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Describing quantum field theory using the AdS/CFT duality can broaden
string theory applications in the context of the holographic principle. This research
study supersymmetric solutions of matter-coupled SO(4) and maximal gauged
supergravities in seven dimensions of which the dual field theories are six-
dimensional superconformal field theories (SCETs). We find a large class of domain
wall (DW) solutions in the maximal theory with various gauge groups. For SO(5)
gauge group admitting an AdS; vacuum, the solutions describe holographic
renormalization group (RG) flows from an N = (2,0) SCFT to non-conformal
field theories (SQFTs) in six dimensions. For other gauge groups without AdS;
vacua, these DWs are supersymmetric vacua dual to six-dimensional N = (2,0)
SQFTs. By coupling DWs to three-form fields, we find charged DW solutions in
both theories. The solutions with AdSs x S? slices are interpreted as conformal
surface defects within the dual field theories in six dimensions. We also find twisted
solutions describing holographic RG flows across dimensions from six-dimensional
field theories to SCFTs in lower dimensions. We consider solutions of the matter-
coupled theory in the presence of a three-form field and extend twisted solutions
of the maximal theory to include singularities in the form of curved DWs. In
many cases, these singularities are physically acceptable and can be interpreted
as SQFTs in lower dimensions. Many solutions can be uplifted to ten and eleven

dimensions resulting in new classes of solutions in string and M-theories.
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CHAPTER 1

INTRODUCTION

Finding a theory of quantum gravity is one of the significant issues attracting
many experimental and theoretical physicists for a long time. While three from
four fundamental forces, electromagnetic, weak, and strong, can be described
through quantum field theory (QFT) in the context of gauge theory, gravity is
still isolated and classically expressed by Einstein’s general relativity (GR). These
are recognized as the two distinguished principal theories of theoretical physics in
the twentieth century. Achieving quantum gravity will give us a huge step closer
to the final theory of everything unifying all four fundamental forces and matter
particles. Unfortunately, despite eighty years of active research, a consistent and
complete quantum theory of gravity has not yet been formulated. The most

significant problem is that we do not know a proper way to quantize gravity [1,2].

For almost five decades, string theory [3-8|] has been explored in various
features as a promising candidate not only for quantum gravity but also for
the theory of all interactions. Unlike theories of point-like particles, the theory
contains one-dimensional fundamental objects, called strings, together with other
p-dimensionally extended ones, called p-branes, where their illustration is shown
in Figure Ell While ordinary QFT does not allow gravity to exist, string theory
requires it since there always exists a massless spin-two particle called graviton,
the quantum of gravitation, in the spectrum. However, ten-dimensional spacetime
is needed in order for string theory to be a consistent Lorentz invariant quantum
theory. To get down to four-dimensional flat spacetime R, one can consider a
compactification of the theory on a product geometry R'3 x MS® where M"
denotes an n-dimensional compact space. Lower-dimensional interactions are also

determined by symmetry of the compact space.
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Figure 1.1: Illustration of a closed string, Dirichlet p-branes (Dp-branes), and

open strings ending on them.!

Instead of lower-dimensional flat spacetime, a remarkable result was
discovered when we consider string theory on a maximally symmetric spacetime
with negative curvature, called anti-de Sitter (AdS) space. String theory on
AdSip_n, x M"™ space is dual to a supersymmetric conformal field theory (SCET)
living on flat spacetime R%%~", the boundary of the AdSiy_, space, in the way
that there exist one-to-one maps, called dictionary, between local fields ¢; in
the AdS bulk and operators O; in the dual SCFT on the boundary. By the
dictionary, correlation functions governing quantum interactions of the dual SCF'T
can be calculated from string theory. The first example was proposed in the late
1990s [9-11]. In this case, type IIB string theory on AdSs x S° spacetime, in
which S% is a five-dimensional sphere, is dual to N = 4 Super-Yang-Mills gauge
theory living on flat spacetime R'3. This duality is referred to as the AdS;/CFT,
correspondence, whose illustration is displayed in Figure @, and has been widely
tested and confirmed by a large number of impressive results over the past twenty

years.

Although the duality is fascinating, the AdS;/CFT, correspondence is too
complicated to perform explicit calculations for generic values of parameters.
Therefore, we need to reduce the strength of the correspondence by taking the

't Hooft limit [12]. In this limit, there is only one free parameter on both sides:

'Katrin Becker, Melanie Becker, and John H. Schwarz, String theory and M-theory:
A modern introduction, (New York: Cambridge University Press, 2007), p.194.
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Figure 1.2: lustration of the AdS;/CFT} correspondence relating type IIB string
theory on AdSs x S® spacetime to N = 4 Super-Yang-Mills gauge theory on the
boundary of the AdSs.?

the 't Hooft coupling A on the field theory side and the radius of curvature L /I,
with [; being the string length, on the string theory side. The two parameters are
related through the correspondence by (L/l,)* = 2\. From this point, the most
useful duality can be obtained by taking the limit A — oo on the field theory
side, indicating that the field theories are strongly-coupled. On the string theory
side, this limit corresponds to the low-energy limit where the radius of spacetime
curvature is much bigger than the string scale, [;/L — 0. In this limit, string
theory reduces to supergravity, and the AdS;/CFTy correspondence accordingly
relates strongly-coupled N = 4 Super-Yang-Mills to type IIB supergravity on
weakly-curved AdSs x S° space. This strong/weak duality is known as the weak
form of the AdS;/CFT, correspondence. Apart from this first example, there also
exits the AdS/CFT correspondence relating string theory or supergravity in the
low-energy limit on AdSp background to D—1 dimensional SCFT with D = 2,..,7.

One of the most astonishing implications of the strong/weak duality is the
application for problems of condensed matter physics in our lower dimensions.
Many systems in condensed matter physics are strongly-coupled so that standard
perturbative calculations do not work. The AdS/CFT correspondence allows us

to map these strongly-coupled behaviors to the general covariance of gravity

2ads-cft [Online]. Available from: http:// quantum-bits.org/ wp-content/ uploads/
2015/09/ads-cft.png [2017, October 12]



theory that can be applied by using the standard computation of GR. In this
way, unusual behaviors of condensed matter, such as strange metals or
unconventional superconductors, can be examined in deeper detail, see [13-21]

for an incomplete list.

Apart from the above AdS;/CFT, duality, one of the interesting cases
proposed in [9] to describe the dynamics of Mb5-branes in M-theory is the
AdS;/CFTg correspondence. Among five versions of string theory: type I, type
ITA, type IIB, heterotic SO(32), and heterotic Eg x Eg, M-theory is an
eleven-dimensional non-perturbative theory connecting them through a web of
dualities in Figure [7. The theory describes supersymmetric two- and five-
dimensionally extended objects respectively called M2- and Mb5-branes. In the
low-energy limit, M-theory is approximated by eleven-dimensional supergravity.
However, a complete formulation of M-theory is still unclear. Studying these
supersymmetric M-branes via the AdS/CFT correspondence has also played a

crucial role in the development of M-theory.

f..\-’Pel‘ \gA‘ type lIB
// h
11d —;,,_/___7::”_',1,/_;
SUGRA™ N )/
\ \"-‘,‘I - \
\ —~
%— .

S0(32)

Figure 1.3: Five consistent string theories and eleven-dimensional supergravity are

connected through a web of dualities.?

Since we do not know much about M-theory, studying the AdS/CFT
correspondence from eleven-dimensional supergravity is a significant benefit. There

exists a unique supergravity in eleven-dimensional spacetime containing the

3Katrin Becker, Melanie Becker, and John H. Schwarz, String theory and M-theory:
A modern introduction, (New York: Cambridge University Press, 2007), p.12.



graviton, a gravitino (a supersymmetric partner of the graviton), and a three-form
potential [22]. In general, p-branes are charged under (p + 1)-form potentials, in
the same way as in electromagnetism that a zero-brane (particle) can be charged
under a one-form potential. In this case, M2- and Mb5-branes are charged under
the three-form potential and their magnetic duality, a six-from potential. On the
other hand, these extended objects can be approximately described by gauged
supergravities in four and seven dimensions obtained from consistent truncations
of eleven-dimensional supergravity on seven- and four-dimensional spheres, S7 and

S* respectively [23-27].

Therefore, the AdS;/CFTg correspondence can be efficiently investigated by
using gauged supergravities in seven dimensions so that AdS; x S* geometry of M-
theory, dual to N = (2,0) SCET in six dimensions, can be described by a vacuum
solution of seven-dimensional N = 4, SO(5) gauged supergravity. Besides, AdS7
vacua of N = 2 gauged supergravity in seven dimensions is dual to six-dimensional
N = (1,0) SCFTs in the case of half-maximal supersymmetry [28,29]. On the CFT
side, six is the maximum possible spacetime dimensions for SCFT [30]. However,
there is no Lagrangian description for these six-dimensional SCFTs [31]. Studying
the AdS;/CFTg correspondence from gauged supergravities also gives advantages

in describing the dynamics of these six-dimensional field theories.

The first version of the maximal SO(5) gauged supergravity has been
constructed in [32,83]. The theory admits two AdS; vacua, but only one of
them is supersymmetric and plays an important role in the AdS;/CFTg
correspondence. For the half-maximal N = 2 supergravity gauged by SO(3)
gauge group [34,85], there is no AdS; vacuum. In order for a supersymmetric AdS7
vacuum to exist, an additional mass deformation for the three-form field is needed.
The half-maximal SO(3) gauged theory with this deformation is given in [36,37].
Furthermore, SO(3) gauge group in this N = 2 theory can be enlarged by
coupling to n vector multiplets. The resulting matter-coupled theory allows many
viable gauge groups being a subgroup of the global symmetry R* x SO(3,n) [3§].
In [39,40], their supersymmetric AdS7; vacua have been studied. A remarkable



matter-coupled theory is the SO(4) gauged theory, first constructed in [41]. This
theory, obtained from coupling the minimal gauged supergravity to three vector
multiplets, mediates between the maximal SO(5) and the minimal SO(3) gauged

supergravities.

In addition to the rigid AdS7 vacua, supergravity solutions being AdS7
near the boundary but differ in the interior are also attractive. These solutions
take the form of domain walls (DWs) interpolating between AdS; vacua and
singularities. Via the AdS;/CFTg duality, the solutions are dual to connections
between different supersymmetric conformal fixed points of field theories known
as holographic renormalization group (RG) flows [42-44]. On the CFT side,
conformal symmetry on the boundary is broken by non-vanishing one-point
functions (O) with O being the corresponding dual operators. These one-point
functions perturb the SCFT and induce RG flows to another SCF'T or, in some
cases, to a supersymmetric non-conformal (quantum) field theory (SQFT) dual
to a singular geometry. The latter is of remarkable interest in the DW/QFT
correspondence [45-47], a generalization of the AdS/CFT duality.

Not only the same dimensions but also field theories in different
dimensions can be associated through RG flows across dimensions. In general,
twisted solutions of D-dimensional supergravity on AdSp_, x M™ geometry are
AdS/CFT dual to RG flows across dimensions from an SCFT in D — 1 dimensions
to a (D — 1 — n)-dimensional one. This type of RG flows allows us to explore the
structure and dynamics of less known SCFTs in higher, especially five and six,

dimensions using the well-understood lower-dimensional SCFTs.

For the maximal SO(5) gauged supergravity, these supersymmetric
solutions have been extensively studied in [48-52] for DW and [53-p9] for twisted
solutions. The solutions for the matted-coupled N = 2 gauged supergravity
have been discussed in [39,40,60]. For the minimal SO(3) gauged supergravity,
twisted solutions relating six-dimensional N = (1,0) SCFT to lower-dimensional
SCFTs have been considered in [61], while DW has been reviewed in [62] where

supersymmetric solutions with all bosonic fields non-vanishing have been found.



The latter type of solutions is called charged DW interpreted as two-dimensional
conformal defects in the six-dimensional N = (1,0) SCFT by the AdS/CFT

correspondence.

Nonetheless, many supersymmetric solutions are still missing. There is
no charged DW found in the matter-coupled and the maximal gauged theories,
while none of the prior supersymmetric solutions from the matter-coupled theory
involve the non-vanishing three-form field. Moreover, apart from SO(5), there
are many possible gauge groups for the maximal N = 4 gauged supergravity
given by the embedding tensor formalism in [63]. Maximal gauged supergravities
with these additional gauge groups can be obtained from consistent truncations
of eleven-dimensional and type IIB supergravities see [64] and [65]. There is
no systematic analysis for supersymmetric solutions for these gauge groups so
far. In this dissertation, we want to find supersymmetric solutions that shade
the light to these missing corners. The new supersymmetric solutions will give
more advantages in the study of the AdS;/CFTg duality and the more general
DW;/QFTg correspondence as well.

The dissertation is organized as follows. In Chapter 2, we review the
relevant seven-dimensional supergravities, the matter-coupled N = 2 and the
maximal N = 4 gauged theories. In Chapter 3, we study new supersymmetric
solutions of the matter-coupled gauged theory, especially for SO(4) gauge group.
They are charged DWs and twisted solutions with non-vanishing three-form
potential. Supersymmetric solutions of the maximal N = 4 theory with various
gauge groups are considered in Chapter 4. We finish the dissertation with some
general conclusions and discussions in Chapter 5. In Appendices A and B, general
notations for GR and symplectic-Majorana (SM) spinor used in this dissertation
are summarized, respectively. Consistent truncations of eleven-dimensional and
type ITA supergravities giving rise to seven-dimensional gauged supergravities are

reviewed in Appendix C.



CHAPTER I1

SEVEN-DIMENSIONAL GAUGED SUPERGRAVITIES

Supergravity is GR accompanied by supersymmetry (SUSY) [66-68], the
symmetry between bosonic and fermionic fields with integer and half-integer spins,
respectively. Denoted by B(z) and F(x), bosonic and fermionic fields transform

to each other through the following general form of local SUSY transformations
0B(z) = é(x) f1(F(x)) and 6F(z) = fo(B(x))e(x) (2.1)

where ¢(z) are SUSY spinor parameters depending on spacetime coordinate x and
é(z) refer to their Dirac conjugations. The functions fi(F) and fo(B) usually
include Dirac gamma matrices and spacetime derivatives. Supergravity actions
are invariant under these SUSY transformations. For example, the simplest
supergravity in four-dimensional spacetime was formulated in 1976 with one SUSY
(N = 1) describing interactions between the graviton together with a fermionic

field called gravitino with spin 3/2 [69,[70].

Simple supergravity can be extended by adding more SUSY. The more
SUSY, the more fields of different spins in supergravity multiplet transform into
each other within SUSY transformations (Ell) In four-dimensional spacetime,
N = 8 is the maximally extended theory in which supergravity multiplet contains
the graviton, eight gravitini, 28 vectors, 56 spinors, and 70 scalar fields with 256
degrees of freedom divided into 128 bosonic and also 128 fermionic states [[71,[72].
Beyond N = 8, superalgebra representations inevitably contain massless fields
with spin > 2, for which no consistent interactions exist. Note here that the
degrees of freedom for maximal supergravity are identically 256 in any

dimensions.

Not only in four-dimensional spacetime, but supergravity can also be



formulated in various spacetime dimensions up to eleven [30]. Ten- and eleven-
dimensional supergravities are remarkable since they respectively appear as
the low-energy effective theories of string and M-theories. Consequently, the
dynamics of the lowest-energy modes and vacua of these fundamental theories

can be described by classical solutions of supergravity.

Although fermions play an important role in determining the structure
of supergravity, they do not appear in classical backgrounds. Thus, classical
solutions of supergravity are bosonic configurations satisfying Euler-Lagrange field
equations with all fermionic fields vanishing. To obtain supersymmetric solutions,
we need a non-trivial configuration of ¢(z) for which both 6B(z) and 6. (x) vanish.
Since fermions disappear classically, the condition 6B(x) = 0 is trivially satisfied,

so we need to consider only the fermionic variations
0F () = fa(B(z))e(z) = 0. (2.2)

This condition gives us a set of Bogomol'nyi-Prasad-Sommerfield (BPS) equations
that are first-order differential equations involving bosonic fields and the spinors
e(x). Solving BPS equations typically requires the existence of Killing spinors
with ng real degrees of freedom where 0 < ng < ng, and ng, is a total amount
of supercharges for €¢(z). The resulting bosonic configurations are BPS solutions
preserving ng supercharges or (ng/ng,)-SUSY. If ng = ng,, BPS solutions are

maximally supersymmetric, while ng = 0 means the solutions completely break

SUSY.

Although possible, finding BPS solutions directly from supergravity in ten
or eleven dimensions is extremely complicated due to substantial free parameters.
Instead, we can examine lower-dimensional gauged supergravity, the theories with
gauged R-symmetry or any subgroup thereof, which is a consistent truncation of
ten- or eleven-dimensional supergravities. By consistent truncations, solutions to
lower-dimensional gauged supergravity are also solutions to the ten- or eleven-
dimensional theories. Some notable cases are maximal SO(5) (SO(8)) gauged

supergravity in seven (four) dimensions arising from a consistent truncation of
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eleven-dimensional supergravity on S* [25-27] (S” [23,24]) and five-dimensional
SO(6) gauged supergravity obtained from a truncation of type IIB theory on
S® [73]. Finding supersymmetric solutions from this approach is more convenient

and manageable.

In this chapter, relevant formulae involving bosonic Lagrangian and SUSY
transformations of fermions will be presented in order to find BPS solutions from
gauged supergravities in seven dimensions. We will start with an introduction of
matter-coupled N = 2 gauged supergravity in which the minimal N = 2 theory
is coupled to an arbitrary number of vector multiplets by following conventions
and notations used in [38,89,60]. After that, maximal gauged supergravity in the
embedding tensor formalism [63] will be reviewed. For readers who are unfamiliar
with general notations of GR and SM spinors, these building blocks are introduced

in Appendices A and B.

2.1 Matter-Coupled N = 2 Gauged Supergravity

There are two supergravity theories in seven-dimensional spacetime called
maximal (N = 4) and minimal (N = 2) supergravities that can be respectively
gauged by SO(5) [32,83] and SO(3) [34,85]. Matter-coupled N = 2 gauged
supergravity can be achieved by coupling the minimal theory to an arbitrary
number n of vector multiplets [38]. Among many viable gaugings, matter-coupled
SO(4) gauged supergravity [41] is particular interested since it mediates
the minimal SO(3) and the maximal SO(5) gauged theories. A truncation
procedure of the SO(5) gauged supergravity in order to get the SO(4) gauged
theory is given in [[/4] and reconsidered in Appendix El! Besides, vanishing of all

vector-multiplet fields gives rise to the minimal SO(3) gauged supergravity.

As a bridge delivering techniques of finding supersymmetric solutions from
the minimal SO(3) gauged theory to the maximal one, matter-coupled SO(4)
gauged supergravity is our main interest. Starting from an introduction of matter-

coupled N = 2 gauged supergravity, we finish this section with SO(4) gauging
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and the corresponding supersymmetric AdS7 critical points. These critical points
are, according to AdS/CFT correspondence, dual to N = (1,0) SCFTs in six

dimensions.

2.1.1 Bosonic Lagrangian and Fermionic SUSY Transformations

We first review the minimal SO(3) gauged supergravity in seven dimensions [34,35]

whose field content is given by

(e, 4, AL X, B, 0). (2.3)

«

They are the graviton ef, two gravitini 7,

A three vectors Al two spin-;

fields x®, a two-form field B,,, and a scalar field o called the dilaton in the
supergravity multiplet. Curved and flat seven-dimensional spacetime indices are
denoted by u, v and fi, U respectively. The indices 7,57 = 1,2,3 and o, = 1,2
label triplets and doublet of SO(3)r symmetry where the latter will be suppressed

for simplicity. The two-form field will be dualized to a three-form H which

pvps
admits a topological mass term leading to a massive deformation of the N = 2
supergravity. Note that this additional deformation is important for the gauged

supergravity to admit AdS; vacua [36,37].

Matter-coupled N = 2 gauged supergravity [38] is formulated by coupling

the minimal supergravity (@) to an arbitrary number n of vector multiplets:
(A A% 0")" (2.4)

in which r, s = 1, .., n. Each vector multiplet contains a vector field A, two gaugini
A%, and three scalar fields ¢*. From both supergravity and vector multiplets, there
are in total (3 + n) vector fields denoted collectively by Al = (A1, A7) where
I,J =1,..,(3+n) are SO(3,n) fundamental indices raised and lowered by the

SO(3,n) invariant tensor ny; = diag(— — — + ...4).

Totally, there are 3n scalar fields ¢ in the vector multiplets parameterizing

SO(3,n)/SO(3) x SO(n) coset manifold. They can be described through the
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following coset representative
L= (L/ L") (2.5)
together with its inverse
L = (L, L), (2.6)

The SO(3) and SO(n) indices, i, j and r, s, are raised and lowered by ¢;; and d,,

respectively. With these conventions, the following relations can be derived
Li'L';==6, L"L', =0, (2.7)

and

nrg = —L]iLJi —+ L[TLJT. (28)

Gaugings of matter-coupled N = 2 supergravity can be obtained by
promoting a subgroup Gy of the global symmetry R x SO(3,n) to be local.
If the gauging does not involve the R factor, the embedding of Gy in SO(3,n)
is represented by the SO(3,n) tensor f;,/* identified with the structure constants
of Gy through the gauge algebra

[Tr, Ty} = fr/" Tk (2.9)

where T} denote the gauge generators. In the embedding tensor formalism, fi,;* is
a component of the full embedding tensor, see [75] for more detail. For a consistent

gauging, preserving all of the original SUSY, f;,% must satisfy the conditions
frox = nxofrs™ = fir and fust fr™ =0. (2.10)

Bosonic Lagrangian for matter-coupled N = 2 gauged supergravity is given
in differential form language (see Appendix @ for a brief introduction) by
1 1, | 5
L= ER*l_ie CL]J*Fé)/\Fé) _56 2 *G(4)/\G(4) —g*da/\dc (2 11)

1 . ) 1
——=xP"AP" + —G iy ANwigy — ARGy AN Hisy — V % 1.
2 \/§ (4) (3) (4) (3)

With G4y = dH), the constant h describes the topological mass term for the
three-form Hs). The associated two-form field strength is defined as

1
Fly = dAly + 5 fax" Ay N AD). (2.12)



The scalar matrix a;; appearing in the kinetic term of vector fields is
ary=Li'Ly;+ L;"Ly,.
The Chern-Simons three-form satisfying dws) = F (12) AF (12) is given by
wizy = Floy NAfy — % fra ALy N ALy N Ak

The scalar potential is

1 . 1 42 30
V==-e(CrC, — ~C?) + 16h2e* — ihe%c
4 9 3
where C-functions are defined as
1 -
C=~ EfIJKLIiLJjLKkgwk7

) 1 ..
QY 4 _fIJKLIjLJkLKrg'ij’

V2
Crsi =7 fIJKLIrLJsLKi-

13

(2.13)

(2.14)

(2.15)

(2.16)

The kinetic term of the scalar fields ¢ is written in term of the following vielbein

Pl =L" (670, + frs" A]) Lk'.

(2.17)

The following field equations are derived from the bosonic Lagrangian (R.11])

1
O - d(eiQU * G(4)) + 8hG(4) - _F(IQ) A F(IQ),

V2

0 = D(BUCL[J * F(g)) — \/§G(4) A Fé) + *Pirf]JKLITLKi,
0 = D(xP")—=2e"L/'L;" % Flyy A F)y

1 . ) 30 .

— [ —=e77C73C, 41,e7F + 4\/§h620”’) 1,
<\/§ ¢

5

1
0 = Zd(>x<d<7) — §e”au * Fé) A Fé) +e 7% % Gy A Gy

1 | 1 ,
n [Ze_” (C”Cir - 502) L 2V2he ¥ O — 64h2e4"] %1,

5 1
0 = Ru = 10,00,0 —arse”’ (Ff F/'— —g,FLF/ ﬂff)

up= v 10 HY = po

ir LT 2 1 3
—P/P] — —guwV —

d 6 20

(2.18)

(2.19)

(2.20)

(2.21)

—e % (GW,AGVW — —gWGpa)\TGWAT) . (2.22)
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The last ingredients relevant for finding supersymmetric solutions are SUSY
transformations of fermions

?

V2 . 4 4,
0, = 2D,e— 30 ¢ 20,6 — ghGQ M€~ 55

1

e2 FZUJi (37,77 = 5y v, )e

om0 ﬁe“’Gpm(va"” +5777 e, (2:23)
oy = —%7“@0’6 + gegCe — 1—5662‘%6 — %egFﬁyaiV"”e

v 220
N = ify“Pﬁ’"aie — %egF;V’y“”e — %e;(ﬁ’"aie (2.25)

where o' are the usual Pauli matrices (@) Spacetime gamma matrices are
related to the Dirac gamma matrices v*, whose explicit forms are given in (@)7
by v* = egfy[‘. The two SO(3) and SO(n) two-form field strengths can be written
through the relations F; (iQ) = LIiF(]Z) and F| [2) = LITF(IQ). The covariant derivative
of the SUSY spinor parameter € is given by

ALY 1 oo
De=20 oyl s — O 2.26
€ =0p€+ 29 5€ + 2\@@“0 € (2.26)
where Q!, = \/455”"‘;@{]“ is defined in terms of the composite connection
QY = LY (670, + f1/NA)) L', (2.27)

2.1.2 SO(4) Gauging and Supersymmetric AdS; Critical Points

Matter-coupled SO(4) gauged supergravity is obtained when the minimal N = 2
supergravity in seven dimensions is coupling to three vector multiplets. In this
case, SO(4) gauge group is equivalent to a direct product between two SO(3)
symmetries, i.e. SO(4) ~ SO(3)gr x SO(3). The first SO(3) factor is the R-
symmetry identified by SU(2)g ~ SO(3)g, while the other one is the symmetry
under which the three vector multiplets transform. The corresponding structure

constants are separately given by

frik = (915ijk, —G2Erst) (2.28)

in which g; and gy are SO(3)g and SO(3) gauge coupling constants, respectively.
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In [B9], two supersymmetric AdS; vacua are discovered in matter-coupled
SO(4) gauged theory. These vacua are BPS solutions preserving full symmetry
and are the critical points of the scalar potential. Instead of the nine scalars in
SO(3,3)/S0O(3)r x SO(3) coset manifold, we can find the critical points from their
subsets that are invariant under some subgroup Hj of the full gauge symmetry
SO(4), as introduced in [76]. These subsets consist of all scalars that are singlet
under the unbroken subgroup Hy. All critical points found from this approach are

essentially critical points of the potential for the full scalars.

The metric on AdS; is given by
dsid& b= e2r/LAd57dJ:i5 + dr? (2.29)

where L 445, is a constant AdS; radius and dxi5 = Nndx™dz™, m,n = 0,1,..,5
is the flat metric on six-dimensional spacetime. In the limit r — oo, there exists
the conformal boundary, a six-dimensional Minkowski flat spacetime on which the
isometry group of the AdS7 acts as the conformal group. For r — —oo, there is a
coordinate singularity called the Poincaré horizon, as shown in Figure @ Using
the vielbein formalism introduced in Appendix @, one can find the Ricci scalar

R=—-42/ Lid& corresponding to the negative curvature of the AdS;.

r=-00 r=00

Figure 2.1: Tllustration of anti-de Sitter space given in the metric coordinate ( )
where the conformal boundary and the Poincaré horizon are located at r — oo

and r — —o0, respectively.!

'Martin Ammon and Johanna Erdmenger, Gauge/Gravity Duality Foundations

and Applications, (United Kingdom; Cambridge University Press., 2015) p. 74.
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The two AdS7 critical points have different symmetries; the full SO(4) one
and the diagonal subgroup SO(3)aing C SO(3)r x SO(3). Thus, they can be
simultaneously expressed by using an SO(3)giae singlet scalar ¢ corresponding to

the non-compact generator

Yo=Y+ Yoo + Va3 (2.30)
in which non-compact generators of SO(3,3) are

Yir = €iri3 + €rq3,- (2.31)
Here, e;; are GL(6,R) matrices defined by

(ers)xr = Orxr. (2.32)

Accordingly, the coset representative is
(= A (2.33)

The scalar potential for the dilaton o and the SO(3)aiag singlet scalar ¢ is directly

computed as

V= ie"’ [(gf + g2) (cosh(6¢) — 9 cosh(2¢)) + 8g1 g, sinh®(2¢)

32 (2.34)

+38 [g% — g7 + 64h%e> — 32e% h(gy cosh® ¢ + go sinh® qﬁ)} } :

The two supersymmetric AdS; critical points derived from this potential using

oV

Sy = %—Z = 0 condition. They are

(1) SO(4) critical point:

oc=¢=0, Vo = —240h%. (2.35)

(2) SO(3)diag critical point:
1 g3 1 g2 — 16h
—ln|—% _ |2 o
’ SH{gg—QSGhZ}’ ¢ 2n[g2+16h ’

24095/ 2
(g2 — 256h2)4/5"

(2.36)

V(]:—
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We have chosen ¢g; = 16h to make the dilaton vanish at the SO(4) critical point.
V is the value of the scalar potential at the critical point. These critical points

are maximally supersymmetric with Laqg, = 4 /’V—l(f’, and respectively correspond

to N = (1,0) SCFTs in six dimensions with SO(4) and SO(3) symmetries.

An RG flow solution interpolating between these two critical points has
already been studied in [39]. Instead of the AdS; space (), in this case, the

metric takes the more general form of a flat DW ansatz
dstyy = 62U(T)da:%,5 + dr® (2.37)

in which U(r) is a warp factor depending on the radial coordinate r. Moreover,
the dilaton o and the SO(3)aig singlet scalar ¢ also depend on r, in this case,

with all other fields still vanishing. Imposing the projection condition
Fle'= €, (2.38)

we can derive the following BPS equations from SUSY transformations of fermions

(> to () satisfying dv,, = 0, dx = 0, and d\" = 0 conditions

1 _s 4

U = —406_5_3¢ [g2(e** — 1) — g1 (e* + 1)°] + ghe%, (2.39)
1 o

o= ) - 1she), (20
1 o

O = e EE1)(gy gt P - ) (2.41)

where ' denote r-derivatives. Besides, the condition 61, = 0 provides the usual
solution for the Killing spinors

e=e2¢ (2.42)
with constant spinors €, satisfying v"¢y = ¢p. By defining a new radial coordinate
7 with % = e~ 2, the above BPS equations can be solved to obtain

1
U=3 20 — 0 —2In(2 — 2¢**) + 2In (g1 + g2 + (g1 — g2)€**)],  (2.43)

2 91926¢ 1
oc=2In|— : 9.44
5 { 8h (g1 + g2 + (92 — 91)e*?) (2:44)

= 2 _ 42 _ 1 — e?
BT _ tante? + |92 5 I tanh~! {e% / PTG 2, [—e] .(2.45)
2 97 92+ g1 2q1 1+ e?
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This is the RG flow connecting the SO(4) critical point () in the UV to another
SO(3)diag one (R.36) in the IR. As # — 400, we find 0 — 0 and ¢ — 0 with an
asymptotic behavior

—4r

o~ ¢~ et L efaast and U~ , with Lags, = —, (2.46)
L ags, 4h
since 7 ~ r near o ~ 0. For 7 — —o0, the solution behaves as
i 2 — 256h%)5
o~ etadst g~ etadst  and U ~ T , with Lags, = u (2.47)

AdS7 4h 92%

These critical points preserve AdS; isometry as well as all SUSY, while the whole
RG flow relating them breaks AdS; isometry and preserves only %—SUSY due
to the r-dependence of the scalar fields and the projector (R.3§), respectively.
Apart from this example, non-supersymmetric AdS; critical points and other RG
flows connecting the SO(4) critical point () to singularities in the IR are also

given in [39]. According to the usual holographic interpretation, these flows to

singularities should be dual to RG flows to SQFTs in six dimensions.

2.2 Maximal Gauged Supergravity

In this section, seven-dimensional N = 4 gauged supergravity is reviewed in
the embedding tensor formalism. Apart from the well-known SO(5) and non-
compact, SO(4,1) and SO(3,2), gauged theories [32, B3], there additionally
exist several gauge groups due to its irreducible embedding tensor in 15 and
40 representations of SL(5) global symmetry. After introducing all relevant
formulae, a large class of possible gauge groups for the maximal gauged theory,
together with their corresponding critical points, will be given. The complete
construction of the maximal seven-dimensional gauged supergravity can be found

in [63].
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2.2.1 Bosonic Lagrangian and Fermionic SUSY Transformations

In seven dimensions, the only N = 4 supermultiplet is the supergravity multiplet

with the following field content

<€ﬁ7 1/}27 AIJYN7 B/LVM; Xabc7 VMab)~ (248)

= A,WN], five

They are the graviton ef, four gravitini %, ten vectors AN
two-form fields B, s, sixteen spin—% fermions y?¢ = yl® and fourteen scalar
fields parametrizing SL(5)/USp(4) coset space Vy* = Vul®.  Lower and
upper M, N = 1,...,5 indices refer to the fundamental and anti-fundamental

representations, 5 and 5, of the global SL(5) symmetry.

Under the local USp(4) R-symmetry with fundamental indices a,b =1, ..., 4,
the gravitini transform as 4, while the spin—% fields x?*¢ transform as 16 and satisfy

the following conditions
yl2d =0, Qux® = 0. (2.49)
Here, Qg = Qjqp) is a USp(4) symplectic form obeying the properties
(Qap)* = QP Q,.0% = 5. (2.50)

Raising and lowering of the fundamental USp(4) indices by Q% and Qg are

associated to complex conjugation.

As seen from the field content (R.4§), all bosonic fields of the theory come
in representations of SL(5), while all fermionic fields come in representations
of USp(4). The objects mediating between them are the scalar fields described
through SL(5)/USp(4) coset representative V3" subject to the condition

Var®™Qap = 0. (2.51)

Besides, V,»™ will denote the inverse of V;%°. We then have the following relations

1
ViV ¥ = 6N and VMVt = sl — 7900 (2.52)
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Since USp(4) ~ SO(5), we can convert a pair of antisymmetric USp(4) indices to
an SO(5) one, A = 1,2,..,5 raised and lowered by 045, by using SO(5) gamma

matrices I'4 that satisfy
T ==Ta)"  QuTa)”=0,  (T)")" = Quca(T)™,  (2.53)
as well as the Clifford algebra
{T4, T} =254p1,. (2.54)

The coset representative of the form Vp% and the inverse V,,™ are then
respectively related to the SL(5)/SO(5) coset representative Vy* in the

fundamental representation of SO(5) and the inverse V4™ by the relations

1 1
Vu® = §VMA(FA)ab and V"' = §VAM(FA)ab~ (2.55)

In the embedding tensor formalism, the most general gaugings of the N =4
supergravity are encoded in a real embedding tensor, Oy, pY = O, p%. This
tensor identifies gauge group generators Xy n = XN for a gauge group Gy

among the SL(5) generators tM y satisfying t*,; = 0 by
Xy = Oun ptho. (2.56)

SUSY restricts the embedding tensor to 15 and 40 representations of the global
SL(5) symmetry. As a result, we can parameterize the embedding tensor in

terms of a symmetric matrix Yy and a tensor ZYNF with Yy = Yuw),

ZMNP — ZIMNLP “and ZIMN-PI = 0 so that
Xun,p® = Opn p® = 5&YN]P — 2ennprs 29 (2.57)

are the corresponding gauge group generators in the fundamental representation.
Moreover, the embedding tensor needs to satisfy the so-called quadratic constraint

to ensure that the gauge generators form a closed subalgebra of the SL(5)

YargZ9NF + 22y pgry 2N ZT0F = 0. (2.58)
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Therefore, admissible gauge groups can be classified by searching for the
embedding tensor Oy, p? in terms of Yy n and ZMN-P that satisfy the quadratic

constraint (2.5§).

Unlike the ungauged supergravity in which all three-form fields can be
dualized to two-forms, the field content of gauged supergravity can incorporate
massive two- and three-form fields. As in Table @, the degrees of freedom in
the vector and tensor fields of the ungauged theory will be redistributed among
massless and massive vector, two-form, and three-form fields after gauge fixing
where s = rank Z and t = rank Y. Therefore, different gaugings lead to different
field contents in the resulting gauged supergravity. It should be noted that
t + s <5 by the quadratic constraint ()

fields # # d.o.f
massless vectors | 10 — s 5
massless two-forms | 5 — s — ¢ 10
massive two-forms 5 15
massive self-dual three-forms t 10

Table 2.1: Distribution of the tensor fields’ degrees of freedom after gauge fixing.

In order to describe every tensor field in Table @ in a gauge covariant

framework, the following modified two- and three-forms are defined
]:(AQ/I)N = F(%N + gZ"F Boyp, (2.59)
Heyu = QYMNS(%[) + DB@ym
2
R
+€MNPQRA?{§D VAN (dA?l) + ggXST,UQAgl)] N A?f;) (260)
The non-abelian two-form field strength is

9
Fiy = dART + S (Xpa)s AL A AGS (2.61)

where ¢ is a gauge coupling constant and (XMN)PQRS = 2XMN7[P[R(SS]] are the

gauge group generators in 10 representation. These modified two- and three-forms
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satisfy the following deformed Bianchi’s identities

DFyY = gZMV U p, (2.62)

DH(g)M = €MNPQR]:(]§)P/\.F(%;E+QYMNQ(JX), (263)
with

YanGlh = Yauw | DS + F3 A Baye + 5279 Baye A Buyg

g
+—€PQRVWXST,UVA?{§D A Agf” A Afg A Aﬁg‘/

6
1
+§€pQRSTAé\1[fD A Ag? VAN dAEglj; (264)

being the covariant field strength of the three-form fields that always appear only

under the projection with Yy .

In terms of the modified two- and three-forms, bosonic Lagrangian of the
maximal gauged supergravity can be written as
1
— %
8
—MMN Heyu AN Heyn — Lyr—V x1. (2.65)

1
L= SR 1+ 2 DMy A DMMY = 2Myrp Mg = Fi§™ A FLS

Here, scalar fields are described by a unimodular symmetric matrix
Mun = Yy Vn " Qac (2.66)
together with its inverse
(Man) ™ = MMV =Y, MY, N Qe (2.67)

The explicit form of the vector-tensor Lagrangian Ly can be found in [63] while
the scalar potential is given by

g
64
+g2ZMN’PZQR’S (MMQMNRMPS — MMQMNPMRS) . (268)

Vv [2MMNYNPMPQYQM _ (MMNYMN)2:|

From the Lagrangian (), all bosonic Euler-Lagrange field equations can be
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1 2
- ZMMPMNQ(DMMMN)(DVMPQ) — 9wV

1 g,uw/—_-MNfPQpa)

—4Mpp Mo (]_—%N}—PQVp =

—ME (HWMH” ST

2
gWHW)\M”H,p ) , (2.69)

2
D*(Marp D MPN) — g—MPQMRN (2YrqYpPMm — YPoYrM)
——MPNHW,MHWPP - 8MMPMQR]-"PQ]-"RN“”

+55j§ (V + MspMorF,lFm + - MP HWPHWPQ>

+4g> Z9TF ZNES Mo (2 MrpMps — MTPMRS)

+4g> 29T ZE5N Mos(2Mpp Mgy — MrrMpar)

— 4268 70 7985 Moy (MyrMps — MypMags) , (2.70)
4D, (M p My FPam) — gXMNpQMQRD“MPR
le—lewmwwwﬂmm (2.71)

9
Dp (MMN’HP”VN) o 2gZNP’MMNQMpR.FQRuV

—28MNPQRMPSH“Vp5fZ%R +

1
—56716“"’))‘””.7:%1\[7{07&]\/, (2.72)

TRy NGN GV MNP . (2.73)

The fermionic SUSY transformations that are essential for finding

supersymmetric solutions read

508

abc

ox

1
DMEa — g’yﬂA?beCGC + —JT"%N("}/ ve 85”’}/ )VMadeeVNebeCE
1
—|—EHW)AM(%”‘”\ — —5”7”)9‘11’1} Mee, (2.74)

2chpﬂdeab,yu€e + gAg abCQdeEe

1

F2F N Qe [chvaei%bl — (05 — vl fthhdee]

1 1
_EHuupr}ﬂuypreM |:Qanbe€c — g(Qachf + 4Qc[aQb}f)€€:| . (275)

The covariant derivative of the SUSY parameters is defined by

1 ..
D, e = 0,¢e" + Zwul”’%,sea — Qe (2.76)
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The composite connection @Q,, ,” and the vielbein P, on the SL(5)/SO(5) coset

are obtained from
P,uade -+ 2Q#[a[c5gj] = abM(auVMCd — gAiQXPQ,MNVNCd). (277)
The fermion shift matrices, A; and A,, are

1 /1 1
A% = —BQab+—oab), 2.78

1 1 1 4
Ad,abC: QeCQfd C«abe _ Babe - Cachd _Qabc«cd _Qc[ac«b]d 2.79
ot | cny = 5 4 J(Cee s oot Sadecth (210

where B and C tensors are functions of the scalar fields

V2

B = ?Q“CdeYab,cd, (2.80)

1 1
By = V2 {Q“Q”fégg— = (02 = ZQachd)Qenghl Yorgn,  (2.81)
C® = 80 2N (2.82)
C%y = 8(—QueQupdlh + Q050 Qpp) ZD10M (2.83)

in which “dressed” components of the embedding tensor are defined by

Yaped = V"'V Yun, 29 = /20, PVVped Qg 21N (2.84)

2.2.2 Gauge Fixing and Supersymmetric Critical Points

The maximal N = 4 supergravity in seven dimensions can be gauged by gauge
groups of the form C'SO(p, q,5—p—q) and CSO(p,q,4 — p — q) corresponding to
the embedding tensor in 15 and 40 representations of the global symmetry SL(5).
These gauged supergravities can be embedded respectively in eleven-dimensional
and type IIB supergravities. Besides, from the embedding tensor with both 15 and
40 representations non-vanishing, non-semisimple SO(2,1) x R* and SO(2) x R*

gauge groups are considered.

2.2.2.1 Gaugings in 15 Representation

We begin with the maximal theory gauged in 15 representation. In this case,

ZMN.P — () makes the quadratic constraint () identically satisfied. The SL(5)
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symmetry can be applied to diagonalize Y3,y to be

Yarn = diag(1,..,1,-1,..,—1,0, .., 0). (2.85)
S~ ——— ?v—/
p q —pP—q

Therefore, the corresponding gauge group generators take the form
(Xaw)p®? = 03, Yip, (2.86)
and give rise to the gauge group
Go = CSO(p,q,5—p—q) = SO(p,q) x RPTIG-P=a), (2.87)

Among many possible gauge groups, SO(5) and C'SO(4,0,1) gauged theories
are remarkable since they are obtained respectively from consistent truncations
of eleven-dimensional supergravity on S* [25-27] and type ITA theory on S3
[77].  As shown in [64], using the framework of exceptional field theory, these
CSO(p,q,5—p—q) gauged theories can be obtained from a consistent truncation
of eleven-dimensional supergravity on a non-compact manifold HP? o TG-P=4),
This manifold is a product of a (p + ¢ — 1)-dimensional hyperbolic space and a
(5 — p — g)-dimensional torus. Unfortunately, their complete truncation ansatze

have not been constructed to date.

From (), the scalar potential in this case reads

2
V= % 2MYMN Yy p MPY g — (MMNY0)?) . (2.88)

This potential admits two AdS; critical points when the theory is gauged by SO(5)
gauge group [33]. However, only one of them preserves N = 4 supersymmetry and

should be AdS/CFT dual to N = (2,0) SCFT in six dimensions. For C'SO(2,0, 3)

gauge group, the scalar potential (R.8§) is vanishing; hence the theory admits a

critical point related to a Minkowski vacuum, as pointed out in [63].

2.2.2.2 Gaugings in 40 Representation

For gaugings in 40 representation with Y3;ny = 0, the quadratic constraint ()
is reduced to

€MRSTUZRS’NZTU’P = 0. (289)
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This constraint can be solved by

ZMNP — gy [M o, NIP (2.90)

MN MN

where w = w™N) and v™ being a five-dimensional vector. We also use the
SL(5) symmetry to fix vM = 62, thus, the SL(5) index splits as M = (i,5). By

setting w® = w® = 0, the remaining SL(4) symmetry can be used to diagonalize

w" to be
’LUU :diag(la"717_17"7_1707"70)‘ (291)
N~ N—— 4\\/"
P q —pP—q

The resulting gauge group generators then take the form
(Xip)e' = 2€ijpmuw™ (2.92)

and generate C'SO(p,q,4 — p — q) gauge groups. In analogy to the discussion of
the last section, C'SO(p, q,4— p —q) gauged theory is related to a reduction of the
type IIB theory over a non-compact manifold H?? o T*~?=9_ This procedure has
been examined in [65] along with a partial result on the corresponding truncation

ansatze.

To compute the scalar potential for these gaugings, we decompose the

SL(5)/SO(5) coset representative as
Y = it Petoto, (2.93)

Here, V is the SL(4)/SO(4) coset representative and to, ¥ refer to SO(1,1) and
four nilpotent generators, respectively, in the decomposition SL(5) — SL(4) x

SO(1,1). For the unimodular matrix My, this yields a block decomposition

M 6_2¢0Mij + e8¢0 €8¢Obi (2 94)
M e8é0p, B0 '

with M;; = VVT and M being the inverse of M;;. From (), we can compute

the scalar potential of the form

2 N 2 — L~ ) —~ -
V = L et Ty + et (20,0 My — (M) . (295



27

The presence of the dilaton prefactor e?® shows that this potential does not admit
any critical points with non-vanishing potential. In particular, the potential ()
of the C'SO(2,0,2) theory admits a critical point with vanishing potential. This
critical point is also Minkowski vacuum as in the C'SO(2, 0, 3) theory from gaugings

in 15 representation.

2.2.2.3 Gaugings in 15 and 40 Representations

For non-vanishing components of the embedding tensor in both 15 and 40
representations, we choose an appropriate basis such that the embedding tensor’s

components are given by

Y,

Ty

ZraB Zx(a,ﬂ)’ 2057’77 (296)

in which = 1,...,t and o = t +1,...,5 for t = rank Y. On the other hand,
the SL(5) index splits into M = (x,«). In terms of these components of the
embedding tensor, the quadratic constraint () reads

Yy Z9%P + 28 spinp 2V N 7P = 0. (2.97)

With Y, choosen to be

Y,, = diag(1,..,1, -1, .., —1), (2.98)
S~ Y——
p q

there exist real solutions for the embedding tensors that satisfy the quadratic
constraint () for SO(2,1) x R* and SO(2) x R?* gauge groups. Note that the
later can be obtained from Scherk-Schwarz reduction [[7§] of the maximal gauged

supergravity in eight dimensions [79].

(1) SO(2,1) x R* gauge group
We begin with the ¢ = 3 case in which Y,, = diag(1,1,£1). In this case,

the component Z*?7 is not constrained by the quadratic constraint ()
Therefore, we can set it to zero, then () becomes

1
Eay2 2V €5 779P = gymzwﬁ (2.99)
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which suggests that the (2 x 2) matrices (%), = —16€4,2%7 satisfy the
algebra
[C7, ¢¥] = 2e™"Y,. (2.100)

In terms of (%, the embedding tensor’s component Z**? takes the form

1
778 — —1—66M(gw)ﬁ. (2.101)

As pointed out in [63], there exists a real non-vanishing solution for Z%®#
when Y;, generates a non-compact SO(2,1) gauge group. In this case, we
use Y, = diag(1,1 — 1) together with the following explicit form for (¥ in

terms of Pauli matrices,
<o, =0y ¢ =ioy. (2.102)

Therefore, the corresponding gauge generators are given by

XuN = ) QY (2.103)

Oax3 %/\z@z)aﬁ
with A* € R. Note here that the SO(2,1) subgroup is embedded diagonally
in these gauge generators. The nilpotent generators Qé‘*)" transform as 4
under SO(2,1). Therefore, the resulting gauge group is SO(2,1) x R*.

None of the theories in this sector possesses a critical point from its scalar

potential.

SO(2) x R* gauge group

In this case, we consider ¢t = 2 together with Y;, = diag(1,1). Only the
non-vanishing component Z°*7 is allowed by the quadratic constraint. This
component can be parametrized by a (3 x 3) traceless matrix Z,’ with
Z," =0,

VA éeaﬁfszg. (2.104)

The corresponding gauge generators are then given by

Ma? Q.
XN = @ (2.105)
O3><2 /\Zaﬁ
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with A € R. Here, t,Y = ioy generates the SO(2) compact subgroup while
Q." € R generally generate six translations RS resulting in SO(2) x R® gauge
glroup.H It can be checked that the scalar potential vanishes identically in
this case. Furthermore, as pointed out in [63], the number of independent

translations is reduced if there exist non-trivial solutions for () satisfying
1Q—QZ=0. (2.106)

We are interested in the compact case with TrZ? = —2 in which half of
the supersymmetry (N = 2) is preserved and the gauge group is reduced to
SO(2)x R ~ CSO(2,0,2). Unlike in CSO(2,0,3) and CSO(2,0,2) gauged
theories separatly obtained from gaugings in 15 and 40 representations, the

Minkowski critical point in this case is half-supersymmetric.

We finish this chapter by listing a large class of admissible gauge groups
of the maximal gauged supergravity that will be examined in this work together
with their critical points in Table @ Explicit forms of these critical points will be
given in Section where supersymmetric DW solutions of the maximal gauged

supergravity are considered.

“By using Y,, = diag(1l, —1) corresponding to ¢,¥ = o1, SO(1,1) x R® gauge group is
also accepted. However, we are not interested in this case since the non-semisimple SO(1, 1) x R®

admits no compact unbroken symmetry.
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Yun ZB ZraB gauge group | critical points | SUSY
(+++++) - - SO(5) 2 AdS; 4,0
(++++-) - > SO(4,1) -

(+++-—-) - - S0O(3,2) -
(++++ 0) - / CSO(4,0,1) -
(+++—-0) - / CSO(3,1,1) -
(++——0) - 2 CS0(2,2,1) -
(+4++00) - X C'S0(3,0,2) -
(++—-00) - . CS0(2,1,2) -
(++-00) - Leve(z=) 71 SO(2,1) x R -
(++ 000) - - CS0(2,0,3) M kwy 0
(+— 000) - - CSO(1,1,3) -
(++ 000) | 2e2Z5 - SO(2) x R* M kwr 2
(+0000) - - CSO(1,0,4) -
(00000) | vlowh - CSO(p,q,r) Mkw, 0
(p+q+r=4) (p=2=r)

Table 2.2: Gaugings of the maximal gauged supergravity examined in this work.



CHAPTER III

SUPERSYMMETRIC SOLUTIONS OF MATTER-
COUPLED SO(4) GAUGED SUPERGRAVITY

In this chapter, we enlarge the study of the AdS;/CFTg correspondence with
sixteen supercharges. In this case, the AdS; background is dual to an N = (1,0)
SCFT in six dimensions. In many aspects, six-dimensional SCFTs with N = (1,0)
supersymmetry are interesting. It has been pointed out in [80] that the theories
admit non-trivial RG fixed points. Moreover, the dynamics of these field theories

also arises from string theory [81], see also a review in [82].

In the holographic study of the above N = (1,0) SCFTs, the half-maximal
N = 2 gauged supergravity in seven dimensions coupled to vector multiplets,
reviewed in Section @, is examined. Especially in the remarkable case of SO(4)
gauge group, supersymmetric AdS; critical points with SO(4) and SO(3)diag
symmetries together with analytic RG flows interpolating between them have been
completely studied in [39]. Holographic description for twisted compactifications
of six-dimensional N = (1,0) SCFTs on two- and three-manifolds, %% and 33, has
been considered in [60]. The corresponding supergravity solutions take the form
of AdSs x ¥ and AdS, x 33, respectively. These twisted solutions interpolating
between the AdS; vacua and AdSs or AdS, geometries should describe RG flows
across dimensions from six-dimensional N = (1,0) SCFTs to SCFTs in four and

three dimensions.

With these studies, supersymmetric solutions of the SO(4) gauged
supergravity seem to be complete. However, the massive self-dual three-form H s
does not involve in these solutions. In this chapter, the solutions studied in [39]

and [60] are respectively generalized by including a non-vanishing three-form.
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3.1 Charged Domain Wall Solutions

For the pure N = 2 gauged supergravity in seven dimensions, supersymmetric
solutions with all bosonic fields, including the three-form and vector fields, non-
vanishing have appeared recently in [62] along with their embedding in M-theory
by using the result of [83]. Without the SU(2) gauge fields, the solution has also
been uplifted to massive type IIA theory in [84] in which the solution is interpreted
as a two-dimensional conformal defect in a six-dimensional N = (1,0) SCFT. The
principal method to include the massive self-dual three-form into their solutions
is using the AdS3 x S®-sliced DW ansatz instead of the usual flat one () In
this geometry, dyonic profiles of the three-form potential are required in order to

support non-vanishing curvature of the background.

In the following analysis, we will find supersymmetric solutions with non-
vanishing self-dual three-form, called “charged” DWs, from the matter-coupled
SO(4) gauged supergravity. The solutions could be uplifted to eleven-dimensional

supergravity by truncation ansatze constructed in [74].

3.1.1 Solutions Flowing between AdS; Vacua

We start with supersymmetric solutions involving only the seven-dimensional
metric, the dilaton o, the SO(3)gi, singlet scalar ¢, and the self-dual three-form
H ). In this case, the SO(3)qiag singlet corresponding to the coset representative
() is chosen in order to find charged DW solutions interpolating between the

two AdS; vacua.

Following [62], we take the metric ansatz to be an AdS3 x S3-sliced DW
ds* = er(’”)als?M,/S3 + 2V dr? 4 W g5, (3.1)
with the metrics on AdS3 and S* given by

1
dshgs, = - [(dz")? + cosh® 2" (d2®)? — (dt — sinh ' dz?)?] | (3.2)
T
1
dsts = — [(df2)* + cos® Ox(db3)* + (dby + sin O2db3)?] (3.3)

2

X
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where 7 and k are constants. The seven-dimensional spacetime coordinates are
taken to be z# = (2% r,2™) with a = 0,1,2 and m = 4,5,6. We always use
2° = t, while 2> = r is chosen in this section. The S® part is described by
Hopf coordinates ™ = (61,60s,603). The corresponding flat spacetime indices are
denoted by fi = (&,3,7). In the limit 7 — 0 and x — 0, the AdS; and S® become
Minkowski space Mkws and flat space R3, respectively.

With the vielbeins on AdS; and S? of the form

" = %(dt — sinh z'dz?), (3.4)

el = %(cos tdr* — sint cosh z'dx?), (3.5)

e = %(Sin tdx" + cost cosh z'dx?) (3.6)
and

e = %(d@l + sin B5dbs), (3.7)

& = %(cos 01dfy — sin 0; cos O5dbs), (3.8)

S = %(sin 01d0y + cos 01 cos Odbs), (3.9)

the corresponding spin connections take a simple form

s AN
a o —Virn 10 1602y o
wa'y = e U, Wate = € Eaber (3.10)

) K
m -V / -W

Wi 3 = (& W s (JJmeﬁ = 56 87?”3;6 (311)

G e 013 _ 3% _
with €515 = —€7° = g455 = e™° = L.

As in the usual DW solutions, the scalar fields o and ¢ are functions of only

the radial coordinate r, while the ansatz for the three-form field is taken to be
H(g) = k(T)VOlAdS3 + Z(T’)Volsa‘. (3‘12)

With the metrics given in (@) and (@), the volume forms on AdS3 and S® are

respectively given by

1 1
Volags, = = cosh ztdzt Adx* Adx® and  Volgs = = cos Oadfy Ndby AdBs. (3.13)
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For Killing spinors, the ansatz corresponding to the unbroken SUSY takes
the form of
e=Y(r) [cos 0(r)1s + sin 9(1”)7612 €0 (3.14)
with the constant spinors ¢ satisfying the projection condition

Veo = €. (3.15)

Y (r) and 6(r) are functions of r to be determined.

To find supersymmetric solutions, we consider BPS equations obtained from

SUSY transformations of fermionic fields given in () to () Using the
Killing spinors () and the projection (), we find two equations from J\" = 0

conditions

‘ / 1 e

P! cos200" — —e 2C"0" = 0, 3.16
; % (316
P & 1 = \

Pflo' — —=e 2C" cos200" = 0. (3.17)

V2

Compatibility between these equations needs cos(20) = %1 leading to sinf = 0
or cosf = 0. Up to a redefinition of ¢y to €y = ’yﬁiéeo and a sign change in the
projection condition (), the two choices give equivalent BPS equations. For
definiteness, we will choose § = 0. This leads to a simpler form of the Killing
spinors

e =Y (r)e, (3.18)

and the BPS equation for general scalars from the vector multiples

o 1 o
Pjlo' — —=e 2C"0" = 0. (3.19)

V2

This BPS equation is the same as that obtained in the usual flat DW solutions [39],
which means the three-form field does not directly couple to scalars from the vector
multiplets. Therefore, for more general cases, including more scalars invariant
under smaller residual symmetries, similar solutions can be found in the same
way as this SO(3)giae case. Using the coset representative (), we can readily
compute Pff and C for the SO(3)giag singlet ¢. The resulting BPS equation is
given by

¢ = —e" "3 (gy cosh ¢ + g5 sinh ¢) cosh ¢ sinh ¢) . (3.20)
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We now consider dxy = 0 equation. This condition involves a contribution

from the three-form field of the form G, ,,7*"??¢. Using the relation sdi)é'yai)évé =

—EmapY™ derived from the identity (@), we find

1
ZGMVPU’YMVPUE — (l/e—V—SW o k/e—V—3U>7012€ ) (3.21)

Since there is no other term contributing ,Yéié matrix in the dx variation, this term

must vanish by itself. This can be achieved by setting
Ke™3U =1e™3W (3.22)
which leads to the following BPS equation for o

2 [ed
o = gev‘f [gl cosh® ¢ + g, sinh® ¢ — 16he%"} ) (3.23)

We then move on to the BPS equations from 61, = 0 conditions. After
using the 73 projection () and the three-form ansatz () in the conditions
0, = 0 and v, = 0, we find two types of terms with 7012 and 1g. The former

gives the BPS equations for k and [

k/ — L 2U+o+V l/ — i 2W+o+V (324)

\/56 - \/56

while the latter gives rise to the corresponding BPS equations for U and W
1 o
U=WwW = gev_5 4he2” + g1 cosh® ¢ + go sinh® ¢ | . (3.25)

The last equation implies that U = W + C; for a constant C;. In order to find
solutions interpolating between AdS7 vacua, we require that the solutions are
asymptotically locally AdS; at which U = W. This condition requires C; = 0.
Imposing U = W in equation (), we obtain k' =" or k =1+ C, for a
constant Cs. This constant can be set to zero by a suitable redefinition of k£ and

[. We will accordingly set &£ = [. With all these, the BPS equations in () give
T=K. (3.26)
We eventually end up with the BPS equations for U and k in the form of

1 g
U= zeVE [4he%ff + g1 cosh® ¢ + gy sinh’ ng] , (3.27)

k/ _ i€2U+U+V ) (328)

V2
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It should be noted that the contribution from Hs is canceled by the spin
connections on AdS; and S®. Therefore, for non-vanishing H3) and k = [, there
can be no background with Mkws; and R®. This result entirely agrees with
the solution considered in [62] but without the scalar from vector multiplets.
Moreover, it can also be easily checked that any solutions to the above BPS
equations solve all the field equations () to ()

We finally consider the equation from d13 = 0 condition. This gives the
BPS equation for Y (r)

1

Y = YU (3.29)

which can be solved by a solution Y ~ 3.
We are now ready to solve all of the BPS equations. To find an analytic
solution, we first choose a function V(r) = §. This is equivalent to changing to a
dF

new radial coordinate 7 defined by the relation & = ¢~2 in [39]. After choosing

V(r) = §, we obtain the solution for ()

2
g1gor = g— Infgs — g1 — (¢ +gg)62¢] —g1In(1+ 62¢) — g2 In(1— 62¢) (3.30)

in which an integration constant has been neglected.

By treating U, o, and k as functions of ¢, we find the solution of equations

(B.29), (B.27), and (B.2d)

2 9192
= 3! 31
i 5 [16h(91 sinh ¢ + g cosh gb)} ’ (3.31)
1 1 1 1
U = _(b — =0 — — ln(e4¢ — 1) + - ln[92 — g1 — (gl + 92)€2¢], (332)
4 8 4 4
T |91 , 92
k = ——|=— 4 =+ 2coth(2 333
4 [92 9 ( (b)} (3.33)

in which irrelevant integration constants in U and k have been removed. However,
the integration constant in o is essential and has been chosen such that the solution
for o interpolates between the two supersymmetric AdS; critical points, see [39]
for more detail.

As r — +o0, the solution is asymptotic to the AdS; critical points with

U ~ 4hr, o~ ¢n~0, G()iéé ~ GSZLB(% ~ 0 (3.34)
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for r — oo, and

2 5 2
Urdh ( 7 —92256h2) hoooor %m [gg —92256h2] ’
¢~ %111 [gz;—igﬂ » Goizg ~ Gagsg ~ 0 (3.35)
for r — —oo. In these equations, we have set g; = 16h. It should be pointed out
that the four-form field strength does not indeed vanish in these limits, as can be
seen from the BPS equation () Moreover, the existence of H(sz) is needed in
order to support the AdSs and S® factors, as mentioned above. However, its effect

in the limit » — 400 is highly suppressed compared to the scalar potential. The

solution is then asymptotically locally AdS; as r — +oo.

3.1.2 Solutions with Known Higher Dimensional Origin

For a particular case of g, = g1, solutions of the N = 2, SO(4) gauged supergravity

can be uplifted to eleven dimensions. Setting g» = g1, we find the BPS equations

gb, = —ev_%_d)gl COSh QS Sinh QS, (336)
2 o

o = 56V_§ [91 cosh® ¢ — gy sinh® ¢ — 16hegg] ’ (3:37)
1 o 5

U = z¢""% |gicosh’ ¢ — gy sinh® ¢ + 4hei? | (3.38)

o= [ putetv (3.39)

V2

As seen from the ¢’ equation, there is only one supersymmetric AdS; background
at ¢ = 0. The solutions interpolating between this AdS; and physically acceptable
singular geometries dual to SQFTs in the case of k = 0 have already been studied
in [74]. In this section, we will give a solution with a non-vanishing three-form.
This solution can be found by the analysis similar to the previous section. The

resulting solution is given by

gir = 2tanh™'e? —2tan"'e?, (3.40)
2 2
o = gqﬁ - In [1—12Co(e** — 1)], (3.41)
11 1
U = —¢—-In(e** — 1)+ —In[l — 12Cy(e** — 1)), (3.42)

5 4 20
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1
7o R\ [T 120,(e® — 1)
b= (29_9%) \/ ol =Y (3.43)

It can be seen from () that ¢ — —oo as r — 0. Hence, the solution is

and

singular at this point. The integration constant Cy controls the behavior near the
singularity, see [[74] for more detail.

For Cy = 0, the solution near r = 0 becomes

2
¢ ~ —In(4hr), o~ - In(4hr), k ~ e 2 ~ (4hr)?,

1

ds? = (4hr)? (dshyg, + dsis) + (4hr) " 5dr? (3.44)
in which we have set g; = 16h. For Cy # 0, we find

6
¢ ~ —In(4hr), oh-Ns In(4hr), k ~ constant,

ds? = (4hr)T (ds? g, + dss) + (4hr)3dr?. (3.45)

As pointed out in [[74], all of these singularities are curvature singularities that are
physically acceptable since the scalar potential is bounded from above, V. — —o0,

as required by the criterion in [85].Ei

In this case, the solution can be embedded in eleven dimensions by using the
reduction ansatz given in Appendix @ The nine scalars from vector multiplets
can be equivalently described by SL(4,R)/SO(4) coset due to the isomorphism
SL(4,R) ~ SO(3,3). For the SO(3)aiag singlet scalar, we find the SL(4,R)/SO(4)

coset representative

¢ @
2 2
) )

V. = diag(e2,e2,e2,e"2) (3.46)

which gives a symmetric (4 x 4) matrix with unit determinant
Top = diag(e?, e, e?, e73%) = (8,4¢%, ¢ 73%). (3.47)

Here, we use i with p, ¢ = 1,2, 3 to denote coordinates on the internal S? obeying

P[P = 1 together with the S? coordinates u® = (cosjiP,sin ) with o = 1,2, 3,4

“In [85], it has been shown that in order for a curvature singularity in geometries of the
DW to have an event horizon, the scalar potential should be bounded from above in the solution.
This criterion is a useful rule for distinguishing good singularities from bad (unphysical) ones

that break the cosmic censorship principle and cannot be applied to the holographic principle.
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satisfying pu“u® = 1.
With all these and the seven-dimensional fields given previously, we obtain

the eleven-dimensional metric

d§fl — A3 [62U (dsids3 + ds?;g) + e2vd7“2]

1
+32h2 A~Ge 20 [00825 + €57 sin? £(e™? cos? ) + €3¢ sin? ¢)] de?
_2 g 2 3 2 —¢ 2 2 2 - 2 2
+128h2A 5€2 COS f[(e ?cos? ) + e ?sin? €)dy? + e ¢ cos wdQQ]
1 o
+3 WA—%ea sin € sin v cos (e — e)dedup (3.48)

with the warped factor given by
A = e 2 cos? (e cos? 1 + e P sin? ) + 2 sin? €, (3.49)

and the metric on a unit two-sphere can be written as dQ23 = dfiPdji’. Note that
the S? in the internal S® is unchanged. Its isometry corresponds to the S O(3) diag

unbroken symmetry.

The four-form field strength of eleven-dimensional supergravity is given by

Fugy = sin{x@k’(dr A Vol ags, + dr A Volgs)

2
—%6_2" cos Ek'e ™V (Vol gqg, + Volgs) A d€

1
—l—WA’QU cos® € cos® hdE A dip A €(2)

1 9 345 . 4 2 ¢ 2 / 3) /
+(8h)3A e2? sin & cos™ £ cos” [e cos“Y | ¢ 50

—e3?sin? 1) (ga + 3¢’)} dr A dy A ey

1
COE A% cos? € cos® 1) sin 1) Héle%"’ cos® & + e27(e? + 3e*3¢)] ¢’

—g sin? §e%”(e¢ - e3¢)a’] dr N d& N € (3.50)

where €(g) = %z—:pqsﬂpdﬂq Adji® is the volume form on S?. In this equation, we have

also used €p4s4 = €p¢s- The scalar function ¢ is given by

U = sin®€(e’ — 3127 — ¢29739) _ cos® ¢ [e%”(e¢ cos® Y + e 3¢ sin? 1))

+e77(e*? cos® ¢ + 3e*? sin? b + e 2 cos? 1 — e~ %% sin? w)] . (3.51)
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Similar to the discussion in [62], we expect the uplifted solution to express
eleven-dimensional configurations involving M2-Mb5-brane bound states due to the
dyonic profile of H(s). It is also interesting to consider the (00)-component of the

eleven-dimensional metric

1
Joo = —?A%GQU(T) . (3.52)

Near the singularity at » = 0, we find that
Goo ~ (4hr)TE =0 and oo ~ (4hr)® — 0 (3.53)

for Cy = 0 and Cy # 0, respectively. According to the criterion of [86], these
singularities are physical in agreement with the seven-dimensional results obtained
from the criterion of [85]. We then expect that the solution holographically
describes a two-dimensional conformal defect in a six-dimensional N = (1,0)

SCFT with known M-theory origin.

3.1.3 Domain Walls with Three-Form Potential and Vector Fields

In this section, we consider more general solutions with non-vanishing vector fields.
We first determine an appropriate ansatz for the SO(4) ~ SO(3) x SO(3) gauge
fields. As in [62], we will take this ansatz in the form of

Alyy = Aldb; (3.54)

in which the components A! will be functions of only the radial coordinate 7.
These components are given by

e Wk . e Wk

5 A(r)o; and Aj = 5 B(r)ér . (3.55)

A =

It is now straightforward to compute the field strength tensors F; ("2) =L (12) and

F (2) = L ITF([Q). Non-vanishing components of these tensors are given by

ng =f 5;'., F;’k =g ijk, Fy, =f07, Fj, = & 0] ciji (3.56)
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where
f = e_V_Wg [A’ cosh ¢ + B’ sinh ¢], (3.57)
f = e_V_Wg [A’sinh ¢ + B’ cosh @], (3.58)
g = e—W%Q [A(2 — g1A) cosh ¢ + B(2 — g B) sinh ¢] (3.59)
g = 6_2W%2 [A(2 — g1A)sinh ¢ + B(2 — g2 B) cosh ¢] . (3.60)

To implement SO(3)giag, We set
$2B =g A. (3.61)

We still use the ansatz for the Killing spinors () together with the
projection () Besides, the following additional projectors are needed due to

the extra contributions from non-vanishing gauge fields,

vBe = —io®e and %% = —ic'e. (3.62)

Therefore, the BPS solutions (if exist) will preserve only two supercharges or

%—BPS after imposing the projection ()
With all these, we can now set up the BPS equations. By the relation (),

the composite connection along S takes a very simple form

Qijk = Wit3,j4+3k+3 (3.63)

in which w;i3 ;1343 is the spin connection given in () Using the same

procedure as in the previous section, we find the following set of BPS equations

v
U = m [(12he* + e 2C) (3cos 46 — 1) + 9e2g(cos 40 — 3)

+12¢7 Y7 sin 20 4+ 9¢~ "V k(g1 A — 1) sin46)] , (3.64)

v

w' = —m [(12he* + e 2C) (cos40 — 2) + 3e2g(cos 46 — 8)

+9¢ Y 75sin 260 + 3¢ "V k(g1 A — 1)sin46] (3.65)

v
Y ag (o

Y = m [(12he* 4+ e 2C) (3cos 40 — 1) + 9e2g(cos 46 — 3)

+12¢ U7sin 20 + 9¢ " k(g1 A — 1)sin46] (3.66)
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v
0 = % [— (4/162” + e*%C’) sin 20 — 3e2gsin 20 + 3¢ Ut
+3e k(g1 A — 1) cos26] (3.67)
, 63U+V6<7 ) " "
K = 2|12he”™ + e 2(C'| tan 20 + 18e>gtan 20
I | :
—6e Ursec20 — 9e k(g1 A —1)], (3.68)
1
' = —=*Ve [e7Yr — 8he sin 26] (3.69)
\/5 ;
v
o = m [Ce™2(3cos40 — 1) — 24he (cos 460 + 3) + 12¢ Y7 sin 20
+9e2g(cos4f — 3) +9¢ V(g1 A — 1) sin 46] (3.70)
¢ = —ev [6_%6 + e%g] cos 20, (3.71)
292€V+W—% — Y ‘
A = — 20 260
3r(gy sinh 6 — g coshi o) [C’e 2 sin 20 + 3ezgsin
—3 e U1+ e Wk(g1A — 1) cos 26]] (3.72)

where the quantities C' and C are defined by

C = 3(gicosh®$+ gosinh’¢) , (3.73)

= % sinh(2¢) (g; cosh ¢ 4 go sinh ¢) . (3.74)

In addition to these BPS equations, there also exists an algebraic constraint
arising from the fact that the SUSY transformations from the gravity multiplet
(0%, and dx) and those from the vector multiplets (6A") lead to different BPS
equations for A. Consistency between these two equations results in a constraint

s . e’ g1sinh ¢ 4 gacosh ¢ , _ _
0 = 20 || —C 7
e? sin [( 3 +g)+glcosh¢+g2sinh¢(e C+g)

+e k(1 — g1A)cos20 —e V. (3.75)

This means supersymmetric solutions must satisfy the above BPS equations as well
as the constraint () in order for the Killing spinors to exist. We have explicitly
verified that the BPS equations () to (), together with the constraint
(), imply all of the field equations.

However, it turns out that the constraint () is not compatible with the
BPS equations () to () This can be readily checked by differentiating

equation () and substituting the BPS equations () to () The result
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is given by

2¢75 (g5 — g1)d'f
(g1 cosh ¢ + g sinh ¢)(g; sinh ¢ + g cosh @)

0=e 2K (3.76)

This equation implies that ¢ and k£ cannot flow independently but relate to each
other. Note that this relation is trivially satisfied for A = 0 in which f=g = 0.
This case has already been considered in the previous section. Another possibility
is to set k¥ = 0 and go = g1, but this also leads to I’ = 0. The three-form
field then has vanishing field strength. In this case, the gauge fields are either
zero or constant. The former is the usual flat DW solutions in [39], while the
latter has already been studied in [60] in the context of twisted compactifications.
Therefore, we conclude that there are no supersymmetric solutions with non-
vanishing SO(3)4iag gauge fields and non-trivial three-form field for matter-coupled

SO(4) gauged supergravity in seven dimensions.

3.2 Twisted Solutions with Three-Form Potential

In this section, we are interested in supersymmetric AdSs x M* solutions. We will
consider a four-manifold M* with constant curvature of two types, a product of two
Riemann surfaces Y2 x ¥2 and a Kahler four-cycle K*. In general, non-vanishing
spin connections on these curved internal spaces are the significant impediments
breaking all SUSY. This problem can be seen explicitly by looking at the covariant
derivative of the SUSY parameter () in the SUSY transformations of gravitini
() for the component along the internal space

| 1 o
Doe = 0p€ + —wo" 56 + —=Q0'€ (3.77)

4 22

in which « is a spacetime index on M*. In the second term, the spin connections
are generally non-vanishing and depending on the coordinates of the internal space.
Without gauge fields, only € = 0 can solve BPS equations in this case since no
other terms depend on the M* coordinates. To preserve some amount of SUSY, we
need to include the third term on the right-hand side of () by turning on some

non-vanishing gauge fields proportional to the spin connections. Then, additional
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projection conditions relating o'e to 7”?¢ are needed in order to twist the Killing
spinor in the way that the contributions from the curvature of the internal space
orient along the direction identified by the gauge fields. With some particular
conditions on magnetic charges of the gauge fields called twist conditions, the

second and third terms in () can be arranged to eliminate each other.

In the first case, we perform the twists by using SO(2)r C SO(3)r gauge
fields. The resulting supersymmetric twisted solutions will have SO(2) x SO(2),
SO(2)diag, and SO(2) g symmetries. For a Kahler four-cycle, since K* has a U(2) ~
SU(2) x U(1) spin connection, the twists can be performed by turning on either
SO(2)r C SO(3)r or SO(3)g gauge fields to cancel the U(1) ~ SO(2) or the
SU(2) ~ SO(3) parts of the spin connection, respectively. Nevertheless, a twist
by canceling the full U(2) spin connection is impossible since the SO(3)r R-
symmetry of the N = 2, SO(4) gauged supergravity is not large enough, i.e.
U(2) ¢ SO(4). Tt should also be noted that these gauge fields always give a non-
vanishing F(Q) A F, (I 5) term in the field equation of the three-form field, as can be
seen from () This term is the main reason why non-vanishing Hs) is the key
to obtain AdS; x M* solutions.

For a particular case with equal SO(3) coupling constants in the SO(4)
gauge group, the resulting twisted solutions can be embedded in eleven-dimensional
supergravity via a truncation on S* [74]. As a result, these solutions will provide

several new two-dimensional SCFTs with known M-theory dual.

3.2.1 Supersymmetric AdSs x ¥? x 3?2 Solutions

We first look for supersymmetric solutions of the form AdSs x X} x X3 with X7
for i = 1,2 being two-dimensional Riemann surfaces. The constants k; describe
the curvature of 2,1_ with values k; = 1,0, —1 corresponding to a two-dimensional
sphere S?2, a flat space R2, or a hyperbolic space H?, respectively.

We choose the following ansatz for the seven-dimensional metric

ds2 = eV da? |+ dr® + e2V<’“>d32221 + e2W(r>ds§%2 (3.78)
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where dz? | = Napdz®dz® with a,b = 0,1 is the flat metric on the two-dimensional

spacetime. The explicit form of the metric on Zii can be written as
ds%ii = dO? + fi,(0;)%dy? . (3.79)
The functions fi,(6;) are defined as

sin 6;, ki=1

sinh 02‘, k’z =—-1
\

By using an obvious choice of vielbein
et = eVda?, e? = dr, ed =eVdb,

et = evfkl(Gl)dgol, ed =e"db,, b — €Wfk2(92)d(p2, (3.81)

we can compute non-vanishing components of the spin connection of the form

wdi — Uled, wf’)é _ Vleg, wﬁli AN V/ezl’ wgé — W/eg’
5 5 i e A _w T (02) 4

Wl = W'el, why =7 VZ8 Lot W = e Wi 26 3.82
: LS = e O

Apart from r-derivative, we also use primes to denote derivatives of a function
with respect to its explicit argument, for example, f; (6;) = dfy,(0;)/d0;.

To find supersymmetric AdS; x X x 37 solutions with non-vanishing
Killing spinors, we perform a twist using gauge fields along 7 x X7 . In the
following analyses, we will examine various possible twists with different unbroken

symmetries.

3.2.1.1 AdS; Vacua with SO(2) x SO(2) Symmetry

For the solutions with SO(2) x SO(2) symmetry, we turn on the following
SO(2) x SO(2) gauge fields on X} x X7 to perform the twist

(01) 3 p i, (02) 4
1) ky fkl (01) ko fk:2 (02> ( )
' (0,) - " (05) .
T v FaO) 5 pe w i (f2) (3.84)

k1 i (01) ko frs(02)
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where p;; are constant magnetic charges.
There is only one SO(2) x SO(2) singlet scalar from SO(3,3)/SO(3) x SO(3)
coset corresponding to the non-compact generator Ys33. We then parametrize the

coset representative by

L = ef¥ss (3.85)

with ¢ depending only on the radial coordinate. By computing the composite
connection QY along ¥ x X} , we can cancel the spin connection () by

imposing the twist conditions
gipu =k and - gipio = ko (3.86)
together with the following projection conditions on the Killing spinors ()
’}/346 = "}/566 =io’c. (3.87)

It should be noted that only the gauge field A?l) enters the twist procedure since
A?l) is the gauge field of SO(2)r C SO(3)r under which SUSY parameters and
the gravitini are charged.

From the SO(2) x SO(2) gauge fields given in () and (), we can

compute the corresponding two-form field strengths of the form
F(32) = e Vpuet At + e Wpe® A€l (3.88)

F(ﬁz) = 6_2‘/1?2163 Ael o+ 6_2Wp2265 Aeb (3.89)

We also need to turn on the three-form field associated with the four-form field

strength

1 L
e 2VHW) (pa1p22 — pripia)e® A et Ae® A €. (3.90)

Gy =
(4) 8\/§h

This is very similar to the solutions of maximal SO(5) gauged supergravity

considered in [p§].

By imposing an additional projector

Ve=c (3.91)
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required by dx = 0 and \" = 0 conditions, we find the following BPS equations

1 - o 30 3 _ 30 _
U’ = cef [(916 cosh - 4he S ) + e T iy — poupn)

— e *(p11 cosh @ + par sinh @) — e (py2 cosh ¢ + pag sinh ¢)] , (3.92)

1 o o 30 1 50
V= 56’2 [(916 cosh ¢ + 4he™ ) - Ee 2 2(VJFW)(plﬂDm —P21p22)

+ 4672‘/(]711 cosh ¢ + py; sinh ¢) — 672W(p12 cosh ¢ + pag sinh ¢)} , (3.93)

1 el s S0 1 99 __
W' = 362 [(gle cosh ¢ + 4he’s > — Ee 5 2(V+W)(p11p12 — Pa1P22)

— eV (p11 cosh ¢ + pay sinh ¢) + 4e™*" (p15 cosh ¢ + pay sinh 925)} , (3.94)

30 —92

2 . 2\ 1
o = Zef {(gle—” cosh ¢ — 16he’¥ ) ¢ T pup = pap)

— e Y (p11 cosh ¢ + pay sinh @) — e >V (p12 cosh ¢ + pas sinh ¢)] , (3.95)
¢/ = —e2 [e7®Y(p11sinh @ + po; cosh @) + e (p12 sinh ¢ + pos cosh )]

—gre” 2 sinh ¢. (3.96)

It can be checked that these BPS equations satisfy all the field equations. At large
r,we have U ~V ~W ~rand ¢ ~ o ~ e_L:TTSW with the AdS; radius given
by Lags, = ﬁ, and the terms involving gauge fields and the three-form field are
highly suppressed. In this limit, we find the SO(4) AdS; critical point from the
BPS equations. The solutions are then asymptotically locally AdS; as r — oc.
We now look for supersymmetric AdSs solutions satisfying V' = W' =o' =

¢ =0and U = ﬁ as r — —oo. We find a class of AdS; fixed point solutions
3

5 G Ze?
e2? = ) 3.97
Ah(pa1(p12 — 3p22) + p11(p12 + p22)) ( )
b — p21(P12 — 3p22) + p11(p12 + ng)’ (3.98)
p11(p12 - p22) - P21(p12 + 3]922)
_ _ 2¢
2V P21 — P11 (pli + pa1)e ’ (3.99)
S8he?t37
_ _ 2¢
W P22 — D12 (pli + pao)e ’ (3.100)
S8he?t37
8h€a+2V+2W
Lags; = (3.101)

P11P12 — Pa1Pao + 32h2e2V+H2WH3e
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where

7 (p12(p3, + p31) — 2p11P21P22) (—2p1ap21p2a + P11 (P3s + P3o))
(p%1(3p%2 + P%Q) + p§1(p%2 + 3P%2) — 8p11p12p21P22)

(3.102)

To achieve real solutions, €2V > 0, €2V > 0, ¢ > 0, and e¢® > 0 are required.
These conditions are possible if and only if one of the two k; is equal to —1.
Besides, there are only two parameters ps; and pos characterizing the solutions
since the charges pi; and ppo are fixed by the twist conditions (B.86). Regions
in the parameter space (pa1, po2) for good AdS3 vacua are shown in Figure @
for gy = 16h and h = 1. It should be noted that these regions are the same
as those given in [@] for supersymmetric AdSs; x ¥? x 32 solutions of maximal

seven-dimensional SO(5) gauged supergravity.

0.2 02 0.2
01 0.1} 0.1
0.0 0.0f! 28 | 0.0
-0.1 -0} -0.1
-0.2 -0.2f -0.2
202 04 00 01 02 202 -04 00 01 02 202 Z01 00 041 02

Figure 3.1: Regions (blue) in the parameter space (p21, pa2) where good AdSs
vacua exist for g; = 16h and h = 1. From left to right, these are the cases of
(k1 = ko = —1), (ky = —1, ks = 0), and (k; = —ko = —1), respectively. The

orange regions correspond to exchanging k; and k.

These AdS;3 fixed points preserve four supercharges due to the two
projectors in () and correspond to N = (2,0) SCFTs in two dimensions with
SO(2) x SO(2) symmetry. On the other hand, the entire RG flow solutions,
interpolating between the SO(4) AdS; critical point and these AdS; geometries,
preserve only two supercharges due to the extra projector () Examples of
these RG flows from the AdS; critical point to AdSs x H? x H?, AdSs x H? x R?,
and AdSs x H? x S? fixed points with ¢; = 16h, h = 1, and different values of py;

and pos are shown in Figures @, @, and @, respectively.



49

%
20"

1

(a) V solution (b) W solution
o(r) @(r)
r 0.20"
-3 - -1 1 2 3
0.15¢
~02 0.10°
—0.4¢f 0.05¢
06l a7 T 1. 2 3
o -0.05"
(c) o solution (d) ¢ solution

Figure 3.2: Numerical solutions from the SO(4) AdS; vacuum in UV as r — 3
to AdSs; x H? x H? fixed points in IR as r — —3 for g; = 16h, h = 1, and

(21, p22) = (75, —3) (5. —2): (5. —2), (7. 5) (blue, yellow, green, and red).

As seen in the above solutions, the coupling constant g does not appear so
that the solutions can be uplifted to eleven dimensions by setting go = g;. Since
the solutions involve all seven-dimensional fields, the eleven-dimensional four-form
field strength is very complicated. For brevity, we omit an explicit form of the

four-form and give only the uplifted eleven-dimensional metric.

Using the S? coordinates
u® = (cos W) cos &, cos 1) sin &, sin 1) cos /3, sin ¢ sin 3), (3.103)
and the SL(4,R)/SO(4) matrix of the form

T;ﬁl = diag(e?, e?,e %, e7?), (3.104)
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Ww(r)

| 4’
(a) V solution (b) W solution
o(r) o(r)
5
5 /Y 0.3
_05! 0.2-
| 01"
-1.0; :
" 2 2 2"
0.1+
_J -1.5}
-0.2"
(c) o solution (d) ¢ solution

Figure 3.3: Numerical solutions from the SO(4) AdS; vacuum in UV as r — 4
to AdSs; x H? x R? fixed points in IR as r — —4 for ¢ = 16h, h = 1, and

(P21, p22) = (%7 _4_11)5 (%7 —%0)» (%7 —1—10), (—%, %) (blue, yellow, green, and red).

we find the eleven-dimensional metric
g2, = A3 [eQdeil +dr® + ewdsézl + eQWdSQEiQ]
+%A—§ [6—2" cos® € + e2 sin? £(e? cos? U + e ? sin? 1;)} de?
gy AHeS o (6 sn 42 ot D)
+e? cos® P (da — gA?)? + e~ sin Y (dff — QA34)2] (3.105)

with A12 = A% + A%, A% = A3, — A%, and

A =e*sin’€ +e 2 cos’ € (6_¢ cos® ¥ + e? sin? @E) : (3.106)

From this metric, we notice that the SO(2) x SO(2) residual symmetry corresponds

to the isometry along the & and § directions.
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V(r)

25
20
15

(a) V solution (b) W solution

o(r) (r)

: ‘ r
-4 2 4 0.31
-0.5¢ 0.2;
J 01"
-1.07
\ r
_J -4 [ -2

-1.5"

(c) o solution (d) ¢ solution

Figure 3.4: Numerical solutions from the SO(4) AdS7; vacuum in UV as r — 4
to AdS; x H? x S? fixed points in IR as » — —4 for g, = 16h, h = 1, and

(P21, pa2) = (ﬁ, —2), (%, —-5), (%, =2); (—%, 9) (blue, yellow, green, and red).

3.2.1.2 AdSs Vacua with SO(2)g4iag Symmetry

We now consider AdS;3 solutions with SO(2)giae C SO(2) x SO(2) C SO(3) x
SO(3) symmetry. In this case, there are three scalars invariant under SO(2)qiag

corresponding to non-compact generators
Vi=Yu+Ye, Yo=Y Y=YV (3.107)
The coset representative takes the form of

L = ¢ Vigh¥2p0sYs (3.108)
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The ansatz for SO(2)giae gauge fields is obtained from the SO(2) x SO(2) ones in
(w) and (M) by setting g, A® = g1 A or, equivalently,

92P21 = 91P11 and GoP22 = g1P12 - (3.109)
We also simplify the notation by redefining the magnetic charges p; = p;; and
p2 = p12. In this case, the four-form field strength is given by

G = P1p2
Y 8V2hes

and the twist conditions read

e 2VHEW) (g2 g%)e3 AetAed A€l (3.110)

gip1 = ki and  gips = k. (3.111)

Using the projection conditions (58 /I) and (E9 l ), we find the corresponding

BPS equations. It turns out that compatibility between these BPS equations and
the field equations requires either ¢; = 0 or ¢3 = 0. Furthermore, setting ¢3 = 0
gives the same BPS equations as setting ¢; = 0 with ¢3 and ¢; interchanged.
We will then consider only the ¢3 = 0 case with the following BPS equations

U = %Oeg {cosh 2¢1(g1e” 7 cosh ¢y + goe™ 7 sinh o) + 8he's
—2pre” 2V (cosh do + %sinh qﬁg) — 2pge W (cosh 0o + %sinh ng)
+gi1e~ 7 cosh ¢y — goe™? sinh ¢y — 4;93 e~ 5 ~2AVHW) (g7 — g%)plpg}, (3.112)
V' = 1%63 [cosh 2¢1(g1e”7 cosh ¢y + goe™ 7 sinh ¢) + 8he's
+8pre” 2V <Cosh 02 + %sinh gbg) — 2ppe W (cosh P + %sinh gbg)
+g1€”7 cosh ¢y — goe™ 7 sinh ¢y + 2hlg§ em AV (g2 gg)pﬂ?z} (3.113)
= %Oeg {cosh 2¢1(g1e”7 cosh ¢y + goe™ 7 sinh ¢) + 8he's

—2pre 2V (cosh O + 9N sinh <;52) + 8pge 2V (COSh O + 9N sinh ¢2)
g2 g2

+g1e” 7 cosh @9 — goe™ 7 sinh g9 +

2hg%e 7 —2(V+ )(91_92)]?1]72],(3.114)
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1 o 3o
o = gef [cosh 2¢1(g1e” 7 cosh ¢y + goe 7 sinh ) — 32he
9 e~ 2V g1 . —2W gi .
—2pie cosh ¢ + == sinh ¢y | — 2pae cosh ¢g + == sinh ¢
g2 g2
+g1e”7 cosh ¢ — goe™” ohg? e ETAVHW) (g2 g%)?ll&} (3.115)
1 &
Py = —5675 sinh 2¢1 (g1 cosh ¢g + go sinh ¢), (3.116)

¢/2 — 3 [67 [g2 cosh ¢y — g1 sinh ¢y — cosh 2¢); (go cosh ¢o + g1 sinh ¢9)]

—pre 2V (sinh 0o + 9 cosh @) — poe W (sinh 0o + 9 cosh ¢2>:|. (3.117)
g2

g2

In this case, the BPS solutions are asymptotic to the two supersymmetric AdS;

vacua with SO(4) and SO(3)aiag Symmetries at large 7.

There exist only AdSs x H? x H? fixed point solutions preserving four
supercharges and corresponding to N = (2,0) SCFTs with SO(2)giag sSymmetry in
two dimensions. We begin with a class of AdSs fixed points for ¢; =0

o = Yyl 2 9195 } , (3.118)
5 5 12h(g3 + 29192 — 39?)
1. [362=92610, — g2
62 = 3 1n {3% L gg] , (3.119)
97 + 29192 — 95
1. [27(q1 — o) |
V ale —In { 7(912 g2) (291 +92) } , (3.120)
10 16h 9192(92 —9¢g )
8(9¢%g, — 10 275
LAdS3 — |: ( gng glg2 +g2) :| (3121)
3h91(92 1 391

with g > 3¢ or go < —3g; for AdS3 vacua to exist. An example of RG flows
from the SO(4) AdS7 critical point to this fixed point for go = 4¢;, g1 = 16h, and
h =1 is shown in Figure @ with ¢, set to zero along the flow.

Another class of AdS; x H? x H? solutions with ¢; # 0 is given by

2 9192
oc=—In : (3.122)
5 [12h\/ 92+91)(92—91)]

61= 6= n [ 91}

2 go + g1

1. 127(g7 — g3)*
V=W=—In|——22_ 3.123

10 { 16h%2g8¢5 |’ ( )

1

8(91 — g3)%]°
L = |2 =27 124
AdS3 |: 3h9192 (3 )
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Figure 3.5: A numerical solution from the SO(4) AdS; vacuum in UV as r — 4
to an AdSs x H? x H? fixed point with SO(2)giae symmetry in IR as r — —4 for
g2 = 4g1, g1 = 16h, h =1, and ¢; = 0 along the flow.

with the condition g, > g; for good AdS; vacua. Examples of RG flows from the
SO(4) and SO(3)qiag AdS7 critical points to this AdS; x H?* x H? fixed point are
respectively shown in Figures @ and @ for go = 4¢1, g1 = 16h, and h = 1.

Moreover, with a suitable set of boundary conditions, there also exists an
RG flow from the SO(4) AdS7 to the SO(3)ging AdS7 critical points and then
to this AdSs x H? x H? fixed point as shown in Figure . Unfortunately, all
AdS3 vacua and RG flows in this case with g; # g» cannot be uplifted to eleven

dimensions.
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Figure 3.6: A numerical solution from the SO(4) AdS7 vacuum in UV as r — 25
to an AdS; x H* x H? fixed point with SO(2)giag symmetry in IR as r — —30 for
g2 = 4g1, g1 = 16h, and h = 1.
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(a) V solution (b) W solution (c) o solution
1(R) @2(r)
-4 -2 2 4 6 8 10 -4 -2 2 4 6 8 10
-0.1 -0.1
-0.2 -0.2
-0.3 -0.3
-04 ~0.4
-0.5 -0.5
(d) ¢1 solution (e) ¢ solution

Figure 3.7: A numerical solution from the SO(3)4iag AdS7 vacuum in UV as r — 10
to an AdSs; x H? x H? fixed point with SO(2)giag symmetry in IR as r — —4 for
g2 = 4g1, g1 = 16h, and h = 1.
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Figure 3.8: A numerical solution from the SO(4) AdS; vacuum in UV as r — 2
to the SO(3)aiag AdS7 critical point and then to an AdS; x H? x H? fixed point

with SO(2)giae symmetry in IR as r — =5 for g, = 4¢1, g1 = 16h, and h = 1.

3.2.1.3 AdS; Vacua with SO(2)g Symmetry

We now move on to AdSs solutions with SO(2)r C SO(3)g symmetry. There are
three SO(2)g singlet scalars corresponding to non-compact generators Ysi, Y3,

and Y33. Therefore, the coset representative can be written as

[, = e$1Ys102Ys2 ,d3Yss (3‘125)
To perform the twist, we use the following SO(2)g gauge field
' (61) ' (6:)
Aty = P Il o P () (3.126)
kl fkﬁl (01> ka fkg (92)
The four-form field strength in this case is given by
1 S
Guy=——=—e2VTWpped Net Ae® Neb 3.127
() SV3h P1P2 ( )

We can now repeat the same procedure to find the corresponding BPS
equations. In this case, it turns out that compatibility between the BPS equations

and the field equations allows only one of the ¢;, i = 1,2, 3, to be non-vanishing.
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We have verified that any of the ¢; leads to the same set of BPS equations. We
will choose ¢; = ¢ = 0 and ¢3 # 0 for definiteness so that the BPS equations are

U = %eg -gle_" +4heT — e Vp — e Wpy + %G_Q(VJFW)IMW , (3128
V' = %eg -gle"’ +4heT +4ep —eWp, — 4—1]162(V+W)p1p2_> (3.129)
W' = éeg _916*" +4heT — eV, +deWp, — 4—1]162(V+W)p1p2_; (3.130)
— geg -916_" —16hes — e PV p — e W, — ﬁe_Z(VJFW)le , (3.131)
Py = —67%- [91 +e7 (e pr + 672WP2)} sinh @3 . - (3.132)

From these BPS equations, there exist AdS3 fixed points only for k1 = ks = —1.
The resulting AdSs; x H? x H? solution is given by

2 g1
03 =0, 77 Bre 12h]’

1
1 27 8 |?®
e [wh?gi] O\ [Shg%} (8133)

This solution preserves four supercharges and corresponds to a two-dimensional
N = (2,0) SCFT with SO(2)g symmetry. An example of RG flow solutions from
the SO(4) AdS7; vacuum to this fixed point for g; = 16h, h = 1, and ¢3 = 0 is
shown in Figure @ Note that this AdSs; x H? x H? fixed point and the RG flow
are also solutions of pure N = 2 gauged supergravity with SO(3) gauge group.

o(r)

Vi) ) 012!
0.10
15} 15
0.08
10 10 0.06
5F 5 0.04
0.02
r r
4 -2 /2 4 ——=4 -2 / 2 4 -4 -2 2 s
(a) V solution (b) W solution (c) o solution

Figure 3.9: A numerical solution from the SO(4) AdS; vacuum in UV as r — 4
to an AdSs; x H? x H? fixed point with SO(2)g symmetry in IR as r — —4 for
g1 = 16h, h =1, and ¢3 = 0 along the flow.
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As in the case of AdS; solutions with SO(2) x SO(2) symmetry, the above
solution can be uplifted to eleven dimensions by setting go = ¢;. The eleven-
dimensional metric can be obtained from () by setting ¢ = 0 and A?l) =0,
or equivalently A2 = A3 = A3, The result is given by

dsl, = As [ewdxil +dr® + eQVdSQEi + ezwdséi }
1 °2
2 2 a ]_ 2 o
+—A"3 (e’% cos? € + €2 sin® f) dé? + —=A"5e2 cos® £ [dwz
9° 249>
+ cos® Y (da — gA®)? + sin® ¢ (dB — gA®)?] (3.134)
with
A =e*sin? ¢ +e 2cos’E. (3.135)

Note also that the seven-dimensional solution in this case has recently been

discussed in [87] in the context of massive type IIA theory.

3.2.2 Supersymmetric AdS; X K* Solutions

We repeat the same analysis for M* being a Kahler four-cycle and look for solutions
of the form AdS; x Kj'. For the constant & = 1,0, —1, the Kahler four-cycle
becomes a two-dimensional complex space C'P?, a four-dimensional flat space R*,
or a two-dimensional complex hyperbolic space C' H?, respectively. Apart from an
SO(2) g gauge field used in the previous case, supersymmetric AdSs x K* solutions

can be obtained from the twist using the full SO(3)r gauge fields.

3.2.2.1 AdS; Vacua with SO(2) x SO(2) Symmetry

As in 32 x 32 case, we begin with AdSs vacua with SO(2) x SO(2) symmetry and

take the following ansatz for the seven-dimensional metric
ds? = eQU(T)dxil + dr? + ezv(r)dsié : (3.136)

The metric on the Kahler four-cycle K} is given by

d 2 2 2
dsis = e A i R (3.137)

f2e)  fule) F2e)
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with ¢ € [0, 5] and the function fi(p) defined by

filp) =1+ ke®. (3.138)

Ti, 1 =1,2,3, are SU(2) left-invariant one-forms satisfying dr; = %ajﬁj AT7;. Their
explicit form is given by
71 = —sinxdf + cos ysin0dy,
Ty = cosxdf + sin x sin 0d),
T3 = dx+ cosfOdi. (3.139)
The ranges of the coordinates are § € [0, 7], ¢ € [0,27], and x € [0,47].
By choosing the following choice of vielbein

i 3 ¥ ! ¥
el = eUda:“, 63 4 eV 4 \4

= = 71, e =e€ — T2,
fr() fr()
; : A 1
e? = dr, = eV 2 T3, b = eV ——do, (3.140)
fi(e) fi(p)
we find non-vanishing components of the spin connection of the form
whs = U'e?, — w™s=V'e™ — m=34,5,6,
5 i 1 5 2kp? + 1
w?’é = w45 =e " = Ty wggl = e_V—( 20 i )73,
Fuol) fr(9)
: 1 A ko? —1
wh =W’y =e" T2, wls = e_V(%—)Tg. (3.141)

We can now perform the twist by turning on SO(2) x SO(2) gauge fields

with the following ansatz

3 2 3 2
Af’l) =e¢Vp fO 73 and A?’l) =e Vpy fp T3 (3.142)
fe(p) fe(p)
The corresponding two-form field strengths are given by
F(B'Q) = 3672‘/}71&](2) and F(62) = 36*2Vp2j(2) (3.143)

where J(9) is the Kahler structure defined by

Joy = eSnet —edneb. (3.144)
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To implement the twist, we impose the projectors on the Killing spinors ()
e = —4%¢ = ig3e (3.145)
together with the following twist condition

Gip1=Fk. (3.146)

As in the previous cases, we need to turn on the three-form field corresponding to

9 . e -
Gy = = V(pi —pe’ Nel ne Ae. 3.147
@ = 3 /n (pY —13) (3.147)
With all these and the 7" projector (), we find the following BPS
equations
1, \
U = ce: [(gle*ff cosh ¢ 4 4he™ ) — 672V (p; cosh ¢ + py sinh ¢)
27 _s0_
+—e 2 4V(P§_pg)], (3148)
8h
1, y
Vo= 565 [(9167" cosh<b+4he“57)+9e*2v(p1 cosh ¢ 4 py sinh ¢)
9 s 1
TS e (3.149)
2, :
o = gei [(916“’ cosh ¢ — 16he‘57) — 662" (py cosh ¢ + s sinh &)
9 _3._ 1
¢ i -m)); (3.150)
¢ = —gie”?sinh¢ —6e2™* (py sinh ¢ + p; cosh ) (3.151)

with ¢ being the SO(2) x SO(2) singlet scalar in ()
The BPS equations admit an AdS; x CH? fixed point given by
. 2 9117%
oc=—1In
5 | 12hy/pt — 10pips + 9py
10 [ 16027 (9p1p3 — pi) ]’ ’ 3hgi(pi — 3p3)°

This AdS3 solution preserves four supercharges and exists for

1 242 — 3p3
C6=-In [pé—i_ P1P2 pg] ’
2 P — 2p1p2 — 3p5

1
———— <P < — (3.153)

with g = 16h, k = —1, and h > 0. The AdSs; x CH? fixed point is dual to a
two-dimensional N = (2,0) SCFT with SO(2) x SO(2) symmetry.
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Examples of RG flows from the SO(4) AdS; critical point to these fixed
points for g; = 16h, h = 1, and different values of py are shown in Figure . As
in the X2 x X2 case, the AdS; x CH? fixed points and the associated RG flows
can be uplifted to eleven dimensions by setting g» = g;. The eleven-dimensional
metric can be obtained from () by replacing e2Vd(922i1 + eQsté%Q by eQVdsi(g
and using the gauge fields in () We will not repeat it here.

v(n o o)

20! \0.25 \ 06
15} '

101

2 s | ———F 2 4

(a) V solution (b) o solution (c) ¢ solution

Figure 3.10: Numerical solutions from the SO(4) AdS; vacuum in UV as r — 4
to AdS3 x CH? fixed points with SO(2) x SO(2) symmetry in IR as r — —4

for g = 16h and h = 1. The blue, orange, green, and red curves refer to
1 1 11
P2 = —54> 780> T 1207 580

3.2.2.2 AdS;5 Vacua with SO(2)g4iag Symmetry

We next consider the solutions with smaller unbroken symmetry SO(2)giag C
SO(2) x SO(2) by imposing gaps = ¢g1p1 and using the coset representative given
by () As in the previous cases, ¢; = 0 or ¢3 = 0 is required in order to have
compatibility between BPS equations and the field equations. We will consider

the case of ¢35 = 0 with the following BPS equations

1 o g
U = —ef [(gle_" cosh? ¢y cosh ¢y + gae™” sinh® ¢ sinh ¢ + 4h€37>
27 o
_66—2‘/ (Cosh ¢2 + & Slnh ¢2) pl — 3 6_37—4‘/ (g% _ g%)p%:| , (3154)
92 8hgs
]. (e o
vV = gei [(gle" cosh® ¢; cosh ¢ + goe™7 sinh? ¢ sinh ¢ + 4h€37>
9 o
+9e~% (cosh G2 + I sinh ¢2) L+ _267%74‘/(9% - g%)p?] ,(3.155)
g2 4hg;
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Q
I
SN

€2 {(gle" cosh? ¢1 cosh ¢ + goe™ 7 sinh? ¢1 sinh ¢g — 16h€370>

—6e~2" <C03h 62 + 2L sinh ¢2> P+ eV (g - Qg)pﬂ , (3.156)

92 4hg3
¢, = —e % cosh ¢y sinh ¢y (gy cosh ¢y + gosinh ¢y), (3.157)
by = —e3 {(gle_” cosh? ¢y sinh ¢y + goe 7 sinh? ¢; cosh gbg)
+6e72V (Sinh ¢ + T cosh ¢2) pl} : (3.158)
g2

There exist two classes of AdS; x CH? fixed points preserving four
supercharges and corresponding to N = (2, 0) SCFTs with SO(2)4iag Symmetry in

two dimensions. The first class is given by

2 2 9192
:07 U = 75 +—1H 9
# A [wh(g%mglgz—sg%)

1. 398 — 29192 — g5
ng = —-In B} 2|
391 +29192 — 95

2
1 38 2 0 2\4
Vi=—In 2916 292) 2y |
10 167°¢795(95 — 991)
1
8(9g192 — 109795 + ¢3)*]°
Laasy = Y 2)5
3hgi(gs — 397)
with go > 3¢; or go < —3¢y for good AdS; vacua to exist. An RG flow from the
SO(4) AdS; crtical point to this fixed point is given in Figure with g = 4¢1,
g1 = 16h, and h = 1.

(3.159)

v(r) o(r)
40 -

30
20

10

: : i ; ! . —r r
—F =z 2 4 6 8 10 -4 -2 2 4 6 8 10

(a) V solution (b) o solution (c) ¢2 solution

Figure 3.11: A numerical solution from the SO(4) AdS; vacuum in UV as r — 10
to an AdS; x CH? fixed point in IR as 7 — —4 with SO(2)giag Symmetry for
g2 = 4g1, g1 = 16h, h =1, and ¢; = 0 along the flow.
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Another class of AdS3; x C'H? fixed points is given by

a:gln 9192 ¢1:¢2:11n [92—91}
D _12h\/(92 +91)(92 — 91) ’ 2 g2 +g1|’
1. [3%g7 —93)2} 8(g2 — g2)?]°
Vi=_—In|l——F7-1, Lags, = | —2—22 | 3.160
57 | 4hgigh = | 3hglgl (3.160)

To obtain good AdSs3 vacua, go > ¢; is needed. Examples of RG flows from the
SO(4) and SO(3)diag AdS7 vacua to these fixed points for g, = 4¢1, g1 = 16h, and

h = 1 are shown in Figures l3.12|, b.ld, and l314| All of these AdSs x CH? fixed

points and RG flows cannot be uplifted to eleven dimensions due to g; # go, so

we also do not have a clear holographic interpretation in this case.

V(r) o(r)
15l 0.14;
0.12¢
0.10¢
10/ 0.08'
0.06¢
3 0.04;
0.02¢
9 -28 -27 -26 _25r _ég -28 =27 =26 _25r
(a) V solution (b) o solution
¢1(r) P2(r)
~29 -28 -27 -26 -25 02
~0.05/ Bt
-0.10} ‘ ,
~0.15 -29 -28 -27 -26 -25
-01;
-0.20¢
-0.2-
-0.25=

(c) ¢1 solution

(d) ¢2 solution

Figure 3.12: A numerical solution from the SO(4) AdS; vacuum in UV asr — —25

to an AdS; x CH? fixed point with SO(2)giae symmetry in IR as r — —30 for

92 = 491, g1 = 16h, and h = 1.
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V(r) o(r)
40~
307
207
10~
: : S ‘ : : o : : ‘ : : —r
- -2 2 4 6 8 10 -4 -2 2 4 6 8 10
(a) V solution (b) o solution
&1 (r) ¢2(r)
-4 -2 2 4 6 8 10 / -4 -2 2 4 6 8 10 d
-0.1¢ -0.1¢
-0.2; -0.2¢
-0.3; -0.3;
-0.4} -0.4¢
-0.5; -0.5;
(c) ¢1 solution (d) ¢2 solution

Figure 3.13: A numerical solution from the SO(3)ging AdS7 vacuum in UV as
r — 10 to an AdS3; x CH? fixed point with SO(2)ging symmetry in IR as r — —4
for go = 4¢1, g1 = 16h, and h = 1.

3.2.2.3 AdS; Vacua with SO(2)g Symmetry

By setting p; = 0 in the SO(2) x SO(2) case, we obtain solutions with SO(2)g C
SO(3)g symmetry. As in the previous case, the three SO(2)g singlet scalars need
to vanish in order for AdSj; fixed points to exist. We will accordingly set all vector

multiplet scalars to zero for brevity. The resulting BPS equations are given by

1o o 27
U = 565 gre 7 + dhes — 6e 2V p; + @64‘/19%} , (3.161)
! | 30 -2V 9 v 2
Vo= -2 e +4he? +9e " py — Rk (3.162)
/ 2 32 -2V 9 v o
o' = ze? g’ — 14dhez —6e “"'p; — e Pl (3.163)
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V(r) o(r)
0.12¢
30 0.10¢
0.08"
20+
0.06
Tol 0.04;
0.02¢
—Z4 -2 2 s T4 22 2 4
(a) V solution (b) o solution
®1(r) @2(r)
: : : : r : : : : r
-4 { -2 2 4 -4 { -2 2 4
~0.05" -0.05!
-0.10 -0.10
-0.15- -0.15-
-0.20- -0.20
_J -0.25¢ _J -0.25-
(c) ¢1 solution (d) ¢2 solution

Figure 3.14: A numerical solution from the SO(4) AdS; vacuum in UV as r — 4
to the SO(3)qiag AdS7 critical point and then to an AdS; x C'H? fixed point with

SO(2)diag symmetry in IR as r — —4 for g, = 4g1, g1 = 16h, and h = 1.

Imposing the twist condition (), we find an AdSs solution for £ = —1,

Ut =

2 g1 1 38 8 5
:_l[ ]a — | Lage. = |——1| . 164
7= 5" 12n V=1 n‘[16h29§} AdSs [3hg§] (3.164)

An RG flow from the SO(4) AdS; critical point to this AdS3 x CH? fixed point
for gy = 16h and h = 1 is given in Figure .

3.2.2.4 AdSs Vacua with SO(3)g4iag Symmetry

For Kahler four-cycles with SU(2) x U(1) spin connection, we can also perform the
twist by identifying SO(3) ~ SU(2) C SU(2) x U(1) with the unbroken symmetry
SO(3)diag € SO(3) x SO(3). In this case, we use the metric on K} in the form

dsia = dg” + fi()*(r{ +75 +75) (3.165)
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V(r)

\

2 4 -4 -2 2 4

(a) V solution (b) o solution

Figure 3.15: A numerical solution from the SO(4) AdS; vacuum in UV asr — 4 to
an AdS3 x CH? fixed point with SO(2)r symmetry in IR as r — —4 for g; = 16h
and h = 1.

with 7;, i = 1,2, 3, being the SU(2) left-invariant one-forms given in () and

fr(p) defined in ()

With the seven-dimensional vielbein

et = eVdaxe, — dr, e = eV fu(o)m,
el = e fulp)1s, b = eV ful()Ts, e = eVdp, (3.166)
we can compute the following non-vanishing components of the spin connection
wls = Ule®,  wms=V'e™  m=3456,
W = eV filen, W=V hilen, W= fi(e)m,

i _ -V 5 _ -V 3 _ -V
wiy=e'n wiy=e€ Ty w’y=e T3 (3.167)

We then turn on the SO(3)gi. gauge fields as follow

i 92 i P _
Ay = AT = 1 i) + 1 (3.168)

with the two-form field strengths given by

F(12) = % (42) = e Vp (e‘a’ Aed + et A 65), (3.169)

F(22) = %Fé) =eVp (eg Ae® +et A eé), (3.170)
1

F(32) = %F(%) =ep (eg Aet 4 b A eé). (3.171)
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As in the previous cases, we also need a non-vanishing four-form field strength

3
Guy=———c¢

together with the twist condition

V(g — Bt net e’ A (3.172)

qip = k, (3.173)

and the following projectors

~v'e= —’734566 =, 73216 =i0%, and ’72156 =io'e. (3.174)
Hence, the resulting AdSs fixed points preserve two supercharges corresponding
to N = (1,0) superconformal symmetry in two dimensions.

With all these and the SO(3)gias coset representative (), we find the
following BPS equations

U = 565 l(gle” cosh® ¢ + goe 7 sinh® ¢ + 4h637) — 85 26_37’4‘/(9% —g3)
92
—6pe=?V (coshgzﬁ + 2 ginh qb)} , (3.175)
92
Vo= les (91677 cosh® o ginh b 4HEF) + Lo~ F-AV (g2 _ g2
= = gie” 7 cosh® ¢ + goe=7 sinh” ¢ + 4he 2 ) + 4hg§6 (97 — 95)
+9pe~ 2V (coshgb + P ginh gb)} , (3.176)
g2
/ 2 4 o 3 —o 1.3 30 3p? -V 2
o' = ez (g1e77 cosh® ¢ + goe~7 sinh ¢—16h62)+4h s¢ 2 (g7 — 93)
92
B (cosh¢ + L sinh ¢>} , (3.177)
g2
1 o
¢ = —Ze_f(gl cosh ¢ + gy sinh @) (ga sinh 2¢ + 4pe”2"). (3.178)
2

We now look for AdS; fixed points for the case of go = ¢; that can be
embedded in eleven dimensions. Setting g, = g; in the above equations, we find

the following AdSs x C'H? fixed point

1
2 |3, 1 1. [18 64 15
_ 4 —"In3, V==-In|—1|, Lis = |——| . (3.179
? 5n[16h]’ 0= 5“[@%}’ AdSs [27hg%} (3.179)

An RG flow interpolating between the SO(4) AdS; vacuum and this AdS; x C H?
fixed point is shown in Figure for g = 16h and h = 1.
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o(r) &(r)
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Figure 3.16: A numerical solution from the SO(4) AdS; vacuum in UV as r — 4
to an AdS; x CH? fixed point with SO(3)giag Symmetry in IR as r — —4 for
g1 = go = 16h and h = 1.

We can uplift this solution to eleven dimensions by first choosing the S3

coordinates
pu® = (cos P sin), p,q,...=1,2,3 (3.180)

with 4” being coordinates on S? satisfying j?fi” = 1. Using the SL(4,R)/SO(4)
matrix

Toh = diag(e?,e?, e, e7%) = (,0¢%, ), (3.181)

we find the eleven-dimensional metric

33, = A3 [eVda? | 4 dr? + eV [dg? + fi(0) (72 + 72 + 72)]]

2
+—2A_%e_2" [cos2 £+ €37 sin? £(e? cos? i) + 739 sin? 1/))} de?
g
1 o
+2—92A_%65 cos® & [(e_3¢ cos? 9 + e?sin? ) dip? + e? cos? wD,&“D,[ﬂ}
1 2 o
+—A73e2 sin ¢ sin ) cos (e — e 3V dEdy (3.182)
g
with A given by
A = e 2cos?é(e? cos?p + €3 sin? 1h) + 7 sin? & (3.183)
and DiP = dpP + gAPI?. The gauge fields AP? are given by

AZ =24}, AP =243, AP =24, (3.184)
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For gy # g1, we find the following AdS3 fixed points

_ 39192 1 {92 - 91}
c=—In , ¢=—1In|Z—=|,
5 28h\/(92 +91)(92 — 91) 2 g2 + g1
1
1. [3087(gf — g3)* 24(g7 — 93)°]°
V=—I Lags, = | —2—22| | 3.185
0 { 16h2g% g5 ’ AdSs Tgigah ( )

These are AdSs; x C'H? solutions with the condition g, > ¢;. Finally, we can
numerically find RG flow solutions connecting these fixed points to the AdS; vacua
with SO(4) and SO(3)diag symmetries. Examples of these solutions for go = 1.1¢,
g1 = 16h, and h = 1 are given in Figures I3.17|, B.ISI, and blq

vin - )

0.5 . ,
30 s -28 -26 -24 -22 -20
20 0.3 -0.5
10 a

-1.0

0.1

r r
— _28 -26 -24 -22 -20 -28 -26 -24 -22 -20 -15

(a) V solution (b) ¢ solution (c) ¢ solution

Figure 3.17: A numerical solution from the SO(4) AdS; vacuum in UV as r — —20
to an AdS; x CH? fixed point with SO(3)giag symmetry in IR as r — —30 for
g2 = 1.1¢1, g1 = 16h, and h = 1.

o(r)

V(r) o(r)
0-55 4 2 2
-05
0.50
-1.0
0.45 it
/, 0.40 -2.0
_25
e 2 LR 2 r -3.0

(a) V solution

(b) o solution

(c) ¢ solution

Figure 3.18: A numerical solution from the SO(3)giag AdS7 vacuum in UV as
r — 4 to an AdS; x CH? fixed point with SO(3)giag symmetry in IR as r — —4
for go = 1.1¢g1, g1 = 16h, and h = 1.
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Figure 3.19: A numerical solution from the SO(4) AdS7 vacuum in UV as r — 2
to the SO(3)qiag AdS7 critical point and then to an AdSs x C'H? fixed point with
SO(3)diag symmetry in IR as r — —5 for go = 1.1g1, g1 = 16h, and h = 1.



CHAPTER IV

SUPERSYMMETRIC SOLUTIONS OF MAXIMAL
GAUGED SUPERGRAVITY

In the maximal case with thirty-two supercharges, the AdS;/CFTg correspondence
has been explored in great detail both from the M-theory point of view and the
effective N = 4, SO(5) gauged supergravity in seven dimensions. In the context of
M-theory, a six-dimensional N = (2,0) SCFT emerges as a world-volume theory of
Mb5-branes in the near horizon limit. On the other hand, in the low-energy limit,
this N = (2,0) SCFT is dual to the maximally supersymmetric AdS; vacuum of
the SO(5) gauged supergravity, see [88] for example. General discussions about
supersymmetric DWs in the SO(5) gauged theory have already been given in
[48-bH2]. Moreover, supersymmetric solutions of the SO(5) gauged supergravity
corresponding to holographic RG flows across dimensions from the six-dimensional
N = (2,0) SCFT to SCFTs in lower dimensions have been extensively studied
in [53-59,86] in the context of wrapped M5-branes.

Apart from SO(5), seven-dimensional maximal N = 4 supergravity can be
gauged by various possible gauge groups in the embedding tensor formalism, as
reviewed in Section @ Among many viable gauge groups, only the SO(5) gauged
theory admits a maximally supersymmetric AdS; vacuum. For other gauge groups,
their vacua are given by supersymmetric (flat) DWs dual to N = (2,0) SQFTs in
six dimensions according to the DW/QFT correspondence. However, as pointed
out in [52], a systematic study of these DWs in other gauge groups has not appeared

so far.
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We will look for a complete classification of supersymmetric solutions of
seven-dimensional maximal gauged supergravity with several gauge groups within
this chapter. Starting from finding a large class of supersymmetric (flat) DW
solutions, charged DWs and twisted solutions can be obtained by extending
from these vacua. Supersymmetric solutions found in this chapter may give a
huge comprehension of the AdS;/CFTg correspondence and also the general
DW;/QFTs duality. Moreover, the solutions with C'SO(p,q,5 — p — ¢) and
CSO(p,q,4 — p — q) gauge groups are of particular interest since they can be
embedded in eleven-dimensional supergravity and type IIB theory by consistent
truncations on HPY o T57P~9 [64] and HP? o T47P~7 [65], respectively. These
solutions have higher dimensional origins and could be interpreted as different

brane configurations in string/M-theory.

4.1 Flat Domain Wall Solutions

As pointed out in [52], each of the two components of the embedding tensor
transforming in 15 and 40 representations leads to half-supersymmetric DWs of
seven-dimensional maximal gauged supergravity. These 15 and 40 parts give
rise to DWs respectively supporting tensor and vector multiplets on their world-
volumes. Moreover, when both representations of the embedding tensor are present
simultaneously, the DWs are only i—supersymmetric. We provide a systematic

study of these supersymmetric DWs from several gauge groups in this section.

Although solutions with C'SO(p, ¢,5—p—¢q) and CSO(p,q,4—p—q) gauge
groups can be embedded respectively in eleven and ten dimensions, their complete
truncation ansatze have not been constructed. In the following analyses, we will
give uplifted solutions of the DWs only for SO(5) and C'SO(4, 0, 1) gauge groups in
which the truncation ansatze have been completely constructed long ago in [26,27]

and [[77]. We leave uplifting the solutions from other gauge groups for future work.
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4.1.1 Gaugings in 15 Representation

In this section, we consider supersymmetric DWs from C'SO(p,q,5 —p — q) gauge
groups resulting from the embedding tensor in 15 representation. As in other
standard DWs, all tensor fields vanish while the metric takes the standard form

given in (R.37) with the vielbein
e = eV g™, b = dr (4.1)

in which 2™ with m = 0,1, ..,5 are the coordinates on six-dimensional
Minkowski space. For scalar fields, we follow the approach introduced in [[76] by
restricting ourselves to a subset of scalars invariant under a certain residual
symmetry Hy C Gy = CSO(p,q,5—p—q). To obtain an explicit parametrization
of the SL(5)/SO(5) coset representative Vi *', we introduce GL(5) matrices of

the form
(errn)i” = Onik Oy - (4.2)
Non-compact generators of SL(5) are symmetric traceless matrices defined in

terms of these GL(5) matrices.

We use the following convenient choice of SO(5) gamma matrices

I'y = -0y ® 09, I =1, ® oy, ['s =1, ® o3,

F4 == 01®02, F5 :0'3®O'2 (43)
together with the USp(4) symplectic form given by
Qab == Qab = ].2 X iUQ (44)

where 15 is a (2 x 2) identity matrix and {01, 09, 03} are the usual Pauli matrices
(@) We are now in a position to set up BPS equations and look for DW solutions

with different unbroken symmetries.

4.1.1.1 SO(4) Symmetric Domain Walls

We start with a simple solution with SO(4) unbroken symmetry. The gauge
groups that contain SO(4) as a subgroup are SO(5), SO(4,1), and C'SO(4,0,1).
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To incorporate all of these gauge groups in a single framework, we write the

embedding tensor in the form
Yun = diag(1,1,1,1, p) (4.5)

with p = 1,—1,0 corresponding to SO(5), SO(4,1), and CSO(4,0,1) gauge

groups, respectively.

There exists one SO(4) singlet scalar ¢ corresponding to the non-compact
generator

~

Y = €11 + €9 +e33 + eqq — 4ess . (4.6)

The SL(5)/SO(5) coset representative can be written as
V=" (4.7)

For this SO(4) singlet scalar, the scalar potential is given by

2
V= —%6‘4‘1’(8 + 8pett? — p2e09), (4.8)

This potential admits two AdS; critical points with SO(5) and SO(4) unbroken
symmetries only for p = 1 corresponding to SO(5) gauge group. These vacua and

their cosmological constants are given respectively by

P 15¢° 49
o=0 and Vo 64g (4.9)

and
2

1 59
¢—Eln2 and Vo——m

According to the previous studied [33], the former preserves all SUSY while the

(4.10)

latter is non-supersymmetric and unstable.

To setup BPS equations, we impose
Foet = ¢, (4.11)

and obtain the following BPS equations from §12¢ = 0 and §x*° = 0 conditions

U = 4%6—%(4+ pel0®), (4.12)
¢ = L1 pel®). (4.13)

20
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The condition 1% = 0 gives the usual solution for the Killing spinors

a

1%
€ =e€e2

€ (4.14)

with €f being constant SM spinors satisfying ’7668 = €j. The solution is then half-
supersymmetric.
With the new radial coordinate 7 defined by % = ¢, the above BPS

equations can be readily solved with the solution

U = 2¢—%1n(1—p610¢), (4.15)
e’ = L an @ T
\/ﬁt h{ 7 (g +C)} (4.16)

The integration constant C' can be eliminated by shifting the radial coordinate
7. We have also neglected an additive integration constant for U since it can be
absorbed by rescaling the flat coordinates x™.

Note that for p = —1, the solution for ¢ can be written as
1
e’? = tan {Z(gf + C)} : (4.17)

For p =0, we find
:
Ca— Z(gf +CY. (4.18)

4.1.1.2 SO(3) x SO(2) Symmetric Domain Walls

We now consider SO(3) x SO(2) symmetric case, which is possible only for SO(5)

and SO(3,2) gauge groups. The embedding tensor, in this case, is written as
Yarn = diag(1,1,1,0,0) (4.19)

with 0 = 1 and ¢ = —1 corresponding to SO(5) and SO(3, 2), respectively.
There again exists only one SO(3) x SO(2) singlet scalar corresponding to

the non-compact generator

Y = 2611 + 2622 + 2633 - 3644 - 3655 . (420)

With the coset representative

Y =ef, (4.21)
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we find the scalar potential admitting an AdS; critical point at ¢ = 0 for o = 1

V= —%g%&ﬁ(l + 4oe'%?). (4.22)

The BPS equations are given by

1
) (423
20
1
U = Ege‘“’(S + 20¢'9?), (4.24)
Defining a new radial coordinate 7 by the relation % = ¢, we obtain the solution

very similar to the previous SO(4) case

3.1 .
Uss §¢ 1 In(1 — get®), (4.25)
e’ = %tanh [§(gf+ C)] : (4.26)

4.1.1.3 SO(3) Symmetric Domain Walls

We then find more interesting solutions when the residual symmetry of the
solutions is smaller. Supersymmetric DW solutions with SO(3) symmetry are
considered in this case. There are many gauge groups containing an SO(3)

subgroup corresponding to the embedding tensor given by
YMN = diag(l,l,l,a,p). (427)

There are three scalar fields invariant under SO(3) symmetry generated by
gauge generators Xy, M, N = 1,2,3. These singlets correspond to the following
non-compact generators of SL(5)

Y1 = 2e11 + 2e52 + 2e33 — 3es4 — 3e55,

Yo = eq5 + €54,

Ys =eqq—e55. (4.28)

Using the parametrization of the coset representative

V= €¢1Y1+¢2)>2+¢3§>37 (4.29)
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we obtain the scalar potential

2
V = —2—4 [3e75% + 6€*** [(p + o) cosh 2¢ cosh 23 + (p — o) sinh 23]

1
+1612¢1 [p* + 10po + 0® — (3p” — 2po + 30?) cosh 4¢3

—(p+ 0)? cosh4py(1 + cosh 4p3) — 4(p” — 0?) cosh 2¢, sinh 4¢5] | . (4.30)

This potential admits two AdS; critical point for p = ¢ = 1. The first one is at
¢1 = ¢ = ¢3 = 0 corresponding to the N = 4 supersymmetric AdS; with SO(5)
symmetry given in (@) Another critical point is given by

2

59

1 1
= —In? = -In2 - e —

o (4.31)

This is the same non-supersymmetric and unstable critical point given in ()
for which the residual symmetry is enlarged to SO(4) due to ¢o = 5¢1.
Using the same procedure as in the previous cases, we find the following

BPS equations

U = %6_4"51 [3+ €' [(p + o) cosh 2¢, cosh 263 + (p — o) sinh 2¢s]], (4.32)
& = 4%6—4¢>1 [2 — €% [(p + 0) cosh 2¢5 cosh 2¢5 — (p — o) sinh 2¢3]], (4.33)
¢ = _ge% (p + o) sinh 2¢5 sech2¢s, (4.34)
oy = —ge6¢1 [(p — ) cosh 2¢3 + (p + o) cosh 2¢ sinh 2¢3] . (4.35)

Explicit solutions to these equations can be obtained when we examine various

specific values of p and o separately.

(1) Domain walls in C'SO(3,0,2) gauge group

We begin with the simplest case for p = o = 0 corresponding to non-
semisimple C'SO(3,0,2) gauge group. In this case, we find ¢, = ¢} =
0. Furthermore, it can be checked that STYQ = 37‘2 =0at ¢ = @3 = 0.
Therefore, the scalars ¢, and ¢3 can be consistently truncated out. After

setting ¢o = ¢3 = 0, we find a DW solution

¢1—iln[%+(§’] and U—gln[%JrC] (4.36)
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Domain walls in C'SO(4,0,1) and CSO(3,1,1) gauge groups
For p = 0 and o # 0, the gauge group is either C'SO(4,0,1) or CSO(3,1,1)

depending on the value of 0 =1 or 0 = —1. With a new radial coordinate

7 defined by & = %1, a DW solution to the BPS equations can be found

1 92712 + (CZ _ 8)2
= 71 4.37

o = g { ¢ +C3 | (4.37)
1 2¢2 __ ,4¢2+C3 Cs 11

¢ = -In [e ¢ e } , (4.38)
4 202 4 edpa+Cs _ oC3 _ ]
1 2(eC1 _ pd2+C1 _ q

¢1 = —1In (e —c ) . (4.39)
10 | oy/(e%92 — 1)(1 + 2eC5 + €203 — ¢162+2C3)

U = —¢ —In(e*? — 1) +In(e“ — 2t 1), (4.40)

Domain walls in SO(4, 1) gauge group

In this case with 0 = —p = 1, we find that ¢, can be consistently truncated
out in the same way as in the C'SO(3,0,2) case. With ¢ = 0 and the new

radial coordinate 7 defined by % = %1 we find a DW solution

e*” = tan {% i C3j| : (4.41)
1 1 =
o1 = —gds+ oI [Ci(l+e) 1], (4.42)
1 1
U = 26— (4 4 G+ 1] (143)

Domain walls in SO(5) and C'SO(3,2) gauge groups

We now look at the last possibility p = 0 = +1 corresponding to SO(5) and
S0O(3,2) gauge groups. In term of the new radial coordinate 7 as defined in

the previous cases, we obtain a DW solution

1 1 gor 4 gor+2C3 2 lggf

by = —ln |2 S (4.44)
4 1 + 907 4€gar+2c3 + 2¢390T
1 2¢2 4¢2+Cs _ ,Cs

s = 7 In {e e - } , (4.45)
4 e2¢2 — e4d2+Cs 4 (s

1
¢1 — E In |:O' [1 + Cl(e4¢2 _ 1)] \/68¢2+2C'3 + 6203 _ 64(252 _ 2€4¢2+203], (446)

1 1
U=—¢1+7 In(e*® — 1) — 1 In[1 4 Cy(e** —1)]. (4.47)
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4.1.1.4 SO(2) x SO(2) Symmetric Domain Walls

We finally consider supersymmetric DWs with SO(2) x SO(2) symmetry generated
by gauge generators Xis and X34. There are two SO(2) x SO(2) invariant scalars

corresponding to the non-compact generators
Y, = €11 + €99 — 2655 and Yy = €33 + €4y — €55 . (4.48)
In this case, the embedding tensor takes the form of
Yun = diag(1,1,0,0,p) (4.49)

which give rise to various gauge groups with an SO(2) x SO(2) subgroup i.e. SO(5)
(c=p=1), S04,1) (6 = =p =1), SO(3,2) (6 = —p = —1), CSO(4,0,1)
(0 =1,p=0), and CSO(2,2,1) (c = —1,p = 0).

With the parametrization of the coset representative

Vs e¢1171+d>21~’27 (4.50)
we find the scalar potential
V = _6_14926_2(¢1+¢2) [80‘ p— p2610(¢1+¢2) + 4p(64¢1+6¢2 + 0.66¢1+4¢2)] ] (4.51)

Only for SO(5) gauge group, there are N = 4 supersymmetric and non-
supersymmetric AdS; critical points given in (@) and () at o1 = ¢ = 0
and ¢ = ¢g = % In 2, respectively.

The BPS equations, in this case, read

U = 4%) [2e7291 + 20729 + petl@1H92)] | (4.52)
qbll — % [36—2(251 o p€4(¢1+¢2) _ 20-6_2¢2] , (453)
¢ = 2% [Boe™2% — 27201 — pet(@r+e2)] (4.54)

Defining a new radial coordinate 7 by % = e 21 we find a DW solution

3 1 g7
b2 = —§¢1 - Zlﬂ [P — peT } ; (4.55)
1 gr 1 gr
o1 = —1—Oln [p — peCl_T] — gln [a — 0602_7] , (4.56)
r 1 gr 1 gr
U = % + E h'l |:]. — 601_7] + 2—0 ln |:]_ — 602_7] . (457)
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4.1.1.5 Uplift to Eleven Dimensions and Holographic RG Flows

For the SO(5) gauge group, supersymmetric DW solutions obtained previously are
asymptotic to the N = 4 supersymmetric AdS7; vacuum dual to a six-dimensional
N = (2,0) SCFT with SO(5) symmetry. According to the AdS/CFT duality, the
solutions can be interpreted as holographic RG flows from the N = (2,0) SCFT
to six-dimensional SQFTs in the IR, see [42,43] for examples. Furthermore, these
DWs can be uplifted to be solutions of eleven-dimensional supergravity. We will
consider these holographic RG flows together with their uplift to eleven dimensions

in this section.

4.1.1.5.1 RG Flow Preserving SO(4) Symmetry

We first consider a simple SO(4) symmetric solution. With % = ¢*?, the DW

solution for SO(5) gauge group reads

1. |1—ez(C-9D
¢ = ¢ln PR T eéw—g’”’)] (4.58)
1
U = 2=7h (1—¢€'%). (4.59)

As 7 — o0, we find ¢ — 0 and 7 ~ r with an asymptotic behavior

_1 _4r 1 T
p~e 2 ~veT L and U~ —gr~ ,
8 L aas,

8
LAd5‘7 - 5 (460)

which indicates that the solution is asymptotic to the N = 4 supersymmetric Ad.S;

critical point. As g — C', the solution is singular with the following behavior
1 _ 2 _
O ~ R In(g7 — C) and U~ 20~ R In(gr — C). (4.61)

We can verify that the scalar potential is bounded above with V. — —oco as ¢ —

—00. According to the criterion of [85], this singularity is physically acceptable.

Moreover, we can use the truncation ansatz, reviewed in Appendix @, to

uplift this solution to eleven dimensions. Using the SL(5)/SO(5) coset

My = diag(e 8?2?22 ), (4.62)
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and the coordinates on S*
pM = (u°, p) = (cos&,sinéfi’),  i=1,2,3,4 (4.63)

with fi* being coordinates on S? satisfying /i‘/i* = 1, we find the eleven-dimensional

metric and four-form field strength tensor

. 16, >
dsi, = As (eVdxi s+ dr?) +?A*§ [ sin® £d¢?

+e??(cos® £dE? + sin® £dOy) )| (4.64)
A 4
Fug = i—gA_Q sin4§ (L{ sin £d€ — 1066¢¢’ cos §d7“) N €@3) (4.65)

with dQ?S) being the metric on a unit S and

1 S
A = €8 cos? € + e 2 sin’¢, €3) = ggijkl,&zdﬂ] Adpk A dpd,

U = (€% — 4¢5%) cos? € — (€% 4 2% sin® € . (4.66)

We see that the internal S* is deformed by leaving an S® inside the S* unchanged.
The isometry of this S? is the SO(4) residual symmetry of the seven-dimensional
solution.

With this uplifted solution, we can examine the behavior of the metric
component oo = ¢2U A3 near the IR singularity. A straightforward computation
gives

doo ~ e3¢ 50 (4.67)

which implies the singularity is physical according to the criterion given in [86].
This solution accordingly describes a holographic RG flow from the N = (2,0)
SCFT with SO(5) symmetry to a six-dimensional SQFT in the IR. With the
presence of the normalizable mode in (), this RG flow is induced by a vacuum
expectation value of an operator of dimension A = 4 breaking conformal symmetry
and preserving only SO(4) C SO(5) R-symmetry. Note that this RG flow has
also been studied in [89] in the context of a consistent truncation to half-maximal

N = 2 gauged supergravity.
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4.1.1.5.2 RG Flow Preserving SO(3) x SO(2) Symmetry

With 42 = ¢, the flow solution with SO(3) x SO(2) symmetry reads

1. [1—e 260
3 1 106
U = §¢ — len(l —e?). (4.69)

As 7 — 00, we find ¢ — 0 and 7 ~ r with the same asymptotic behavior given in

() As g7 — C, the solution becomes singular

1
¢~ 5 In(gr — C) and U ~ ;gb ~ % In(gr7 — C). (4.70)

Near this singularity, we find that the scalar potential is bounded above, V. — —oo0.
The uplifted solution can be obtained by using the S* coordinates
pM = (sin €41%, cos € cos a, cos € sin a), a=1,23 (4.71)
with 4%4% = 1 and the scalar matrix
My = diag(e*?, e*?, e*? 75 769, (4.72)

We find the eleven-dimensional solution

16
dsl, = Az (e*Vdx 5 + dr?) + — (7% cos® €da® + (€' cos® € + e~ sin® £)dE?
7 g

+e'sin® Edptdpt] (4.73)

Fa = f—;u sin® € cos EAT? (sin £d€ + 2€*? cos E¢'dr) A da A € (4.74)
where

€2) = %aabcﬂ“dﬂb A dfic . (4.75)

We can see that the SO(3) x SO(2) unbroken symmetry corresponds to the
isometry of the S? inside the S* and the isometry of the S! parametrized by
the coordinate a.

From the eleven-dimensional metric, we find
oo ~ 3% = 0. (4.76)
The singularity is accordingly physical [86], and the entire solution describes an

RG flow from the N = (2,0) SCFT to an SQFT with SO(3) x SO(2) symmetry

in six dimensions.
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4.1.1.5.3 RG Flow Preserving SO(2) x SO(2) Symmetry

With 4 = ¢72?1 a DW solution preserving SO(2) x SO(2) symmetry in SO(5)

gauge group is given by

1 gr 1 gr
b = —mm(1— @) - L - o) (477
3 1 gr
¢2 = __¢1 —_ = 111(1 — 601_7>, (478)
2 4
1 1 gr 1 gr
U = gor+ g5l —e@%) 4 (1 - %), (4.79)

We can perform an uplift by using

pM = (cos &, sin & cos 1 cos o, sin € cos 1 sin v, sin € sin 1 cos 3, sin € sin ¢ sin 3,

My = diag(e #91792) 201 201 202 o202y (4.80)
The corresponding eleven-dimensional metric is
dst, = As (eQde%é +dr’) + ;—SA_g (€% (cos® & sin® 1hdg”

+ cos? 1 sin? Edip? + sin® € sin? dB% + 2 cos € cos 1 sin € sin Q/dedw)

+e2% (C082 € cos? dE? + sin® € sin? dip? + sin? € cos® hda’

—2 cos & cos ¥ sin € sin pdEdi) + e~ H1+02) gipy2 deQ] (4.81)
where

A = 01492 0052 ¢ 4+ 201 6in% ¢ cos? Y + e 2% sin® Esin? ) (4.82)

Here, we neglect an explicit form of the four-form field strength, which is much
more complicated than the previous cases. The unbroken symmetry SO(2)x.S0O(2)
corresponds to the isometry of S! x S! parametrized by coordinates o and /3.

As 7 — 00, the solution becomes
b1~y ~e L with Feor (4.83)

which again implies that ¢; and ¢y are dual to operators of dimension A = 4 in
the dual N = (2,0) SCFT.

For the IR behaviors, there are two possibilities. As g7 — 2C}, we have

1 5 1 1 -
1 ~ Qg ~ 10 In(gr —2Cy) and U ~ —§¢51 ~ Q—Oln(gr —20CY). (4.84)
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Near this singularity, the scalar potential is unbounded above, V. — oo, and the

eleven-dimensional metric gives
Joo ~ €37 = 0. (4.85)

This singularity is then unphysical.

As gr — 2C5, we have

1 . 3 3 5
o1~ —gln(gr - 202)7 Gg ~ —§¢1 ~ EIH(QT - 202);
1

1 -

Near the singularity, we find V.— —oo and
Joo ~ constant . (4.87)

In this case, the singularity is physical, and the DW solution describes an RG flow
from the N = (2,0) SCFT to a six-dimensional SQFT in the IR with SO(2) x
SO(2) symmetry.

4.1.1.5.4 RG Flow Preserving SO(3) Symmetry

The solution is rather complicated in this case. Therefore, we will examine only a
truncation of the full solution. By making a consistent truncation ¢3 = 0, we find

a simple solution to the truncated BPS equations

1 1 3
U = —¢o—-In(1—¢e"?)+ —In[1+Ci(e"” —1)], (4.88)
577 4 20
1 1
h= gt gL+ G -] (4.89)
1. [1—e2(@9P
¢2 = B In m (4.90)

in which the new radial coordinate 7 is defined by % = b1,
Near the N = 4 supersymmetric AdS; critical point in the UV as 7 — oo,

we find, as in the previous cases,

$r~ by~ e T with 7o (4.91)
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and, near the IR singularity as gr — C', the solution becomes singular

1 5 1 1 5
Pg ~ §1n(gr - 0)7 1~ —5% ~ —1—01n(gr - C>,
1 1 5

In this case, V — oo near the singularity, and the (00)-component of the eleven-
dimensional metric is

Goo ~ €3% = 00 (4.93)

The singularity is then unphysical. We will not give the corresponding eleven-
dimensional solution in this case. Moreover, it can be checked that another

truncation with ¢, = 0 also gives a similar result.

4.1.1.6 Uplifted Solutions to Type ITA Supergravity

We now consider the uplift to type IIA supergravity of the DW solutions in
CSO(4,0,1) gauge group. Relevant formulae, including the truncation ansatze
and useful relations, are summarized in Appendix @ As gaugings in 40
representation, we also decompose the SL(5)/SO(5) coset Mjyy into the
SL(4)/SO(4) submanifold //\/vlij given in () in this case. Moreover, all axion
scalars disappear, b; = x; = 0, in these solutions so that only the metric,
dilaton, and three-form field strength in type ITA supergravity are non-vanishing.
As expected for DWs in seven dimensions, the resulting solutions should describe
Neveu Schwarz five-branes (NS5-branes) in the transverse space with different

symmetries.

4.1.1.6.1 Solution with SO(4) Symmetry
In this case, we simply have Mij = 0,5 and
A2 Se0 (,2U 7.2 2 16 —260 102
dsiy, = e2® (e?Vdai, +dr?) + ?e 290d8Y ),

. 128 .
Fo = “5ew,  ©=5%. (4.94)
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Solving the BPS equations in (4.12) and () by renaming ¢ to ¢q and setting

p = 0, we find the following solution

¢0:%1n (Sl awd v=m[Tic]. (4.95)

We identify the resulting ten-dimensional solution with the “near horizon”

geometry of NS5-branes in the transverse space R*.

4.1.1.6.2 Solution with SO(3) Symmetry

With p = 0 and o = 1, the following SO(3) symmetric solution can be obtained
from the BPS equations () to () by setting ¢ =0

1 3
U = =¢3+ =—In(C; +¢€'* 4.96
1 1
1 = —5453 1 In(Cy + %), (4.97)
349 et
29C3r = Bes?® oF (2, ==, —— | . 4.98
glsr €5 241 57 57 57 Cl ( )
In this solution, o F7 is the hypergeometric function.
To uplift the solution, we parametrize the SL(4)/SO(4) coset by
Mij = diag(e??, e%?, €%, ¢759). (4.99)

In this case, the dilaton ¢y and the SO(3) singlet ¢ are related to ¢; and ¢3 by
1 1

Choosing a specific form of the S coordinates to be
p' = (sin 4%, cos &), a=1,23 (4.101)

with 1% being the coordinates on S? subject to the condition %4® = 1, we find

the following ten-dimensional fields

16

dsly = — e 3PATT [(e7%sin? € + €** cos® €) de? sin® Ee** i dji”]
g
te2%AL (62Ud.1“i5 + d7“2) , e?? = A lel0%0
~ 64
Fay = — A %sin® € (Usin€dE + 8e™ cosE¢/dr) A€o (4.102)

g3
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in which
1
A = €% cos? € + e 2 sin? ¢, €@2) = éaabcﬂadﬂb A djic,
U = e'?Pcos’ € — e *Psin? ¢ — e*(sin® € + 3cos? €). (4.103)

The residual symmetry SO(3) corresponds to the isometry of S? C S3.

4.1.1.6.3 Solution with SO(2) x SO(2) Symmetry

Setting o = 1 and p = 0 and using £ = ¢~2%2, we find the following SO(2) x SO(2)
symmetric DW from the BPS equations given in Section
1 1

— g+ — 397
U 509" + T In(Cy + €27"), (4.104)
1 i) 3 1 7
¢1 = Co~— Egr+1—oln(01+ezg ), (4.105)
3 1 )
b1 = Oyt osgf — 2 In(C) + e297). (4.106)

To uplift the solution, we use the following parametrization of SL(4)/SO(4)

coset

M;; = diag(e®?, e*?, e ¢ e 2?) (4.107)

where ¢y and ¢ are associated to ¢1 and ¢, through the relations

bo= =50+ and 6= (61— o) (4.108

Choosing the coordinates on S to be

i

p' = (cos € cosa, cos € sina, sin € cos (3, sin € sin f3), (4.109)

we find

5

16
dsiy = Aded (Mdai s +dr®) + S ATHeTE [(e¥ sin® € + 7 cos” §)dg”
+e2? cos? Eda® 4 e 2% sin® SdBQ] ,

12
= —38A_2 cos&sinEda A dE N df (4.110)
g

e?? = Alel0% F)
with

A =e?cos’ ¢ +e*Psin’ €. (4.111)

In this case, the unbroken SO(2) x SO(2) symmetry corresponds to the isometry

of S* x St parametrized by coordinates a and £3.
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4.1.2 Gaugings in 40 Representation

In this section, we repeat the same analysis for C'SO(p, ¢,4 — p — q) gauge groups
obtained from gaugings in 40 representation. As in Section , we decompose
the SL(5)/SO(5) coset in term of the SL(4)/SO(4) submanifold given in ()
After setting Yan = 0 and using the inverse matrix MMV of the form

0260 \fi _ 200}

MMN = (4.112)

—e2Pop) e8¢0 1 €2¢obkbk

with M% being the inverse of Mvij and bl = M bj, we can rewrite the scalar

Lagrangian as
X //F—~ — 1 —
6_1£scalar = —85;@06”(%50 -+ gauMijguMU R ZeloqsoMZ]aubiaubj -V (4113)

in which the scalar potential is given in () Note here that the nilpotent scalars
b; appear quadratically in this Lagrangian so we can consistently truncate them

out throughout this section.

4.1.2.1 SO(4) Symmetric Domain Walls

We first consider DW solutions with the largest residual symmetry, SO(4) C
CSO(p,q,4 —p—q). Only SO(4) gauge group contains an SO(4) subgroup. In
this case, there are no SO(4) invariant scalars from the SL(4)/SO(4) submanifold,
while the embedding tensor is simply w” = §”. Taking the SL(4)/SO(4) coset
representative to be Y= 1,4, we find the scalar potential in a particularly simple

form

V = —2¢%% (4.114)

To setup BPS equations, we use the same Killing spinors () However,
the appropriate projector for this type of gaugings is different from that in the

previous cases in 15 representation and given by

(T5)%,el = —y%ed. (4.115)
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Note that the appearance of I'> rather than other I' with A = 1,2,3,4 in this

projection is due to the specific choice of v™ = §} in the embedding tensor ZMN.F

It is now straightforward to derive the corresponding BPS equations

2
U= B, gy e, (1.116)
5 5
We can readily find the DW solution
1 2 2
¢0:§1n [%4_0], U=1n [%4-0]. (4.117)

4.1.2.2 SO(3) Symmetric Domain Walls

In this section, we look for more complicated solutions preserving SO(3) unbroken
symmetry generated by X;; with i, j = 1,2, 3. Gauge groups containing an SO(3)
subgroup are SO(4), SO(3,1), and C'SO(3,0,1) corresponding to

w" = diag(1,1,1, p) (4.118)

with p =1, —1, 0, respectively.

For simplicity, we truncate axions b; out and consider only ¢, and scalars
parameterizing the SL(4)/SO(4) coset. With an explicit form of the SL(4)/SO(4)
coset representative

Y= diag(e?, e?, e?,e739), (4.119)
we obtain the scalar potential

2
V — _%6—4(¢0+3¢><3el6¢ + 6pe® + p?). (4.120)

Using the projector in ({.115), we can derive the following set of BPS equations

U — 1%6—2<¢o+3¢>(368¢+p), (4.121)
& = 2!/;06—2<¢o+3¢>(368¢+ p), (4.122)
¢ = _%6—2(¢o+3¢)(68¢_p)_ (4.123)

The solutions for U and ¢, are given by

2 1
U = ggb —F In(e — p), (4.124)

1 1
b = $6— 15 In(e* — p) + Cp . (4.125)
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The solution for ¢(r) is given by

for p =0 and
4grp(e®® — p)% = 5e20t+Fe [4 —3(1—pe*)® L7 (—

for p = £1.

4.1.2.3 SO(2) x SO(2) Symmetric Domain Walls

We now consider DW solutions with SO(2) x SO(2) symmetry in SO(4) and
SO(2,2) gauge groups. These gauge groups are altogether characterized by the

component of the embedding tensor in the form of
w” = diag(1,1,0,0), o==+1. (4.128)
With the parametrization for the SL(4)/SO(4) coset representative
V= diag(e?, e?, e ¢ e ?), (4.129)

the scalar potential and the BPS equations are given by

V = —2g%ge 4 (4.130)
and
1
U = gge_2¢0_2¢(e4¢ +0), (4.131)
1
Py = 1—0ge*2¢’0*2¢(e4¢’ +0), (4.132)
1
¢ = 596_2¢0_2¢(€4¢ —0). (4.133)

The DW solution can be straightforwardly obtained

U = 2y, (4.134)
11
do = ¢ = gln(e"’ —0) +Co, (4.135)

1 12 1 138
6gro(e’ —o)s = 5”513 -2(1—0e')® LB <5, 5 E U€4¢>:|. (4.136)
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4.1.2.4 SO(2) Symmetric Domain Walls

We examine SO(2) symmetric solutions as a final example for DW solutions from
gaugings in 40 representation. Again, we truncate axions b; out and parametrize

the SL(4)/SO(4) coset representative as

P = eh1Yit+oaYotosYs (4.137)

in which Y;, i = 1,2, 3, are non-compact generators commuting with the SO(2)

symmetry generated by Xi,. The explicit form of these generators is given by
Y1 = e + exn —e33 — ey, Yy = e3y + eus, Y3 =e33 —ey. (4.138)

Several gauge groups containing an SO(2) subgroup are uniformly characterized

by the following component of the embedding tensor
w” = diag(1,1, 0, p). (4.139)

The scalar potential is computed to be

2
V = —f—66_4(¢0+¢1+¢3) [8e4¢1+2¢3 [p— 0+ (p+ o) cosh 2¢,]

—[p— 0+ (p+ o) cosh 2¢,]* — 8417592 [ — 5 — (p + &) cosh 2¢,]
+e'% [p* + 10po + 0% — (p + 0)* cosh 4¢, |

+e*% [p— o — (p + o) cosh 2¢2]2} : (4.140)

It should be noted that the scalar potential with 0 = p = 0 vanish identically.
This leads to a Minkowski vacuum for C'SO(2,0, 2) gauge group.
In this case, the corresponding BPS equations are much more complicated

than those obtained in the previous cases

1
U = 1—Oge’2(¢°+¢1) [2¢*" — (p — o) sinh 2¢5 + (p + o) cosh 2¢3 cosh 2¢5] , (4.141)
1
by = %96_2(¢0+¢1) [264¢1 — (p — o) sinh 2¢3 + (p + o) cosh 2¢, cosh 2¢3] , (4.142)
1
¢ = —de*Q(%*d’l) [264¢1 + (p — o) sinh 2¢3 — (p + o) cosh 2¢ cosh 2¢3] , (4.143)
1
¢l = —§g6_2(¢0+¢1)(p + o) sinh 25 sech 26, (4.144)

1
Py = 596_2(¢0+¢1) [(p — o) cosh 2¢3 — (p + o) cosh 2¢ sinh 2¢3] . (4.145)



92

We are unable to solve these equations completely for arbitrary values of the

parameters p and 0. However, the solutions can be separately found for specific

values of p and o.

(1)

Domain walls from C'SO(2,0,2) gauge group

The simplest case is C'SO(2,0,2) gauge group with p = ¢ = 0. In this case,
¢y = ¢ = 0 and the remaining BPS equations considerably simplify

1 1 1
U — gge 2¢o+¢1’ ¢6 _ Ege 2¢>0+¢17 d)ll — _596 2¢0+¢1' (4.146)

Here, scalars ¢o and ¢3 can be consistently truncated out. Thus, the solution

for the remaining fields can be readily found

1 1 ) 6
U — —5¢1, b0 = _5¢1 4+ Co, 1= —Eln {5(6_20097" - C’)] . (4.147)

Domain walls from SO(3,1) gauge group

In the case with ¢ = —p = 1, the BPS equations give ¢, = 0. Similar to the
previous case, ¢o does not appear in any BPS equations. After truncating

out ¢ and redefining r to 7 by 4 = ¢=2%0=2¢1 we find a DW solution

1 1
o1 = S¢s—Im[1+Ci(1+ e*»)], (4.148)
1 1 1
o = Co+ 1508~ Eha(l 4 €*%) + T (14 Ci(1+€'™)] ,(4.149)
1
¢35 = 5 In tan(Cs — g7), (4.150)

U = 2. (4.151)

Domain walls from C'SO(3,0,1) and C'SO(2,1,1) gauge groups

In this case, we set p = 0 and 0 = +£1 corresponding C'SO(3,0,1) and
CSO(2,1,1) gauge groups. All scalar fields are now non-vanishing and the
DW solution is given by

U = 24y, (4.152)

1 1
b = %hl ng (CO i 92f2€401 _ 464014—03927:2 _ 464CI+203927:2) 7(4153)
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1 1
¢1 = C1 =560 — ; In(1 — e*2) 4 1 In(1 + 2% + 2% — 2057492) (4 154)

1 4(1 C3\2 1 2 C3\2 22

P2 = (o) +U+2e >:qr : (4.155)
4 4e2Cs + (1 + 2€%3)2¢272
1 202 _ 1)(1 Cs Cs+2¢2

by = L [ JA+ e+ e ) (4.156)
4 1 + 603 -+ 62¢2 — 603+4¢2

with % = ¢ 2007201 Ip this solution, we have shifted the coordinate 7 to

T+ % with C' being an integration constant in ¢ solution.

(4) Domain walls from SO(4) and SO(2,2) gauge groups

In this case, we set p = 0 = %1 corresponding to SO(4) and SO(2, 2) gauge

groups. The DW solution can be obtained as in the previous case

U = 260, (4.157)
1 \ 1
¢0 _ CO I Ehl [1 —|—4€203 0 672ga'r] 4+ E(ZLO’ + 62001 +4€2001+203)gf
— 120 20012907 (16 A(Ca+g07) | go2Cstdgor | pdgor _ 1y (4.158)

1 1
¢1 = 5C, — 5 In(1 — e*2) + A In [e*7% — %2 4 2@ 102 (%2 — 2)] (4.159)

1 1—292 gor 2goT 4 2C3+2goT

¢2 = —1In ... ... |, (4.160)
4 1 + 2e90T 2= 62ga’r S/ 46203+290'r
1 2¢2 C3+4¢2 _ ,Cs

Y e - (4.161)
4 e292 4 eC3 — eCs+dg2

with % = ¢ 200261

4.1.3 Gaugings in 15 and 40 Representations

We close this flat DW section by looking for the solutions in SO(2,1) x R* and
SO(2) x R* gauge groups. Besides, we also explicitly demonstrate that DWs from

these gaugings in both 15 and 40 representations are }l-supersymmetric.

4.1.3.1 1-BPS Domain Wall from SO(2,1)xR" Gauge Group

We start with SO(2,1) x R* gauge group. In this case, we consider solutions that

are invariant under the maximal compact subgroup SO(2) C SO(2,1). Among the
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fourteen scalars in SL(5)/SO(5) coset, there are four SO(2) singlets corresponding

to the following non-compact generators

Y, = 2e11+2e32+ 2e33 — 3esq — 3es5,
Yy = e1+exn—2e33,
Y3 = ejateastess+eso,

Y, = e15—e4—€40+es57. (4.162)

With the SL(5)/SO(5) coset representative

Y = 6<l50Y1+¢>1Y2+‘l52Y3‘*‘¢3Y47 (4.163)

we obtain the scalar potential

2
V = %6_2(4‘750_@) [6 cosh 2¢5 cosh 2¢3 + 66¢1] (4.164)

which does not admit any critical points.

Contrary to the previous cases, we need to impose two projection conditions
on the Killing spinors () in order to obtain a consistent set of BPS equations
in this case. This is because A; and As matrices consist of two parts separately
corresponding to Yy and ZMNP While the latter comes with an extra SO(5)

gamma matrices I'®, the former does not. The resulting two projections are
yOeh = —(T'3)" eb = e, (4.165)

which reduce the number of SUSY to 1/4 of the original amount or eight
supercharges.

Following the same procedure as in the previous cases, we find the BPS

equations

U = %6_2(2¢0+¢1) (3 cosh 2¢5 cosh 25 — €%91) | (4.166)

oy = %6*2(%*‘“) (15sech2¢ysech2¢s — 3 cosh 2 cosh 2¢3 — 4e6¢1) ,(4.167)
1= T o=200t61) (3g0ch2gppsech2eps + 3 cosh 20y cosh 265 + 4¢541 4.168

3

¢ = _Tge-2<2¢o+¢1> sinh 2¢osech2g;, (4.169)
L= —3—96_2(2¢0+¢1) cosh 2¢); sinh 2¢5 . 4.170

o8 P2 P3

16
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Introducing a new radial coordinate 7 via fl—i = e 4%~ we can find a DW

solution to these equations

bo = Co+ 3(63% _ 3) 1n(1 _ €4¢2) _ i 1n(€203 — o2 + 8921203 _ 2€4¢2+203)

45 60
_% In (1 + 64¢>2 + 2\/64¢2 — 203 _ o8¢2+2C3 + 264¢2+QC3>
1
¢1 = O —5¢p —In(1 —e*2) +In(1 + e*?), (4.172)
1 1 4+ 46203 _ 9pso7 347
b= | (4.173)
4 1 4 4203 4 289" + 1297
1 292 _ oCs 4 odP2+Cs
¢3 - Z n |:62¢2 + 603 — e4¢2+C3:| ) (4174)
U = %5(669171 _ 3) ln(l g e4¢2) 4/ 1_10 i (6203 _ gl + e2Cs+8¢2 26203+4¢2)

—11—566¢1 In (2\/e4¢2 — €203 — 8024203 | 202Cs+4d2  edd2 4 1) (4.175)

in which C;, ¢ = 0,1, 3, are integration constants for ¢; solutions. It should be
noted that C5 and another integration constant for U solution are neclected by

shifting the radial coordinate 7 and rescaling the flat coordinates x™, respectively.

4.1.3.2 1-BPS Domain Wall from SO(2)xR" Gauge Group

As the final case, we consider SO(2) x RS gauge group with TrZ? = —2. As
expressed before, this case admits a half-supersymmetric (N = 2) Minkowski
vacuum, and the gauge group is reduced to SO(2) x R*. For definiteness, we take

an explicit form of Z,” to be

00 0
Z =100 —-1]. (4.176)
01 0

There are four SO(2) singlet scalars corresponding to the following SL(5)
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non-compact generators

Y1 = 3eiq +3e22 —2e33 — 2e44 — 2655,

Yo = eyq+tess—2es3,
Y3 = eja+erstesr+eso,
Y4 = €15 — €24 — €42 + €51 - (4177)

Using the parametrization of the SL(5)/SO(5) coset representative in the form
VY = ghafyfprYatdeYatdals (4.178)
we find that the scalar potential vanishes identically. This is in agreement with

CS0O(2,0,2) gauge group considered in the previous section.
With the projectors (), we can derive the following BPS equations

U 1%6_6% cosh 2¢, cosh 2¢5, (4.179)
by = é%e‘wo (cosh 204 cosh 2¢5 + 5sech2pasech2¢3) | (4.180)
¢y = %6_6¢0 (cosh 2¢p5 cosh 2¢3 — sech2¢pssech2¢s) (4.181)
¢ = —ge—&ﬁo sinh 2¢psech2¢s, (4.182)
¢, = — %e—&ﬁo cosh 265 sinth 2¢hs . (4.183)

By using a new radial coordinate 7 defined by % = ¢~ %% we find a DW solution

to the above equations

1 1
¢g = Cy — R In(1 — e*2) + 6 In(1 4 e*?2)

—{—% In [6203 — P2 4 2034802 26203+4¢2} , (4.184)

1 1
o= Ch — G In(1 + e**?) + D In [6203 — el02 4 204802 _ 26203+4¢2} , (4.185)

1 1 4 2C3 2 Lo gr

P P e T (4.186)
4 1+ 4e%Cs + 229" 4 97
1 2¢2 492+C3 _ ,Cs

¢35 = 1 [6 e ‘ ] , (4.187)
4 202 — edda+Cs 4 oC3

1 1
U — _g ln(l . 64(;52) + E In [6203 — elo2 + e2C3+8d2 _ 26203+4¢2} _ (4188)
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4.2 Charged Domain Wall Solutions

We subsequently extend the (flat) DW solutions found in the previous section
by coupling them to non-vanishing modified three-forms # )y, in this section.
Similar to Section @, the solutions under consideration here also take the form of
AdS; x S3-sliced DWs. In addition to Hs)u, it is also possible to further couple

SO(3) gauge fields to the solutions in some cases.

For SO(5) gauge group with a supersymmetric AdS; vacuum, charged DW
solutions should be interpreted as two-dimensional conformal defects within the
dual N = (2,0) SCFT in six dimensions. For other gauge groups, their vacua take
the form of supersymmetric flat DWs given in Section [1! We expect these charged
DW solutions to describe surface defects in the dual six-dimensional N = (2,0)
SQFTs. Moreover, as in the previous case, we will also give uplifted solutions
only for SO(5) and C'SO(4,0, 1) gauge groups in which the complete truncation
ansatze of eleven-dimensional supergravity on S* and type IIA theory on S3 are

known.

4.2.1 Gaugings in 15 Representation

As in the flat DW section, we begin with gaugings in 15 representation. To
couple the modified three-forms to the DWs, we take the metric ansatz to be the
AdS3 x S3-sliced DW (@) In order to preserve some amount of SUSY on this
metric, we use the ansatz for Killing spinors similar to ()

U(r)

e =ez ¢ [cos 6(r)1s + sin 0(7“)7612] € (4.189)

in which €j are constant SM spinors.

For the modified three-forms, we use the ansatz following ()

~3U(r) e (4.190)

Hnipm = ka(r)e Emip and Hisinr = lu(r)e
or, equivalently, with vol 445, and volgs given in (),

H(g)M = k‘MVOIAdS3 + [prvolgs . (4.191)
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As seen from their definitions, all tensor fields are involved in the modified three-
forms. These contributions can come from either massive three-form or two-
form fields depending on the non-vanishing components of the embedding tensor.
Therefore, in order to identify which tensor fields determine non-vanishing H s,

we need to consider gauge group by gauge group.

4.2.1.1 SO(4) Symmetric Charged Domain Walls

We first consider charged DW solutions with SO(4) symmetry. To preserve SO(4)

symmetry, we keep only the following components of H3); non-vanishing

Hoips = k(r)e " epq;  and Hisps = l(r)6_3w(”€;j,;. (4.192)

For SO(5) and SO(4,1) gauge groups corresponding to the non-degenerate
Yy from (@), the field content of the gauged supergravity contains five massive
three-form fields S (1\43) For vanishing gauge and two-form fields, the modified three-
form is then given by

H)s = 9P5(53) (4.193)

with p = Y55 = 1. Therefore, the massive three-form field 5?3) determines the
H(3)s in these gauge groups.

For CSO(4,0,1) gauge group with Ys5 = 0, the SE’?’) does not contribute to
H3)5, but there is a massless two-form field B(9)s with the field strength

In this case, k'(r) = I'(r) = 0 is needed in order to satisfy the Bianchi’s identity
DHsn = 0. Taking this condition into account, we can write the ansatz for the
two-form field as

Bg)s = kw) + 10 (4.195)
in which & and [ are now constants. With the metrics given in (@) and (@), the

explicit form of wy) and W) is given by

1 1
Wiz = —— sinh z'dt A dz? and Q) = ——sina’dx* Adx®.  (4.196)
(2) -3 (2) <3
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It can be readily verified that vol 445, = dw(s) and volgs = dw(y).
Using the scalar coset representative (@), and imposing two projection
conditions

Peg = (T5)%eb = e, (4.197)

we find the following BPS equations from the conditions 0¢; = 0 and % =0

V-2
v = sa(im [9(8 — pe'®?) + 3gpe? cos 46 — 167¢*~" sin 26] , (4.198)
V-2
w = 406—20 [9(4 + 2pe%) — gpe'® cos 40 — 87?7V sin 26} , (4.199)
cos
oV 20
¢ = S0 cos 20 [9(4 — 3pe!%) — gpe'® cos 40 — 87e?*7Y sin 29} , (4.200)
cos
1
0 = —Egpev+8¢ sin 20, (4.201)
1
E o= §62U’4¢(4T — gpe¥ 8% sin 20), (4.202)
1
[ = §63W_6¢ [g(pe'?? — 2) tan 20 + 47e**~Y sec 20] (4.203)

together with an algebraic constraint
—-w =g [
O=e"K—e "Tsec20+ 59¢ tan 20 . (4.204)

Since the four-form field strengths do not enter the SUSY transformations of
fermions, the functions k(r) and [(r) appear algebraically in the resulting BPS
equations. This is in contrast to the pure N = 2 gauged supergravity considered
in [62] and the matter-coupled SO(4) theory in Section @ in which the four-form
field strength of the massive three-form field obviously appears in the fermionic
SUSY transformations. In those cases, the BPS conditions result in differential

equations for k(r) and (7).

It should be noted here that the appearance of the SO(5) gamma matrix
['s in the projection conditions () is due to the non-vanishing H)s. We
then consider various possible solutions to the BPS equations, these solutions are

%—BPS since the Killing spinors are subject to two projectors ()
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4.2.1.1.1 Mkws; X R3-Sliced Domain Walls

We start with a simple case of Mkws x R3-sliced DWs with vanishing 7 and x.

Imposing 7 = k = 0 into the constraint () gives
1
0= ige*% tan 20 . (4.205)

Setting g = 0 corresponds to ungauged N = 4 supergravity and gives rise to a
supersymmetric Mkws x R x R?* ~ Mkw; background as expected.

Another possibility to satisfy the condition () is to set tan 260 = 0 which
implies ¢ = %, n =0,1,2,3,.... For even n, we have sinf = 0 and, from (),
the Killing spinors take the simple form given in () For odd n with cosf = 0,
the Killing spinors become

¢4 = 70120 (4.206)

We can redefine €f to € = yméeg satisfying the projection conditions

—’7368 vl e8| = €5 . (4.207)

This differs from the projectors in () only by a minus sign in the 73
projector. Therefore, the two possibilities obtained from the condition tan 26 = 0
are equivalent by flipping the sign of ,yg projector. We can accordingly choose

0 = 0 without losing generality.
With 6 = 0, the BPS equations (|4—119§) to (EQO;) become

1
U=w-= Egev_w(él + pe'®?), (4.208)
Loy
¢ = gge’ (1= pe'), (4.209)
k=1=0. (4.210)

By choosing V' = —3¢, we find the following solution

U=W =2¢— ;lln [1— pe'®], (4.211)
e’? = % tanh [%(gr + C)} (4.212)
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with an integration constant C'. Since k = [ = 6 = 0, the I'; projection in ()
is not needed. This solution is then half-supersymmetric with vanishing three-
form fluxes and is exactly the SO(4) symmetric DW studied in Section .
Therefore, the Mkws; x R3-sliced solution is just the standard flat DW.

4.2.1.1.2 Mkws X S3-Sliced Domain Walls

We now look for DW solutions with a Mkws x S? slice. In this case, the follwing

gauge choice is chosen as in [62)]

1
V= 8 4.213
0 T (4.213)

For p # 0, we can solve the BPS equations d419§) to (|4203ﬂ) by setting 7 = 0.

The resulting solution is given by

U = 2¢—In(sin20), (4.214)
W = 2¢—In(tan26), (4.215)
e'% = 20(cos4f — 3) + (4C + p) sec® 26, (4.216)
kE = —g (4pC + csc* 26) tan® 20, (4.217)
| = 1% [pC(cos80 +3) — 2(2pC + 1) cos 46] esc2 20,  (4.218)
0 = arctan (e >9") (4.219)
with kK = —¢/2 and C being an integration constant in the solution for ¢.

For SO(5) gauge group with p = 1, the solution is locally asymptotic to the

N = 4 supersymmetric AdS; in the limit r — oo with
U~W ~2gr, p~0~0. (4.220)

In this limit, the main contribution to the solution is obtained from the scalar
field, while the contribution from the modified three-forms is highly suppressed,
as can be seen from () On the other hand, in the limit » — 0, the solution

is singular similar to the solution studied in [62].
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For SO(4,1) gauge group with p = —1, there is no AdS; asymptotic since
this gauge group does not admit a supersymmetric AdS7 vacuum. In this case, the
solution is the SO(4) symmetric flat DW studied in Section with a dyonic
profile of the three-form flux.

For CS0O(4,0,1) gauge group with p = 0, imposing 7 = 0 into the

constraint () gives

1
K= _§geW*2¢ tan 26, (4.221)

and the BPS equations from (lll9§) to (ll20§) with 7 = 0 become

1
U =W = 1—OgeV—2¢ sec 26, (4.222)
1
P= 2—Ogev’2¢ sec 20, (4.223)
0 =k=0, (4.224)
1
[ = ——de3w_6¢ tan 26. (4.225)

The equation () implies that 6 is constant. Note that these BPS equations
will reduce to those of the Mkws x R3-sliced DW if § = 0.

In this case, the constraint () implies that 6 cannot be zero since we
keep k # 0. Furthermore, a non-vanishing 6 gives a non-trivial three-form flux
according to () to support the S% part. For constant 6 # 0, we find the

following solution, after choosing V' = 0 gauge choice,

U=W=2¢ k=0, (4.226)
1
| = —than%, (4.227)
1
e*? = g9 sec 20 +2C (4.228)

with an integration constant C'. The constant 6 is given by

1 2
§=——tan! ", (4.229)
2 g

It can be verified that this charged DW solution is the SO(4) symmetric flat DW
of CSO(4,0,1) gauge group given in Section with a magnetic profile of a

constant three-form flux obtained from a constant 6.
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4.2.1.1.3 AdS; x S3-Sliced Domain Walls

We move on to more complicated solutions with an AdSz x S? slice. As in [62], we
begin with a more straightforward solution with U = W. From the BPS equations
(|4.198|) to (|4.203|)7 imposing U" = W’ gives

0 =0, k=1, K=T. (4.230)

Setting § = 0, we find that the BPS equations become

U = %ev_2¢(4+pem¢), (4.231)

— %ev_2¢(1—p610¢), (4.232)
1

ko 562”4‘%. (4.233)

Choosing V' = —3¢, we obtain the following solution

U /= Z(b—iln(l—pewd’), (4.234)
e’ = i an \/—ﬁ T

\/ﬁt h[ R +C)], (4.235)

k = %TCOSh {?(gr—i—C)} (4.236)

with an integration constant C. This solution is the SO(4) symmetric flat DW
coupled to a dyonic profile of the three-form flux.

For SO(5) gauge group, the solution is locally asymptotic to the N = 4
supersymmetric AdS; vacuum. We expect this solution to describe a surface
defect, corresponding to the AdS3 part, in the six-dimensional N = (2,0) SCFT.
For SO(4,1) and C'SO(4,0,1) gauge groups, we similarly interpret the solutions
as conformal surface defects within six-dimensional N = (2,0) SQFTs dual to flat
DW vacua without the three-form flux.

In the more general case with U # W, we will separately find the solutions

for the cases of p = +1 and p = 0. With the same gauge choice given in (),
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the BPS equations () to () for p # 0 are solved by

U = 2¢—In(sin26), (4.237)

W = 2¢—In(tan26), (4.238)

106 _ 39C + 2gp — 41p + 4(1p — gC) cos 460 + gC cos 89’ (4.239)
g(cos40 + 1)

kE = é (47 csc? 20 — g esc? 20 — 4gpC') tan® 26, (4.240)

I = % (g csc? 20 — 2g cot? 20 — 41 + 4gpC sin® 29) , (4.241)

§ = arctan (e *9") (4.242)

together with the following relation obtained from the constraint ()

k=-24r. (4.243)

2
Again, the solution is locally asymptotic to the AdS; vacuum for SO(5) gauge

group, and being a charged DW with a non-vanishing three-form flux for SO(4,1)
gauge group. In general, these solutions respectively describe holographic RG
flows from an N = (2,0) SCFT and an N = (2,0) SQFT to a singularity at r = 0
except for a special case with 7 = g(pC'+1)/4. This is very similar to the solutions
of pure N = 2 gauged supergravity studied in [62].

Asr — 0 for 7 = g(pC + 1)/4, the scalar potential is constant and the
solution turns out to be described by a locally AdSs; x T* geometry with the
following leading profile

1
e~ (p—40)E, M0, o~ n(p—40),
0 ~ % ke~ g(4po —1),  1~0. (4.244)

To obtain real solutions in SO(5) and SO(4,1) gauge groups, we respectively
choose the integration constant C' < %1 and C' < —i.

For C'SO(4,0,1) gauge group with p = 0, after setting V' = 0, we find the
following BPS solution

1
U=W=26 k=3, (4.245)
1
[ = 1(27 — gsin 260) sec 26, (4.246)
1
e** = —r(gsec26 — 27 tan 26) 4 2C (4.247)

10
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where the constant x is given by
1
K = Tsec20 — Egtan 20. (4.248)

In this case, 6 is constant since the BPS equation () with p = 0 gives #' = 0.

4.2.1.1.4 Coupling to SO(3) Gauge Fields

We extend our analysis by coupling the previously obtained solutions to SO(3)
gauge fields in this section. With the identity I'y...T's = 14 and the projector
(D5)*,€5 = €2, we turn on the gauge fields on the S* corresponding to the anti-self-

dual SO(3) € SO(4). The ansatz for these gauge fields is chosen to be

AB = A W) %,(T)e{ (4.249)
ABY =/ — ) Zp(r)eii, (4.250)
A%f) = —A?f) = W) gp(r)eé. (4.251)

The function p(r) is the magnetic charge depending on the radial coordinate. The

corresponding two-form field strengths are given by

K ,a K .
F(22?3 = _F(z) = _V_szleg Aet+ 6_2W§p(2 —gp)e® A b, (4.252)
2
PRUSIELE K .
F(Q) = F(Q) %= _V_sz'e3 Ae®+ 6_2W§p(2 —gp)e® A et (4.253)

2 R .
%p(? —gp)etae. (4.254)

_whk ;3 5 _
F(Q) F(Q) -V W1p163/\€6+6 2W
Since ZMN-P = ( in the 15 representation, the modified two-forms are precisely
the SO(3) field strengths, FiV = F3}", in this case.
To preserve some amount of SUSY, we need to impose additional projection

conditions on the constant SM spinors €f as follow
74568 —(I'2)* 60, 75668 —(T'23)* b€o (4.255)

Therefore, together with the projectors given in (), there are four independent

projectors on €f, and the residual SUSY consists of two supercharges.
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With all these, the resulting BPS equations for the AdS3; x S3-sliced DW
coupling to non-vanishing SO(3) gauge fields are given by

eV_Q(W+¢)
U = 200520 (€ (g(4 + pe'®?)(3cos 40 — 1) + 32¢**~7 sin 26)
cos
+12¢* (K*p(gp — 2)(cos 40 — 3) + 2" "*?k(gp — 1) sin46)] (4.256)
eV—2(W+9)
W' = T [V (g(4 + pe'®?)(2 — cos 40) + 24e** "V 7 sin 26)
cos
+4e*? (k*p(gp — 2)(cos 40 — 8) — 2" **k(gp — 1)sin46)] , (4.257)
eV —2(W+9)
¢ = ETTT (€ (g(6 cos 40 — 2 — pe'*?(cos 46 + 3)) + 16e**~ Y7 sin 26)
cos
+6€'? (k*p(gp — 2)(3 — cos 40) + 2" **k(gp — 1)sin46)] , (4.258)
V—2(W+¢)
0 = eT [24€"72¢ (Vs + k(gp — 1) cos 26)
— (gezw(12 + pe'?) —12e*k%p(gp — )) sin 26] , (4.259)
1
k= §€3U_4¢(4€_U7' — gpe®? sin 20), (4.260)
1
[ = ge:sw 0 [g(4 4 pe'®®) tan 20 — 8e**~V'r sec 20
—12e*7*V (k%p(gp — 2) tan 20 + " **k(gp — 1))], (4.261)
oV —W—1¢
p = —5 [2e" 20 (VU7 + K(gp — 1) cos 26)
K
— (9e® — e**k*p(gp — 2)) sin 26] . (4.262)

It can be verified that these equations satisfy all the field equations () to ()
without imposing any constraint. Moreover, by setting 7 = 0, we obtain the BPS
equations for the case with a Mkws; x S? slice.

Since the BPS equations are much more complicated, we are not able to
find analytic flow solutions in this case. Instead, we look for numerical solutions
with some appropriate boundary conditions. We first consider the asymptotic
AdS; vacuum in SO(5) gauge group. With p = 1, the following locally AdS7

configuration solves the above BPS equations at the leading order as r — oo

1
UnW e gm0, pN_<1—f) (4.263)
AdS7 9 K

with Lags, = %. Choosing V' = 0 gauge choice, we find some examples of the BPS
flow solutions from this locally AdS7; geometry as r — oo to the singularity at

r = 0, as shown in Figures @ and @ for g = 16 and kK = 2. Note that, in these
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solutions, we have not imposed the boundary conditions on k£ and [ since their
BPS equations are algebraic. This is rather different from the solutions in [] in

which the BPS equations for £ and [ are differential.

U(r]
2.0() wir) s
20 0.12
13 15 0.10
0.08
1.0
1.0 0.06
0.5 05 0.04
0.02
r r r
02 04 06 08 10 02 04 06 08 10 02 04 06 08 10
(a) U solution (b) W solution (c) ¢ solution
K(r)
p(r) I(r)
0.06250 0.9 : ,
0.2 0
0.06248 R -0.001
0.002
0.06246 -0.002
0.001
0.06244 0.003

T r

0.2 0.4 0.6 0.8 1.0’ 0.2 0.4 0.6 0.8 1.0 -0.004

(d) p solution (e) k solution (f) I solution

Figure 4.1: A numerical solution with g = 16, kK = 2, and 7 = 0 from the locally
AdS; configuration in UV as 7 — 1 to a singularity in the form of a Mkws; x S3-

sliced DW in IR at r = 0 for SO(5) gauge group.

From the numerical solution in Figure @, the solutions for k£ and [ seem to

2U and [ ~ €* when r — oco. However, the contribution

be diverging as k ~ e
from the three-form flux is highly suppressed in this limit since the terms involving
H(3)5 in the BPS equations behave as ke 3V + [e7?W.

We then look for numerical solutions of the BPS equations (|4256|) to (|4262|)

in the form of a BPS flow from the charged DW without the SO(3) gauge fields

given previously to the singularity at »r = 0. With the gauge choice V' = —3¢, we
find the following behavior at the leading order when gr — C| for a constant C,

2 1
UNWNgln(gr—C’), gbwgln(gr—C’),

0~p~0, and ke~~~ g (4.264)

with kK = 7. It can be verified that this configuration solves the BPS equations

(|4.198|) to (|4.203|), and () in the limit gr — C for all SO(5), SO(4,1), and
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U &0
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Figure 4.2: A numerical solution with g = 16, x = 2, and 7 = 1 from the locally
AdS; configuration in UV as r — 1 to a singularity in the form of an AdS; x S3-
sliced DW in IR at r = 0 for SO(5) gauge group.

CSO(4,0,1) gauge groups.

Examples of the BPS flows from the charged DW in () as gr — C to
the singularity at » = 0 in SO(5), SO(4,1), and C'SO(4,0, 1) gauge groups are
respectively given in Figures @, @, and @ forC=—-1,g=1,and k =7 =2.
These solutions should describe surface defects within six-dimensional N = (2,0)

SQFTs. For the solution in Figure @, we can see that k is constant along the flow

since the BPS equations () and () give constant U — 2¢ when p = 0.

For SO(5) gauge group, it is also possible to find BPS flow solutions
interpolating between the asymptotically locally AdS; geometry and the charged
DW configuration with an intermediate singularity in the presence of non-vanishing
SO(3) gauge fields at r = 0. With C = —1, g = 1, Kk = 7 = 2, and the gauge fixing
V = —3¢, an example of these flow solutions is shown in Figure @ in which the

SO(3) gauge fields vanish at both ends of the flow and become singular at » = 0.
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w(r)

-08 -06 -04 -0.2

(a) U solution (b) W solution (c) ¢ solution

-1.0 -0.8 -0.6 . . : . . : ; ) 0 -08

(d) p solution (e) k solution (f) I solution

Figure 4.3: A numerical solution with C' = -1, g=1, k=7=2,and V = -3¢
from a charged DW without the SO(3) gauge fields at r = —1 to a singularity in
the form of an AdSs; x S3-sliced DW at r = 0 for SO(5) gauge group.

w(r)
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I(r)
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(d) p solution (e) k solution (f) I solution

Figure 4.4: A numerical solution with C' = -1, g =1,k =7 =2,and V = —3¢
from a charged DW without the SO(3) gauge fields at » = —1 to a singularity in
the form of an AdSs; x S3-sliced DW at r = 0 for SO(4, 1) gauge group.
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Figure 4.5: A numerical solution with C' = -1, g =1,k =7=2,and V = —3¢
from a charged DW without the SO(3) gauge fields at » = —1 to a singularity in
the form of an AdS3 x S3-sliced DW at 7 = 0 for C'SO(4,0, 1) gauge group.

u w
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Figure 4.6: A numerical solution with C' = -1, g =1, k=7 =2,and V = —3¢
between a charged DW without the SO(3) gauge fields at » = —1 and the locally
AdS; configuration as r — 10 with a singularity at » = 0 for SO(5) gauge group.
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4.2.1.2 SO(3) Symmetric Charged Domain Walls

By repeating the same procedure, we can look for charged DWs preserving SO(3)
residual symmetry. The SO(3) residual symmetry allows only two non-vanishing

Hz)s and Hsys. We will choose the following ansatz

Hoips = ka(r)e ™ ODegip, Mg = la(r)e W e (4.265)

Honigs = ks(r)e > Depag, Hiss = 1s(r)e ™V ey (4.266)

gk

With 3y, non-vanishing, the SO(5) gamma matrix I'y will appear in the BPS
conditions. To evade a further projector, which will break more SUSY, we impose

the following conditions
ky(r) = ks(r) tanh ¢ and l4(r) = l5(r) tanh ¢, (4.267)

which make the coefficient of I'y in the BPS equations vanish.

With the projection conditions (), the coset representative (), and
the embedding tensor (), we can find a consistent set of BPS equations if

=0 and ] K. (4.268)

The latter forbids the possibility of setting 7 = 0 or kK = 0 without ending up with
7 =k = 0. Thus, the solutions can be only AdS3 x S3-sliced DWs in this case.
The resulting BPS equations take the form

U = g e’ T0% (3¢71%" + (p + o) cosh 2 cosh 2¢3 + (p — o) sinh 2¢3), (4.269

W' = g "% (3¢71% + (p + o) cosh 25 cosh 2¢5 + (p — o) sinh 2¢3), (4.270
(

(4.269)

(4.270)

¢, = g eV +091 (271991 _ () 4+ o) cosh 26 cosh 265 — (p — o) sinh 2655 ), (4.271)
¢ = 9 V991 (5 + &) sinh 26 sech 26, (4.272)
(4.273)

by = —gew’wl ((p 4 o) cosh 2¢4 sinh 2¢3 + (p — o) cosh 2¢3), 4.273
1

ks = 563U’W’3¢1’¢3 cosh ¢ak, (4.274)
1

l5 = §€2W_3¢1_¢3 cosh ¢ok. (4.275)
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However, these BPS equations are compatible with the field equations if and only

if o = 0 or ¢p3 = 0. It should be noted that setting ¢3 = 0 is consistent with
the BPS equation () only for p = o, so solutions with vanishing ¢3 can be
obtained only in SO(5), SO(3,2), and C'SO(3,0,2) gauge groups. We will find

explicit solutions by separately considering various possible values of p and o.

(1)

Charged domain walls in C'SO(3,0,2) gauge group

For the simplest C'SO(3,0,2) gauge group with p = 0 = 0, ¢ and ¢3 can
be consistently truncated out since ¢4 = ¢4 = 0 in this case. From (),
setting ¢o = 0 directly gives k4 = 4 = 0. By choosing V' = 0 gauge choice,
we find the following charged DW solution

U—W—gln[%—kC}’ ¢1_iln[%+0}, k5—l5—%7'
(4.276)

with an integration constant C.

Charged domain walls in C'SO(4,0,1) and C'SO(3,1,1) gauge groups

In this case with p = 0, we consider C'SO(4,0,1) and CSO(3,1,1) gauge
groups corresponding to ¢ = 1, —1, respectively. Choosing V = —6¢,, we

find a charged DW solution, with ¢, = 0,

1 qgor
¢3 = 5In [T + CI] , (4.277)
1 1
b = _g¢3 + 15 In [Cy + €], (4.278)
1 3
U=W=—¢s+ - In[Cy + '], (4.279)
5 20
1
k4 = l4 = O, and ]i‘5 = l5 = 57’ (4280)

where C and C are integration constants. As stated above, it is not possible

to find solutions with ¢35 = 0 in these gauge groups.

Charged domain walls in SO(4, 1) gauge group

As in the previous case, it is also not possible to set ¢35 = 0 in non-compact

SO(4,1) gauge group with 0 = —p = 1. Therefore, we only consider BPS
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solutions with ¢o = 0 in this case. Using the same gauge choice V' = —6¢;,

we find the following solution

¢2% — tan [ﬂ + (Jl} , (4.281)
4
11
¢ = —g¢3 + 0 In [Cy(e* +1) — 1], (4.282)

1 1 3
U=W=cdy— 7l [e' +1] + T [Co(e?® +1) — 1], (4.283)

]{?4 == l4 == 0, (4284)
1 gr
k5 = l5 = 57’ COSs |:Z + Cl] . (4285)

(4) Charged domain walls in SO(5) and SO(3,2) gauge groups

We finally look at the last possibility with p = ¢ = %1 corresponding to
SO(5) and SO(3,2) gauge groups in which either ¢ = 0 or ¢3 = 0 is
possible. With ¢ = 0 and V' = —6¢;, we find the following solution

A
¢3 = %ln l:—;gj ; (4.286)
b1 = —360 + G = 1) +1], (4287)
U=W= %gsg = iln (e — 1 % In [Cy(e'® — 1) +1] (4.288)
together with
ki=1,=0 and  ks=l=—r . (4.289)
2y/edds — 1

For ¢3 = 0, we find the same solution as in (|428d) to (|428§) with ¢3 replaced

by ¢9, but the solution for k4, k5, [4 and 5 is now given by

L (e2%2 — 1)1 L (€292 + 1)7
k4 = l4 = 4\/m and k5 = l5 = 4m . (4290)

Unlike the other cases, this solution has two non-vanishing three-form fluxes.

We end this section by commenting on solutions with non-vanishing SO(3)
gauge fields. Repeating the same procedure as in the SO(4) symmetric case leads

to a set of BPS equations together with the following two constraints
WU
P =0 and p= b-re (4.291)
gK
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It turns out that the compatibility between the resulting BPS equations and the

second-order field equations needs
(V71 —ek) = 0. (4.292)

For 7 = 0, the magnetic charge p is constant as required by the second condition
in (), but the three-form flux vanishes in this case due to () This 7 =0
case corresponds to performing a topological twist along the S3 part. We will
return to this type of supersymmetric solutions in Section @ On the other hand,
setting 7 = eV "Wk leads to non-vanishing three-form fluxes, but equation ()
gives vanishing SO(3) gauge fields. This 7 # 0 case corresponds to the charged
DWs without the SO(3) gauge fields given above. Similar to the result obtained
in Section for the matter-coupled SO(4) gauged supergravity, there does not
seem to be solutions with both non-vanishing SO(3) gauge fields and three-form

fluxes, at least for the ansatz considered here.

4.2.1.3 SO(2) x SO(2) Symmetric Charged Domain Walls

We finally consider charged DWs with SO(2) x SO(2) residual symmetry using
the scalar coset representative (4.48) and the embedding tensor () As in
the previous case, we find that a consistent set of BPS equations can be found
if and only if = 0 and 7 = eV"Wx. With the three-form flux (), which is

manifestly invariant under SO(2) x SO(2) symmetry, and the projectors given in

(), the resulting BPS equations read

U =W = %ev(ze—2¢l + pel(@1t92) 4 9ge207), (4.293)
¢, = 2%6V<3672¢1 — pet(@1t02) _ 95e=202), (4.294)
¢ = 2!;0 eV (3oe™297 — pelldr1td2) _ 9p=201), (4.295)
b %&U—?(%W?)r, (4.296)
1= Loawu-aiten (4.297)

9
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By choosing V' = 2¢;, we obtain the solution

1 gr ]. gr
o=~ [ecl*% + p} g [60277 + U} : (4.298)
3 1 gr
o = —§¢1 — Zln [601_7 + ,0] , (4.299)
U=W = 1gr + iln [ecl*% + p} + i111 [ecr% + a] (4.300)
8 20 10 ’ '
1 gar T
k=1= et i (4.301)

with two integration constants C; and C. This solution is the SO(2) x SO(2)
symmetric flat DW found in Section including a dyonic profile for the
three-form flux. Note that coupling the solution to SO(3) gauge fields is not

possible in this case due to the absence of any unbroken SO(3) gauge symmetry.

4.2.1.4 Uplifted Solutions in Ten and Eleven Dimensions

In this section, we give the uplifted solutions for SO(5) and C'SO(4,0, 1) gauge
groups using consistent truncations of eleven-dimensional supergravity on S* and
type IIA theory on S3, respectively. However, we will not consider uplifting of the
solutions with non-vanishing SO(3) gauge fields since the uplifted solutions are

not really useful in this case due to the lack of analytic solutions.

4.2.1.4.1 Uplift to Eleven Dimensions

We first consider uplifting the seven-dimensional solutions in SO(5) gauge group
to eleven-dimensional supergravity. We start from the SO(4) symmetric solution

with the SL(5)/SO(5) scalar matrix
My = diag(e*®,e*®,e* e* e789), (4.302)
and the coordinates on S* given by
M

pM = (', p°) = (sin it cos€),  i=1,2,3,4 (4.303)

where fi* are S® coordinates satisfying f'fi* = 1. With the formulae given in

Appendix @, the eleven-dimensional metric and the four-form field strength are
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given by
sty = A5 (V0ds?, + eV Odr? 4 2V ds,)
16
+g—2A_% [e_8¢ sin? £dé? + %?(cos?® £dE? + sin? {dQé))} . (4.304)

64
Fa = EA* sin & (U sin £d€ — 10e%?¢ cos &dr) A ey
—2cos e (ke TV dr Avolgs — 1€V W dr A volyy,)

8 sin &(kvoly, + Ivolgs) A d€ (4.305)
9

with dQ2% = dji'dfi* being the metric on a unit S* and

A = cos’ €+ e P sin’E, (4.306)
U = ("% —4e%) cos® € — (% + 2 *) sin? ¢, (4.307)
€ = gpEumldi’ A dp® A dpt. (4.308)

We can see that the SO(4) unbroken symmetry of the seven-dimensional solution
is the isometry of the S® inside the S*. In this case, the three-manifold Mz can
be either Mkws or AdSs. This solution should describe a bound state of M2- and
Mb5-branes similar to the solutions considered in [62] due to the dyonic solution of
the three-form field.

We can repeat a similar procedure for the SO(3) symmetric solutions. With

the index M = (a,4,5), a =1,2,3, the SL(5)/SO(5) scalar matrix is given by

64¢1 Ig 0
M = (4.309)
0 6_6¢1 M2

with the 2 x 2 matrix M, given by

€293 cosh? ¢y + sinh? sinh ¢, cosh ¢o(1 4 e 7293
M, = ?2 P2 @2 cosh o an (4.310)
sinh ¢ cosh ¢ (1 + €2?) €729 cosh® ¢y + sinh® ¢y

We now separately consider the uplifted solutions for the two cases with ¢ = 0
and ¢3 = 0. We will also rename k5 = k and [; = [ together with k; = ktanh ¢,
and 4 = [ tanh ¢5. Recall also that we only have M35 = AdSs in this case.

For ¢ = 0 and the S* coordinates

pM = (cos &1, sin € cos 1, sin € sin 1)) (4.311)
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with %% = 1, we find the eleven-dimensional metric
A2 L oU 5.2 2V 7.2 2W 7.2 16 \ _2 41 (32 2
dsty = A3 (e?Vdshyg, + €2 dr* + eV dsgs) + FA 5 [e* (sin® £d¢
+ cos® Edptdp®) + e~ % {sin® £(€*? sin® ¢ + e 2% cos® 1) dy)®

— sin 24 sin 2€ sinh 2¢3d€dy) 4 cos? £(e2%3 cos? i + e 293 sin? V)de*}]

(4.312)
and the four-form field strength
F(4) = —2e5172% gin Esindr A (ke TV 3 Vvolgs — 13V W ol 44s,)
+§(krvol,4d53 + Ivolgs) A (cos & sind€ + sin € cos pdi))
—Z—gAztE(g) A [cos2 EsinEUdE N dip + ¢he?? sin® € cos? € sin 2epdr A dE

—e?P17295 gin ¢ cos® Edr A { (66, sin & + 2¢% sin € cos V) dip — 2¢; cos € x
sinyd€} — 2¢e*! sin 26 cos® Edr A {(6_2¢3 — €%%%) sin ) cos 1 cos EdE
+sin &(e*% sin® ¢ + e7*% cos® ¢)dy }] (4.313)

in which

A = 7191 cos? € + €51 sin? (672 cos? ) + €293 sin? 1)), (4.314)

1
U= §€2¢1 [sin® £(1 — e %) {37 cos 20 — ' (1 + cos 2¢ — 2¢*%* sin” 1)}

+(cos 2¢ — 5) cosh 2¢3] — e~ 591 cos? &, (4.315)
1 ~a gn ~c
€2) = §5abc,u dpb A e (4.316)

For ¢3 = 0, we obtain the eleven-dimensional metric

: 1
dsty = A5 (Vdshys, + ¥ dr? + e dsg) + Q—SA-i (6" (sin? £ dg?
+ cos® Edptdfi®) + e~ sinh 2¢,{sin 2¢(cos® £dE — sin® Edip?)

4 sin 2 cos 2¢depd€} + €70 cosh 2¢y(cos? EdE? + sin® Edp?)]  (4.317)
where

A = e %1 cos? € + 1 sin? £(cosh 2¢ — sin 2¢ sinh 2¢y), (4.318)
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together with the four-form field strength

F(4) = 2sin £V (cos i tanh ¢y — sin)dr A (ke "3 Uvolgs — 12V *Wvolzys, )

+§(]€V01Ad53 + lvolgs) A [(tanh ¢ cos ¥ + sin 1)) cos £dE

g

4
+sin&(cos1p — tanh ¢y sin )] — 6—32/{A_2 sin € cos? Eey NdE N dyp
g

64 \ L ovogr o pi2
+—ATdr A e A 3¢ ¢ sin € sin® 2€ cos 2¢dE

g

1 '
+§e*4¢1 cos? € sin 26 {sin2§ (e6¢1 cosh 2(}52) dy
+(e%" sinh 2(152)/ (cos & cos 21pd€ — sin € sin 21/1dw)}
+2¢ 2% cos? ¢ sin 2€ {sin & cosh 2¢,dy)

— sinh 2¢5(sin & sin 2¢dy — cos Q@Z)df)}} (4.319)
in which

U = sin’¢ [362¢1 sin 21 sinh 2¢5 4 €291 (6 cosh? 2¢, — sin 2¢) sinh 4(;52)]

1
(26749 — 3e7891) cos? € + §€2¢1 cosh 2¢(cos 26 — 5). (4.320)

These uplifted solutions should describe bound states of M2- and M5-branes
with different transverse spaces and are expected to be dual to surface defects in
the six-dimensional N = (2,0) SCFT. The solution with SO(2) x SO(2) symmetry

can similarly be uplifted, but we will not give them here due to their complexity.

4.2.1.4.2 Uplift to Type ITA Theory

We now provide a similar analysis for C'SO(4,0,1) gauge group in order to find
uplifted solutions in type ITA supergravity. Relevant formulae are collected in
Appendix @ In this case, gauge fields, massive three-forms, and axions vanish.
The ten-dimensional fields are then only the metric, the dilaton, and the NS-NS
two-form field. We expect the uplifted solutions to describe bound states of NS5-
branes and the fundamental strings.

We begin with the solution with SO(4) symmetry in which the SL(4)/S0O(4)

scalar matrix is given by .//\-/tvz‘j = 0;5. The ten-dimensional metric, NS-NS three-
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form flux, and the dilaton are given by

16
33y = i (Vds2, + eV dr? + Vdsk,) + ?e’%%dfﬁg), (4.321)

- 128 8
H(g) = ?6(3) + g(k’VOl]\/& + lVOlS3), (4.322)
¢ = 5¢. (4.323)

It should be noted that we have a constant NS-NS flux in this case.
For the solutions with SO(3) unbroken symmetry, we parametrize the

SL(4)/SO(4) scalar matrix as
Mij = diag(e??, %, e*?, e7%?), (4.324)
and choose the S? coordinates to be
pt = (sinEfi%, cos &), a=1,2,3 (4.325)

with 1% being the coordinates on S? subject to the condition %i* = 1. With all
these ingredients and writing £ = ks and [ = [5, we find that the ten-dimensional

fields are given by

16
s, = ?e—%%A—% [(e7%sin? € + €% cos? €) de? + sin? £e*di®dji]

+e2® AT (e ds g, + 2 dr? + eV dss) | (4.326)

~ 64
H) = EA_Q sin® ¢ (L{ sin £d€ + 8¢*? cos fqb'dr) N €2)

8
+—(kV01Ad53 + lVOls3), (4327)
g
2% = A~ lel0% (4.328)

in which

1
A = €% cos? € + e 2 sin? ¢, €2) = §5abcﬂadﬂb A djc,

U = e cos’ € — e *sin® € — e*(sin? € + 3cos? €). (4.329)

The solutions for ¢y and ¢ are obtained from ¢; and ¢3 respectively given in

() and () with ¢ = 1 by the following relations

6=1Go—0y) ad  do=—1(6+80)  (43%0)
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4.2.2 Gaugings in 40 Representation

We repeat the same analysis for gaugings from 40 representation in this section.
To find charged DW solutions in the following analyses, we will use the same
ansatz as in the previous case. However, for gaugings in 40 representation, there
are no massive three-form fields S(]‘g). The modified three-forms given in ()

correspond solely to the two-form fields By, in this case.

4.2.2.1 SO(4) Symmetric Charged Domain Walls

Since only SO(4) gauge group can accommodate SO(4) residual symmetry, the
embedding tensor component, in this case, takes the simple form of w¥ = §% with
i,7=1,...,4. In the SO(4) gauged theory, there are four massive two-form fields
Bi2); and one massless two-form field B()5; with the latter being an SO(4) singlet.
We take the ansatz for B(y)s as given in () With the projection conditions

’}/368 = —(T5)%€b = €, (4.331)

and Mij = 0;;, the BPS equations are given by

U =W'= %ev (2% gsec20 — e V7 tan 26) (4.332)
by = %OGV (2e*%gsec20 — e~ VT tan26) , (4.333)
K = —%eZU4¢07, ol E= 10, (4.334)
[ = —%eQU_4¢°T sec 20 + 33V 0% g tan 20 (4.335)

together with an algebraic constraint
k= Tsec20 — 2V 2% gtan 26 . (4.336)

We find that 6 is constant in this case. Choosing V' = 0, we find the solution

U = W = 260, (4.337)
2 1
% = g7 sec 20 — =77 tan20 + C, (4.338)
1
k=5, (4.339)

1
| = —gTsec 20 + g tan 20 (4.340)
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with an integration constant C'. For a particular value of § = 0, we find the

following solution

2 1
U=W = 2¢,, e = =g+ C, k=1= —57 (4.341)

4.2.2.1.1 Coupling to SO(3) Gauge Fields

We now couple the charged DW solutions to SO(3) gauge fields. From (), the
projector (I's)%,el = —e& implies that the non-vanishing gauge fields correspond

to the self-dual SO(3) C SO(4) in this case. We then choose

At = Alh = ggplr)e el (4342
K W) §

Afly = Al = Lepl)e e, (4.343)
K “W(r) 6

Al =AYy = Jep(r)en e (4.344)

with the two-form field strengths given by

2

_v v ity MoK . s
F(122) = F(:% =e W1—6p’e3 Aeb+e 2W3—2p(2 —gp)e* A e, (4.345)
2
—v_w K 3 i _ K . R
F(Z;S = F(% = ek Wﬁple‘g ANelte 2Wﬁp@ — gp)e® A e, (4.346)
2
_v_w Pk 3 £ -~ K . R
F(?’zl) = F(22% =W Wﬁp'e?’ ANe®+e 2W3_2p(2 —gp)eS Aet. (4.347)

Since Z*“® components vanish in this case, the two-form field B); does not

contribute to the modified two-forms so that fg) =F ("27)

Imposing the projection conditions () and (), we find BPS

equations of the form

V—=2(W+¢o)
U = w [16e*" (g(3 cos46 — 1) + 2e** V7 sin 26)
—3et?0 (RZp(gp — 2)(cos 4 — 3) — 8V 20k (gp — 1) sin 49)} ;o (4.348)
V—2(W+¢o)
W/ = :(]Cm [8€2W (29(2 — COS 49) — 3€2¢0_UT sin 20)
+e'% (K*p(gp — 2)(cos 40 — 8) — 8¢V **k(gp — 1)sin46)],  (4.349)
V—=2(W+¢o)
o = m [16e*" (g(3 cos46 — 1) + 2¢** Y7 sin 26)

+3¢to0 (*p(gp — 2)(3 — cos 40) + 8" >k (gp — 1)sin4h)], (4.350)
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eV*2(VV+<;50)

0 = T [24€W+2¢0 (SW_UT + /{(gp - 1) Ccos 29)

—3(16ge*" — " r’p(gp — 2)) sin 26] , (4.351)
1

k= —562U_4¢07‘, (4.352)

1
[ = §63W_6¢° [—169 tan 20 + 8¢ Y1 sec 20

+3e* %2V (k%p(gp — 2) tan 260 + 4" Pk (gp — 1))] (4.353)
oV —W—4do

o = g [8e" 290 (W Ur + k(gp — 1) cos 26)

K

— (16ge*™ — e*°Kk*p(gp — 2)) sin 20] . (4.354)

It can be verified that these equations fully satisfy the field equations without any
additional constraint.
Since, in SO(4) gauge group, there is no an asymptotically locally AdS;

configuration, we will consider only flow solutions from the charged DW

without SO(3) gauge fields given in (l4337|) to (l434d) to a singular solution with

SO(3) gauge fields non-vanishing. To find numerical solutions, we will consider

the charged DW with 8 = 0 given in () for simplicity. As r — —5¢ we

29

impose the following boundary conditions

2gr 1 2gr
U~W n{5—|—0], 10) 211[5—1—0},
D~ 0, kwlw_g (4.355)

with K = 7. An example of these BPS flows is shown in Figure @ From this
solution, we can see that k is constant along the flow since the above BPS equations
give U’ = 2¢; that implies the constancy of U — 2¢y. It should be noted that this
solution is similar to that in C'SO(4,0, 1) gauge group given in Figure @ We also

expect this solution to describe a conformal surface defect within a six-dimensional

N = (2,0) SQFT.

4.2.2.2 SO(3) Symmetric Charged Domain Walls

We now look for more complicated solutions with SO(3) symmetry. Gauge groups
with an SO(3) subgroup are SO(4), SO(3,1), and CSO(3,0,1) corresponding to

p=1,—1,0 in the embedding tensor w* from ({.11§).
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Figure 4.7: A numerical solution with g =1, k =7=2, C' = %, and V = 0 from
a charged DW without the SO(3) gauge fields at r = —1 to a singularity at r = 0
for SO(4) gauge group.

In this case, there are two two-form fields, B(s)4 and B(s)s, which are SO(3)
singlets. For C'SO(3,0,1) gauge group, both of them are massless. For the other
two gauge groups, B()4 is massive while B(z); is massless. However, we are not able
to consistently incorporate B(2)s in the BPS equations. We accordingly restrict

ourselves to the solutions with only H )5 non-vanishing.

To find BPS equations, we use the same ansatze for the SL(4)/SO(4) coset
() and the modified three-forms (), and impose the projection conditions
() Consistency with the field equations also gives rise to the conditions given
in () With all these, the resulting BPS equations are given by

U= W' = LeV =020 (3% 4 ), (4.356)
8 = 2%€V—6¢—2¢0(368¢1 + ), (4.357)
¢ = — % eV —60-200 (3801 _ ) (4.358)
e _%esv—w—@o,ﬁ, (4.359)
- —%(32W_4¢Oli. (4.360)
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Setting W = U and V = 0, we find the solutions for U and ¢, as functions of ¢

together with the constant solutions for &£ and [

2 1

U=<¢—cn (e* —p), (4.361)
1 1

Py = ggb T In (% — p) + C, (4.362)

k=1= —%ew% (4.363)

in which () is an integration constant.

The solution for ¢(r) is given by

5 4
== {g@—wogr - 01)] (4.364)
for p =0 and
8¢ 1/5 201432 84\1/5 149 8¢
Agpr(e™ — p) 7 =5 FY 14 = 3(1 — pe?) PuFi(z, £y g pe) | (4:365)
for p = £1. This solution is again the flat DW found in Section with a

non-vanishing constant three-form flux.

As in the previous SO(3) case in 15 representation, coupling this solution
to SO(3) gauge fields does not lead to new solutions. Consistency with the field
equations also implies either vanishing two-form fields or vanishing gauge fields.
Moreover, repeating the same analysis for finding SO(2) x SO(2) and SO(2)
symmetric solutions, we respectively obtain the flat DWs given in Sections
and with a constant three-form flux

1
k=l=—c7. (4.366)

To avoid a repetition, we will not give further detail for these cases.

4.2.3 Gaugings in 15 and 40 Representations

We now consider charged DW solutions for gaugings in both 15 and 40
representations. We start by finding the solutions with SO(2) residual symmetry
in SO(2,1) x R* gauge group. From the gauge generators (), we can see that
the SO(2) symmetry under consideration here is embedded diagonally along the
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1,2,4,5 directions. Therefore, only the modified three-form H 33 is singlet under
the SO(2) unbroken symmetry. With Y33 # 0, this SO(2) singlet Hs)s is then
described by a massive three-form field S(3)3 in SO(2,1) x R* gauge group.

We take the ansatz for the modified three-forms to be

Hiaps = k(T)efsU(T)é?mﬁp and Hisns = l(r)e’3w(’")5w ) (4.367)

igk
After imposing the projection conditions
veg = —(Ts)%eq = €5, (4.368)

and using the SL(5)/SO(5) coset representative (), we find the following
BPS equations

U =W = %6_2(2¢1+¢2)+V (3 cosh 2¢53 cosh 24 — €°72), (4.369)
o] = 2?%06_2(¢1+¢2)+V (15 sech2¢3 sech2¢, — 3 cosh 2¢3 cosh 2¢4 — 466¢2),(4.370)
Py = %6_2(¢1+¢2)+V (3 sech2¢; sech2¢4 4 3 cosh 2¢5 cosh 2¢4 + 4€°7?),  (4.371)
Py = _?_ge—z(z¢1+¢2)+v sinh 2¢3 sech2¢y,, (4.372)
¢, = _%6—2(2¢1+¢2)+V cosh 2¢5 sinh 2, (4.373)
k___%ngQOﬂ (4.374)
1
[ — _§€3W—U+2¢1—2¢27_. (4.375)

In these BPS equations, we have imposed the conditions () for consistency.
By taking W = U and choosing V' = 4¢; + 2¢5, we obtain a charged DW

solution
2 1 1 9
P = 1_5¢3 + 502 — @ In |:E<62C4 — 3 _ 9p2Ca+4ds + 62C’4+8¢3)}
1 1
—i—l—o In [e'® + 1] — = In [’ — 1], (4.376)
¢2 = —5¢ + Cy + In [¢*” + 1] —In [¢** — 1], (4.377)
1 [144e0 — 2% 4 e
éy = ~1In + 4de e;%—e; 7 (4.378)
4 1+ 4e2Cs +2e7s +ea
1, [e¥3 — el 4 elatids
¢1 = 4 n L%’B + el — eC4+4¢3} ’ (4.379)
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1 1 3
U = _g¢3 — %C’Q + 2_0 In [6204 _ 64¢3 _ 26204+4¢>3 + 6204+8¢3}
16 1
—In|—|—=In[e'” —1], (4.380)
9 5
%(C2+4¢3) 2Cy __ 4¢3 _ 2 2C1+4¢3 2C4+8¢$3\1/10
R (e e ¢ re ) (4.381)
92/5 % 33/10 (e19s — 1)/

This solution is the 1-BPS DW obtained in Section together with the
running dyonic profile of the three-form flux. We emphasize here that, unlike
charged DWs from gaugings only in 15 or 40 representation, this solution with
a non-vanishing three-form flux do not break SUSY any further. Therefore both
charged and flat DWs are i—supersymmetric in SO(2,1) x R* gauge group.

We finish this section by commenting on another case with SO(2) x R* gauge
group. Repeating the same procedure also leads to a i—supersymmetric charged
DW given by the flat DW solution found in Section and a constant three-
form flux given in () In contrast to SO(2, 1) x R* gauge group, the three-form
flux is due to the massless two-form field B(s)3 in this case since we have Y33 = 0
for SO(2) x R* gauge group. We will not give the full detail of this analysis here

as it closely follows that of the previous cases.

4.3 Twisted Solutions

In this section, we are interested in supersymmetric solutions of the maximal
gauged supergravity in the form of AdS, x X7~" geometries with X" being a
(7 —n)-dimensional compact manifold for n = 2,3,4,5. This type of solutions can
be obtained by the twist procedure in the same way as those found in Section @
for the matter-coupled SO(4) gauged theory. By the AdS/CFT correspondence,
these AdS, x ¥7" solutions describe conformal fixed points corresponding to
(n — 1)-dimensional SCFTs. For SO(5) gauge group with the supersymmetric
AdS; vacuum, these fixed points are dual to (n — 1)-dimensional SCFTs obtained
from twisted compactifications of the six-dimensional N = (2,0) SCFT on 7"
For other gauge groups, their vacua are the flat DWs given in Section @
DW/QFT dual to N = (2,0) SQFTs in six dimensions. We accordingly interpret
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the resulting AdS, x ¥7" solutions as conformal fixed points in lower-dimensions

of these N = (2,0) SQFTs.

In the following sections, we will study this type of supersymmetric
solutions in C'SO(p, q,5 —p —q) and CSO(p,q,4 — p — q) gauge groups. Besides,
various possible RG flows from both conformal and non-conformal six-dimensional
field theories to SCFTs in lower dimensions, as well as to non-conformal ones, are
also considered. The final results will extend the previously known solutions in

SO(5) gauge group mentioned before.

4.3.1 Gaugings in 15 Representation

We again start from considering supersymmetric AdS, x X7~" solutions with
CSO(p,q,5 — p — q) gauge group obtained from gaugings in 15 representation.
From n = 5 to n = 2, we look for the solutions preserving different unbroken

symmetries.

4.3.1.1 Supersymmetric AdSs X ¥? Solutions with SO(2) x SO(2)

Symmetry

As the first case, we consider AdSs x 32 solutions preserving SO(2) x SO(2)
symmetry in this section. The coset representative for the two SO(2) x SO(2)
singlet scalars are given in ()7 while the embedding tensor for gauge groups
containing an SO(2) x SO(2) subgroup can be found from () For the seven-

dimensional metric, we take the ansatz of the form
ds2 = eQU(r)dxig + dr® + ew(’")ds%i . (4.382)

In this ansatz, dx%,g = Nndx™dz™ with m,n = 0,..,3 is the metric on the four-

dimensional flat spacetime and X3 is a Riemann surface whose metric is given in

() Recall that Y2 = S2, R?, H? corresponding to k = 1,0, —1, respectively.
With the following choice of vielbein

e™ = eVdz™, el = dr, ed = eV do, e® = €Y fr(0)dp, (4.383)
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we find the following non-vanishing components of the spin connection

li
ma 1 m i R e A 65 fk(e) -V 6
wiy =U'e™, wiy = V'e', 1=5,6, Wi = =—=e e’ 4.384
(1) (1) M = 7.0 ( )

The function fi(#) is given in () with f7.(6) = dfx(0)/d6.

To perform the twist on X2, we turn on the following SO(2) x SO(2) gauge
fields

N (0) & _vD2 f1(0) &
12— _¢ V&ieG and A = T VEELE L 6 4.385
0 E 5(0) g k 1(0) (4.385)

with p; and py being constant magnetic charges, and set all other tensor fields to

zero. By imposing the twist condition
g(p1 +ops) =k (4.386)
together with the following projection conditions on the Killing spinors ()
et = —(Ty9)%,€ = —(T'34)%,e (4.387)

and

vet =€ (4.388)

we can derive the BPS equations

U = 4%(252@ % pet @itk 0067 %2) 1 §€2V<€2¢1P1 +e*2py),  (4.389)
vV — % (26291 . ped(@1+62) | 95e=202) | ;e_2v(62¢1p1 + *2p,), (4.390)
¢, = %(36_2¢1 — pet01t92) _ 95p7202) _ %e_zv(?)ewlpl —2¢"%p,), (4.391)
0y = L (3oe — pelorsn) o) L 2o (020, _e%enp,) (4302

It can be verified that these BPS equations together with the twist condition
(1.380) imply the second-ordered field equations.

Imposing the conditions V' = ¢} = ¢, = 0 and U’ = LAldS on the BPS
5
equations, we find a class of AdSs fixed point solutions given by
41 9e2(¢1+¢2)
v o Sl P, (4.393)
g

12p3 — 240pips + 220%p1p} — 80%p3 — 2K

610¢1
3pipo?

(4.394)
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62¢2 — 6p? — 150’]9%]72 + 130'2]71]7% - 4031)3 + K62¢1 (4395)
P2(90p1p2 — 6]9% - 40217%) ,
4 €4¢1p + 262(¢1+¢2)p
Lags, = ( 3 o 2) (4.396)
g (e?P1py + e292py)
where
K = (6p] — 9opips + 419302)\/(29% — opip2 + 0%p3) . (4.397)

It turns out that good AdS; fixed points exist only in SO(5) and SO(3,2) gauge
groups with p =0 =1 and p = —o = 1, respectively.

Since one of the magnetic charges is fixed by the twist condition (4.386),
we will choose py to characterize the solutions. In SO(5) gauge group, there exist

good AdSj5 fixed points when

gp2 #—1,0,  gp2#0, and  gpa <0 U gpy > 1, (4.398)

for g > 0 and Y? = H? R?,S?, respectively. We find that the AdSs x R? fixed
point preserves sixteen supercharges while the others preserve only eight. This
is because there is no spin connection on R? so that the ”ysé projector is not
needed. Note that all of these AdSs x ¥? fixed points and their RG flows from the
supersymmetric AdS; vacuum have been previously discussed in [b7] in the
context of four-dimensional SCFTs from M5-branes.

In this work, we consider more general RG flows from the AdS; critical
point to these AdSs x Y2 fixed points and then to singularities in the form
of curved DWs with Mkw, x X2 slices. According to the usual holographic
interpretation, these singular geometries should correspond to SQFTs in four
dimensions obtained through the RG flows from four-dimensional SCFTs dual
to AdSs x X% fixed points. The latter are, in turn, obtained from twisted
compactifications of the six-dimensional N = (2,0) SCFT dual to the AdS;
vacuum. For AdSs x H?, AdSs x R% and AdSs x S? fixed points, examples
of these RG flows are given in figures @, @, and , respectively. In these
numerical solutions, we have chosen the position of the AdSs x X2 fixed points to

be r = 0 and set g = 16.

From the eleven-dimensional metric ansatz given in (@), we can determine
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Figure 4.8: Numerical solutions for SO(2) x SO(2) twists with ¢ = 16 in SO(5)
gauge group. The flows start from the AdS; critical point as r — 10 to AdS5 X
H? fixed points at 7 = 0 and then to singularities in the form of Mkw, x H?>-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to

— 1 1 1
P2= =3 791 10>

whether these IR singularities are physical by examining the (00)-component
Joo = A%goo . (4.399)
In this case, the warped factor A is given by
A = MMV Sy pdnont 1@ (4.400)

in which p with M = 1,...,5 are the S* coordinates satisfying p™pu = 1.
Using the coset representative given in () and the S* coordinates

pM = (cos &, sin € cos 1) cos a, sin € cos ¢ sin o, sin & sin v cos 3, sin & sin ¢ sin 3) ,

(4.401)
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Figure 4.9: Numerical solutions for SO(2) x SO(2) twists with g = 16 in SO(5)

(c) ¢1 solution (d) ¢4 solution

gauge group. The flows start from the AdS; critical point as » — 10 to AdS5 X
R? fixed points at 7 = 0 and then to singularities in the form of Mkw, x R%-
sliced DWs in the region » < 0. The blue, orange, green, and red curves refer to
p2 = —6, -2, i,4.

we find the behavior of goy along the flows given in Figure . Since gogo — 0
near the singularities, as can be seen from Figure , these IR singularities are all
physical according to the criterion given in [@] Therefore, the singularities can be
interpreted as holographic duals of non-conformal phases of the four-dimensional
SCFTs obtained from twisted compactifications of the six-dimensional N = (2,0)

SCFT on X2.

For SO(3,2) gauge group, we find new AdSs x S? fixed points in a small
range, with g > 0,
1
—5 <gp2 < 0. (4.402)
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Figure 4.10: Numerical solutions for SO(2) x SO(2) twists with g = 16 in SO(5)

gauge group. The flows start from the AdS; critical point as r — 10 to AdSs5 X

S? fixed points at r = 0 and then to singularities in the form of Mkw, x S?-
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Figure 4.11: The behavior of goo for RG flows given in Figures @, @, and ,

respectively, where goo — 0 in the region r < 0 for every case.
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These AdSs x S? solutions preserve eight supercharges and are dual to N = 1
SCFTs in four dimensions. Since the vacuum solution in SO(3,2) gauge group
is given by a half-supersymmetric flat DW in Section DW/QFT dual to
an N = (2,0) SQFT in six dimensions, the above AdS; x S? fixed points can
be regarded as conformal fixed points in four dimensions arising from twisted
compactifications of the six-dimensional N = (2,0) SQFT on S%. In Figure ,
we give examples of RG flows between the AdSs x S? fixed points and curved
DWs with the world-volume given by Mkw, x S?. The latter should describe
non-conformal phases of the four-dimensional N = 1 SCFTs. The two ends of
the flows in Figure represent two possible non-conformal phases with (¢ —
+00, Py — —o0) and (¢ = —00, Py — +00). In all of these flow solutions, we

have set g = 16.

The behavior of the eleven-dimensional metric component gq along the flows
are given in Figure . This can be obtained by using the consistent truncation
of eleven-dimensional supergravity on H? given in [64]. The explicit form of ggo

is similar to that given in () but with the warped factor
= MMN’OMPHNQ,UP;LQ . (4403)

The tensor nyy = diag(1,...,1,—1,...,—1) is the SO(p, ¢) invariant tensor, and
pM are HPY coordinates satisfying p™ ™ nyn = 1. For SO(3,2) gauged theory,
we have a consistent truncation of eleven-dimensional supergravity on H3? with
nun = diag(1,1,1,—1,—1). We can see from Figure that goo — 0 on both
sides of the flows. Therefore, all of these singularities are physically acceptable.
We accordingly interpret these solutions as RG flows between N = 1 SCFTs

and SQFTs in four dimensions obtained from twisted compactifications of the

six-dimensional N = (2,0) SQFT on S?.

4.3.1.2 Supersymmetric AdS; X X3 Solutions with SO(3) Symmetry

We now carry on our analysis for AdS; x ¥ solutions with X3 being a three-

manifold with constant curvature. In this case, the ansatz for the seven-dimensional
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Figure 4.12: Numerical flows for SO(2) x SO(2) twists with g = 16 in SO(3,2)
gauge group. The flows start from AdS5 x S? fixed points at r = 0 to singularities
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Figure 4.13: The behavior of gy for RG flows given in Figure where ggo — 0
on both sides.
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metric takes the form of
ds2 = 62U(T)dl’i2 +dr® + ew(r)ds%% (4.404)

where dxiQ = Nmndx™dz™, m,n = 0,1, 2, is the metric on the three-dimensional

flat spacetime. The metric on X} is given by
ds3y = dv* + fu(y)*(d6” + sin® 0dy?) (4.405)

with the function fi(¢) defined similarly in () As a Riemann surface in the
previous case, this three-manifold 3} can be a three-dimensional sphere S3; a flat
space R3, or a hyperbolic space H? depending on k = 1,0, —1, respectively.
Using the vielbein
e™ = eVdx™, &= dr, et = eVdy,

b = eV fr(v)db, e® = €Y fi(¢) sin Odep, (4.406)

we find non-vanishing components of the spin connection as follow

W)
- e
a1 _ JeW) v 5 t0 v o4
Wi = f:E¢§e Ve, wiy) = %e Vel (4.407)

We will perform the twist on X} using gauge fields corresponding to SO(3) C
SO(3) x SO(2) € SO(B)g and SO3)+ C SO(3)L x SO(3)_ ~ SO(4) C SO(B)r
with SO(5)g denoting the R-symmetry.

wiyy = U'e™, wiy =V'e', =456,

4.3.1.2.1 Solutions with SO(3) Twists

We first consider twisted solutions with SO(3) C SO(3) x SO(2) C SO(5)r
residual symmetry by turning on the following SO(3) gauge fields

A2 — _VBM 5 13 _ —ngllc<w) 6 A2 — _ —-vP cot 6‘
O Y A A AT
(4.408)

In this case, we also use the three SO(3) singlet scalars corresponding to the SL(5)
non-compact generators (), and the embedding tensor () for gauge groups
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with an SO(3) subgroup.

We now impose a simple twist condition
gp = k, (4.409)
together with the following projectors on the Killing spinors ()
7‘156“ = —(Fn)“beb and 7566“ = —(Fgg)abEb. (4.410)

With all these and the 7" projector given in (), we obtain the BPS equations

U = 490 b [36_10¢1 + (p + o) cosh 2¢, cosh 2¢3 + (p — o) sinh 2¢3]
_ge—zw—wl)n (4.411)

Vo= Zqu 5 [3e71%% 4+ (p + o) cosh 2¢ cosh 2¢3 + (p — o) sinh 23]
+%62<v2¢1>p, (4.412)

¢y = 490 % [2¢71%9 4 (p — o) sinh 2¢3 — (p + o) cosh 2¢5 cosh 2¢5]
‘5* 2V-201), (4.413)
¢ = g ¢ (p+ o) sinh 2¢ssech26s, (4.414)
¢, = g %1 ((p 4 o) cosh 2¢ sinh 265 + (p — o) cosh 2¢3) . (4.415)

From these BPS equations, we find an AdS; x H? fixed point only for SO(5)

gauge group with p = ¢ = 1 given by

163/5
g

4 x 22/5

p (4.416)

¢1:E1H2 Py = ¢35 = 0, V:ln{

} , Lags, =

This is the same solution studied in [53]. The AdS, x H? fixed point preserves
eight supercharges and corresponds to an N = 2 SCFT in three dimensions. As
in the previous case, we also consider general RG flows from the supersymmetric
AdS7; vacuum to this AdS; x H? fixed point and then to curved DWs with a
Mkws x H? slice dual to three-dimensional N = 2 SQFTs.

When ¢o = ¢35 = 0 along the flows, we find examples of the RG flows in
which ¢; — 400 and ¢; — —oo in the IR as respectively shown in Figures
and . Both types of singularities are physically acceptable as can be seen from
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the behavior of ggp in Figure . These singular geometries are then dual to
three-dimensional N = 2 SQFTs obtained from twisted compactifications of the

N = (2,0) SCFT in six dimensions on H?.

Gl.é(r) 4\6(r) ¢1(r)
" 20l ofs
20! ofto
20
10¢
. — 0.05
- 5 10 15" < " i
20 |5 |J1o— -5 5 10 15"
(a) U solution (b) V solution (c) ¢1 solution

Figure 4.14: Numerical solutions for SO(3) twists in SO(5) gauge group. The
flows start from the AdS; critical point as r — 15 to the AdS,; x H? fixed point
at r = 0 and then to singularities in the form of Mkws x H3-sliced DWs with
¢1 — 400 in the region r < 0. The blue, orange, green, and red curves refer to

g =8,16,24, 32.

U(r)

60 d1(r)
’ ( i \\X
20 -5 5 10 15"
‘ ‘ ‘ ., -plos
_T/ 5 10 15
20 -oL10
(a) U solution (b) V solution (c) ¢1 solution

Figure 4.15: Numerical solutions for SO(3) twists in SO(5) gauge group. The
flows start from the AdS; critical point as r — 15 to the AdS, x H? fixed point
at 7 = 0 and then to singularities in the form of Mkws x H3-sliced DWs with
¢1 — —oo in the region r < 0. The blue, orange, green, and red curves refer to

g =8,16,24,32.

Although ¢y and ¢3 vanish at both AdS; vacuum and AdS, x H? fixed
point, we can consider the RG flows to curved DWs with non-vanishing ¢, and

¢3. Various examples of these RG flows are given in Figure . However, the
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behavior of ggg near the singularities, goo — +00, indicates that these singularities

are unphysical by the criterion of [@]

00 00
1x101q* 1x10°
8x10"3} 800000
6x1013" 600000
4x10"3} 400000
2x 103} J 200000‘)}
- J : —r) ' —r
-5 0 5 10 15 -5 0 5 10 15

(a) To r < 0 singularities with ¢1 — 400 (b) To r < 0 singularities with ¢; — —o0

Figure 4.16: The behavior of ggy for RG flows given in Figures and in

which ggg — 0 in the region r < 0 for both cases.

4.3.1.2.2 Solutions with SO(3) Twists

We now consider another twist by turning on the following SO(3), gauge fields

Alz 434 — _e—vﬁfllcw)eé’
(1) (1) 2% fk(¢)
A — A2 _efvﬂfllc(l/’)eéj
(PONGRI 2k fi (1))
t0
A — Al = Vv P COVY 5 4417
(1) ) 2% fk(lb) ( )

In this case, the SO(3) is identified with the self-dual SO(3) subgroup of SO(4) ~
SO(3); x SO(3)- C SO(5). Therefore, the gauge groups containing SO(3),
are given by SO(5), SO(4,1), and CSO(4,0, 1) with the embedding tensor (@)
There is only one SO(3), singlet scalar corresponding to the non-compact
generator (@) that is also invariant under a larger symmetry SO(4).

To implement the twist, we impose the projection conditions given in ()

and

(F12)ab€b = (F34)ab€b- (4418)
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Figure 4.17: Numerical solutions for SO(3) twists in SO(5) gauge group. The
flows start from the AdS; critical point as r — 10 to the AdS, x H? fixed point at
r = 0 and then to unphysical singularities in the form of Mkws x H3-sliced DWs
with ¢1, ¢, and ¢3 non-vanishing in the region » < 0. The blue, orange, green,

and red curves refer to g = 8,16, 24, 32.

Together with the twist condition () and the " projection condition (4.385),
we find the following BPS equations

PO IS,
14

V= (e o pe) + —e V), (4.420)
3

¢ = %(B_Q‘b—peg‘z’)—ge_z(v_d’)p- (4.421)

These equations admit an AdS, x H? fixed point only for SO(5) gauge group with
p = 1. This AdS,; x H? vacuum is given by

8 x 21/5 % 53/5 1 8 23/5 % 54/5
9 ] , ¢o=plo {51 , Lags, = Y (4.422)

1
V:§1n|:

which does not seem to appear in the previously known results.
Unlike the SO(3) twist, this AdSy; x H? fixed point preserves only four

supercharges and corresponds to a three-dimensional N = 1 SCFT. Examples of
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general RG flows, from the supersymmetric AdS; vacuum to this AdS, x H? fixed
point and curved DWs dual to N = 1 SQFTs in three dimensions, are given in
Figure . In these solutions, the IR singularities are physical, as can be seen

from ggp — 0 near the singularities.
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60
40~
40
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-60"
(a) U solution (b) V solution
Aoo
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D4r 6)(1014’
02
4x10™
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2x10™;
Dj02} ; J J
i 7 —r
P04 0 5 10 15
(c) ¢ solution (d) Profiles of ggo

Figure 4.18: Numerical solutions for SO(3), twists in SO(5) gauge group. The
flows start from the AdS; critical point as r — 15 to the AdS, x H? fixed point at
r = 0 and then to physical singularities in the form of Mkws x H3-sliced DWs in

the region r < 0. The blue, orange, green, and red curves refer to g = 8, 16, 24, 32.

When p = 0, we can analytically solve the BPS equations for C'SO(4,0,1)
gauge group. With the new radial coordinate 7 defined by % = eV, the resulting

solution is given by

_ g - 2 3 <
¢ = Co+ T60p (4pF + C1) 50 In(4pF + ), (4.423)
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= 2¢+ In(4pr + C1), (4.424)

U = V —In(dpr+ Cy) + Cs. (4.425)

The integration constants C; and C3 can be neglected by shifting the radial
coordinate 7 and rescaling the coordinates £ on M kws, respectively.

Setting C; = Cy = 0, we find the following leading behavior of the solution
at large 7

p~7  and U~V ~2p. (4.426)

Due to V' — oo, the contribution from the gauge fields to the BPS equations is
highly suppressed in this limit. The asymptotic behavior is then identified with
the flat DW found in Section . Similar to the case of solutions with an
asymptotically locally AdS; space, we will call this limit an asymptotically locally
flat DW.

On the other hand, as 7 — 0, we find an IR singularity with

3 _ “ ) 3 .
b ~ —5 In(4p7), V ~ w5 In(4pr), U~ 10 In(4pr). (4.427)

This solution can be embedded in type ITA supergravity using the complete
truncation ansatz collected in Appendix . However, in this section, we are only

interested in the time component of the ten-dimensional metric given by
Goo = €U0 (4.428)

Using this result, we find that go9 — oo, as ¥ — 0, so the IR singularity, in this

case, is unphysical.

4.3.1.3 Supersymmetric AdS3 X M* Solutions with SO(4) Symmetry

In this section, we move on to the analysis of AdS; x M* solutions. In this case,
the internal space is a Riemannian four-manifold M* with constant curvature.
Labeled by k = 1, —1,0, M} can be a four-dimensional sphere 5%, a flat space R*,

or a hyperbolic space H*, respectively.

With the embedding tensor (@) and the coset representative (@), we will
consider SO(4) symmetric solutions for SO(5), SO(4,1), and CSO(4,0,1) gauge
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groups. To find AdSs x M, solutions, we use the following ansatz for the seven-

dimensional metric
ds2 = eQU(T)dxil +dr? + eQV(’”)ds?Wg (4.429)

with dazil = Nmndx™dx™ for m,n = 0,1 being the metric on two-dimensional

Minkowski space. The explicit form of the metric on M} is given by
dSQEi = dx* + fr(x)? [dY® + sin® ¢(d6? + sin® fdp?)] (4.430)

in which x,,0 € [0, 5], ¢ € [0,27], and fi(x) is the function defined in ()
With the vielbein basis of the form

e™ = eVdx™, e = dr, ed = eVdy, et = €ka(X)d1/},

e = eV fr(x) sin1pde, el eV fr(x) sin 1 sin Odep, (4.431)

we obtain the following non-vanishing components of the spin connection

m i 7 5 o fI(X) -V 4
w(l) =U'e w(l Vie', 1=3,..,6, ?13) = f:(X)e Vel
/ /
an o A ~ an t -
w(513) _ fk(X)e—V€57 W?13) W4 fiX) e Vb w?f) _ co we—ve57
Jr(x) Jr(x) fr(x)
6 _ otV v o e cot¥ [ v 6

= 4.432
WTRT T OT RGsm (432

To cancel the spin connection wg), we perform the twist on M} by turning

on SO(4) gauge fields as follow
17 _ _Pgriass+2 i _

The corresponding modified two-forms are exactly the SO(4) gauge field strengths
given by
FL = Pl = ol 5202y, (4.434)

In this case, the modified three-forms cannot vanish in order to satisfy
the Bianchi’s identity since the above SO(4) gauge fields lead to non-vanishing
emnrQrF(y N .7:8)1% terms in () To preserve the residual SO(4) symmetry,
only Hs)5 is allowed. We also note that for SO(5) and SO(4,1) gauge groups,
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their embedding tensor Y),n is non-degenerate. For these gauge groups, there are
in total five massive three-form fields S(M3), so Hs)s is obtained by turning on the
massive three-form field 8(53). On the other hand, we have Y35 = 0 for C'SO(4,0, 1)
gauge group, so the contribution to Hs); comes from the massless two-form field
B(9)s in this case. However, we are not able to determine a suitable ansatz for
B(9)s in order to find a consistent set of BPS equations that are compatible with
the second-ordered field equations. Accordingly, in the following analysis, we will
not consider the non-semisimple C'SO(4,0, 1) gauge group.

For SO(5) and SO(4,1) gauge groups, the appropriate ansatz for the

modified three-form is given by
96
Ho oo = i pe W+ 2o (4.435)

Imposing the twist condition () and the projector in () together with

additional projectors of the form
734611 — _<F12)ab€b, 745611 a3 _(F%)abeb, 756€a — —(F34>ab6b, (4436)

we find the BPS equations

) 8 12 oyis 288 4w 2
U = Z(4e72 4 peb?) — —e=2VH20p 4 T pe=4(VH)2 4.437
g Lo 8 18 “ovia 192 4w 2
V' = L (4e7 4 peBt) 4 eV _ eV 2 4.438
10 TE 5 (4.438)
b 92 sey_ 0 —aviog 96 _uvig) 2 4.439
¢ 50 pe’) — ze P 5" P (4.439)

From these BPS equations, we find an AdSs5 fixed point only for £ = —1 and

p = 1. The resulting AdS; x H* solution is given by

1 16 x 23/5 x 32/5 1 3 29/5 % 31/5
V= -1 — —1nl|2|. L == T (4.440
5 n [ g2 ] , 10 n {2} s AdS3 q ( )

This is the AdS3 x H* fixed point given in [53] for the maximal SO(5) gauged

supergravity. The solution preserves four supercharges and corresponds to a two-
dimensional N = (1,1) SCFT with SO(4) symmetry. As in the previous cases,
we also consider general RG flows from the supersymmetric AdS; vacuum to this
AdS5 x H* fixed point and then to curved DWs. Examples of these RG flows are
given in Figure . Unlike the previous cases, the IR singularities are unphysical

in this case due to the behavior goo — 0o near the singularities.
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Figure 4.19: Numerical solutions for SO(4) twists in SO(5) gauge group. The
flows start from the AdS; critical point as 7 — 10 to the AdS; x H* fixed point at
r = 0 and then to unphysical singularities in the form of Mkw, x H*-sliced DWs in

the region r < 0. The blue, orange, green, and red curves refer to g = 8,16, 24, 32.

4.3.1.4 Supersymmetric AdSs;x3?xX? Solutions with SO(2)xSO(2)
Symmetry

We now consider the internal four-manifold as a product of two Riemann surfaces

2 x Y2, The ansatz for the seven-dimensional metric takes the form of
ds? = e2U(7")dxil +dr? + ew(’")ds%i + ezW(”dszZz (4.441)
1 2

in which the metrics on the Riemann surfaces Ezl and Ezz are given in ()
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Using the following choice for the vielbein

e = eVdax™, e? =dr, et =eVdo,,

et = Y fi, (01)dp1, e = eV db,, b = eV fr,(02)dpy,  (4.442)

we obtain all non-vanishing components of the spin connection as follow

— Ulem 112 V/ zl wng W/ 12
T, (01) g fr (92) _
Wi — 1k e Ve4, W8 = Lk e~ Wb 4.443
“0 = T 0 0 = 7, (0) (4.443)

with 71 = 3,4 and iy = 5,6 being flat indices on ¥ and ¥? , respectively.

As in other cases, we consider gauge groups of the form C'SO(p,q¢,5—p—q)
with an SO(2) x SO(2) subgroup. These gauge groups are obtained from the
embedding tensor given in () To perform the twist, we turn on the following
SO(2) x SO(2) gauge fields

A2 _ b fk1 (91) 621 P12 fk2 (62> W€6
W k1 frn (91) k2 fr ((92> ’
A3 — P21 fkl(gl) v i _ D22 fk (‘92) We6 (4 444)
@ kl fk:1 (91) k2 fk2(92)
The corresponding modified two-forms are given by
Fi =Fg = e Ve Aet 4 e Wped A b, (4.445)
.7: 3% e’wpgle?’ Aed e’QWpQQeg Aeb. (4.446)
We also need to turn on the modified three-form
H,nng = e 2VTWH201202) o (4.447)

where « is a constant related to the magnetic charges by the relation

gpoe = —32(p12p21 + P11Pa2) - (4.448)

For CSO(2,2,1) and CSO(4,0,1) gauge groups with p = 0, we need to impose

an additional relation on the magnetic charges

P12p21 + pripa2 = 0 (4.449)
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in order to ensure that the resulting BPS equations are compatible with all the

second-ordered field equations.

Using the projection conditions () and
Yt = 50t = (D)% e = —(Taq) %€ (4.450)
together with the twist conditions

g(pi1 +opan) = k1 and g(p12 + opaz) = ko, (4.451)

we obtain the following BPS equations

U = 1(26*2% _|_pe4(¢1+¢2) —I—20’672¢2) — 3_05672(V+W+¢1+¢>2)
40 2g
2. _ ~
—= [V (' pi1 + €7pa) + e 2V (€ p1a + €2 o) (4.452)
V' = i(Qe 2¢1 +pe4(¢1+¢2)+206—2¢2)+2_a€—2(V+W+¢1+¢2)
40 59
2
+z [4e72V (2" p11 + €9par) — € 2 (2 pra + €2%pan)] (4.453)
W= L (2e2 4 pedlortin) | gpe=202) | 20 VAW -Hi+00)
40 59
2
—= [V (€% pir + €22par) — 4> (¥ pra + €27pan)] (4.454)
¢ = L (371 L pedlerton) gge=202) { L —2V+WHE1+00)
20 59
2
—% (3¢ (e7* pi1 + € W p1a) — 22 (e oy + € Vpao)], (4.455)
¢ = 25;0(306—2@ _ pelortea) _gp=201y | % o2V H61+62)

2 _ _ _ _
+5 [2€2¢1(6 2Vp11_|_€ QWp12) _3€2¢>2<€ 2Vp21+€ 2Wp22):| ) (4456)

In deriving these BPS equations, we have used the coset representative given in

() for SO(2) x SO(2) singlet scalars.

We find a class of AdS3x X2 x X2 fixed point solutions from the BPS equations

2¢1 2¢2
€2V _ _16(6 P11+ e p21)’ (4457)
964(¢1+¢2)p
2¢1 2¢2
w100 pre + e pan) (4.458)
g@4(¢1+¢2)p
640 [32 — gpa — 64 ?
o061 [32(p12p21 + pripa2) — gpo Up21p2§] ’ (4.459)

320 (p12p21 + P11pa2) — gpoa — 64p11p1o]
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pl062 640 [320 (p1ap21 + p11pa2) — gpoo — 642711]712]2 (4.460)
[32(p12p21 + p11pa2) — gpa — 640]921]922]3
Re2(P1+¢2)
Lpas, (4.461)

g(e2?2 + e2910)
with

o — E [32 (p1op22(p11 + p210) — plapar — pup3s0) + gpa(pia +p220)]7 (4.462)

p [1024pT,p5, + (32p11pas — gpa)? — 64p1opa1 (32p11p2e + gpav)]
= =32 [Pnpzl(pu + P220) — PiiPas — p12p§10} + gpa(pu + pao). (4.463)

It turns out that good AdS; x ¥? x ¥2 solutions are possible only for SO(5) and
SO(3,2) gauge groups with p = 0 =1 and p = —o = 1, respectively. For SO(5)
gauge group, the solutions have been extensively studied in [58]. For SO(3,2)
gauge group, all the AdSs; x 3?2 x ¥? fixed points given here are new.

Following [b8], we define the following two parameters to characterize the

AdS; x X2 x X2 solutions

21 = g(p11 — opa21) and 2o = g(p12 — oP22) (4.464)

in which we have set p = 1. In order for good AdSs; fixed points to exist in SO(5)
gauge group with ¢ = 1, one of the Riemann surfaces needs to be negatively
curved, and AdS; x H? x ¥? solutions can be found within the regions in the
parameter space (z1,22) shown in Figure . These regions are the same as
those given in [58] and Figure @ The AdSs; x H? x Y2 fixed points preserve four
supercharges and correspond to two-dimensional N = (2,0) SCFTs with SO(2) x
SO(2) symmetry. Examples of RG flows with ¢ = 16, from the supersymmetric
AdS7 vacuum to AdSs x H? x 32 fixed points and curved DWs in the IR, are given

in Figures , , and for ¥2 = H? R?, and S?, respectively. All the IR

singularities are physical since goo — 0 near the singularities.

For SO(3,2) gauge group, we find good AdSs fixed points only for at least
one of the two Riemann surfaces is positively curved. Using the parameters z;
and z, defined in () with 0 = —1, we find regions in the parameter space
(21, 22) for good AdS5 vacua to exist in the SO(3,2) gauged supergravity as shown

in Figure .
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Figure 4.20: Regions (blue) in the parameter space (z1, z2) where good AdS3 vacua
exist in SO(5) gauge group for g = 16. From left to right, these figures correspond
to the cases of (ky = ko = —1), (ki = —1,ky = 0), and (k1 = —ky = —1),

respectively. The orange regions are obtained from interchanging k; and k.

We will consider RG flows between the AdS; x S? x %2 fixed points and
curved DWs with Mkw, x S? x X2 slices in this case since there is no asymptotically
locally AdS; geometry for SO(3,2) gauge group. Examples of these RG flows with
g = 16 and different values of z; and 2z, are given in Figures , , and for
Y2 = H? R?, and S?, respectively. We see that all singularities in the flows from
AdSs x S% x R? fixed points are unphysical, while only the singularities on the left
(right) with ¢1 — —oo and ¢ — 400 (¢1 — +00 and ¢ — —o0) of the flows
from AdS3x S%x H? (AdSs x S5? x S?) fixed points are physical. These singularities
are expected to describe two-dimensional SQFTs with SO(2) x SO(2) symmetry

obtained from twisted compactifications of the six-dimensional N = (2,0) SQFT.

4.3.1.5 Supersymmetric AdS; x K* Solutions

Apart from M* and £2 x X2, we are also interested in supersymmetric solutions
with AdS; vacua in the case of the internal four-manifold being a Kahler four-cycle
K*. As expressed in Section , we can perform a topological twist on K* using
either SO(2) ~ U(1) or SO(3) ~ SU(2) gauge fields in order to cancel the U(1)
or SU(2) parts of the U(2) spin connection.
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Figure 4.21: Numerical solutions for SO(2) x SO(2) twists with g = 16 in SO(5)
gauge group. The flows start from the AdS; critical point as r — 15 to AdS3 X
H? x H? fixed points at 7 = 0 and then to physical singularities in the form of
MFEkw,y x H? x H?-sliced DWs in the region r < 0. The blue, orange, green, and
red curves refer to (z1, z2) = (0,0), (0.3,0.3), (0.3, —0.3), (—1,0.5).
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Figure 4.22: Numerical solutions for SO(2) x SO(2) twists with g = 16 in SO(5)
gauge group. The flows start from the AdS; critical point as r — 10 to AdS3 X
H? x R? fixed points at » = 0 and then to physical singularities in the form of
Mkw, x H? x R2-sliced DWs in the region r < 0. The blue, orange, green, and
red curves refer to (z1, z2) = (1,—-0.5),(—1,1),(1,—-2),(=8,1).
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Figure 4.23: Numerical solutions for SO(2) x SO(2) twists with g = 16 in SO(5)
gauge group. The flows start from the AdS; critical point as r — 10 to AdS3 X
H? x 5? fixed points at 7 = 0 and then to physical singularities in the form of
Mkw, x H? x S%sliced DWs in the region » < 0. The blue, orange, green, and
red curves refer to (z1, 22) = (—1,5), (1, -2), (1, —4), (-3, 38).
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Figure 4.24: Regions (blue) in the parameter space (21, 22) where good AdSs
vacua exist in SO(3,2) gauge group for g = 16. From left to right, these figures
correspond to the cases of (ky = ky = 1), (ks = 1, ke = 0), and (k; = —ky = 1),

respectively. The orange regions are obtained from interchanging k; and k.

A general ansatz for the seven-dimensional metric in this section takes the

form of

dsy = dat | +dr® + V" dsy (4.465)

in which the explicit form for the metric on the Kahler four-cycle K} will be

specified separately in each case.

4.3.1.5.1 Solutions with SO(3) Twists

We begin with performing the twist along the SU(2) ~ SO(3) part of the spin
connection by choosing the metric on K} given in () With the following

choice of vielbein
e™ = eVdx™, e? = dr, el = €ka(¢)7'17
et = €Vf]€(’l7/))7'2, e = evfk(@D)Tg, et — eV di, (4.466)

we find non-vanishing components of the spin connection
wﬁ)z =U'e™, “’2) = Ve, W?f) = fi(¥)m, wfllg) =71,
Wéﬁ) = fr(¥)72, w?f) = Ty, wf’f) = fr(¥)73, w?f) =713 (4.467)

where ¢ = 3,...,6 is a flat index on K}, and w?l) are the SU(2) parts of the spin

~

connection.
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Figure 4.25: Numerical flows for SO(2) x SO(2) twists with g = 16 in SO(3,2)
gauge group. The flows start from AdS; x S? x H? fixed points at r = 0
to (un)physical singularities in the form of Mkwy x S? x H?-sliced DWs in

the region » < 0 (r > 0). The blue, orange, green, and red curves refer to

(21, 22) = (&, —18), (&, —12), (&, —24), (&, —24).
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Figure 4.26: Numerical flows for SO(2) x SO(2) twists with ¢ = 16 in SO(3,2)
gauge group. The flows start from AdS; x S? x R? fixed points at 7 = 0 to
unphysical singularities in the form of Mkw, x S? x R2-sliced DWs on both

r # 0 sides. The blue, orange, green, and red curves refer to (z1,22) =

(50 =30 Go =) G —1%): (G5 =)
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Figure 4.27: Numerical flows for SO(2) x SO(2) twists with g = 16 in SO(3,2)
gauge group. The flows start from AdS; x S% x S? fixed points at r = 0 to
(un)physical singularities in the form of Mkwy x S? x S%sliced DWs in the
region r > 0 (r < 0). The blue, orange, green, and red curves refer to

(21,2) = (—0.55, —0.55), (—0.55, —0.6), (—0.35, —0.87), (—1, —0.3).
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To implement the twist, we turn on the following SO(3) gauge fields
Al = —%(fé(l/)) 1)K, LK =1,2,3 (4.468)

with the modified two-forms given by

f(122) = F(122) = 672‘/10(63 Net — e A 66), (4.469)
.7:(22?3 = F(223) = e_QVp(eZl Aed— A eé), (4.470)
]-"(321) = F(321) = e_QVp(eé Aed— el A 66). (4.471)

Unlike the previous case, we do not need to turn on the modified three-forms since
EMNPQRFg)P A ]-}%R = 0 in this case.
We then impose the twist condition () together with the following three

projection conditions
’}/346(1 — _(FIZ)ab€b7 745€a = _(1’123)ab€b7 734€a — _7566(1 ) (4472)

Using the scalar coset representative () and the projection (), we find the
following BPS equations

U = 4%@6‘1’1 [36*1%1 + (p + o) cosh 2¢; cosh 23 + (p — o) sinh 2¢5]
12
2y, (4.473)
V= %66¢1 [3e71%1 + (p + &) cosh 2¢55 cosh 2¢5 + (p — o) sinh 23]
1
+€862(V2¢1>p7 (4.474)
P, = 4%66% [26—10¢1 + (p — o) sinh 2¢3 — (p + o) cosh 2¢5 cosh 2¢3]
8
ey, (4.475)
¢y = —%e%l (p + o) sinh 2¢5 sech2¢3, (4.476)
by = —geﬁd’l ((p + o) cosh 2¢5 sinh 2¢3 4+ (p — o) cosh 2¢3) . (4.477)

It turns out that only SO(5) gauge group admits an AdSs x C' H? fixed point
given by

1. [16 x 345 1
V:§ln [T], ¢1:1—01n3,
8

P2 = ¢3 =0, Lpas; = 375 (4.478)
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This is the AdS3 x C'H? solution found in [] The solution preserves four
supercharges and corresponds to a two-dimensional N = (2,0) SCFT with SO(3) x
SO(2) symmetry. Note here that the scalar coset representative is invariant under
SO(3) x SO(2) € SO(5) for ¢y = ¢3 = 0. Various examples of general RG flows,
from the supersymmetric AdS; critical point to this AdSs; x C'H? fixed point and
then to curved DWs, are shown in Figures |4.2é, |4.2d, and |43d From these figures,

we find that both singularities for ¢; — +o00 in the flows with ¢ = ¢35 = 0 are
physical. In the flows with ¢;, ¢2, and ¢35 non-vanishing, the IR singularities are

unphysical because of goo — oo near the singularities.
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Figure 4.28: Numerical solutions for SO(3) twists with ¢ = ¢35 = 0 along the flows
in SO(5) gauge group. The flows start from the AdS; critical point as r — 10
to the AdSs x CH? fixed point at » = 0 and then to physical singularities in the
form of Mkw, x CH?-sliced DWs with ¢, — +oo in the region » < 0. The blue,

orange, green, and red curves refer to g = 8,16, 24, 32.
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Figure 4.29: Numerical solutions for SO(3) twists with ¢ = ¢3 = 0 along the flows
in SO(5) gauge group. The flows start from the AdS; critical point as r — 10
to the AdSs; x C'H? fixed point at r = 0 and then to physical singularities in the
form of Mkw, x CH?-sliced DWs with ¢; — —o0 in the region r < 0. The blue,

orange, green, and red curves refer to g = 8,16, 24, 32.

4.3.1.5.2 Solutions with SO(3) Twists

We now move to AdSz x K* solutions with the twist given by identifying the SU(2)
parts of the spin connection with the self-dual SO(3), C SO(3); x SO(3)_ ~
SO(4) € SO(5)g. Starting from SO(3) x SO(3) gauge fields of the form

Al = = () =D mic and  Afl) = =2 (fi() = )5y, (4479)

the self-dual SO(3), gauge fields can be defined as

1 p
Afl) - §€IJKAZ]1I)( + Aﬁl) = —E(ﬂc(qﬁ) — 7. (4.480)
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Figure 4.30: Numerical solutions for SO(3) twists in SO(5) gauge group. The
flows start from the AdS; critical point as 7 — 10 to the AdS; x C'H? fixed point
at r = 0 and then to unphysical singularities in the form of Mkw, x C H?-sliced
DWs with ¢, ¢2, and ¢3 non-vanishing in the region r» < 0. The blue, orange,

green, and red curves refer to g = 8,16, 24, 32.

Using these gauge fields, we can perform the twist by imposing the twist condition

() and the three projections given in () together with an additional
projection condition for the self-duality of SO(3)4+

(T12)"€" = (Taa)",e" (4.481)

Furthermore, by turning on the above SO(3) gauge fields, we also need to turn

on the modified three-forms of the form

192
Hnas = —706_4(‘/“@2926%' (4.482)

We will consider only SO(5) and SO(4,1) gauge groups with p # 0 as in the case
of SO(4) symmetric solutions.

Using the embedding tensor (@) and the coset represenvative (@) for the
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SO(4) invariant scalar, we find the following BPS equations

g -2 8 12 5o 144 2
U = L (420 ¢y _ 22 ,2(V—9) - (V+9) 4.483
g 2 8 18 oo 96 v 2
V' = L (4e2¢ ¢ 2 o2(V-g), _ Y (V+9¢) 4.484
40(6 + pe )+56 P 5t P, ( )
= 92 _ pesoy _ S ave), B8 avg) 4 485
¢ 20(6 pe™?) =¢ P g, re p (4.485)

in which we have also imposed the 7" projection () From these equations, an
AdS; fixed point is obtained only in SO(5) gauge group with £k = —1 and p = 1.
This AdSs; x CH? solution is given by

1. [47/5 x 32/5 x 73/5 1 12 46/5 % 31/5
V= 511’1 g2 ‘| , ¢ = Eln |:7:| s LAng = W(4486)

which is the AdS3 x CH? fixed point found in [53]. The solution preserves two

supercharges and corresponds to a two-dimensional N = (1,0) SCFT with SO(3)
symmetry. Supersymmetric RG flows, from the AdS; vacuum to this AdSs; x C H?
fixed point and curved DWs in the IR, are given in Figure . The IR singularities
are physically acceptable, as indicated by the behavior goy — 0.

4.3.1.5.3 Solutions with SO(2) x SO(2) Twists

As a final case for AdSs x K* solutions, we perform another twist by canceling
the U(1) part of the spin connection on the Kahler four-cycle. To make this U(1)
part manifest, we choose the metric on K} in () together with the following

choice of vielbein

. . 1%
e™ = eVda™, e’ = dr, S=— L4 1,
VEUV? +1
5 Vv . % ) Vv
et = i e’ = i eb = ﬂ_ (4.487)

Nt (ky? +1) " (ky? +1)

All non-vanishing components of the spin connection, in this case, are given by

w(rf)z = U'e™, wg% = Ve, i=3,...,6,
v 1 u (2kY?+1)
R 71 7 S = ( T,
R B k2 +1) °

YO GEr D YO TN T ey



161

V(r)

u(r)

(a) U solution (b) V solution
oo
P(r 200000
.10( )
08¢ 150000
06, 100000¢
0.04
50000
0.02/ )j J
: “r —r
5 10 15 -4 -2 0 2 4
(c) ¢ solution (d) Profiles of ggo

Figure 4.31: Numerical solutions for SO(3) twists in SO(5) gauge group. The
flows start from the AdS7 critical point as r — 15 to the AdS; x C' H? fixed point at
r = 0 and then to physical singularities in the form of Mkw, x C H?-sliced DWs in

the region r < 0. The blue, orange, green, and red curves refer to g = 8, 16, 24, 32.

We perform the twist by turning on the SO(2) x SO(2) gauge fields

12 3y 3y

=P —F—T and A¥ = py———— 4.489
R Y ik O SN (4.489)

and imposing the following projection conditions
et = 430t — —(Ty)%, e = —(T5y)%€" (4.490)

together with the twist condition () The associated modified two-forms are

.7:(122) = F(122) = 36_2Vp1(63 Aet—ed A eé), (4.491)

Pl = B = 3 V(e n - A (1492
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With the above non-vanishing SO(2) x SO(2) gauge fields, we need to turn on
the modified three-form

576
Hnas = FEs V00 by poe i (4.493)

with p being the parameter in the embedding tensor () for gauge groups with
an SO(2) x SO(2) subgroup. As in the previous cases, the appearance of p in
() implies that the resulting BPS equations are not compatible with the field
equations for the case of p = 0. We will accordingly consider only gauge groups
with p # 0 in the following analysis.

With the 4" projector () and the scalar coset representative (), the

corresponding BPS equations read

12
U = 4%(2@—%1 +p€4(¢1+¢2)+206—2¢2)_Ee—zv(e2¢1pl+e2¢2p2)
1728
_i_g}oed(wwn+<z$z)ppo7 (4.494)
18
vV = 4%)(26—%1 +pe4(¢1+¢2) _|_20-€—2<f>2> + 36_2‘/(6%1191 +62¢2p2)
1152
_ﬁﬂe 2RVEOLE2) (4.495)
90 261 A(Gi1+ea) Cogoy A2 ovi0 9g o 26,
¢y = 2—0(36 pe 20 °%?) 2 e (3e%1py — 2e“7?py)
576 _
~5g P 2 T (4.496)
¢’2 = %(306*2@ _ pe4(¢>1+¢2) _ 26*2%) + %ew(gewlpl _ 362¢2p2)
576
~5, " 202Viortoz)y (4.497)
From these BPS equations, we find the following AdS3 fixed points
2V — _48(P1€2¢1 + pae®??) (4.498)
a gpeiotan :
2
J0s _ P3P ((p1+ p1p® = pao) (1 + pro)) (4.499)

P2+ p?) (a1 + p?)o — p1)?
gos _ PR (01— (14 *)0) (1 + p20))” (4.500)
P32+ p?)(p1 + p1p® — p20)?
Be—4(01+62) (p e201 4 pye202)?
gp (PRe'9r + p3etoz + 2pipye2@ito2) (1 + p?))’

Las, (4.501)

These solutions preserve four supercharges and are dual to N = (2,0) SCFTs in

two dimensions with SO(2) x SO(2) symmetry.
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For SO(5) gauge group, there exist AdSs x C'H? fixed points in the range

2 1
—— < < —= 4.502
3 gp2 3 ( )

in which we have taken g > 0 for convenience. Up to some differences in notations,
these AdSs x C'H? fixed points are the same as the solutions studied in [58]. As in
the previous cases, we also study RG flows from the supersymmetric AdS; critical
point to the AdSs x C' H? fixed points and curved DWs in the IR. Some examples of
these flows are given in Figure for g = 16 and different values of ps. In these
examples, the behaviors of the eleven-dimensional metric component gy indicate

that the singularities are physical, as shown in Figure .

Apart from the AdS; x CH? solutions, we find new AdS; x CP? fixed
points in non-compact SO(4,1) and SO(3,2) gauge groups respectively within

the following ranges, with g > 0,

3—+v3 2
gp2 <0 U gpy >1 and - (T\/_) < gp2 < —3- (4.503)

Recall that there is no supersymmetric AdS; critical point for SO(4, 1) and SO(3, 2)
gauge groups. We will study supersymmetric RG flows between these AdSs x C' P2
fixed points and curved DWs with SO(2) x SO(2) symmetry. With g = 16 and
different values of py, examples of these RG flows in SO(4,1) and SO(3,2) gauge
groups are shown respectively in Figures and . From the behaviors of g
in Figure , we find that the singularities on the left (right) with ¢; — +oo
and ¢y — Foo (¢ — 400 and ¢y — —o0) of the flows in SO(4,1) (SO(3,2))
gauge group are physically acceptable.

4.3.1.6 Supersymmetric AdS,;x¥3xX? Solutions with SO(3)xSO(2)
Symmetry

We end this section by considering solutions with AdS,; vacua. For the five-
manifold ¥° being S® or H®, AdS,; x 3° solutions have been given in [53] by
performing the twist using SO(5) gauge fields. These solutions are possible only
for SO(5) gauge group. Besides, there is no scalar in SL(5)/SO(5) coset invariant
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Figure 4.32: Numerical solutions for SO(2) x SO(2) twists with g = 16 in SO(5)
gauge group. The flows start from the AdS; critical point as r — 10 to AdSsx C H?
fixed points at r = 0 and then to singularities in the form of Mkw, x CH?-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to
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Figure 4.33: The behavior of ggg for RG flows given in Figure where goo — 0

in the region r < 0.
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Figure 4.34: Numerical solutions for SO(2) x SO(2) twists with g = 16 in SO(4, 1)
gauge group. The flows start from AdS; x C'P? fixed points at r = 0 to singularities
in the form of Mkw, x C'P%sliced DWs on both r # 0 sides. The blue, orange,

green, and red curves refer to p; = %, —;11, 4, =8, —ﬁ.

under SO(5) unbroken symmetry, so the solutions are purely given in terms of the
seven-dimensional metric. The corresponding RG flows from the supersymmetric
AdS; vacuum to the AdS,; x H® or AdS, x S® fixed points have already been
analytically given in [@] We will not repeat the analysis for this case here.
However, if we consider ¥° as a product of Riemannian three- and two-
manifolds ¥* x 32/ it is possible to perform a twist by turning on SO(3) x SO(2)
gauge fields along X3 x ¥2. In this case, there are two gauge groups with an
SO(3) x SO(2) subgroup, namely SO(5) and SO(3,2). The ansatz for the seven-

dimensional metric takes the form of

052 =~V 4 dr? 4 VOISR, + AV, | (4.504)

k1 k2



166

v
o, 6(r)

-0.8¢ j

-1.2¢ ﬂﬂ

r -1.4¢
-1.6¢
-1.8¢
: : : ‘ : r
-3 -2 -1 0 1 2 3
(a) U solution (b) V solution
o %2l
| o6
0.2- g 1
SR ) ‘ e NN —\.
3 ! == ~3 N2~ -1 1 2 r
-0.2¢
-0.2
\‘ =04
-0.4!t -0.61
(c) ¢1 solution (d) ¢2 solution

Figure 4.35: Numerical solutions for SO(2) x SO(2) twists with g = 16 in SO(3, 2)
gauge group. The flows start from AdS5 x C'P? fixed points at r = 0 to singularities
in the form of Mkw, x C'P%sliced DWs on both r # 0 sides. The blue, orange,

-t 1 1 2
green, and red curves refer to p» = —o5, —55, — 57, —17-

The explicit form of the metrics on the ¥ and X} are given in () and (),

respectively.

Using the vielbein

& =cdt, e =dr, *=c"dpy, € =e" fi, (11)dby,
et = eV fr, (¥1) sin Oy dy &b = eV db,, b = eV fr,(02)dwy,  (4.505)

we find non-vanishing components of the spin connection as follow

fiW) _y 5
fu)
w2 fl/cl(wl) Vi3 cotbh  _y 3 85 fléz(GQ) -W 8

I ey E A A R RN TS S

w(l) — U/ 0 111 V/ 11 121 W/ 12 W?f) —
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Figure 4.36: The behavior of ggg for RG flows given in Figures and where
Goo — 0 in the region r < 0 (r > 0) for SO(4,1) (SO(3,2)) gauge group.

where i; = 2,3,4 and i, = 5,6 are flat indices on 5} and 2 , respectively.

We now turn on the SO(3) x SO(2) gauge fields of the form
A2 P fkl( 1) V3 13 _ _ D fk1(¢1)6_ o
O7 k@) 0T TRy
cot(f) p2 f1,(02) _y
AB = PO vea s P20k 2w g 4.507
O Tk fi () Wk fi(02) (200

with the modified two-forms given by
]_—12 F12 e fgg, 4 ngf — e,
Fn=Fy=¢"p,  Fl=Ff=e¢"p. (4.508)

With these SO(3) x SO(2) gauge fields non-vanishing, we need to turn on the

modified three-forms

32 4¢—2V —2W

Hoizn = —?531,M+16 Pip2 (4.509)

in which ¢ is the SO(3) x SO(2) invariant scalar field corresponding to the coset

representative ()

We then impose the twist conditions
gri =k and  ogpy =k (4.510)
and the following projection conditions on the Killing spinors

AP0 = —(T12)%,e’, e = —(Ta3)%,¢, et = —(Ty5)%€". (4.511)
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Using the embedding tensor (), we can derive the following BPS equations

9 ., 288¢*pipy 2, _ oW
U = 153 +20e%) & 7w — 537 o+ e ), (4512)

32 2
V' = %(36_4¢ + 20¢%%) — ﬁ g(7€_2v+4¢p1 — e ?W%%py),  (4.513)
B 192¢%? 2. _ —oW—
W/ = %(36 ¢ + 20'66¢) — @T\EMZ:)Q - g(ge 2V+4¢p1 - 26 w 6¢p2); (4514)
32¢2¢ 2
¢ = g (6% — geb%) 4 e pip2 Z(2e7VHEy — 72 00)),) (4.515)

20 5ge2V+W) 5

in which we have also used the 4" projector in (4.38§).

From these BPS equations, we find an AdS, fixed point only for ¢ = 1 and
ki = ko = —1. The resulting AdS, x H? x H? fixed point is given by

1 16 x 24/° 1 1
vz—mP@L—y W:—leLy

2 g2 2 9221/5
1 2 x 2%/5
¢ = Eln 2, Las, = (4.516)

which is the solution found in [b4]. The three projectors in () imply that
this AdS, x H? x H? fixed point preserves four supercharges. The solution is
dual to superconformal quantum mechanics. Examples of RG flows, from the
supersymmetric AdS; critical point to this AdS, x H?® x H? fixed point and
curved DWs in the IR, are given in Figure . From the behaviors of the
eleven-dimensional metric component ggg, we see that the singularities are
physically acceptable. Therefore, these singularities are expected to describe

supersymmetric quantum mechanics obtained from twisted compactifications of

the six-dimensional N = (2,0) SCFT on H?* x H?.

4.3.2 Gaugings in 40 Representation

We repeat the same analysis for gaugings from 40 representation in this section.
As in the case of gaugings in 15 representation, the modified three-forms need to
be turned on when the compact manifold has dimension more than three in order
to satisfy the corresponding Bianchi’s identity. However, with Y3,y = 0, there are

no massive three-form fields. In this case, the contribution to H s arises solely
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Figure 4.37: Numerical solutions for SO(3) x SO(2) twists in SO(5) gauge group.
The flows start from the AdS; critical point as r — 10 to the AdS, x H? x H?
fixed point at » = 0 and then to physical singularities in the form of R x H? x H?-
sliced DWs in the region » < 0. The blue, orange, green, and red curves refer to

g =8,16,24, 32.

from the two-form fields. For s = rank Z, there are respectively 5 — s massless
and s massive two-form fields. The latter also appear in the modified two-forms.

In particular, with the embedding tensor given in (), we find

7_8) - F(g) and ~7:(52) = 5w I B2); (4.517)

in which B(s); are massive two-form fields. However, we are unable to find a
consistent set of BPS equations that are compatible with the field equations for
non-vanishing massive two-form fields. Therefore, we will truncate out all the
massive two-form fields in the following analysis. Finally, we point out here that
the C'SO(p, q,4 — p — q) gauge group is not large enough to accommodate SO(5)
or SO(3) x SO(2) subgroup so that it is not possible to have AdSy x ¥° or AdSy X

3 x Y22 solutions in this section.
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4.3.2.1 Solutions with the Twists on %2

We first look for AdSs x ¥2 solutions with X2 being a Riemann surface. The ansatz
for the seven-dimensional metric is given in () We will consider solutions
obtained from SO(2) x SO(2) and SO(2) twists on ¥2. The procedure is the same
as in the gaugings in 15 representation, so we will not give all the details here to

avoid repetition.

4.3.2.1.1 Solutions with SO(2) x SO(2) Twists

We now perform the twist by turning on the following SO(2) x SO(2) gauge fields

34 -vP1 f,'g(ﬁ)eg

Al = e_‘/@me6 and Ay =e (4.518)
(1) 4k fx(0) W 4k fx(0)
and imposing the projection conditions given in () and
et = —(T5)%e (4.519)

together with the twist condition ()
With the embedding tensor () and the coset representative (), we

find the following BPS equations

U — %672<¢0+¢)<64¢ to)— 1_1062(V¢>o)(e2¢p1 + ¥py), (4.520)
V= §6‘2(¢°+¢)(64¢ +0)+ %e_w_%)(e_%pl +e*pa), (4.521)
o = 1%6’2”’0*“”(e4¢5 +0)— %62(V¢°)<62¢p1 +e*py), (4.522)
o = _g€—2<¢o+¢>(e4¢ _ o)+ ie—zw—m)(e—wpl — ¥p,). (4.523)

From these BPS equations, there are no AdSs fixed point solutions satisfying the

conditions ¢’ = ¢ = V' =0 and U’ = LAis . In the following analysis, we will
5

consider RG flows interpolating between an asymptotically locally flat DW and
curved DWs in SO(4) gauge group. Note that similar solutions can also be found
in SO(2,2) gauge group.

When V is large, the contribution from the gauge fields is highly suppressed.
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In this limit, we find

1 1
b~ do~—pglogd U~V o~ 2 (4.524)

which implies U ~ V — oo as r — oo. Examples of the flow solutions with

this asymptotic behavior are given in Figures |4.354, |4.39|, and |44d for ¢ = 16 and

¥2 = §% R?, H?, respectively. We note here that the flows to the flat Mkw, x R2-
sliced DWs given in Figure are possible by setting p, = —p; as required from
the twist condition. It should be pointed out that the green curve in Figure
is simply the usual flat DW since p; = po = k£ = 0. Due to the vanishing of
the SO(2) x SO(2) singlet scalar ¢, the solution preserves the full SO(4) gauge
symmetry in this case. This solution has already been given analytically in Section
h124

As shown in [65], the maximal gauged supergravity in seven dimensions
with C'SO(p,q,4 — p — q) gauge group can be embedded in type IIB theory via
a truncation on HPY o T47P~4. For the present analysis, we only need the ten-

dimensional metric which is given by
g;w = ’C%Aigm/ (4525)

in which

A = pipn™ 0 My, L,j=1...p+q (4.526)

n is the SO(p,q) invariant tensor, and y; are coordinates on HP? satisfying

pitt;n® = 1. In term of the parametrization (), K is identified as follows
IC = e, (4.527)

For the present case with SO(4) gauge group, we simply have 5 = §% for
1,7 =1,2,3,4. For the flow solutions in Figures |4.3éi |4.3€j, and |4.4d, the behaviors

of the of the ten-dimensional metric component gy are shown in Figure . We
find that the IR singularities are physically acceptable since goo — 0 near the

singularities.
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(a) U solution (b) V solution
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Figure 4.38: Numerical solutions for SO(2) x SO(2) twists with g = 16 in SO(4)
gauge group. The flows start from locally flat DW as » — 50 to singularities in
the form of Mkw, x S%-sliced DWs in the region < 50. The blue, orange, green,
red, and purple curves refer to p, = —0.5, —0.03, 0.03, 0.06, 0.25.

4.3.2.1.2 Solutions with SO(2) Twists

We then consider another twist on 32 by turning on only an SO(2) gauge field.
From the SO(2) x SO(2) gauge fields given in (), this can be achieved by
setting po = 0 and p; = p. In this case, the SL(4)/SO(4) coset representative and
the embedding tensor are the same as in Section .

Imposing the twist condition () and the projector () together with

70t = —(T12)%,€", (4.528)
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-0.5"
-1.0
-1.5

(c) ¢o solution (d) ¢ solution

Figure 4.39: Numerical solutions for SO(2) x SO(2) twists with g = 16 in SO(4)
gauge group. The flows start from locally flat DW as » — 50 to singularities in
the form of Mkw, x R2-sliced DWs in the region r < 50. The blue, orange, green,
red, and purple curves refer to p, = —0.5, —0.03, 0, 0.06, 0.25.

we find the BPS equations

U = %6_2(¢0+¢1) [2¢**" — (p — o) sinh 2¢3 + (p + o) cosh 2¢3 cosh 265 ]
1
—gpe TR, (4.529)
V' = 1%6’2@’0”’1) [2¢*"" — (p — o) sinh 2¢3 + (p + o) cosh 2¢3 cosh 26 ]
+§pe—z<v—¢o+¢1>, (4.530)
By = %6_2(¢0+¢1) [2¢""" — (p — o) sinh 2¢3 + (p + o) cosh 2, cosh 2¢3]
1 —2(V—¢o+¢1)
_ 1 4.531
5P : (4.531)
P = —%e_2(¢°+¢1) [2¢*"" + (p — o) sinh 2¢53 — (p + o) cosh 2¢, cosh 2¢3]
1
_|__1)6—2(‘/—@04-@1)7 (4.532)

4
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(a) U solution (b) V solution
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Figure 4.40: Numerical solutions for SO(2) x SO(2) twists with g = 16 in SO(4)
gauge group. The flows start from locally flat DW as » — 50 to singularities in
the form of Mkw, x H?-sliced DWs in the region < 50. The blue, orange, green,
red, and purple curves refer to p, = —0.5, —0.12, —0.03, 0, 0.25.
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Figure 4.41: The behavior of gy for RG flows given in Figures , , and
, respectively, where goo — 0 in the region r < 50 for every case.
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¢ = _ge‘z(¢0+¢1)(p + o) sinh 2¢y sech 2¢3, (4.533)
Py = ge_Q(¢0+¢1) [((p — o) cosh 2¢3 — (p + o) cosh 2¢4 sinh 2¢3] . (4.534)

As in the previous case, there do not exist any AdS5 x X2 fixed points from these
BPS equations. Moreover, the numerical solutions interpolating between locally
asymptotically flat DWs and Mkw, x X2-sliced curved DWs, in this case, can also

be obtained in the same way.

4.3.2.2 Solutions with the Twists on X3

In this section, we repeat the same analysis for AdS, x ¥2 solutions with the ansatz
for the seven-dimensional metric given in () As in the cases with gaugings
from 15 representation, we also consider two different twists by turning on SO(3)

and SO(3), gauge fields.

4.3.2.2.1 Solutions with SO(3) Twists

With the embedding tensor (4.118) and the SL(4)/SO(4) coset (), we turn
on the following SO(3) gauge fields in order to perform the twist,

v fi{¥) v P fi(¥) s - t0) &

and impose the projectors () on the Killing spinors together with the twist
condition () With all these and the 4" projector (), the resulting BPS

equations read

(4.535)

3
U = T e200430) (3680 1 p) 2 o=2V=dute), (4.536)
10 10
7
Vo= %6_2(¢°+3¢)(368¢ +p)+5¢ T, (4.537)
3
oy = 16*2(¢0+3¢)(368¢ + p) — —e 2V =dote)y, (4.538)
20 20
1
¢ = _%6—2(¢0+3¢)(68¢ —p)+ 16—2(V—¢o+¢)p‘ (4.539)

As in the previous case, there do not exist any AdS, fixed points from these BPS

equations. We then look for flow solutions interpolating between asymptotically
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locally flat DWs and Mkws x ¥3-sliced curved DWs.
For C'SO(3,0,1) gauge group with p = 0, these BPS equations can be solved
analytically. First of all, the BPS equations () and () give

U = 2¢q. (4.540)

We have set an additive integration constant for U to zero. This corresponds to
rescaling the coordinates on Mkws. When p = 0, we find that ¢f + %qﬁ’ = (0 which
gives

Po = —%cb + Co (4.541)

with an integration constant Cj.
Taking a linear combination V' + ggb’ and changing to a new radial

coordinate 7 defined by g == e_%‘z’, we find

V £ S n(@pi Gy - §¢. (4.542)

The integration constant C; can also be neglected by shifting the coordinate 7.

With all these results, the equation for ¢’ gives

N —
b= 57— ot

in which we have set C; = 0 for simplicity, and C5 is another integration constant.
As 7 — 0, we find that the above solution becomes a locally flat DW with

U ~V — oo. The asymptotic behavior is given by
1 3 3
For 7 — oo, we find
1 3 4 3
¢~—Zlnf, ¢0~2—Olnff, nglnf, UNEIHF. (4.545)
Computing the (00)-component of type IIB metric, we obtain

~ 3 1 ~ T
Goo ~ e2UT290%3% L 715 — 0, (4.546)

as © — 00, which indicates that the singularity is unphysical.

For p # 0, the solutions can be obtained numerically. When V' is large as
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r — oo, we find

1 1
o~ 5 o~ —gglogd U~V i~ 2. (4.547)

Examples of the flow solutions with this asymptotic behavior for SO(4) gauge

group are given in Figures |44?| and |443| for ¥2 = S% H?, respectively. The

behavior of the ten-dimensional metric gy for these flow solutions is shown in
Figure , from which only the IR singularities of Mkws x H3-sliced DWs are
physical. For Mkws; x R3-sliced DWs with k = 0, the twist condition gives p = 0,

resulting in the usual flat DWs.

u(r V(r
o o
— —
—— 4 —
2 2
T
-10 =5 5 10 -10 =5 5 10
-2 -2
-4l -4l
(a) U solution (b) V solution
%of") é(r) .
_— -10/7” =5 — 5 10
1,
+1.0¢
-10 =5 5 10
4l 115
~2! IPY )
(c) ¢o solution (d) ¢ solution

Figure 4.42: Numerical solutions for SO(3) twists in SO(4) gauge group. The flows
start from locally flat DW as r — 10 to singularities in the form of Mkws; x S3-
sliced DWs in the region » < 0. The blue, orange, green, and red curves refer to

g=4,8,16,32.
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Figure 4.43: Numerical solutions for SO(3) twists in SO(4) gauge group. The flows
start from locally flat DW as r — 10 to singularities in the form of Mkws x H?3-
sliced DWs in the region » < 0. The blue, orange, green, and red curves refer to

g=4,8,16,32.

4.3.2.2.2 Solutions with SO(3), Twists

We now move on to another twist by turning on the self-dual SO(3), gauge fields
Al2 34 _ -V P [ (@) 5
W= 8k Je(0)°
A — g2 _ VP Jie(®) e,
W R@)”
t

n=F¢ Sk i
—y P €O (0)
8k fr(v)

Only the dilaton scalar field ¢q is singlet under SO(3),, so we have .//\-/lvij = 0ij.

A = Al =e (4.548)

Moreover, we consider only SO(4) gauge group in this case since this is the only
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(a) 23 =53 (b) ¥3 = H3

Figure 4.44: The behavior of ggg for RG flows given in Figures and where

Goo — 0 in the region r < 0 only for the case with 33 = H3.

gauge group containing the SO(3), subgroup.

With the projectors (E.éﬂil), (li.48i|), and () together with the twist
condition (), the resulting BPS equations are given by

2g 3
1 g —2¢0 _ 2 —2(V—¢o) 4.549
U —5 e 106 b, ( )
2g 4
Vo 20 2 —2(V—s0) 4.550
5 e + 106 b, ( )
RV
¢6 — ge 2¢0 __ 206 2V ¢0)p. (4.551)

As in the previous case with SO(3) twist, we do not find any AdS, fixed points.

However, these BPS equations can be analytically solved. Starting from

() and (), we again find that U = 2¢y. Defining a new radial coordinate

7 by % = ¢~V and taking a linear combination V' — 2¢}, we obtain
V =In(pr+ C) + 2¢y . (4.552)

Using ¢g from () in equation () and changing to the new radial

coordinate 7, we find

— I i O 4+ a(pF
V= 5p(p7°-|—0) + 10 In(pr + C). (4.553)

With C' set to zero by shifting 7, as ¥ — oo, we find

1 1
U~V ~ 3gpf2 and ¢o ~ Egpr (4.554)
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which is identified with the flat DW solution given in Section . On the other

hand, as 7 — 0, the solution becomes singular

3 . 7 . 3 -
U~ —x In(pr), V ~ 1 In(pr), g ~ ~10 In(pr). (4.555)

This singularity is unphysical since the ten-dimensional metric gives

Goo ~ €2UT3%0 5 o (4.556)

Note here that this solution is the same as that given in Section for
CS0O(4,0,1) gauge group. The two gauged supergravities can be obtained from
consistent truncations on S* of type IIB and type IIA theories, respectively. As

pointed out in [65], there is a duality between these solutions.

4.3.2.3 Solutions with the Twists on X4

We finally look for solutions obtained from the twists on a four-manifold %, In
this section, we consider two types of X%, a product of two Riemann surfaces
2 x ¥? and a Kahler four-cycle K*. For the case with the internal space being a
Riemannian four-manifold M*, we do not find any consistent set of BPS equations
that are compatible with the field equations, especially the deformed Bianchi’s
identity for the modified three-forms.

4.3.2.3.1 Solutions with SO(2) x SO(2) Twists on X? x X2

For the twists on X% x %2 we consider solutions with SO(2) x SO(2) unbroken

symmetry in SO(4) and SO(2,2) gauge groups corresponding to the embedding

tensor () The ansatz for the metric is given in () To cancel the spin

connection on X} x ¥, we turn on the following SO(2) x SO(2) gauge fields

(0 R ' (0 R

A%IQ) _ pifkl( 1)€_V€4 pﬁf}m( 2) —W€6
4ky fr, (61) 4ks fr,(62)

A34 _ pﬂfli’l (el)e—vei pﬁfl/cz(02)
W 4k fr, (6) 4ky fr, (02)

9

e
el (4.557)
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with the corresponding modified two-forms

_oy P11 3 i —aw P12
Fl2 12 _ =2V 3 A ek oW 5 Ae 6
(2) ) e _4 e e —e€ 4
.7:(2) = F(?’% = —6_2‘/%63 Aet — e_gw%é Aeb. (4.558)

Following a similar analysis for gaugings in 15 representation, we also turn

on the modified three-forms using the ansatz

H, 5 = fe 2VFWHG0) (4.559)

mn25
in which 3 is a constant. We now impose the twist conditions
glopi1 +pa) =k and g(op12 + paz) = ko (4.560)

together with the projection conditions (14145(]) and (|4_151a)
With all these and the coset representative given in (), the resulting

BPS equations are given by

e2¢0

vt = 10 [672(‘/%)(64%11 +por) + e 2 (py, + p22)]
3
+£g76_2(¢0+¢)(e4¢ ta) ¥ 56—2(V+W+2¢o)6’ (4.561)
/ e 2(V+¢) e 2(W+¢)
Ve = T [46 (e P11+ pa1) — (6 D12 —|—p22)}
2
+§e*2(¢0+¢’)(e4¢’ +a)— 56—2(V+w+2¢o)5, (4.562)
/ % - awvie) 2(W+)
W= g e (e*p11 + par) — 4e” (€*p12 + p22)]
2
+§e*2(¢0+¢)(e4¢ +0) — 56*2(‘/*”’”%)5, (4.563)
/ e?% —2(V+¢) 2(W+¢)
¢0 = _2—0 [e (e D11 —|—p21) + e (6 P12 +p22)]
+£6—2(¢0+¢)<€4¢ +0)— 16—2(V+W+2¢0)5 (4.564)
10 ’ '
, P e —2(W+¢)
¢ = . [e (e P11 — P21) + € (6 P12 —P22)]
S (1o ) (4.565)

Unlike the similar case in Section , it turns out that compatibility between

these BPS equations and the field equations requires

P12P21 + p11p22 =0 (4.566)
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for any values of 8. This implies that the constant [ is a free parameter in this
case. However, we do not find any AdSs fixed points from the BPS equations.

For SO(4) gauge group, examples of flow solutions between asymptotically
locally flat and curved DWs for various forms of ¥? x ¥2 are shown in Figures
to . In these numerical solutions, we have set g = 16 and 8 = 2. Note
also that the green curve in Figure is the flat DW solution given in Section
. All of the IR singularities are physical, as can be seen from the behavior
of the ten-dimensional metric given in Figure .

We have also examined SO(2) twists on X2 x X2 by setting p1; = p1o = 0
and obtain more complicated BPS equations. However, we will not give further

detail on this analysis since there do not exist any AdSs3 fixed points.

u(r) v(r) w(r)
3 3 3
2 2 2
1 1 1
r r r
”4'5 | 47 48 49 50 ||4|s | 47 48 - 49 50 ”4[5 | 47 48 49 50
-1 -1 -1
(a) U solution (b) V solution (c) W solution
o(r)
Po(r) 3
2
15
1
1.0
.
05 y 47 48 49 50
||4|s | 47 48 49 50 2

-0.5

(d) ¢o solution (e) ¢ solution

Figure 4.45: Numerical solutions for SO(2) x SO(2) twists with ¢ = 16 and
B =2 in SO(4) gauge group. The flows start from locally flat DW as r — 50 to
singularities in the form of Mkw, x S? x S%-sliced DWs when r < 50. The blue,

orange, green, red, and purple curves refer to ps; = —0.5, —0.12,0,0.12,0.25.
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Figure 4.46: Numerical solutions for SO(2) x SO(2) twists with ¢ = 16 and
£ =2 in SO(4) gauge group. The flows start from locally flat DW as r — 50 to
singularities in the form of Mkw, x S? x R2?-sliced DWs when r < 50. The blue,

orange, green, red, and purple curves refer to p,; = —0.5, —0.12,0.03, 0.06, 0.25.

4.3.2.3.2 Solutions with SO(3) Twists on K*

For % being a Kahler four-cycle K*, we perform an SO(3) twist to cancel the
SU(2) part of the spin connection, given in (), by turning on the SO(3) gauge
fields
i p ij -
Ay = W) = DoV, j=1,2,3 (4.567)

with the modified two-forms given by

.7:(124) = F(lﬁ = —]36_2‘/(621 Aed—ed A 66),

4
Fi = Ff = B ned e a ),
P = = @ nd = A, (4563

These modified two-forms do not lead to any problematic terms in the deformed
Bianchi’s identity for the modified three-forms. However, we can have a non-

vanishing modified three-form by using the following ansatz

Hpnns = Be™ V%) e (4.569)
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Figure 4.47: Numerical solutions for SO(2) x SO(2) twists with ¢ = 16 and
£ =2 in SO(4) gauge group. The flows start from locally flat DW as r — 50 to
singularities in the form of Mkwsy x S? x H?-sliced DWs when r < 50. The blue,

orange, green, red, and purple curves refer to ps; = —0.5, —0.03, 0, 0.08, 0.25.

which is a manifestly closed three-form for a constant 5.

With the SL(4)/SO(4) coset representative and the embedding tensor given

in (H.lla) and (H.lla) together with the projections () and (), we find

the following BPS equations

U — 1672(¢0+3¢>)<368¢ +p) — 262(V¢0+¢>)p — §€f4(V+¢o)57 (4.570)

10 5
9 2
V= 1% e~ 2(00+36) (380 4 p) + 1_06—2(V—¢0+¢)p_|_ 56—4(V+¢0>5, (4.571)
3 1
¢ = £6—2(¢0+3¢)(368¢ +p) — =72 V=dote)y 4 ZemdVido) g (4.572)
20 10 5
1
¢ = _%6*2(¢0+3¢)(68¢ — )+ 5672(Vf¢o+¢)p (4.573)

in which we have used the twist condition () We again do not find any AdS;
fixed points from these BPS equations. Examples of supersymmetric flows with
B = —2 are given in Figures and for k = 1 and k = —1, respectively.
From the behavior of the ten-dimensional metric component ggy given in Figure

1.54, we find that the IR singularities are physical for £ = —1. For k = 0, we have
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Figure 4.48: Numerical solutions for SO(2) x SO(2) twists with ¢ = 16 and
£ =2 in SO(4) gauge group. The flows start from locally flat DW as r — 50 to
singularities in the form of Mkw, x R? x R%-sliced DWs when r < 50. The blue,

orange, green, red, and purple curves refer to ps; = —0.5, —0.12,0,0.03, 0.25.

p = 0 by the twist condition resulting in the standard flat DW solutions.

4.3.2.3.3 Solutions with SO(2) Twists on K*

As the finale case, we briefly consider the SO(2) twist canceling the U(1) part of
the spin connection in () This procedure can be achieved by turning on an
SO(2) gauge field of the form

A34 3k‘i¢2

W= 7Py \/WTS'
The embedding tensor for gauge groups containing an SO(2) subgroup is given
in () Moreover, we can also turn on the modified three-form () in this
case. With the coset representative (), the twist condition (), and the
projections () together with

(4.574)

7let = %0t = —(T1)%, €, (4.575)
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Figure 4.49: Numerical solutions for SO(2) x SO(2) twists with ¢ = 16 and

£ =2 in SO(4) gauge group. The flows start from locally flat DW as r — 50 to
singularities in the form of Mkw, x H? x R%-sliced DWs when r < 50. The blue,

orange, green, red, and purple curves refer to —0.5, —0.12, —0.03, 0, 0.25.

the corresponding BPS equations are given by

U/

%6_2(¢0+¢1) [264¢1 — (p = 0)sinh 23 + (p + o) cosh 2¢5 cosh 2¢s |
_gez(vmm) ge—4<v+¢o> 8. (4.576)

1%6_2(‘7’0+¢1) [2¢""" — (p — o) sinh 2¢3 + (p + o) cosh 2¢)3 cosh 265 ]
+%€—2(V—¢o+¢1)p + %e‘4<v+¢°)ﬁ, (4.577)

—e e — — o) sin + + o) cos cos
290 20001 [2¢491 — (p — o) sinh 2¢3 + (p + o) cosh 265 cosh 2¢s]

p_

_%6—2(V—¢0+¢1)p i %6—4(V+¢0) 3 (4.578)
—%6_2(¢0+¢1) [2e4¢1 + (p — o) sinh 2¢3 — (p + o) cosh 2¢, cosh 23]

+262(V¢0+¢1)p7 (4.579)
—ge_Q(¢°+¢1)(p + o) sinh 2¢ sech 2¢3, (4.580)
ge_Q(¢°+¢1) [(p — o) cosh 2¢3 — (p + o) cosh 2¢, sinh 2¢3] . (4.581)

As in other previous cases, there are no AdS; fixed points from these equations.
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Figure 4.50: Numerical solutions for SO(2) x SO(2) twists with ¢ = 16 and
B =2 in SO(4) gauge group. The flows start from locally flat DW as r — 50 to
singularities in the form of Mkws x H? x H?-sliced DWs when r < 50. The blue,
orange, green, red, and purple curves refer to py; = —0.5, —0.12, —0.01, 0.25, 0.6.
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Figure 4.51: The behavior of gy for RG flows given in Figures to where

Jgoo — 0 in the region r < 50 for every case.
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Figure 4.52: Numerical solutions for SO(3) twists in SO(4) gauge group. The flows

start from locally flat DW as r — 10 to singularities in the form of Mkw, x CP%-

sliced DWs in the region r < 0. The blue, orange, green, and red curves refer to

g = 4,8,16, 32, respectively.

We end this chapter by commenting on the cases for gaugings in both 15

and 40 representations with SO(2,1) x R* and SO(2) x R* gauge groups. In

these gauge groups, the SO(2) twists are also possible on ¥2, ¥2 x ¥2, and K*

internal spaces. However, we do not find any fixed points from the resulting BPS

equations. Therefore, we will not give further detail on these analyses.
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Figure 4.53: Numerical solutions for SO(3) twists in SO(4) gauge group. The flows
start from locally flat DW as r — 10 to singularities in the form of Mkw, x CH?-
sliced DWs in the region » < 0. The blue, orange, green, and red curves refer to

g = 4,8,16, 32, respectively.
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Figure 4.54: The behavior of oo for RG flows given in Figures and where

Joo — 0 in the region r» < 0 only the case with £ = —1.



CHAPTER V

CONCLUSIONS AND DISCUSSIONS

Throughout this dissertation, we have studied several supersymmetric solutions
of seven-dimensional gauged supergravities, namely the matter-coupled N = 2,
SO(4) gauged theory and the maximal N = 4 gauged theory with various gauge
groups. In many cases, the resulting solutions have higher dimensional origins and
could be interpreted as different brane configurations in string/M-theory. This
feature makes applications of these solutions in the holographic context more
intriguing. We now end the dissertation with some comments on the results
together with the remaining problems, which will give us some directions for future

works.

In Section El], we have found charged DW solution preserving SO(3)diag
residual symmetry from the matter-coupled SO(4) gauged supergravity. Unlike
the solutions of the minimal SO(3) gauged theory in [62], this solution is more
restrictive. For vanishing gauge fields, only analytic solution in the form of an
AdSs x S3-sliced DW is possible. The solution interpolates between the two
N = 2 supersymmetric AdS; critical points dual to N = (1,0) SCFTs with SO(4)
and SO(3) symmetries in six dimensions. We expect this solution to describe a
supersymmetric conformal surface defect within the six-dimensional N = (1,0)

SCFTs with SO(3) flavor symmetry in the same way as in [84].

We have also coupled the solution to non-vanishing SO(3)4ia, gauge fields
and obtained a consistent set of BPS equations together with an algebraic
constraint. In this case, we have performed the investigation and showed that
supersymmetric solutions do not exist, at least within the truncation considered
here. This is because BPS solutions of the flow equations, in general, violate the

constraint arising from the SUSY transformations of the gaugini.
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Supersymmetric AdSs x M* solutions of the matter-coupled SO(4) gauged
supergravity have been studied in Section @ For M* being a product of two
Riemann surfaces, there exist a large class of AdSs; x H? x ¥? solutions with
SO(2) x SO(2) symmetry for X% = §% R? H? similar to the solutions of maximal
SO(5) gauged supergravity. Besides, we have found a number of AdSs x H? x H?
solutions with SO(2)giag and SO(2)p symmetries. We have also given various
numerical solutions from both N = 2 supersymmetric AdS; vacua to these AdS3
fixed points. The solutions describe holographic RG flows across dimensions from

the N = (1,0) SCFTs in six dimensions to N = (2,0) SCFTs in two dimensions.

For M* being a Kahler four-cycle with U(2) ~ SU(2) x U(1) connection,
we have found AdS; x C'H? solutions with SO(2) x SO(2), SO(2)diag, and SO(2) g
symmetries via performing the twist by U(1) ~ SO(2)g C SO(3)g. These
fixed points preserve four supercharges and correspond to N = (2,0) SCFTs
in two dimensions. Moreover, we have performed the twist along the SU(2) ~
SO(3) part by turning on the SO(3)4iae gauge fields. Unlike the previous cases,
the AdSs solutions, in this case, preserve only two supercharges and dual to
N = (1,0) SCFTs in two dimensions. We have studied RG flows from both
N = 2 supersymmetric AdS7; vacua to these geometries as well. These flow
solutions can be interpreted as supersymmetric black strings in asymptotically
AdS7 space. Our solutions should be useful in the study of black string entropy
using twisted indices of N = (1,0) SCFTs along the line of [90].

Supersymmetric solutions obtained in Chapter E can be embedded in
eleven-dimensional supergravity using truncation ansatze constructed in [74] for a
particular case with equal SO(3) coupling constants. We have performed these
uplifts and given the explicit forms of the eleven-dimensional metric and, in some
simple cases, the four-form field strength. These solutions with clear M-theory
origins are of particular interest in the study of Mb-branes. For solutions with
different SO(3) coupling constants, there is no known embedding in string and
M-theories. Therefore, in this case, the holographic interpretation in the dual

N = (1,0) SCFTs should be done with some caveats.
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In Chapter @, supersymmetric solutions of the maximal N = 4 gauged
supergravity with various gauge groups have been studied. We have started from
classifying flat DW solutions in Section El! There are both half-supersymmetric
and }L—supersymmetric flat DWs depending on which components of the
embedding tensor in 15 and 40 representations of the SL(5) global symmetry
lead to the gauging. Only in SO(5) gauge group, there exist flat DWs that are
asymptotic to the N = 4 supersymmetric AdS7; vacuum and can be described as

holographic RG flows from the dual N = (2,0) SCFT to SQFTs in six dimensions.

Supersymmetric charged DWs with Ms x S? slices, for M3 = Mkws, AdSs,
and non-vanishing three-form fluxes are considered in Section @ All of these
solutions can be obtained analytically. Moreover, the charged DWs preserving
SO(4) residual symmetry can couple to SO(3) C SO(4) gauge fields, but the
resulting solutions can only be obtained numerically. For SO(3) symmetric
solutions, coupling to SO(3) gauge fields does not lead to a new BPS solution.
Only solutions with vanishing three-form fluxes or gauge fields are possible in this
case. Apart from these solutions, we have also given a number of SO(2) x SO(2)
and SO(2) symmetric charged DWs that cannot couple to SO(3) gauge fields due
to the absence of any unbroken SO(3) gauge symmetry.

For SO(5) gauge group, charged DW solutions with an AdSs; x S slice can
be interpreted as surface defects within the N = (2,0) SCFT. For other gauge
groups, their supersymmetric vacua take the form of flat DWs DW/QFT dual to
N = (2,0) SQFTs in six dimensions. We then expect these AdS3 x S3-sliced DWs
to describe i—BPS surface defects in N = (2,0) SQFTs. We have found that a
number of charged DW solutions are given in terms of the flat DWs in Section
[1! attached with three-form fluxes. However, the charged DWs preserve only 1/4
of the original SUSY as opposed to the flat ones, which are %—supersymmetric,
except for the DWs from gaugings in both 15 and 40 representations in which
both charged and flat DWs are i—supersymmetric.



194

We have performed the uplift for flat and charged DW solutions for SO(5)
and C'SO(4,0,1) gauge groups. In these cases, the complete truncation ansatze
of eleven-dimensional supergravity on S* and type IIA theory on S3 are given
in [26,27] and [77], respectively. These uplifted solutions would be useful in the
study of the AdS/CFT correspondence and several dynamical aspects of M5-
branes and NS5-branes in different transverse spaces. Furthermore, the uplift
of charged DW solutions in these two gauge groups should respectively describe
bound states of M2- and Mb-branes and of fundamental strings and NS5-branes

similar to the solutions in [62].

Supersymmetric AdS,, x X7 " solutions of the maximal gauged supergravity
have been extensively studied in Section @ For SO(5) gauge group, all the
previous results on AdS,, x 27" fixed points with n = 2, 3, 4, 5 have been recovered.
We have provided numerical RG flows from the N = 4 supersymmetric AdS-
vacuum in the UV to all these fixed points and then to singular geometries in the
IR. These IR singularities take the form of curved DWs with Mkw,,_; x X7~" slices
and can be interpreted as (n — 1)-dimensional SQFTs. The extended flows suggest
that they describe non-conformal phases of the SCFTs in n — 1 dimensions, dual
to the AdS, x X7 fixed points, obtained from twisted compactifications of the
six-dimensional N = (2,0) SCFT.

In addition to the previously known results from SO(5) gauge group, we
have discovered novel classes of AdSs x S?, AdSs x S? x ¥2, and AdS; x CP?
solutions in SO(3,2) gauge group. There are no supersymmetric AdS; critical
points in this gauge group, so we have studied RG flow solutions interpolating
between these new fixed points and curved DWs. A number of the singularities
are physically acceptable and can be interpreted as SQFTs obtained from twisted
compactifications of the N = (2,0) SQFTs in six dimensions. We have further
carried out a similar analysis for SO(4, 1) gauge group and found a new class of
AdS5 x CP? solutions. For convenience, we summarize all the AdS,, x 7" fixed

points in table l5:1|
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Gauge group
AdS,, | Unbroken symmetry | X7 | SO(5) SO(4,1) SO(3,2)
AdSs SO(2) x SO(2) S? 8 8
R? 16
H? 8
AdS, SO(3) H? 8
SO(3) 4 H3 4
AdS; SO(4) H* 4
SO(2) x SO(2) 87 X532 4
H? x 32 4
SO(3) CH? 4
SO(3) 4 CH? 2
SO(2) x SO(2) C P 4 4
CH? 4
AdS, SO(3) x SO(2) H? x H? 4
SO(5) e 2
H? 2

Table 5.1: AdS,, x 7" fixed points from maximal gauged supergravity in seven
dimensions together with the corresponding symmetries and numbers of unbroken

supercharges. Y2 can be S%, R? or H?.

Similar to four-dimensional black hole solutions with curved DW
asymptotics studied in [91], the novel AdS; and AdSs fixed points in SO(3,2)
and SO(4,1) gauge groups can be respectively interpreted as black three-branes
and black strings in asymptotically curved DW spacetime. It has also been pointed
out in [92] that, from a higher-dimensional perspective, the four-dimensional black
holes should be seen as black string solutions in AdS; spacetime studied in [5§].
However, our solutions cannot be related to any supersymmetric black objects
in eight dimensions with asymptotically AdSs spacetime. This is because of the

absence of supersymmetric AdS,; vacua for d > 7.
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For other gauge groups, we have performed a similar analysis but have not
found any AdS,, fixed points. Instead, in C'SO(p,q,4 — p — q) gauge group, we
have studied supersymmetric flow solutions interpolating between asymptotically
locally flat DWs, in which the effect of magnetic charges is highly suppressed, and
curved DWs with Mkw,_; x ¥ world-volume. By the DW/QFT duality, these
solutions should be interpreted as RG flows across dimensions between SQFTs in
six and n—1 dimensions. Our results suggest that these six-dimensional N = (2, 0)
field theories have no conformal fixed points in lower dimensions. It could be
interesting to study these field theories on the world-volume of five-branes in type

IIB theory and find a definite conclusion whether this is true in general.

Apart from intriguing investigations in field theories, many works remain to
be done on the supergravity side. It would be interesting to find the embedding
of solutions, from the matter-coupled SO(4) gauged theory in cases with different
SO(3) coupling constants, in ten or eleven dimensions. This could provide the full
holographic duals of the effective theories on five-branes. Besides, supersymmetric
solutions in seven-dimensional matter-coupled N = 2 gauged supergravity with

other gauge groups are worth considering.

It is also interesting to look for flat DWs from the maximal gauged
supergravity with C'SO(1,0,4) and C'SO(1,0, 3) gauge groups. These solutions,
called elementary DWs in [62], would probably involve many non-vanishing scalars.
Since we have not found any AdS,, fixed points in other gauge groups, it would
also be interesting to extend our analysis by using more general ansatz including
non-vanishing massive two-form fields and find new classes of AdS, x X"
solutions of seven-dimensional gauged supergravity. Moreover, it is natural to
extend our study by constructing the complete truncation ansatze of eleven-
dimensional supergravity on H?? o T°~4 and type 1IB theory on HP? o T4 P4,
These ansatze can be used to uplift the solutions in C'SO(p,q,5 — p — q) and
CSO(p,q,4 — p — q) gauge groups for any values of p and ¢ leading to the full

holographic interpretation.
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Finally, finding supersymmetric solutions of six-dimensional maximal
N = (2,2) gauged supergravity is very interesting. It was shown in [93] that
SO(5) gauged supergravity in six dimensions is inherited from circle reduction
of the seven-dimensional SO(5) gauged theory. Besides, by using the embedding
tensor formalism, the most general gauging of the maximal gauged supergravity in
six dimensions has been classified in [94]. Some consistent gaugings are related to
circle reductions of seven-dimensional C'SO(p, q,r) gauged theory. Nevertheless,
there is no N = (2,2) supersymmetric AdSg vacuum admitted in this theory, as
pointed out in [B(, 95]. Therefore, supersymmetric solutions of six-dimensional
N = (2,2) gauged supergravity will be useful to study a non-conformal extension

of the AdS/CFT correspondence.
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APPENDIX A

EINSTEIN’S GENERAL RELATIVITY

Einstein’s general relativity (GR) is one of the cornerstones of classical physics
describing gravity as curvature of spacetime encoded in symmetric metric tensor
Guv = Gup- In this appendix, p,v = 0,1,..., D — 1 refer to D-dimensional curved
spacetime indices lowered and raised by g, and its inverse g"”, respectively. For

examples,

U,=9,U" and U"™ =g"¢""U, (A.1)

for any tensor U. Throughout this dissertation, we regularly apply Einstein’s
summation convention in which a pair of upper and lower repeated indices are

summed

G A et g,, U (A.2)

To decode the information on curvature, we use vielbein formalism in the
language of differential forms. In this appendix, we start with a brief introduction
of differential forms. After that, the vielbein formalism used to compute spacetime

curvature will be reviewed.

A.1 Differential Forms

For an integer p such that 0 < p < D, a differential p-form is a mathematical

object in D dimensional spacetime defined by

1
Qpy =~ 1

‘ PRI AN (A.3)
p!
where the component €2, is totally antisymmetric

Q

Bl fp _Q,ul...,uj...m...,u,p (A4)
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in any pair of indices y1; and ;. The basis of a p-form is also totally antisymmetric

described by the wedge product
dz" A . Adat = pl de @ ... @ dat) (A.5)

in which z# are some coordinates parameterizing the spacetime and ® is the usual
tensor product. Besides, antisymmetrization and symmetrization in spacetime

indices p;...44p, of any tensor 7" are denoted by

1

Tlhtep]  — —|(T“1"'“P + (=1)" all permutations of pi;...j1,), (A.6)
P!
1

Tprep)  — — (T7# + all permutations of y1...4,) (A7)
P!

with P = 0,1 for even or odd permutation, respectively.

In particular, zero-forms are scalars
Q) = &, (A.8)
and one-forms are vectors
Quy = Quda* = Quda” (A.9)
where z# refer to other coordinate systems.

Some useful operations of differential forms are reviewed as follows:

o Wedge product

If p+q < D, a p-form and a ¢g-form can be multiplied to give a (p+ ¢)-form
through a wedge product

1 1
Q(p) A H(Q) = <H Qm...ﬂpdl"ﬂl NN d]}'“p> AN <a Hylmyquljl AN dxl’q)
1
= o Qo Ly A A dah® N da A LA da¥e

(A.10)

satisfying
Q) ANy = (=1)P ) A Q). (A.11)
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o FExterior derivative

Denoted by d, exterior derivative is a linear operation mapping a p-form to
be a (p + 1)-form

1
dQpy =

1 O gy A N TN A (A.12)

and satisfying the following conditions

d(Quy A Qg) = dQu) A Qg + (=1)" Q) A dQyy), (A.13)
Q) = ddQ,) =0 (A.14)

for any p- and g-froms, €,y and Q.

o Hodge duality

From the definition of the Hodge duality of a p-form’s basis

1

k(dxtt NN datr) = W €l i1 D

Nl‘..updx,uzp-f—l A A dx/lD’ (A15)

the Hodge duality of a p-form in D-dimensional spacetime is the following
(D — p)-form

1
#p) = D =)l Dpir oy g L2 ATH PN LA AP (A.16)

Thorough this work, €, ., is a totally antisymmetric Levi-Civita tensor in

D dimensions given by

€urnn = V191Em (A.17)

in which g = det g,, and €,,.,, is a totally antisymmetric Levi-Civita

symbol defined as

;

+1 if py...up is an even permutation of 0,1, ..., D — 1,
€urup = § —1  if pg...up is an odd permutation of 0,1,..., D — 1,

0 otherwise.

\

(A.18)
Note also that the Levi-Civita tensor becomes the Levi-Civita symbol in flat

spacetime where g, = 1, = diag(—, +, ..., +) with det 7, = —1.
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We can see that Hodge duality of a pure number 1 (zero-form) is a D-form
whose component is the Levi-Civita tensor,

*1 = €py = = €uyppdr™™ NN dzhP

D! (A.19)
= /|gldz® A ... A dxPE

In the second line, the Levi-Civita tensor is changed to be the Levi-Civita symbol

thus *1 is the generally coordinate invariant volume element on D-dimensional

spacetime M called volume form,

Volp = /|gld®z = \/|gldz® A ... A dzP~ 1. (A.20)

This volume form always appears in Lagrangian densities in the language of
differential forms. To obtain the corresponding action, one should integrate a
Lagrangian density over the spacetime. However, in the differential-form point
of view, a scalar (zero-form) cannot be integrated over a D-dimensional
spacetime but a D-form can. Consequently, in the language of differential forms,
the Lagrangian density in D-dimensional spacetime is a D-form. For example, the

Einstein-Hilbert Lagrangian density is written as

1

where R is called Ricci scalar representing the curvature of spacetime that will be
introduced in the following section.

Moreover, an inner product between any two p-forms, A and B, can be given

by using the wedge product and Hodge duality as
1
*ANB=+«BNA=—|A-B|x1 (A.22)
p!

in which

| A Bl = Ay, B (A.23)

This is an inner product between two tensors that always appears as kinetic terms

in Lagrangian densities.
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A.2 Spacetime Curvature from Vielbein Formalism

To deal with curved D-dimensional spacetime, general relativity considers curved
spacetime as a D-dimensional differentiable real manifold M, a smooth and
continuous topological space that locally looks like Minkowski flat spacetime
M kwp. Parameterized by some coordinate system, any distance on D-dimensional

curved spacetime called metric or line element is written as
ds* = g, (x)dz"dz” (A.24)

where g, = g, () is the metric tensor depending on coordinates z*. Since a
differentiable real manifold locally looks like flat spacetime, there exists a
Minkowski flat space called tangent space or Lorentz frame described by vielbein
basis e(x) at each point p € M. Here, fi,0 = 0,1, ..., D — 1 are D-dimensional
flat spacetime indices raised and lowered by n” = n;, = diag (—,+, ..., +). The

metric in this tangent space is given by

ds? = nupel(z)e’ (z) = nﬂl;eﬁ(x)eﬁ(x)dx“dx”. (A.25)

v

In the last step, we have used

e(z) = el (x)dat (A.26)

o

to describe the vielbein basis as a one-form in D-dimensional curved spacetime
with components called vielbein efj(x). Since the metric ds? is the same in every
coordinate system (general coordinate transformation invariant), the following

relation between the metric tensor and the vielbein can be derived
G = nﬂﬁeﬁez (A.27)

in which and also in the following we have suppressed an argument (z) for
simplicity. ~ As seen from (), the vielbein can be interpreted as a
“square-root” of the metric tensor so that /|g] = e = det e/. It should be noted

that curved and flat spacetime indices are related to each other via the vielbein
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component e/, and its inverse eg. Moreover, we practically use relation () to

find vielbein components of a given tensor.

Unlike the usual formulation with the metric tensor g,,,, vielbein formalism
extract the curvature of spacetime from the vielbein one-from. We start from the
vielbein postulate

de’ = —wh; A e” (A.28)
in which w"” = —w”" = w,Mdx’ is also a one-form called spin connection. This
postulate describes an exterior derivative of the vielbein one-from as a change of
tangent space with respect to positions in curved spacetime represented by the

spin connection.

To find the curvature of spacetime, we need the following curvature

two-form calculated from the spin connection by

R’(J’QV) = dwh? + WPy AW (A.29)
This two-form is defined as
a1 i s 1 (D p oA G
R’é) =3 R =g, — 5 Ry"e Ne (A.30)
where the component Rﬁ&’w = egengﬂD is called Riemann curvature tensor

measuring the curvature of spacetime as a deviation from flat spacetime.

By taking traces, the two quantities playing essential roles in the

descriptions of curved spacetime can be derived. The first one is Ricci tensor

Ris = Rup’, (A.31)
and the second one is called Ricci scalar

These two quantities appear in Einstein’s field equations describing the relation

between the curvature of spacetime and the distribution of energy and mass

1
Rip — ool = Tho (A.33)

in which 7Tj; is the energy-momentum tensor representing all energies,

momentums, and also stresses in spacetime that can be sources of gravity.
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APPENDIX B

SYMPLECTIC-MAJORANA SPINORS

Spinors in seven-dimensional spacetime are generally Dirac spinors carrying eigth
complex components for each. These spinors are the corresponding representations
of the Clifford algebra. The Clifford algebra is generated by Dirac gamma (8 x 8)

matrices and can be written as
{77} = 4"+ =20 1 (B.1)
where n” = diag(— + + + + + +). As in [62], we use the following explicit
representation for the Dirac gamma matrices
70=i02®12®127 ’71:01®12®12,

P =0300101, 7 =0300301,,

5 . (B.2)
V'=0300,801, =030 0;Q 0,
’}/6 = 03 X 09 X 03
in which {0y, 09,03} are the usual Pauli matrices
0 1 0 —i 1 0
01 = , O9 = , O3 = . (B3)
10 t 0 0 —1
The higher-rank gamma matrices are defined as an antisymmetric product
R (B.4)
For fiy # fiy # ... # [ip, it can be written as a product
7/11112---[% _ ,yﬂl,ylhm,yﬂn (B.5)

due to the Clifford algebra (El!) Moreover, one can check that the representation
given in (@) satisfies the following identity

= A0123856 _ 10,1,2.8.4.5.6 _ 9 (B.6)
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With this explicit representation, Dirac, complex, and charge conjugation matrices

can be respectively given by
A=+ B=—iy* =iy (B.7)
satisfying the following definitions
(V)T = —Ar AT () = By*BT, ()T =~y O (B.8)
as well as the properties

B'=CA™', B'B=-13, ' =-C'=-C"=C. (B.9)

For seven-dimensional N = 2 gauged supergravity, fermionic fields and
SUSY parameters are described by symplectic-Majorana (SM) spinors labeled
by an SU(2)g doublet index a = 1,2. These SM spinors satisfy the following
pseudo-reality condition in order to make sure that the amount of on-shell real

degrees of freedom is sixteen

Ca = (Ca)* — 5aﬁBg6 (BlO)

in which ¢ is any SM spinor, €, denotes the SU(2)-invariant Levi-Civita symbol,

and B is the matrix involved in the complex conjugation of the Dirac gamma
matrices given in (@)

For the maximal N = 4 theory, fermionic fields and SUSY parameters
transform in representations of the local SO(5)g ~ USp(4)r R-symmetry under
which the total amount of on-shell real degrees of freedom is thirty-two. In this
case, SM spinors carry an USp(4) index a = 1,2,3,4 and are subject to the
condition

Co = Qu0C (B.11)

where €, is the USp(4) symplectic form, C'is the charge conjugation matrix given

in (@), and the Dirac conjugate for an instant USp(4) SM spinor ¢* is defined
by ¢ = (1.
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APPENDIX C

TRUNCATION ANSATZE

Essential formulae for truncations of eleven-dimensional supergravity on S* and
type IIA theory on S? are assembled in this appendix. These truncations give rise
to maximal SO(5) and C'SO(4,0,1) gauged supergravities in seven dimensions.
The complete S* and S? truncation ansatze have been given in [26,27], and [77],
respectively. By describing higher-dimensional fields in terms of lower-dimensional
ones, truncation ansatze map field equations from the eleven- or ten-dimensional
theory to the theories in seven dimensions. On the other hand, solutions to the
seven-dimensional theories are also solutions to the higher-dimensional ones and
vice versa. For the minimal N = 2 matter-coupled SO(4) gauged theory, we can
also embed the solutions into eleven-dimensional supergravity using the formula

given in [74] where the S* truncation is further truncated.

C.1 Eleven-Dimensional Supergravity on S*

In eleven-dimensional spacetime, there exists a unique supergravity theory [22]
consists of a graviton gy, a gravitino U o, and a three-form potential A(g). In
this appendix, M, N, ... refer to higher-dimensional spacetime indices. The

Lagrangian for the bosonic sector is given in the following differential form
. 1, - . 1. - -
L1 = R*¥1 — 5*F(4) VAN F(4) — 6F(4) A\ F(4) A A(g) (Cl)

where the four-form field strength is F(4) = dfl(g). The associated field equations

derived from this Lagrangian are

1 A N 1 N A
0= Rmy — T2 (FMPQRFNPQR - EQMNF’PQRSFPQRS) ; (C.2)
s 1. ~
0= d*F(4) — —F(4) N F(4). (CB)

2
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Here, we are using * to denote a Hodge duality in eleven-dimensional spacetime

in contrast to %, which refers to seven-dimensional Hodge duality.

To truncate the eleven-dimensional supergravity on S* leading to the
maximal SO(5) gauged supergravity in seven dimensions, the following ansatz

for the eleven-dimensional metric is needed
1
32, = Asds? + ?A—%T@VDMMDMN (C.4)

where M, M = 1,2,3,4,5, are coordinates on S* satisfying pu™pu™ = 1. The
warped factor is defined by

in which Ty is a unimodular 5 X 5 symmetric matrix describing scalar fields in
SL(5)/SO(5) coset. The ansatz for the four-form field strength reads

1 1

Fa = §_3A72 §5M1...M5uMuNTM1MDTM2N A Dus A DpMs A Dy
1 1 \
_gA_Que(ZL) + 4‘&2 A_lf‘:Ml_”MsF(J\f)lM2 A DMMJ A DMM4TM5N[LN
J X
+§S(A34) A DpM — Ty * Sl . (C.6)

In these equations, we have used the following definitions

U = 2TyunTnpp™p” — AT, (C.7)

€1) = %SMI_,,ME)MMlDuM? A DpMs A Dy A DM, (C.8)
DpM = dp™ + AN N, YN = dANYN + gAY ANARY,  (C.9)
DTyy = dTyy + AN Ten + GAN Turp - (C.10)

In this appendix, the vector, two-form, and massive three-form fields in seven-

dimensional truncated theories are denoted by flé\f)N , F{%N , and S’(Mg) to avoid

confusion with those appearing in ()

Imposing these ansatze into the field equations, (@) - (@), we can find

the seven-dimensional field equations given in [[77] that can be derived from the
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following Lagrangian

1 1 1
Lo = 5R x1 4+ S * DTy A DTy — ZQQ [QTMNTMN — (TMM)ﬂ * 1

Loan 1 SM A FNiNa o NaNg | L
1

1 - ~
— - P
—5TaieTg * Foy™ A Fo? = T * S A SG) (C.11)

in which () is the Chern-Simons term whose explicit form can be found in [32]
and

HYY = dSt + gAY A S (C.12)
Comparing this Lagrangian with () together with Yy;n = 6y and ZMNF =
for SO(5) gauge group, we can find the following relations between the seven-

dimensional fields and parameters obtained from the S* truncation and those in

seven-dimensional gauged supergravity of [63]

p . o1
Tun = MY, Sl = 2@, By =4FG", §=19. (C.13)

Moreover, we will consider a further truncation giving rise to the matter-
coupled SO(4) gauged supergravity in seven dimensions [74]. By breaking the
gauge group SO(5) to SO(4), SO(5) gamma matrices, I'; with 1 =1,2,3,4,5, are
decomposed as I'; = (I'g,I's) in which R = 1,2,3,4 is an SO(4) index. On the
other hand, I's = I'|[,I'sT'y acts as the chilarity matrix of SO(4), ['5¥* = £0*
for an instant SO(4) spinor ¥ = U* + U~. The following truncation is made on
fermionic fields and SUSY parameters in the maximal SO(5) gauged theory to
reduce N =4 SUSY to N =2

€ =Y, =X =2 =0 (C.14)

in which wlf are the gravitini and A?E are the spin—% fields that are decompsed into

)\gt = (A3, M%), In the following, all + superscript will be suppressed.

For bosonic fields, we set T5,, S("é), and F (526)‘ to zero while the index M is also
split as (a, 5) with o« = 1,2, 3,4. The corresponding scalar truncation is given by

Tyin = (Tug, Tss) = (X T, X %) in which X will be related to the N = 2 dilaton
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scalar field and T, s 1s @ symmetric scalar matrix with unit determinant describing

nine scalars in SL(4,R)/SO(4) coset.

With these truncations, the bosonic Lagrangian for the resulting N = 2,
SO(4) gauged supergravity reads
Lnes = SRxl— sX2TVT50w B0 A B — SFts DTy AT DT,
N2 = SRl =X Tas * Fioy N Egy = glap * Dy N5 Dlsa

1 4 1 o3 Yo ) -2
1

_ZQFM) /\A(g) —Vxl1 (015)

in which we have imposed
§(53) = —QA(g) + W) (C.16)

where Fiyy = dA3) and w(g) is the Chern-Simons term, whose explicit form is given

in [74]. The scalar potential is given by

1 - NI 1
~g [XB — 2X T +2X7 (TQBTaﬂ ~T? )} : (C.17)

V =
2 oo

W

From the eleven-dimensional supergravity, this SO(4) gauged theory can be

obtained through the following truncation ansatze
2
dst, = A%ds? + A—QA_§X3 [X cos? € + X tsin? T ﬁl/f‘/ﬁ] de?
g

1 _2 o 15—1 - « 1 2 o 1— a
— 5 ATSX Ty sinép dSDHJﬁ—l—Q—gQA X T} cos® €D Dy

g
(C.18)
Fu = Fuysiné+ X4cos§*F(4) /\5—1— A 2U cos® EdE A es)
-2
+ggxacas S g cos' €4 [5Ta"‘dX + XDT“”] A DpP A D A Dy

-2

A
+— 25 €aB5 COS Seut ) |:COS EX2T"DTPN —sin? X 36 DT

—5sin? T X~ 455’\dX} A Dp

242
1
—cosfsme,u - (sm Y + X8 cos® €T “) }/\Fo‘ﬁ/\D,u‘s

(C.19)



221

in which the S* coordinates u* are split to be u™ = (cos Eu®, sin ) with u® being
coordinates on S? satisfying u®u® = 1. The following definitions are also used in

the above ansatze

1
€@) = gyZamol® D’ A DY A D', (C.20)
Du* = dp” + gﬁ?ﬁuﬁ, A = cos? §XTa5u°‘,u5 + X *sin?¢, (C.21)
U = cos? §X2uau'8(2’fwfw — Taﬂfw — X_5Ta5)

+sin? (X8 — X3T0,). (C.22)

To identify Ta_ﬁl to the SO(3,3)/SO(3) x SO(3) coset representative
LA = (L/",L;") used in the main text, we write TO;BI in the form of the

SL(4,R)/SO(4) coset representative V,"
T3 = Va™V50ns . (C.23)

Due to the isomorphisms SO(3,3) ~ SL(4,R) and SO(4) ~ SO(3) x SO(3), the
SL(4,R)/SO(4) coset representative V, is related to SO(3,3)/SO(3) x SO(3)
coset by the relation

L o
Lt = 1 s Ve Vs’ (C.24)

in which ¢! and n* are chirally projected gamma matrices of SO(3, 3) satisfying

(Nas(¢)* = —4n" and (("Nas(Cr)ys = —2€aye (C.25)

where (1% = (¢} 5, —(l3) see more detail in [38]. Note that 7 also satisfy similar

relations which we will not repeat them here. We use the following choice of ( 6{5
("= —ioy @01, (*=—ica®o03, (=il ® o0y,
<4 = i01®027 C5: —i02®12, C62i0'3®0'2. (026)
All these ingredients lead to the following identification of the fields and
parameters in seven and eleven dimensions

go = g1 = 16h = 2g, X:e_%,

1 1o o
H) = EA(g), A(g - g,BA{D. (C.27)



222

C.2 Type IIA Supergravity on S3

The low-energy effective theory of type ITA string theory is ten-dimensional type
ITA supergravity obtained from a dimensional reduction of eleven-dimensional
supergravity on a circle [96]. The field content of type IIA supergravity comprises
a graviton gy, a scalar ¢, a Ramond-Ramond (R-R) one-form potential /1(1), an
Neveu Schwarz-Neveu Schwarz (NS-NS) two-form potential E(g), an R-R three-
form potential 121(3) together with two gavitini \iﬂM and two dilatini \; with i = 1,2.

The bosonic Lagrangian of this theory is given by
_ 1_= SR T PP ~ 11, = ~
Lia = Rx1— §*dg0 Adp — 562"9*17(2) VAN F(Q) — 562@*F(4) AN F(4)
1 _. = A NS . A
—§€_¢>T<H(3) N H(g) + §dA(3) A dA(g) AN B(Q) (C.28)

where % denotes ten-dimensional Hodge duality. The corresponding field strengths

of the differential form potentials are given by

F(4) = dA(g) — dé(g) VAN A(l), ]:[(3) = dB(g), and F(Q) = dA(l). (029)

The consistent truncation of type IIA supergravity on S® has been obtained
in [77] by taking a degenerate limit of the S* truncation of eleven-dimensional
supergravity. To write down this truncation ansatz, we first split the index M as

M = (i,5),i=1,2,3,4. The scalar matrix of SL(5)/SO(5) coset is then given by

OIM + Oyiy; Py
Tyn = G (C.30)
where M;; is a unimodular 4 x 4 symmetric matrix describing the SL(4)/SO(4)

coset. The fields y; and ® are axion and dilaton scalars, respectively.

The truncation ansatze for the ten-dimensional metric, dilaton, and field

strength tensors of various form fields are given by

1 . .
ds3y = D6 AYds? + ?é‘%A‘gMingulDu% (C.31)

e* = ATI1,  Fg = Gy ADp' + gu'Gly), (C.32)
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He) = %AQ ~Ue) + ;5iligi3i4Mi1jﬂjukDMiQk A Du' A Dyt
+292A ewklem,u F{) A Dyl + gS (C.33)
F’<4> = %Alem G ) 2;2 W/HG“ A Dp’ A Dp's
+ My 1 + Gy + EG’@ A Dyl (C.34)
with
1
€@ = gyCighilt Dyt A DuF A Dul, Dpt = did —i—gA(l),u , (C.35)
U = 2M; My p' " — AMyy, A = Myp'?, (C.36)
Gl = Dxi + §AR), Gloy = DAR) + x;F), (C.37)
Glyy) = Siz) — xiSa): Fp3 = dA]) + gA(l) NAG, (C.38)

. 1 SO\ R .
St = dB) + g8 (F(’g) NG = 3 gA(Jl) N A A Agg) (C.39)
where ' are coordinates on S? satisfying p‘u’ = 1 in this case.

Substituting these ansatze into the field equations derived from the
Lagrangian (), we obtain the resulting seven-dimensional field equations that

can be derived from the following bosonic Lagrangian

1 1 1
Lo = FRx1- gqﬂ % d® A dD — gMi;I * DM, A My;" DM,;

1 — R i 1 n kl 1 -1 % j
1 i . 1 i . _ 1 ~

where the explicit form for the scalar potential V and topological terms of various
form fields ?2(7) are given in [77]. By comparing this truncated Lagragian and the
seven-dimensional gauged Lagrangian given in () with Yj; = 05, Y55 = 0, and

ZMN.P — () we find the following relations

A 1 8 -1 Vi
g = =9, (I):€¢oa XZ:b’H Mz] :MZ]a

1
Say = 2Hey Fg) = 475,

i 15t 15
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