(3) = 2H(3)M , F̃MN

(2) = 4FMN
(2) , ĝ =

1

4
g . (C.13)

Moreover, we will consider a further truncation giving rise to the matter-

coupled SO(4) gauged supergravity in seven dimensions [74]. By breaking the

gauge group SO(5) to SO(4), SO(5) gamma matrices, Γî with î = 1, 2, 3, 4, 5, are

decomposed as Γî = (ΓR,Γ5) in which R = 1, 2, 3, 4 is an SO(4) index. On the

other hand, Γ5 = Γ1Γ2Γ3Γ4 acts as the chilarity matrix of SO(4), Γ5Ψ
± = ±Ψ±

for an instant SO(4) spinor Ψ = Ψ+ + Ψ−. The following truncation is made on

fermionic fields and SUSY parameters in the maximal SO(5) gauged theory to

reduce N = 4 SUSY to N = 2

ϵ− = ψ−
µ = λ−5 = λ+R = 0 (C.14)

in which ψ±
µ are the gravitini and λ±

î
are the spin-1

2
fields that are decompsed into

λ±
î
= (λ±R, λ

±
5 ). In the following, all ± superscript will be suppressed.

For bosonic fields, we set T5α, S̃α
(3), and F̃ 5α

(2) to zero while the index M is also

split as (α, 5) with α = 1, 2, 3, 4. The corresponding scalar truncation is given by

TMN = (Tαβ, T55) = (XT̃αβ, X
−4) in which X will be related to the N = 2 dilaton



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

220

scalar field and T̃αβ is a symmetric scalar matrix with unit determinant describing

nine scalars in SL(4,R)/SO(4) coset.

With these truncations, the bosonic Lagrangian for the resulting N = 2,

SO(4) gauged supergravity reads

LN=2 =
1

2
R ∗ 1− 1

8
X−2T̃−1

αγ T̃
−1
βδ ∗ F̃αβ

(2) ∧ F̃
γδ
(2) −

1

8
T̃−1
αβ ∗DT̃βγ ∧ T̃−1

γδ DT̃δα

−1

4
X4 ∗ F(4) ∧ F(4) +

1

16
εαβγδA(3) ∧ F̃ αβ

(2) ∧ F̃
γδ
(2) −

5

2
X−2 ∗ dX ∧ dX

−1

4
ĝF(4) ∧ A(3) − V ∗ 1 (C.15)

in which we have imposed

S̃5
(3) = −ĝA(3) + ω(3) (C.16)

where F(4) = dA(3) and ω(3) is the Chern-Simons term, whose explicit form is given

in [74]. The scalar potential is given by

V =
1

4
ĝ2

[
X−8 − 2X−3T̃αα + 2X2

(
T̃αβT̃αβ −

1

2
T̃ 2
αα

)]
. (C.17)

From the eleven-dimensional supergravity, this SO(4) gauged theory can be

obtained through the following truncation ansatze

dŝ211 = ∆
1
3ds27 +

2

ĝ2
∆− 2

3X3
[
X cos2 ξ +X−4 sin2 ξT̃−1

αβ µ
αµβ

]
dξ2

− 1

ĝ2
∆− 2

3X−1T̃−1
αβ sin ξµαdξDµβ +

1

2ĝ2
∆− 2

3X−1T̃−1
αβ cos2 ξDµαDµβ

(C.18)

F̂(4) = F(4) sin ξ + 1

ĝ
X4 cos ξ ∗ F(4) ∧ ξ +

1

ĝ3
∆−2U cos5 ξdξ ∧ ϵ(3)

+
∆−2

6ĝ3X4
εαβγδ sin ξ cos4 ξµκ

[
5T̃ακdX +XDT̃ακ

]
∧Dµβ ∧Dµγ ∧Dµδ

+
∆−2

2ĝ3
εαβγδ cos3 ξµκµλ

[
cos2 ξX2T̃ακDT̃ βλ − sin2 ξX−3δβλDT̃ακ

−5 sin2 ξT̃ακX−4δβλdX
]
∧Dµγ ∧Dµδ ∧ dξ + X−4

2ĝ2
cos ξεαβγδ ×[

1

2
cos ξ sin ξDµγ −

(
sin2 ξµγ +X6 cos2 ξT̃ γκµκ

)
dξ

]
∧ F̃αβ

(2) ∧Dµ
δ

(C.19)
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in which the S4 coordinates µM are split to be µM = (cos ξµα, sin ξ) with µα being

coordinates on S3 satisfying µαµα = 1. The following definitions are also used in

the above ansatze

ϵ(3) =
1

3!
εαβγδµ

αDµβ ∧Dµγ ∧Dµδ, (C.20)

Dµα = dµα + ĝÃαβ
(1)µ

β, ∆ = cos2 ξXT̃αβµαµβ +X−4 sin2 ξ, (C.21)

U = cos2 ξX2µαµβ(2T̃αγT̃γβ − T̃αβT̃γγ −X−5T̃αβ)

+ sin2 ξ(X−8 −X−3T̃αα). (C.22)

To identify T̃−1
αβ to the SO(3, 3)/SO(3) × SO(3) coset representative

LI
A = (LI

i, LI
r) used in the main text, we write T̃−1

αβ in the form of the

SL(4,R)/SO(4) coset representative Vα
R

T̃−1
αβ = Vα

RVβ
SδRS . (C.23)

Due to the isomorphisms SO(3, 3) ∼ SL(4,R) and SO(4) ∼ SO(3)× SO(3), the

SL(4,R)/SO(4) coset representative Vα
R is related to SO(3, 3)/SO(3) × SO(3)

coset by the relation

LI
A =

1

4
ζαβI ηARSVα

RVβ
S (C.24)

in which ζI and ηA are chirally projected gamma matrices of SO(3, 3) satisfying

(ζI)αβ(ζ
J)αβ = −4ηIJ and (ζI)αβ(ζI)γδ = −2εαβγδ (C.25)

where ζIαβ = (ζ iαβ,−ζrαβ) see more detail in [38]. Note that ηARS also satisfy similar

relations which we will not repeat them here. We use the following choice of ζIαβ

ζ1 = −iσ2 ⊗ σ1, ζ2 = −iσ2 ⊗ σ3, ζ3 = iI2 ⊗ σ2,

ζ4 = iσ1 ⊗ σ2, ζ5 = −iσ2 ⊗ I2, ζ6 = iσ3 ⊗ σ2 . (C.26)

All these ingredients lead to the following identification of the fields and

parameters in seven and eleven dimensions

g2 = g1 = 16h = 2ĝ, X = e−
σ
2 ,

H(3) =
1√
2
A(3), Ãαβ

(1) = ζαβI AI
(1) . (C.27)
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C.2 Type IIA Supergravity on S3

The low-energy effective theory of type IIA string theory is ten-dimensional type

IIA supergravity obtained from a dimensional reduction of eleven-dimensional

supergravity on a circle [96]. The field content of type IIA supergravity comprises

a graviton ĝMN , a scalar φ̂, a Ramond-Ramond (R-R) one-form potential Â(1), an

Neveu Schwarz-Neveu Schwarz (NS-NS) two-form potential B̂(2), an R-R three-

form potential Â(3) together with two gavitini Ψ̂i
M and two dilatini λ̂i with i = 1, 2.

The bosonic Lagrangian of this theory is given by

LIIA = R∗̄1− 1

2
∗̄dφ̂ ∧ dφ̂− 1

2
e

3
2
φ̂∗̄F̂(2) ∧ F̂(2) −

1

2
e

1
2
φ̂∗̄F̂(4) ∧ F̂(4)

−1

2
e−φ̂∗̄Ĥ(3) ∧ Ĥ(3) +

1

2
dÂ(3) ∧ dÂ(3) ∧ B̂(2) (C.28)

where ∗̄ denotes ten-dimensional Hodge duality. The corresponding field strengths

of the differential form potentials are given by

F̂(4) = dÂ(3) − dB̂(2) ∧ Â(1), Ĥ(3) = dB̂(2), and F̂(2) = dÂ(1). (C.29)

The consistent truncation of type IIA supergravity on S3 has been obtained

in [77] by taking a degenerate limit of the S4 truncation of eleven-dimensional

supergravity. To write down this truncation ansatz, we first split the index M as

M = (i, 5), i = 1, 2, 3, 4. The scalar matrix of SL(5)/SO(5) coset is then given by

T−1
MN =

Φ− 1
4M−1

ij + Φχiχj Φχi

Φχj Φ

 (C.30)

where Mij is a unimodular 4 × 4 symmetric matrix describing the SL(4)/SO(4)

coset. The fields χi and Φ are axion and dilaton scalars, respectively.

The truncation ansatze for the ten-dimensional metric, dilaton, and field

strength tensors of various form fields are given by

dŝ210 = Φ
3
16∆

1
4ds27 +

1

ĝ2
Φ− 5

16∆− 3
4M−1

ij Dµ
iDµj, (C.31)

e2φ̂ = ∆−1Φ
5
4 , F̂(2) = Gi

(1) ∧Dµi + ĝµiGi
(2), (C.32)
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Ĥ(3) =
1

ĝ3
∆−2

[
−Uϵ(3) +

1

2
εi1i2i3i4Mi1jµ

jµkDMi2k ∧Dµi3 ∧Dµi4

]
+

1

2ĝ2
∆−1εijklMimµ

mF̃ jk
(2) ∧Dµ

l +
1

ĝ
S̃(3), (C.33)

F̂(4) =
1

ĝ3
∆−1Mijµ

jGi
(1) ∧ ϵ(3) +

1

2ĝ2
∆−1εi1i2i3i4Mi4jµ

jGi1
(2) ∧Dµ

i2 ∧Dµi3

+MijΦ
1
4µj ∗Gi

(3) +
1

ĝ
Gi

(3) ∧Dµi (C.34)

with

ϵ(3) =
1

3!
εijklµ

iDµj ∧Dµk ∧Dµl, Dµi = dµi + ĝÃij
(1)µ

j, (C.35)

U = 2MijMjkµ
iµk −∆Mii, ∆ =Mijµ

iµj, (C.36)

Gi
(1) = Dχi + ĝÃi5

(1), Gi
(2) = DÃ5i

(1) + χjF
ji
(2), (C.37)

Gi
(3) = S̃i

(3) − χiS̃(3), F̃ ij
(2) = dÃij

(1) + ĝÃik
(1) ∧ Ã

kj
(1), (C.38)

S̃(3) = dB(2) +
1

8
εijkl

(
F̃ ij
(2) ∧ Ã

kl
(1) −

1

3
ĝÃij

(1) ∧ Ã
km
(1) ∧ Ãml

(1)

)
(C.39)

where µi are coordinates on S3 satisfying µiµi = 1 in this case.

Substituting these ansatze into the field equations derived from the

Lagrangian (C.28), we obtain the resulting seven-dimensional field equations that

can be derived from the following bosonic Lagrangian

LS3 =
1

2
R ∗ 1− 1

8
Φ−2 ∗ dΦ ∧ dΦ− 1

8
M−1

ij ∗DMjk ∧M−1
kl DMli

−1

4
Φ−1 ∗ S̃(3) ∧ S̃(3) −

1

8
M−1

ik M
−1
jl ∗ F̃ ij

(2) ∧ F̃
kl
(2) −

1

4
ΦM−1

ij ∗Gi
(2) ∧G

j
(2)

−1

4
ΦMij ∗Gi

(1) ∧G
j
(1) −

1

4
ΦMij ∗Gi

(3) ∧G
j
(3) − V̄ ∗ 1 + 1

2ĝ
Ω̃(7) (C.40)

where the explicit form for the scalar potential V̄ and topological terms of various

form fields Ω̃(7) are given in [77]. By comparing this truncated Lagragian and the

seven-dimensional gauged Lagrangian given in (2.65) with Yij = δij, Y55 = 0, and

ZMN,P = 0, we find the following relations

ĝ =
1

4
g, Φ = e8ϕ0 , χi = bi, M−1

ij = M̃ij,

S̃i
(3) = 2H(3)i F̃ ij

(2) = 4F ij
(2), F̃ i

(2) = DÃ5i
(2) = 4F i5

(2) . (C.41)
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