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CHAPTER I

INTRODUCTION

Throughout this thesis, the letter p always denotes a prime number. We use the letter
n to denote a positive integer unless otherwise stated. For any two integers a and
b, the greatest common divisor of a and b is denoted by (a, b). The notation #A is
used to denote the cardinality of a set A. If g(x) is a non-negative function, we write
f(x) = O(g(x)) to mean that there exists a constant C > 0 such that |f(x)| ≤ Cg(x)

for all x ≥ x0 for some x0. Alternatively, we may use the notation f(x) ≪ g(x), due to
Vinogradov, if there is no main term. We write f(x) = Oα(g(x)) or f(x) ≪α g(x) to
indicate that the constant C may depend on some parameter α. We write f(x) = o(g(x))

to mean that f(x)/g(x) → 0 as x tends to its limit. As usual, we shall mean x → ∞
unless otherwise specified.

Let ω(n) denote the number of distinct prime divisors of n. In 2005, Banks et al.
[2] introduced the arithmetic mean of distinct prime divisors of n, which is defined for
n ≥ 2 by

ρ(n) =
1

ω(n)

∑
p|n

p,

and set ρ(1) = 1. They studied the distributional properties of the sequence (ρ(n)) by
showing that for sufficiently large N a bound for the exponential sum

N∑
n=1

e(aρ(n)) ≪ |a|N
log logN

(1.1)

holds for every integer a ̸= 0. Here e(x) = exp(2πix) for all real numbers x. Moreover,
they showed that for sufficiently large N the discrepancy D(N) of the sequence (ρ(n))

is
D(N) ≪ (log log logN)2

log logN
(1.2)

(see the definition of discrepancy in §2.1). Furthermore, they pointed out that the
estimates (1.1) and (1.2) also hold for the function

ρ̃(n) =
1

Ω(n)

∑
pa|n
a≥1

p,

where Ω(n) denotes the number of prime divisors of n counted with multiplicity. Their
results imply that the sequences (ρ(n)) and (ρ̃(n)) are uniformly distributed.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

The geometric mean of distinct prime divisors of n can be defined by

g(n) =

∏
p|n

p

1/ω(n)

.

In 2006, Luca and Shparlinski [9] studied the uniform distribution of the sequences
(g(n)), (n1/ω(n)) and (n1/Ω(n)) by proving that their discrepancies are all equal to
(logN)−1+o(1) as N → ∞. Noting that these three sequences are all the same if n
is square-free, and the function n1/Ω(n) represents the geometric mean of prime divisors
of n taken with multiplicity.

Let us define

h̃(n) =
Ω(n)∑
pa|n
a≥1

1/p
and h(n) =

ω(n)∑
p|n 1/p

,

which can be interpreted as the harmonic means of prime divisors of n taken with and
without multiplicity, respectively. In 2009, Kátai and Luca [6] proved that the sequences
(h(n)) and (h̃(n)) are uniformly distributed. More generally, they proved that if f(n)
is an additive function such that there exist two positive constants c1 and c2 such that
f(p) < c1/p and 0 < f(pa) < c2 for all primes p and all positive integers a, then the
sequences (ω(n)/f(n)) and (Ω(n)/f(n)) are uniformly distributed.

For every positive integer k, let ρk(n) and ρ̃k(n) be defined for n ≥ 2 by

ρk(n) =
1

ω(n)

∑
p|n

pk and ρ̃k(n) =
1

Ω(n)

∑
pa|n
a≥1

pk,

and set ρk(1) = 1 = ρ̃k(1). Thus ρ̃k(n) and ρk(n) represent the arithmetic means of
the kth power of prime divisors of n taken with and without multiplicity, respectively.
As defined above, we note that ρ1 = ρ and ρ̃1 = ρ̃. The purpose of this thesis is to
study the distributional properties of the sequences (ρk(n)) and (ρ̃k(n)) for all k ≥ 2 by
estimating their exponential sums and their discrepancies.

The rest of this thesis is structured as follows. Chapter 2 contains some materials
which are necessary for us to develop our main results. The chapter is divided into
two sections. Section 2.1 introduces the fundamental concept of uniform distribution
of sequences of real numbers. Section 2.2 provides some terminology and elementary
results in analytic number theory. Chapter 3 presents the main results of the thesis,
namely the bounds for exponential sums and discrepancies of the sequences (ρk(n)) and
(ρ̃k(n)) for k ≥ 2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

2.1 Equidistribution of sequences

For any real number x, we denote by [x] the unique integer such that [x] ≤ x < [x] + 1,
called the integral part of x. Let {x} = x− [x], called the fractional part of x. Thus we
may treat x as an element of the quotient group R/Z by considering only its fractional
part and ignoring its integral part.

Let (un) be a sequence of real numbers. For any positive integer N and any real
number 0 ≤ α < 1, let A(N,α) denote the number of positive integers n not exceeding N
such that 0 ≤ {un} ≤ α. The sequence (un) is said to be uniformly distributed (modulo
1) or equidistributed (modulo 1) if

lim
N→∞

1

N
A(N,α) = α (2.1)

holds for all α ∈ [0, 1). Alternatively, we may represent (2.1) as

lim
N→∞

1

N

N∑
n=1

1[0,α]({un}) =
∫ 1

0
1[0,α](u) du (2.2)

for all α ∈ [0, 1). Here 1[0,α] is the characteristic function of the closed interval [0, α],
that is, 1[0,α](u) = 1 if u ∈ [0, α] and 0 otherwise. The equation (2.2) leads us to
establish the following theorem.

Theorem 2.1. The following statements are equivalent:

(i) The sequence (un) is uniformly distributed.

(ii) For every real- or complex-valued Riemann-integrable function f defined on [0, 1],

lim
N→∞

1

N

N∑
n=1

f({un}) =
∫ 1

0
f(u) du. (2.3)

(iii) The equation (2.3) holds for every real- or complex-valued continuous function f

defined on [0, 1].

In fact, the sequence (un) is uniformly distributed if and only if (2.3) holds for every
Riemann-integrable function f defined on R with period 1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Proof. The implication (ii) ⇒ (iii) is trivial since every continuous function is Riemann-
integrable. To prove that (iii) implies (i), we fix 0 ≤ α < 1, and let ε > 0 be arbitrary.
Then there exist two continuous functions g1 and g2 such that g1 ≤ 1[0,α] ≤ g2 on [0, 1]

and
∫ 1
0 (g2(u)− g1(u)) du < ε. Thus we have

∫ 1

0
1[0,α](u) du− ε ≤

∫ 1

0
g2(u) du− ε ≤

∫ 1

0
g1(u) du = lim

N→∞

1

N

N∑
n=1

g1({un})

≤ lim inf
N→∞

1

N

N∑
n=1

1[0,α]({un}).

Similarly, we also have

∫ 1

0
1[0,α](u) du+ ε ≥ lim sup

N→∞

1

N

N∑
n=1

1[0,α]({un}).

Since ε can be arbitrarily small, we conclude that (un) is uniformly distributed by (2.2).
To show that (i) implies (ii), suppose that f is Riemann-integrable on [0, 1], and let ε > 0

be arbitrary. Then there exist two step functions f− and f+ such that f− ≤ f ≤ f+

on [0, 1] (that is, f− and f+ are linear combinations of characteristic functions of closed
subintervals of [0, 1]) and

∫ 1
0 (f

+(u)− f−(u)) du < ε. Arguing as above, we yield

∫ 1

0
f(u) du− ε ≤ lim inf

N→∞

1

N

N∑
n=1

f({un}) ≤ lim sup
N→∞

1

N

N∑
n=1

f({un}) ≤
∫ 1

0
f(u) du+ ε.

Therefore we obtain (2.3) since ε can be arbitrarily small.

The following criterion characterizes uniformly distributed sequences, due to Weyl
in 1916 (see Theorem 4.1.9 in [12]).

Theorem 2.2 (Weyl’s criterion). The sequence (un) is uniformly distributed if and only
if

lim
N→∞

1

N

N∑
n=1

e(aun) = 0 (2.4)

holds for all integers a ̸= 0.

Historically, the first example of a uniform distributed sequence is the sequence
(nα) for any irrational number α, called the Kronecker sequence, due to Kronecker who
first proved in 1884 that this sequence is dense in the unit interval [0, 1]. The uniform
distribution of the Kronecker sequence was proved independently by Bohl, Sierpiński and
Weyl in 1909–1910. We shall prove the following statement by using Weyl’s criterion.
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Corollary 2.3 (Bohl–Sierpiński–Weyl). The sequence (nα) is uniformly distributed if
and only if α is irrational.

Proof. If α = a/b for some integers a, b with b ≥ 1, then
∑

n≤N e(bnα) = N , and hence
the sequence (nα) is not uniformly distributed since the limit (2.4) does not hold for b.
Conversely, suppose that α is irrational. Then for any integer k ̸= 0,∣∣∣∣∣

N∑
n=1

e(knα)

∣∣∣∣∣ =
∣∣∣∣e(kα) (1− e(kNα))

1− e(kα)

∣∣∣∣ ≤ 2

|1− e(kα)|
=

1

| sin(πkα)|
≤ 1

2∥kα∥
,

where ∥x∥ denotes the distance from x to the nearest integer. Thus the limit (2.4) holds
for all integers k ̸= 0, and hence the sequence (nα) is uniformly distributed.

The discrepancy of the sequence (un) is defined by

D(N) = sup
0≤α<1

∣∣∣∣ 1NA(N,α)− α

∣∣∣∣ .
A bound for the discrepancy in terms of exponential sums is provided by the following
theorem, due to Erdős and Turán in 1948 (see Theorem 2.5 in Chapter 2 of [8] or
Theorem 11.4.8 in [11]).

Theorem 2.4 (The Erdős–Turán inequality). For any finite sequence of real numbers
u1, u2, . . . , uN , and any positive integer M , there exists an absolute constant C > 0 such
that

D(N) ≤ C

(
1

M + 1
+

M∑
a=1

1

a

∣∣∣∣∣ 1N
N∑

n=1

e(aun)

∣∣∣∣∣
)
.

The following theorem gives another criterion for uniform distributed sequences.

Theorem 2.5. The sequence (un) is uniformly distributed if and only if D(N) → 0 as
N → ∞.

Proof. The sufficiency is obvious. To prove the necessity, we use the Erdős–Turán in-
equality to obtain

0 ≤ lim inf
N→∞

D(N) ≤ lim sup
N→∞

D(N) ≪ 1

M + 1
+

M∑
a=1

1

a

∣∣∣∣∣ limN→∞

1

N

N∑
n=1

e(aun)

∣∣∣∣∣≪ 1

M + 1

by noting that the absolute term vanishes by Weyl’s criterion. Since the last term tends
to 0 as M → ∞, we conclude that D(N) → 0 as N → ∞.
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2.2 Some elementary results in analytic number theory

2.2.1 Arithmetic functions, Dirichlet series and Euler products

Analytic number theory normally deals with a Dirichlet series
∑∞

n=1 f(n)n
−s, where

f(n) is an arithmetic function, a real- or complex-valued function whose domain is the set
of natural numbers or some subset of the natural numbers, and s is a complex variable.
Traditionally, we write s = σ + it to represent its real and imaginary parts. Note that
if the series

∑∞
n=1 |f(n)n−s| does not converge everywhere or converge nowhere, then

σa := inf {σ :
∑

|f(n)n−s| <∞} exists. We call σa the abscissa of absolute convergence.
Also, we define σa = −∞ and σa = +∞ if the series

∑
|f(n)n−s| converges everywhere

and converges nowhere, respectively.
Several examples of arithmetic functions are given as follows:

• id(n) = n for all n, called the identity function,

• 1(n) = 1 for all n,

• δ(n) =

1 if n = 1,

0 if n > 1,

• ω(n) =
∑
p|n

1, the number of distinct prime divisors of n,

• Ω(n) =
∑
pa|n
a≥1

1, the number of prime divisors of n counted with multiplicity,

• µ(n) =

(−1)ω(n) if n is square-free,

0 otherwise,
known as the Möbius mu function,

• φ(n) = #(Z/nZ)×, known as Euler’s totient function,

• Λ(n) =

log p if n = pk for some prime p and some k ≥ 1,

0 otherwise,
known as the von Mangoldt lambda function.

An arithmetic function f is called multiplicative if f(1) ̸= 0 and f(mn) = f(m)f(n)

whenever m and n are relatively prime. A multiplicative function f is called completely
multiplicative if f(mn) = f(m)f(n) for all m and n. The following theorem asserts
that an absolutely convergent Dirichlet series of some multiplicative function can be
expressed as an infinite product over primes (see Theorem 1.9 in [10]).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

Theorem 2.6. Let f be a multiplicative function such that
∑∞

n=1 f(n)n
−s converges

absolutely for σ > σa, then

∞∑
n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

p
+
f(p2)

p2s
+ · · ·

)
for σ > σa. (2.5)

Moreover, if f is completely multiplicative, then

∞∑
n=1

f(n)

ns
=
∏
p

(
1− f(p)

ps

)−1

for σ > σa. (2.6)

In each case, the product on the right is called the Euler product of the Dirichlet series.

Let us introduce the Riemann zeta function, which is defined for σ > 1 by

ζ(s) =

∞∑
n=1

1

ns
.

Since the function 1 is completely multiplicative and
∑
n−σ < ∞ for σ > 1, it follows

from (2.6) that
∞∑
n=1

1

ns
= ζ(s) =

∏
p

(
1− 1

ps

)−1

for σ > 1. (2.7)

This deduces that ζ(s) ̸= 0 for σ > 1 since the product on the right does not vanish.
Here we present two short proofs of infinitude of primes based on the relation (2.7).

First proof. This proof was first discovered by Euler in 1737. Treating s as a real
number and then taking the limit s → 1+, the sum on the left tends to the harmonic
series

∑
1/n which is divergent, forcing the product on the right to be infinite.

Second proof. Putting s = 2 in (2.7), we obtain

π2

6
= ζ(2) =

∏
p

(
1− 1

p2

)−1

.

Since π2 is irrational (otherwise there exist positive integers a and b such that π2 = a/b,
and so π satisfies the algebraic equation bx2−a = 0, contradicting the transcendentality
of π), the product on the right must have infinitely many factors.

Using (2.5) we also have

∞∑
n=1

µ(n)

ns
=

1

ζ(s)
=
∏
p

(
1− 1

ps

)
for σ > 1 (2.8)

by noting that µ is multiplicative and
∑

|µ(n)|n−σ ≤
∑
n−σ <∞ for σ > 1.
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Theorem 2.7. Let F (s) =
∑
f(n)n−s and G(s) =

∑
g(n)n−s be two Dirichlet series,

and let H(s) =
∑
h(n)n−s whose coefficients h(n) are given by

h(n) =
∑

km=n

f(k)g(m). (2.9)

Then H(s) is absolutely convergent and H(s) = F (s)G(s) for all s in the half-plane that
F (s) and G(s) are both absolutely convergent.

Proof. We observe that

F (s)G(s) =
∞∑
k=1

f(k)k−s
∞∑

m=1

g(m)m−s =
∞∑
k=1

∞∑
m=1

f(k)g(m)(km)−s

=
∞∑
n=1

( ∑
km=n

f(k)g(m)

)
n−s = H(s).

The rearrangement of terms is justified by absolute convergences of F (s) and G(s).

Note that the equation (2.9) can be rewritten as

h(n) =
∑
d|n

f(d)g
(n
d

)
.

The function h is called the Dirichlet convolution of f and g, and denoted by h = f ∗ g.
By means of Theorem 2.7 together with (2.7) and (2.8), we obtain the identity

∑
d|n

µ(d) = δ(n) =

1 if n = 1,

0 if n > 1,
(2.10)

and we write µ∗1 = δ. If we let A be the set of all arithmetic functions f with f(1) ̸= 0,
then (A, ∗) forms an abelian group with identity δ. Thus the equation (2.10) is equivalent
to saying that the Möbius mu function and the function 1 are convolutional inverses of
each other. This enables us to establish the Möbius inversion formula: g = f ∗ 1 if and
only if f = g ∗ µ for any arithmetic functions f and g. By using (2.10), we find that

φ(n) =
n∑

m=1
(m,n)=1

1 =
n∑

m=1

δ((m,n)) =
n∑

m=1

∑
d|(m,n)

µ(d) =
∑
d|n

µ(d)

n/d∑
q=1

1 =
∑
d|n

µ(d)
n

d
.

This proves that φ = µ ∗ id. Consequently, it can be easily derived that

φ(n) = n
∏
p|n

(
1− 1

p

)
.
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Also, we obtain the identity n =
∑

d|n φ(d) by the Möbius inversion formula. By using
Theorem 2.6 and Theorem 2.7, we yield

∞∑
n=1

φ(n)

ns
=
ζ(s− 1)

ζ(s)
=
∏
p

1− p−s

1− p1−s
for σ > 2.

Next, we show that any Dirichlet series has an abscissa of convergence σc with the
property that the series converges for all s in the half-plane σ > σc, and diverges for all
s in the half-plane σ < σc. Also, we let σc = −∞ and σc = +∞ if the series converges
everywhere and converges nowhere, respectively. We shall prove the existence of such
half-plane of convergence by means of the following lemma (see Lemma 2 in §11.6 of
[1]).

Lemma 2.8. Suppose that the partial sums of the Dirichlet series
∑
f(n)n−s0 are

bounded, namely
∣∣∣∑n≤x f(n)n

−s0
∣∣∣ ≤M for all x ≥ 1. Then for all s with σ > σ0,

∣∣∣∣∣∣
∑

a<n≤b

f(n)n−s

∣∣∣∣∣∣ ≤ 2Maσ0−σ

(
1 +

|s− s0|
σ − σ0

)
. (2.11)

By letting a→ ∞ in (2.11), we see that
∑
f(n)n−s converges for all s with σ > σ0,

and we let σc = inf {σ :
∑
f(n)n−s <∞}. The estimate (2.11) also implies that for

an arbitrary constant R > 0 the Dirichlet series
∑
f(n)n−s converges uniformly in the

region R = {s : σ ≥ σ0 and |t− t0| ≤ R|σ − σ0|} since the expression in the parentheses
of (2.11) is bounded by 2 +R which is independent of s.

To obtain some more analytic properties of Dirichlet series, we require the following
fact in complex analysis (see §5.2 in Chapter 2 of [13]).

Lemma 2.9. Let (fn) be a sequence of analytic functions on a region Ω. Suppose that
(fn) converges uniformly to a function f on every compact subset of Ω. Then f is
analytic on Ω, and the sequences of derivatives (f ′n) converges uniformly to f ′ on every
compact subset of Ω.

Applying Lemma 2.9 to the sequence of partial sums, we have the following theorem.

Theorem 2.10. A Dirichlet series F (s) =
∑
f(n)n−s is locally uniformly convergent

and is analytic for all s in its half-plane of convergence σ > σc. The same statement
also holds for its differentiated Dirichlet series F ′(s) = −

∑
f(n)(log n)n−s.

Applying Theorem 2.10 to f(n) = 1(n), we have

− ζ ′(s) =
∞∑
n=1

log n

ns
for σ > 1. (2.12)
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Taking logarithms in (2.7) and then noting that − log(1 − z) =
∑∞

k=1 z
k/k for |z| < 1,

we yield

log ζ(s) = −
∑
p

log

(
1− 1

ps

)
=
∑
p

∞∑
k=1

1

kpks
for σ > 1. (2.13)

Differentiating (2.13), by means of Theorem 2.10, gives

− ζ ′

ζ
(s) =

∑
p

∞∑
k=1

log p

pks
=

∞∑
n=1

Λ(n)

ns
for σ > 1. (2.14)

By virtue of Theorem 2.7, (2.7), (2.12) and (2.14), we obtain the identity

logn =
∑
d|n

Λ(d). (2.15)

2.2.2 Summation formulae and some useful estimates

We turn to introduce two basic tools in analytic number theory: Abel’s summation
formula and the Euler–Maclaurin summation formula. Several estimates of arithmetic
functions that will be used in proving our main results are also provided in this subsec-
tion, and some of them can be derived from those summation formulae.

Theorem 2.11 (Abel’s summation formula). Let (an) be a sequence of real or complex
numbers. Define

A(x) =
∑
n≤x

an.

Let f be a continuously differentiable function on the interval [y, x] where x and y are
real numbers with 0 < y < x. Then

∑
y<n≤x

anf(n) = A(x)f(x)−A(y)f(y)−
∫ x

y
A(u)f ′(u) du. (2.16)

Proof. Let M = [y] and N = [x]. The idea of the proof is that we can write

∑
y<n≤x

anf(n) =
N∑

n=M+1

(A(n)−A(n− 1))f(n)

= A(N)f(N)−A(M)f(M) +

N∑
n=M+1

A(n− 1)(f(n− 1)− f(n)). (2.17)

We refer to this method as partial summation or summation by parts. Since A(n− 1) is
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constant in the interval [n− 1, n), the sum on the right of (2.17) becomes

−
N∑

n=M+1

A(n− 1)

∫ n

n−1
f ′(u) du = −

N∑
n=M+1

∫ n

n−1
A(u)f ′(u) du = −

∫ N

M
A(u)f ′(u) du.

(2.18)
Since A(u) is constant for all u ∈ [N, x], the first term in (2.17) is

A(x)f(x)−
∫ x

N
A(u)f ′(u) du. (2.19)

Similarly, the second term in (2.17) is

A(y)f(y)−
∫ y

M
A(u)f ′(u) du. (2.20)

The assertion follows by substituting (2.18), (2.19) and (2.20) in (2.17).

Instead of using partial summation, it is much more convenient to derive (2.16) by
means of the Riemann–Stieltjes integral (see Appendix A in [10]) to express

∑
y<n≤x

anf(n) =

∫ x

y
f(u) dA(u). (2.21)

The equation (2.16) immediately follows by integrating (2.21) by parts. Note that if x
and y in (2.21) are both integers, then we may choose any real number in [y − 1, y) to
be the left endpoint, and any real number in [x, x+1) to be the right endpoint without
affecting the value of the integral. In many cases, it is useful to consider the integral
from y − ε to x where ε > 0 is arbitrarily small. For convenience, we shall write

∫ x
y−

instead of limε→0+
∫ x
y−ε.

Now, we suppose that f is continuously differentiable on the interval [y, x], and we
let an = 1 for all n so that A(x) = [x]. Using (2.21), we obtain

∑
y<n≤x

f(n) =

∫ x

y
f(u) d[u] =

∫ x

y
f(u) du−

∫ x

y
f(u) d{u}

Integrating the last integral by parts, we have∫ x

y
f(u) d{u} = f(x){x} − f(y){y} −

∫ x

y
{u}df(u).

Since f ∈ C1([y, x]), the integral on the right is
∫ x
y {u}f

′(u) du. Therefore

∑
y<n≤x

f(n) =

∫ x

y
f(u) du− f(x){x}+ f(y){y}+

∫ x

y
{u}f ′(u) du. (2.22)
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The last integral can actually be repeatedly integrated by parts if f is continuously
differentiable up to higher order. To generalize the formula (2.22), we introduce the
sequence of polynomials (Bn(x))n≥0 satisfying the following conditions:

B0(x) = 1, (C1)
d

dx
Bn(x) = nBn−1(x) for n ≥ 1, (C2)∫ 1

0
Bn(x) dx = 0 for n ≥ 1. (C3)

The polynomials Bn(x) are called the Bernoulli polynomials. Alternatively, we may
represent Bn(x) by the equation

zexz

ez − 1
=

∞∑
n=0

Bn(x)

n!
zn for |z| < 2π.

By integrating (C3), we find that

Bn(0) = Bn(1) for n ≥ 2. (2.23)

We define the Bernoulli numbers as Bn = Bn(0) for all n ≥ 0. It can be deduced from
(C2) that

Bn(x) =

n∑
r=0

(
n

r

)
Brx

n−r for n ≥ 0. (2.24)

Taking x = 1 in (2.24) and then using (2.23), we obtain

Bn =

n∑
r=0

(
n

r

)
Br for n ≥ 2. (2.25)

The equation (2.25) provides a recursion formula for computing Bn−1 in terms of B0,
B1, …, Bn−2. The first five Bernoulli polynomials are shown below:

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
,

B3(x) = x3 − 3

2
x2 +

1

2
x, B4(x) = x4 − 2x3 + x2 − 1

30
.

These polynomials can be computed by using (2.24) together with (2.25).

Theorem 2.12 (Euler–Maclaurin summation formula). Let k be any positive integer.
Suppose that a function f is k-times continuously differentiable on the interval [y, x]
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where x and y are real numbers with 0 < y < x. Then

∑
y<n≤x

f(n) =

∫ x

y
f(u) du+

k∑
j=1

(−1)j

j!

(
Bj({x})f (j−1)(x)−Bj({y})f (j−1)(y)

)
(2.26)

− (−1)k

k!

∫ x

y
Bk({u})f (k)(u) du.

Proof. We prove by induction on k. The case k = 1 is exactly the same as (2.22).
Suppose that f ∈ Ck+1([y, x]). Integrating the last integral of (2.26) by parts yields

1

k + 1

(
Bk+1({x})f (k)(x)−Bk+1({y})f (k)(y)−

∫ x

y
Bk+1({u})f (k+1)(u) du

)
,

which proves the inductive step.

We now give an approximation formula for n! by applying the Euler–Maclaurin
summation formula to f(u) = log u with y = 1, x = n and k = 2 so that

log n! = n log n− n+
1

2
log n+ C +

1

12n
− 1

2

∫ ∞

n
B2({u})u−2 du, (2.27)

where
C =

11

12
+

1

2

∫ ∞

1
B2({u})u−2 du.

Exponentiating (2.27) gives

n! =
(n
e

)n√
neC

(
1 +O

(
1

n

))
. (2.28)

Next, we show that C = log
√
2π by using the product formula for the sine function:

sinπz

π
= z

∞∏
n=1

(
1− z2

n2

)
(2.29)

(see §3.2 in Chapter 5 of [13] for the derivation of this formula). Taking z = 1/2 in
(2.29) yields

2

π
=

∞∏
n=1

(
1− 1

4n2

)
, (2.30)

known as the Wallis product. The right-hand side of (2.30) is equal to

lim
n→∞

(2n+ 1)(2n)!2

24n(n!)4
. (2.31)
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Combining (2.30) and (2.31) and then using (2.28), we find that

2

π
= lim

n→∞

2n+ 1

24n
·
(
(2n)2ne−2n

√
2neC

)2
(nne−n

√
neC)

4 ·
(
1 +O

(
1

n

))2

= 4e−2C ,

which establishes Stirling’s formula:

n! =
(n
e

)n√
2πn

(
1 +O

(
1

n

))
. (2.32)

Next, we shall use the Euler–Maclaurin summation formula to show that the Riemann
zeta function can be extended meromorphically beyond the half-plane σ > 1.

Theorem 2.13. Let x ≥ 1, σ > 0 and s ̸= 1. Then

ζ(s) =
∑
n≤x

1

ns
+
x1−s

s− 1
+

{x}
xs

− s

∫ ∞

x

{u}
us+1

du. (2.33)

Proof. We write ζ(s) =
∑

n≤x n
−s +

∑
n>x n

−s for σ > 1. The latter sum is∫ ∞

x
u−s du+ {x}x−s − s

∫ ∞

x
{u}u−s−1 du

by (2.22). The former integral is x1−s/(s− 1). The latter integral converges absolutely
for σ > 0, and uniformly for σ ≥ δ > 0. Also, it is an analytic function of s for σ > 0.
Thus the equation (2.33) holds for σ > 0 by analytic continuation.

Taking x = 1 in (2.33), we obtain

ζ(s) =
s

s− 1
− s

∫ ∞

1

{u}
us+1

du for σ > 0. (2.34)

By using (2.26), we can generalize (2.34) to all positive integers k as

ζ(s) =
s

s− 1
− 1

2
+

k∑
j=2

Bj

j!

j−2∏
l=0

(s+ l)− s(s+ 1) · · · (s+ k − 1)

k!

∫ ∞

1

Bk({u})
us+k

du.

We now notice that the first term on the right has a simple pole at s = 1 and (s−1)ζ(s) →
1 as s→ 1. Also, the integral is analytic for σ > 1− k. We can let k be arbitrarily large
so that the function ζ can be analytically continued into the entire complex plane. The
following corollary gathers the facts discussed above.

Corollary 2.14. The Riemann zeta function has an analytic continuation into the entire
complex plane except for a simple pole at s = 1 with residue 1.
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In the remaining part of this subsection, we collect some estimates of arithmetic
functions needed in the proof of several results given in Chapter 3.

Theorem 2.15. For x ≥ 1,

(i)
∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
,

(ii)
∑
n≤x

1

ns
=
x1−s

1− s
+ ζ(s) +O(x−σ) for σ > 0 and s ̸= 1,

(iii)
∑
n>x

1

ns
≪ x1−σ for σ > 1,

(iv)
∑
n≤x

ns =
xs+1

s+ 1
+O(xσ) for σ > 0,

where γ is the Euler–Mascheroni constant (also called Euler’s constant), defined by

γ = 1−
∫ ∞

1
{u}u−2 du = 0.5772156649 . . . .

Proof. The estimates (ii) and (iii) are immediate consequences of Theorem 2.13. Taking
f(n) = 1/n in (2.22) yields

∑
n≤x

1

n
= 1 +

∫ x

1

du

u
− {x}

x
−
∫ x

1

{u}
u2

du. (2.35)

The former integral is log x. We express the latter integral as
∫∞
1 −

∫∞
x . The integral∫∞

x {u}u−2 du and the penultimate term of (2.35) are ≪ 1/x. This proves (i). To prove
(iv), we take f(n) = ns in (2.22) to give

∑
n≤x

ns = 1 +

∫ x

1
us du− {x}xs + s

∫ x

1
{u}us−1 du.

The assertion follows by noting that the former integral is xs+1/(s+1)+O(1), and the
last two terms are ≪ xσ.

The following theorem is due to Mertens in 1874 (see Theorem 2.7 in [10]).

Theorem 2.16 (Mertens). For x ≥ 2,

(i)
∑
p≤x

1

p
= log log x+ β +O

(
1

log x

)
,

(ii)
∏
p≤x

(
1− 1

p

)−1

= eγ log x+O(1),

where β = γ −
∑

p

∑∞
k=2(kp

k)−1.
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We now let A(x) =
∑

p≤x 1/p. Then, by Theorem 2.16(i), we may express A(x) =
log log x+ β +R(x) where R(x) ≪ 1/ log x. Thus we have

∑
p>x

1

p log p
=

∫ ∞

x

dA(u)

log u
=

∫ ∞

x

d log log u

log u
+

∫ ∞

x

dR(u)

log u
.

The penultimate integral is
∫∞
x

(
u(log u)2

)−1
du = 1/ log x. The last integral is −R(x)/ log x+∫∞

x

(
u(log u)2

)−1
R(u) du≪ 1/(log x)2. Therefore

∑
p>x

1

p log p
≪ 1

log x
. (2.36)

Letting x → ∞ in (2.36), we see that the sum on the left approaches 0 and thus we
obtain the following corollary.

Corollary 2.17. The series
∑

p(p log p)
−1 is convergent.

The following theorem gives a minimal order for φ(n) (see Theorem 2.9 in [10]).

Theorem 2.18. For n ≥ 3,

φ(n) ≥ n

log log n

(
e−γ +O

(
1

log log n

))
.

Theorem 2.19. For x ≥ 2,

∑
n≤x

n

φ(n)
=
ζ(2)ζ(3)

ζ(6)
x+O(log x).

Proof. We first observe that n/φ(n) =
∑

d|n µ(d)
2/φ(d). To see this, we let Q denote the

set of square-free integers, and suppose that n has a prime factorization n =
∏

p|n p
αp .

We find that

∑
d|n

µ(d)2

φ(d)
=
∑
d|n
d∈Q

1

φ(d)
=
∏
p|n

(
1 +

1

p− 1

)
=
∏
p|n

pαp

pαp

(
1− 1

p

) =
n

φ(n)
.

Then for x ≥ 2,

∑
n≤x

n

φ(n)
=
∑
n≤x

∑
d|n

µ(d)2

φ(d)
=
∑
d≤x

µ(d)2

φ(d)

[x
d

]
=
∑
d≤x

µ(d)2

φ(d)

(x
d
+O(1)

)

= x
∑
d≤x

µ(d)2

dφ(d)
+O

∑
d≤x
d∈Q

1

φ(d)

 .
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The last term is ≪
∏

p≤x (1− 1/p)−1 ≪ log x by Theorem 2.16(ii). We now split the
sum of the penultimate term as

∑∞
d=1−

∑
d>x. The latter sum is

∑
d>x

µ(d)2

dφ(d)
≪
∑
d>x

1

dφ(d)
≪
∑
d>x

log log d

d2
≪ log log x

x

by Theorem 2.18 and Theorem 2.15(iii). The former sum is

∞∑
d=1

µ(d)2

dφ(d)
=
∏
p

(
1 +

1

p(p− 1)

)
=
∏
p

p6 − 1

p(p2 − 1)(p3 − 1)
=
ζ(2)ζ(3)

ζ(6)
.

The proof is now complete.

For any arithmetic function f , the variance of f is defined as

σ2f =
1

x

∑
n≤x

(f(n)− µf )
2,

where µf is the mean value of f , given by

µf =
1

x

∑
n≤x

f(n).

We now estimate the mean values and the variances of the functions ω and Ω. We first
give an estimate for the mean value of ω by considering

∑
n≤x

ω(n) =
∑
n≤x

∑
p|n

1 =
∑
p≤x

[
x

p

]
= x

∑
p≤x

1

p
+O(π(x)).

Here π(x) =
∑

p≤x 1, the number of primes not exceeding x, called the prime-counting
function. Using Theorem 2.16(i) and the crude bound π(x) ≤

∑
n≤x 1 ≪ x (we shall

give some better approximations to π(x) in the next subsection), we obtain

∑
n≤x

ω(n) = x log log x+O(x). (2.37)

The equation (2.37) can be interpreted probabilistically that if n ≤ x is chosen uniformly
at random, then we would expect n to have approximately log log x distinct prime di-
visors on average. The following theorem gives a bound for the variance of ω, due to
Turán in 1934 (see Theorem 2.12 in [10]).

Theorem 2.20 (Turán). For x ≥ 3,

∑
n≤x

(ω(n)− log log x)2 ≪ x log log x. (2.38)
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We now consider

∑
n≤x

(Ω(n)− ω(n)) =
∑
n≤x

∑
pa|n
a≥2

1 =
∑
p

∑
a≥2

[
x

pa

]
≪ x

∑
p

1

p(p− 1)
≪ x.

Also, we have

∑
n≤x

(Ω(n)− ω(n))2 =
∑
p

∑
a≥2

(2a− 1)

[
x

pa

]
+
∑
p1,p2
p1 ̸=p2

∑
a,b≥2

[
x

pa1p
b
2

]
.

The former term on the right is ≪ x
∑

p(3p − 1)/(p(p − 1)2) ≪ x. The latter term on

the right is ≪ x
(∑

p 1/(p
2 − p)

)2
≪ x. Thus we have proved that

∑
n≤x

(Ω(n)− ω(n))k ≪ x if k = 1, 2.

This deduces that (2.37) and (2.38) also hold if ω(n) is replaced by Ω(n). Consequently,
we obtain the following statement, due to Hardy and Ramanujan in 1917.

Corollary 2.21 (Hardy–Ramanujan). For almost all n ≤ x,

|ω(n)− log log x| ≪ (log log x)1/2+ε

for every ε > 0. The same result also holds if ω(n) is replaced by Ω(n).

2.2.3 Distribution of prime numbers

Because of the randomness of primes, it seems useless to find any explicit formula for
π(x) which can be computed effectively. Instead, it is much more sensible to concern
the asymptotic behaviour of π(x) when x becomes large. Legendre conjectured in 1798
that π(x) ≈ x/(A log x + B) for some constants A and B, and then refined in 1808 by
proposing that π(x) ≈ x/(log x − 1.08366) (we shall discuss later that Legendre was
misled about his constant when x→ ∞). This suggests that

π(x)

x/ log x
→ 1 as x→ ∞. (2.39)

It is usual to represent such behaviour by writing f(x) ∼ g(x) to indicate that f(x)/g(x) →
1 as x tends to its limit. Thus we can reformulate (2.39) as

π(x) ∼ x

log x
. (2.40)
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This statement is known as the prime number theorem. It was first proved independently
by Hadamard and de la Vallée Poussin in 1896, based on the non-vanishing of ζ(s) on
the line σ = 1 (see Chapter 3 of [14] for more details). A quantitative form of the prime
number theorem is given by

π(x) =
x

log x
+O

(
x

(log x)2

)
. (2.41)

Chebyshev was the first one who made an important contribution to proving the
prime number theorem. In 1848, he showed that

lim inf
x→∞

π(x)

x/ log x
≤ 1 ≤ lim sup

x→∞

π(x)

x/ log x
. (2.42)

However, he was unable to prove the existence of the limit (2.39).

Proof of (2.42). Let lim supπ(x)/(x/ log x) = a, and let ε > 0 be arbitrary. Then there
exists x0 such that π(x) ≤ (a+ ε)x/ log x for all x ≥ x0. We see that

∑
p≤x

1

p
=

∫ x

2−

dπ(u)

u
≤ (a+ ε)

∫ x

x0

du

u log u
+O(1) = (a+ ε) log log x+Oε(1).

By Theorem 2.16(i) we obtain a+ ε ≥ 1, and so a ≥ 1 since ε can be arbitrarily small.
Similarly, we also have lim inf π(x)/(x/ log x) ≤ 1.

In 1850, Chebyshev introduced

ϑ(x) =
∑
p≤x

log p and ψ(x) =
∑
n≤x

Λ(n).

He proved that for x ≥ 2,

Ax+O(log x) ≤ ψ(x) ≤ 6

5
Ax+O

(
(log x)2

)
,

where A = log(21/231/351/530−1/30) = 0.9212920229 . . . .

Theorem 2.22 (Chebyshev). For x ≥ 2, ψ(x) ≍ x.

Here we write f ≍ g to indicate that f and g have the same order of magnitude,
i.e., both f ≪ g and g ≪ f hold. We next consider

ψ(x)− ϑ(x) =
∑
pk≤x
k≥2

log p =
∑

2≤k≤log x/ log 2

ϑ(x1/k) ≪ x1/2 + x1/3 log x≪ x1/2. (2.43)
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Also, we have
π(x) =

∫ x

2−

dϑ(u)

log u
=
ϑ(x)

log x
+

∫ x

2−

ϑ(u)

u(log u)2
du.

The penultimate term is ψ(x)/ log x+O(x1/2/ log x) by (2.43). Since ϑ(u) ≤ ψ(u) ≪ u,
the last integral is ≪

∫ x
2−(log u)

−2 du≪ x/(log x)2. Therefore

π(x) =
ψ(x)

log x
+O

(
x

(log x)2

)
. (2.44)

The following statement can be deduced from Theorem 2.22, (2.43) and (2.44).

Corollary 2.23. For x ≥ 2, ϑ(x) ≍ x and π(x) ≍ x/ log x.

We now prove that the correct value of Legendre’s constant, the number 1.08366,
must be exactly 1. Suppose that there is a constant A such that

π(x) =
x

log x−A
+ o

(
x

(log x)2

)
. (2.45)

The equation (2.45) can be reformulated as

π(x) =
x

log x
+ (A+ o(1))

x

(log x)2
. (2.46)

Let us consider

ϑ(x) =

∫ x

2−
log u dπ(u) = π(x) log x−

∫ x

2−

π(u)

u
du.

By using (2.46), we find that the penultimate term is x + (A + o(1))x/ log x, and the
last integral is ∫ x

2−

du

log u
+ (A+ o(1))

∫ x

2−

du

(log u)2
= (1 + o(1))

x

log x
.

Thus we obtain
ψ(x) = x+ (A− 1 + o(1))

x

log x
. (2.47)

by means of (2.43). By using (2.47), we see that∫ x

2−

ψ(u)

u2
du =

∫ x

2−

du

u
+(A−1+o(1))

∫ x

2−

du

u log u
= log x+(A−1+o(1)) log log x. (2.48)

We now want to derive a formula for the leftmost integral in a different way. Consider

∑
n≤x

log n =
∑
n≤x

∑
d|n

Λ(d) =
∑
d≤x

Λ(d)
[x
d

]
= x

∑
d≤x

Λ(d)

d
+O(ψ(x)).
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Note that the first equality is obtained by (2.15). The error term is ≪ x by Theorem
2.22. The leftmost sum is x log x− x+O(log x) by using (2.22). Thus we have

∑
n≤x

Λ(n)

n
= log x+O(1). (2.49)

The sum on the left is
∫ x
2− u

−1 dψ(u) =
∫ x
2− ψ(u)u

−2 du+O(1). It follows that∫ x

2−

ψ(u)

u2
du = log x+O(1). (2.50)

By comparing (2.48) with (2.50), we conclude that A = 1, correcting Legendre’s con-
stant.

In 1792–1973, Gauss observed that the density of primes in the neighborhood of x
is approximately 1/ log x. This led him to propose that a better approximation to π(x)
is

π(x) ∼
∫ x

2

du

log u
:= li(x). (2.51)

We call the function li(x) the logarithmic integral. A sharper quantitative form of the
prime number theorem is

π(x) = li(x) +O
(
x exp

(
−C
√

log x
))

(2.52)

for some absolute constant C > 0 (see Theorem 6.9 in [10]). By integrating the integral
in (2.51) by parts N times, we yield

li(x) = x

log x

(
N∑

n=1

(n− 1)!

(log x)n−1
+O

(
1

(log x)N

))
.

This shows that the error term in (2.41) cannot be sharper than O(x(log x)−2) because
li(x) contains the term x(log x)−2.

For every integer k ≥ 1, we denote by πk(x) the number of positive integers n ≤ x

with ω(n) = k. It can be shown that

πk(x) ∼
x(log log x)k−1

(k − 1)! log x
. (2.53)

The same result also holds if ω(n) is replaced by Ω(n) (see Theorem 437 in [4]). Note
that the asymptotic relation (2.53) in the case k = 1 is exactly the same as (2.40).
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2.2.4 Primes in arithmetic progressions

The infinitude of primes in the arithmetic progression of the form qk+ a with (a, q) = 1

and k ≥ 0 was first studied by Dirichlet in 1837. He introduced the Dirichlet characters
modulo q, which are defined as the extensions of group homomorphisms χ̃ : (Z/qZ)× →
C× to all n ∈ Z by setting

χ(n) =

χ̃(n mod q) if (n, q) = 1,

0 if (n, q) > 1.

As above, we see that the multiplicative group (Z/qZ)× of reduced residue classes modulo
q has exactly φ(q) Dirichlet characters, each of which is completely multiplicative and
has period q. That is, χ(mn) = χ(m)χ(n) for all m,n and χ(n + q) = χ(n) for all n.
Also, we have the orthogonality relation

1

φ(q)

∑
χ∈ ̂(Z/qZ)×

χ(a)χ(n) =

1 if n ≡ a (mod q),

0 otherwise.
(2.54)

Here ̂(Z/qZ)× denotes the set of all Dirichlet characters modulo q.
Let χ be any Dirichlet character modulo q. The Dirichlet L-function is defined for

σ > 1 by

L(s, χ) =

∞∑
n=1

χ(n)

ns
.

Since χ is completely multiplicative, it follows from (2.6) that

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

for σ > 1.

Let χ0 denote the principal (or trivial) character, which is given by χ0(n) = 1 if (n, q) = 1

and 0 otherwise. Observe that

L(s, χ0) =

∞∑
n=1

(n,q)=1

1

ns
= ζ(s)

∏
p|q

(
1− 1

ps

)
for σ > 1.

Then, by Corollary 2.14, the function L(s, χ0) is analytic for σ > 0 except for a simple
pole at s = 1 with residue φ(q)/q. For χ ̸= χ0, we have

∣∣∣∑n≤x χ(n)
∣∣∣ ≤ φ(q) for all

x ≥ 1. Note that
∑
f(n)n−s converges for σ > 0 if the partial sums

∑
n≤x f(n) are

bounded (this can be proved easily by taking s0 = 0 in Lemma 2.8 and then letting
a → ∞ in (2.11)). Therefore L(s, χ) is analytic for σ > 0 if χ ̸= χ0. By applying
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Theorem 2.10 to f(n) = χ(n), we have

− L′(s, χ) =

∞∑
n=1

χ(n) log n

ns
for σ > 1. (2.55)

In fact, the equation (2.55) holds for σ > 0 if χ ̸= χ0.
Suppose that (a, q) = 1. The existence of infinitely many primes in the arithmetic

progression qk + a can be proved as a consequence of the asymptotic estimate

∑
n≤x

n≡a (mod q)

Λ(n)

n
=

1

φ(q)
log x+Oq(1). (2.56)

The sum on the left can be expressed as

∑
p≤x

p≡a (mod q)

log p

p
+

∑
pk≤x
k≥2

p≡a (mod q)

log p

pk
.

Note that the latter sum is ≤
∑

p log p/(p
2 − p) ≪ 1. Thus we have

∑
p≤x

p≡a (mod q)

log p

p
=

1

φ(q)
log x+Oq(1).

This implies that there are infinitely many primes p ≡ a (mod q) since log x → ∞ as
x→ ∞. To prove (2.56), we use the orthogonality relation (2.54) to obtain

∑
n≤x

n≡a (mod q)

Λ(n)

n
=

1

φ(q)

∑
n≤x

Λ(n)

n

∑
χ

χ(a)χ(n) =
1

φ(q)

∑
χ

χ(a)
∑
n≤x

χ(n)Λ(n)

n
.

The contribution of the principal character is

∑
n≤x

χ0(n)Λ(n)

n
=

∑
n≤x

(n,q)=1

Λ(n)

n
=
∑
n≤x

Λ(n)

n
−
∑
pk≤x
p|q

log p

pk
= log x+Oq(1)

by using (2.49) and noting that the last sum is ≤
∑

p|q log p/(p−1) ≪q 1. It is therefore
sufficient to show that ∑

n≤x

χ(n)Λ(n)

n
≪χ 1 if χ ̸= χ0. (2.57)
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To prove (2.57), we suppose that χ ̸= χ0 and then consider

∑
n≤x

χ(n) log n

n
= −L′(1, χ)−

∑
n>x

χ(n) log n

n
. (2.58)

Let S(x) =
∑

n≤x χ(n). The sum on the right of (2.58) is

∫ ∞

x

log u

u
dS(u) = −S(x) log x

x
−
∫ ∞

x

(1− log u)S(u)

u2
du≪χ

log x

x

by noting that S(x) ≪χ 1. By using (2.15), we have the sum on the left of (2.58) is

∑
n≤x

χ(n)

n

∑
d|n

Λ(d) =
∑
qd≤x

χ(qd)Λ(d)

qd
=
∑
d≤x

χ(d)Λ(d)

d

∑
q≤x/d

χ(q)

q
.

We express the rightmost sum as L(1, χ)−
∑

q>x/d χ(q)/q. Note that

∑
q>x/d

χ(q)

q
=

∫ ∞

x/d

dS(u)

u
= −S(x/d)

x/d
+

∫ ∞

x/d

S(u)

u2
du≪χ

d

x
.

Therefore ∑
n≤x

χ(n) log n

n
= L(1, χ)

∑
n≤x

χ(n)Λ(n)

n
+Oχ

(
ψ(x)

x

)
. (2.59)

The error term is ≪χ 1 by Theorem 2.22. Combining (2.58) and (2.59) yield

L(1, χ)
∑
n≤x

χ(n)Λ(n)

n
≪χ 1 if χ ̸= χ0. (2.60)

We now notice that the factor L(1, χ) in (2.60) can be dropped to obtain (2.57) provided
L(1, χ) ̸= 0 for χ ̸= χ0. Thus the following theorem plays an essential role in the proof
of Dirichlet’s theorem (see Theorem 4.9 in [10]).

Theorem 2.24 (Dirichlet). If χ is a non-principal Dirichlet character, then L(1, χ) ̸= 0.

Let us introduce

π(x; q, a) =
∑
p≤x

p≡a (mod q)

1 and ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n).

That is, the function π(x; q, a) counts the number of primes not exceeding x in the
arithmetic progression qk + a where k ≥ 0. The prime number theorem for arithmetic
progressions asserts that if (a, q) = 1, then

π(x; q, a) ∼ x

φ(q) log x
as x→ ∞.
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The following theorem represents the quantitative form of the prime number theorem
for arithmetic progressions (see §11.3 in [10]).

Theorem 2.25 (The Siegel–Walfisz theorem). For any A > 0 with 1 ≤ q ≤ (log x)A

and (a, q) = 1,
ψ(x; q, a) =

x

φ(q)
+OA

(
x exp

(
−C
√

log x
))

for some absolute constant C > 0.

We also have the following theorem as a consequence of Theorem 2.25.

Theorem 2.26. Under the assumption of Theorem 2.25, we have

π(x; q, a) =
li(x)
φ(q)

+OA

(
x exp

(
−C
√

log x
))

for some absolute constant C > 0.

2.2.5 Generalized Gauss sums

A generalized Gauss sum is an exponential sum of the form

Sk(a, q) =

q∑
n=1

e

(
ank

q

)
, (2.61)

where k ≥ 2, q ≥ 1 and a is an integer relatively prime to q. Gauss showed that for any
positive integer q,

q∑
n=1

e

(
n2

q

)
=

1 + i−q

1 + i−1

√
q =



(1 + i)
√
q if q ≡ 0 (mod 4),

√
q if q ≡ 1 (mod 4),

0 if q ≡ 2 (mod 4),

i
√
q if q ≡ 3 (mod 4).

This shows that S2(1, q) ≪
√
q. More generally, we have the following estimate which

holds for all positive integers k and q (see Theorem 6 in [7]).

Theorem 2.27. Let k and q be positive integers. If (a, q) = 1, then Sk(a, q) ≪ q1−1/k.

The above estimate also holds if the sum in (2.61) runs through all positive integers
n not exceeding q with (n, q) = 1. To see this, we consider

q∑
n=1

(n,q)=1

e

(
ank

q

)
=

q∑
n=1

e

(
ank

q

) ∑
d|(n,q)

µ(d) =
∑
d|q

µ(d)

q∑
n=1

n≡0 (mod d)

e

(
ank

q

)
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by using (2.10). The rightmost sum is

q∑
n=1

n≡0 (mod d)

e

(
ank

q

)
=

q/d∑
m=1

e

(
adkmk

q

)
. (2.62)

For each prime divisor p of q, let lp denote the unique integer such that plp | q but
plp+1 ∤ q, and let αp = min{k, lp}. It is easy to see that (apk, q) = pαp . Consequently,
we have

(adk, q) =
∏
p|d

pαp := Pd

for any square-free divisor d of q. If we let b = adk/Pd and q̃ = q/Pd, then (b, q̃) = 1

and the sum (2.62) becomes

(Pd/d)q̃∑
m=1

e

(
bmk

q̃

)
=

Pd

d

q̃∑
m=1

e

(
bmk

q̃

)
.

The equality above follows from the fact that the function e(θ/q) has period q. Therefore

q∑
n=1

(n,q)=1

e

(
ank

q

)
=
∑
d|q

µ(d)Pd

d
Sk(b, q̃). (2.63)

The sum on the right of (2.63) is

≪ q1−1/k
∑
d|q

µ(d)

d
(Pd)

1/k = q1−1/k
∏
p|q

(
1− p−(1−αp/k)

)
≪ q1−1/k

by Theorem 2.27. This establishes the following result.

Corollary 2.28. Let k and q be any positive integers. If (a, q) = 1, then

q∑
n=1

(n,q)=1

e

(
ank

q

)
≪ q1−1/k.

Remark. By applying the equation (2.63) to the case k = 1, we obtain the identity

cq(a) :=

q∑
n=1

(n,q)=1

e

(
an

q

)
= µ(q),

provided (a, q) = 1. The function cq(a) is known as Ramanujan’s sum.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

UNIFORM DISTRIBUTION OF ARITHMETIC MEAN
OF kTH POWER OF PRIME DIVISORS

In the previous chapter, we discussed several criteria for determining whether or not a
given sequence is uniformly distributed. One may use Weyl’s criterion (Theorem 2.2) to
obtain the uniform distribution of the sequences (ρk(n)) and (ρ̃k(n)) for any fixed k by
showing that for every integer a ̸= 0 the asymptotic size of the associated exponential
sums

∑
n≤N e(auk(n)) is o(N) as N → ∞, where uk(n) = ρk(n) or ρ̃k(n). In fact, we

shall prove the following statement, based on the same techniques as described in [2].

Theorem 3.1. Let k ≥ 2. Suppose that N is sufficiently large. Then

N∑
n=1

e(aρk(n)) ≪
|a|N

(log logN)1/k
(3.1)

holds for every integer a ̸= 0. The same estimate also holds if ρk(n) is replaced by ρ̃k(n).

Another criterion is to compute whether or not the discrepancy D(N) of a given
sequence approaches 0 as N → ∞ (see Theorem 2.5). For any positive integer k, we
denote by Dk(N) and D̃k(N) the discrepancies of the sequences (ρk(n)) and (ρ̃k(n)),
respectively. The following theorem gives a bound for the discrepancies Dk(N) and
D̃k(N).

Theorem 3.2. Let k ≥ 2. Suppose that N is sufficiently large. Then

Dk(N) ≪ log log logN log log log logN

(
√
log logN)1+1/k

. (3.2)

The same estimate also holds if Dk(N) is replaced by D̃k(N).

By dividing both sides of (3.1) by N and then letting N → ∞, or by taking N → ∞
in (3.2), we conclude that the sequences (ρk(n)) and (ρ̃k(n)) are uniformly distributed
for all k ≥ 2, and hence for all positive integers k by the previous results (1.1) and (1.2)
from [2].

To prove the preceding theorems, we require the following auxiliary lemmas.

Lemma 3.3. Let 0 < λ < 1. Suppose that x ≥ 1 is a real number, and n is a positive
integer with (1− λ)x ≤ n ≤ (1 + λ)x. Then

xn−1

(n− 1)!
≪α

1√
x
exp(x) exp

(
−(x− n)2

αx

)
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holds for any fixed real number α ≥ 1/(log 4− 1).

Proof. Let ξ = n/x. The assumption together with Stirling’s formula (2.32) give

xn−1

(n− 1)!
≪ xn

n!
=

1√
2πn

exp(n)ξ−n

(
1 +O

(
1

n

))
≪ 1√

x
exp(x) exp (−xξ log ξ) exp

(
−x
2
(1− ξ)2

)
exp

(
−x
2

(
1− ξ2

))
.

It can be shown that for any fixed real number α ≥ 1/(log 4− 1), the function

fα(ξ) =
1

2
(ξ2 − 1)−

(
1

2
− 1

α

)
(ξ − 1)2 − ξ log ξ

defined for ξ ∈ (0, 2) has a unique global maximum at ξ = 1 with fα(1) = 0. This
implies that

exp (−xξ log ξ) exp
(
−x
2
(1− ξ)2

)
exp

(
−x
2

(
1− ξ2

))
≪α exp

(
−x
α
(1− ξ)2

)
.

The proof is now complete.

Lemma 3.4. Let 0 < λ < 1 and x ≥ 2. Then there exists a constant A depending on λ

such that ∑
n≤x

n1−λ

φ(n)
= Ax1−λ +O(1).

Proof. It can be derived from (2.16) that

∑
n≤x

n1−λ

φ(n)
= x−λ

∑
n≤x

n

φ(n)
+ λ

∫ x

1−

∑
n≤u

n

φ(n)

 1

u1+λ
du.

Using Theorem 2.19, we can express the right-hand side as

αx1−λ +O

(
log x

xλ

)
+ αλ

∫ x

1−
u−λ du+O

(∫ x

1−

log u

u1+λ
du

)
,

where α = ζ(2)ζ(3)/ζ(6). The penultimate integral is x1−λ/(1 − λ) + O(1), and both
error terms are ≪ 1. Thus the sum in question is αx1−λ/(1− λ) +O(1).

For any real number α, we define σα(n) =
∑

d|n d
α, called the divisor function.

Lemma 3.5. Let 0 < λ < 1, x ≥ 3 and
√
x ≤ y ≤ x. Then

∑
x≤n≤x+y

σ1−λ(n)

φ(n)
≪ y log log x

(
√
x)1+λ

.
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Proof. Let us consider

∑
x≤n≤x+y

σ1−λ(n)

φ(n)
=

∑
x≤n≤x+y

1

φ(n)

∑
d|n

d1−λ

≤
∑

x≤n≤x+y

1

φ(n)

∑
d|n

d≤
√
2x

(
d1−λ +

(n
d

)1−λ
)

=
∑

d≤
√
2x

d1−λ
∑

x≤n≤x+y
n≡0 (mod d)

1

φ(n)
+
∑

d≤
√
2x

d−(1−λ)
∑

x≤n≤x+y
n≡0 (mod d)

n1−λ

φ(n)
.

(3.3)

Using Theorem 2.18, we have

∑
x≤n≤x+y

n≡0 (mod d)

1

φ(n)
≪

∑
x≤n≤x+y

n≡0 (mod d)

log log n

n
≪ log log x

d

∑
x/d≤q≤(x+y)/d

1

q
.

The last sum above is ≪ log(1 + y/x) ≪ y/x by means of Theorem 2.15(i). Thus the
former term in (3.3) is

≪ y log log x

x

∑
d≤

√
2x

d−λ ≪ y log log x

x
(
√
x)1−λ =

y log log x

(
√
x)1+λ

,

where the second bound is obtained by Theorem 2.15(ii). Again, by Theorem 2.18, we
yield

∑
x≤n≤x+y

n≡0 (mod d)

n1−λ

φ(n)
≪

∑
x≤n≤x+y

n≡0 (mod d)

log log n

nλ
≪ log log x

dλ

∑
x/d≤q≤(x+y)/d

q−λ.

Using Theorem 2.15(ii), we have the last sum above is

≪
(x
d

)1−λ
((

1 +
y

x

)1−λ
− 1

)
≪ y

xλ

(
1

d

)1−λ

.

Hence the latter term in (3.3) is

≪ y log log x

xλ

∑
d≤

√
2x

d−(2−λ) ≪ y log log x

xλ
(
√
x)−(1−λ) =

y log log x

(
√
x)1+λ

by virtue of Theorem 2.15(ii). The proof is now complete.

We are now in a position to prove Theorem 3.1 and Theorem 3.2.
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3.1 Proof of Theorem 3.1

We proceed analogously to the proof of Theorem 1 in [2]. Let Pn denote the largest
prime factor of n ≥ 2 and set P1 = 1. Let Q = N1/u, where

u =
2 log log logN

log log log logN
. (3.4)

We define four sets of positive integers as follows:

• E1 = {n ≤ N : Pn ≤ Q},

• E2 =
{
n ≤ N : n /∈ E1 and Pn

2 | n
}

,

• E3 = {n ≤ N : |ω(n)− log logN | > δ log logN}, where δ > 0 is a sufficiently small
absolute constant,

• E4 = {n ≤ N/ log logN}.

As we defined above, it can be easily deduced that if n is a positive integer not exceeding
N with n /∈

∪4
i=1 Ei, then the integer n can be uniquely written as n = mPn. In this

situation, we have m < N/Q and Pn ∈ Lm, where

Lm = max

{
Q,Pm,

N

m log logN

}
and Lm = (Lm, N/m].

Next, we define

• E5 =
{
n ≤ N : n /∈

∪4
i=1 Ei and Lm = Q

}
,

• E6 =
{
n ≤ N : n /∈

∪5
i=1 Ei and Lm = Pm

}
.

Let E =
∪6

i=1 Ei. It was already shown in [2] that

#E ≪ N

log logN
. (3.5)

However, we shall intentionally repeat the argument in the next subsection for the sake
of completeness.

3.1.1 The exceptional set E

To prove (3.5), it suffices to show that #Ei ≪ N/ log logN holds for each 1 ≤ i ≤ 6.
Let S(x, y) denote the set of positive integers not exceeding x all of whose primes

factors are not exceeding y. That is, S(x, y) = {n ≤ x : Pn ≤ y}. Such integers n are
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called y-smooth. Let Ψ(x, y) denote the cardinality of the set S(x, y). In 1930, Dickman
proved that for any fixed real number u ≥ 0 there exists a function ρ(u) > 0 such that

Ψ(x, x1/u) ∼ xρ(u) as x→ ∞ (3.6)

(see Theorem 7.2 in [10]). The function ρ(u) is known as the Dickman–de Bruijn rho
function. It can be shown that

ρ(u) = u−u(1+o(1)) as u→ ∞ (3.7)

(see [3] or [5] for more details). Applying (3.6) and (3.7), we obtain

#E1 = Ψ(N,N1/u) ≪ Nu−u(1+o(1)) ≪ N

log logN
,

where u is defined as (3.4). As for E2, it can be easily seen that

#E2 ≤
∑
p>Q

[
N

p2

]
≤ N

∑
p>Q

1

p2
≤ N

∑
n>Q

1

n2
≪ N

Q
≪ N

log logN
,

where we have used Theorem 2.15(iii). By using Turán’s estimate (2.38) we have

#E3 ≤ (δ log logN)−2
∑
n≤N

(ω(n)− log logN)2 ≪ N

log logN
.

It is clear from the definition that #E4 ≪ N/ log logN . To estimate #E5, we note that
N/(m log logN) ≤ Lm = Q < N/m, and hence

m ∈
[

N

Q log logN
,
N

Q

)
:= M .

Let π(Lm) denote the number of primes in the interval Lm. Since each n ∈ E5 can be
uniquely factorized as mPn for some prime Pn ∈ Lm = (Q,N/m] and some m ∈ M , we
yield

#E5 ≤
∑
m∈M

π(Lm) ≤
∑
m∈M

π

(
N

m

)
≪

∑
m∈M

N

m log(N/m)
,

where the last bound follows from Corollary 2.23. The last sum above is

≤ N

logQ

∑
m∈M

1

m
≪ N

logQ

(
log

(
N

Q

)
− log

(
N

Q log logN

))
=
N log log logN

logQ
=

2N(log log logN)2

logN log log log logN
≪ N

log logN
,
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where we have used Theorem 2.15(i). As for E6, we observe that

Pm = Lm ≥ N

m log logN
≥ Pn

log logN
>

Q

log logN
.

If we let p1 = Pm and p2 = Pn, then we see that the set E6 contains positive integers
n ≤ N composed of two distinct primes p1 and p2 such that p1 > Q/ log logN and
p1 < p2 ≤ p1 log logN . Fix p1 and p2. The number of positive integers not exceeding N
which are divisible by p1 and p2 is [N/(p1p2)] ≪ N/(p1p2). Therefore

#E6 ≪ N
∑

p1>Q/ log logN

1

p1

∑
p1<p2≤p1 log logN

1

p2
.

Using Theorem 2.16(i), we have the inner sum on the right is

log log(p1 log logN)− log log p1 +O

(
1

log p1

)
≪ log log logN

log p1
.

Thus we obtain

#E6 ≪ N log log logN
∑

p>Q/ log logN

1

p log p
≪ N log log logN

log(Q/ log logN)

by using the estimate (2.36). The last term is ≪ N log log logN/ logQ≪ N/ log logN ,
which proves (3.5).

3.1.2 The remaining n

We now define N to be the set of positive integers n ≤ N which do not belong to the
exceptional set E . The estimate (3.5) gives

N∑
n=1

e(aρk(n)) =
∑
n∈N

e(aρk(n)) +O

(
N

log logN

)
. (3.8)

Moreover, we note that each n ∈ N can be uniquely written in the form n = mPn,
where

Pn ∈ Lm =

(
N

m log logN
,
N

m

]
.

Let M be the set of all acceptable values for m. That is, the set M contains an integer
m for which m ≤ N and n = mPn for some n ∈ N . For every integer v ≥ 1, we define

Nv = {n ∈ N : ω(n) = v} and Mv = {m ∈ M : ω(m) = v} .
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Let
h = (1− δ) log logN and H = (1 + δ) log logN.

It can be seen that for h ≤ v ≤ H, there is a one-to-one correspondence between the
element n of Nv and the element Pn of Lm for some m ∈ Mv−1. Consequently, for
h ≤ v ≤ H, we obtain

#Nv =
∑

m∈Mv−1

π(Lm). (3.9)

As discussed above, we have

∑
n∈N

e(aρk(n)) =
∑

h≤v≤H

∑
n∈Nv

e(aρk(n)) =
∑

h≤v≤H

∑
m∈Mv−1

∑
Pn∈Lm

e(aρk(mPn))

=
∑

h≤v≤H

∑
m∈Mv−1

e

(
aρk(m)(v − 1)

v

) ∑
Pn∈Lm

e

(
aPn

k

v

)

≪
∑

h≤v≤H

∑
m∈Mv−1

∑
Pn∈Lm

e

(
aPn

k

v

)
. (3.10)

To estimate the innermost sum on the right of (3.10), we let b = a/(a, v) and va =

v/(a, v). Note that (b, va) = 1 and for ε > 0,

va ≤ v ≤ H ≤ 2 log logN ≪ (logQ)ε ≤
(
log

(
N

m log logN

))ε

.

Applying Theorem 2.26 together with (2.52) and noting that Pn ≡ d (mod va) implies
Pn

k ≡ dk (mod va), we deduce that for x ≥ Q,

∑
Pn≤x

Pn≡d (mod va)

e

(
bPn

k

va

)
=

π(x)

φ(va)
e

(
bdk

va

)
+O

(
x exp

(
−C
√

log x
))

for some absolute constant C > 0. Summing over d ∈ (Z/vaZ)×, we find that

∑
Pn≤x

e

(
bPn

k

va

)
=

π(x)

φ(va)

∑
1≤d≤va
(d,va)=1

e

(
bdk

va

)
+O

(
vax exp

(
−C
√

log x
))

.

Consequently, we have

∑
Pn∈Lm

e

(
bPn

k

va

)
=
π(Lm)

φ(va)

∑
1≤d≤va
(d,va)=1

e

(
bdk

va

)
+O

(
vaN

m exp
(
C
√
logQ

)) . (3.11)
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The sum on the right is ≪ (va)
1−1/k by using Corollary 2.28. Inserting (3.11) in (3.10)

and using (3.9), we find that the right-hand side of (3.10) is

≪
∑

h≤v≤H

(va)
1−1/k

φ(va)
#Nv +

N

exp
(
C
√
logQ

) ∑
h≤v≤H

v
∑
m<N

1

m
. (3.12)

The penultimate sum is ≪ (log logN)2 by Theorem 2.15(iv), and the last sum is ≪ logN

by Theorem 2.15(i). We now observe that

φ(va) =
v

(a, v)

∏
p| v

(a,v)

(
1− 1

p

)
≥ v

(a, v)

∏
p|v

(
1− 1

p

)
=

φ(v)

(a, v)
≥ φ(v)

|a|
. (3.13)

Thus the former term in (3.12) is ≤ |a|
∑

h≤v≤H

(
v1−1/k/φ(v)

)
#Nv, and the latter term

in (3.12) is ≪ N logN(log logN)2 exp
(
−C

√
logQ

)
≪ N/ log logN . Using the trivial

bound #Nv ≤ πv(N) together with the asymptotic estimate (2.53), we obtain

∑
n∈N

e(aρk(n)) ≪
|a|N
logN

∑
h≤v≤H

v1−1/k

φ(v)

(log logN)v−1

(v − 1)!
+

N

log logN
. (3.14)

By applying Lemma 3.3, we have

(log logN)v−1

(v − 1)!
≪ logN√

log logN
exp

(
−(v − log logN)2

3 log logN

)
.

For every integer j, we let Ij be the closed interval defined by

Ij =
[
log logN + (j − 1/2)

√
log logN, log logN + (j + 1/2)

√
log logN

]
.

We find that each integer v in the interval [h,H] is contained in the interval Ij for some
integer j with |j| ≤ δ

√
log logN . Hence the sum on the right of (3.14) is

≪ logN√
log logN

∑
|j|≤δ

√
log logN

exp

(
−j

2

3

) ∑
v∈Ij

v1−1/k

φ(v)
.

The inner sum above is

≪ (log logN)1−1/k

((
1 +

1√
log logN

)1−1/k

− 1

)
≪ (log logN)1/2−1/k

by using Lemma 3.4. Note that
∑∞

j=−∞ exp(−j2/3) ≪ 1. Thus we have

∑
h≤v≤H

v1−1/k

φ(v)

(log logN)v−1

(v − 1)!
≪ logN

(log logN)1/k
. (3.15)
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Combining together the estimates (3.8), (3.14) and (3.15), we obtain (3.1). If we replace
ρk(n) with ρ̃k(n), then the function ω(n) in the proof will be replaced by Ω(n) and this
will not affect the proof because the estimates (2.38) and (2.53) also hold for Ω(n).

3.2 Proof of Theorem 3.2

By the Erdős–Turán inequality, we find that for any positive integer M ,

Dk(N) ≪ 1

M
+

1

N

M∑
a=1

1

a

∣∣∣∣∣
N∑

n=1

e(aρk(n))

∣∣∣∣∣ . (3.16)

Note that the replacement of Dk(N) with D̃k(N) does not affect the proof since the
estimate (3.1) also holds for ρ̃k(n). The latter term on the right of (3.16) is

≪ 1

N

M∑
a=1

1

a

∑
h≤v≤H

va
1−1/k

φ(va)
#Nv +

logM

log logN
(3.17)

by (3.12) and Theorem 2.15(i). Recalling that φ(va) ≥ φ(v)/(a, v) from (3.13) and then
interchanging the order of summation, we see that the former term of (3.17) is

≤ 1

N

∑
h≤v≤H

v1−1/k

φ(v)
#Nv

M∑
a=1

1

a
(a, v)1/k. (3.18)

The inner sum in (3.18) is

∑
d|v

d1/k
∑

1≤a≤M
(a,v)=d

1

a
≤
∑
d|v

d1/k
∑

1≤a≤M
a≡0 (mod d)

1

a
=
∑
d|v

(
1

d

)1−1/k ∑
1≤b≤M/d

1

b
.

The last sum is ≪ logM by Theorem 2.15(i). Thus the right-hand side of (3.18) is

≪ logM

N

∑
h≤v≤H

σ1−1/k(v)

φ(v)
#Nv. (3.19)

Arguing as in the proof of Theorem 3.1 and then applying Lemma 3.5, we find that the
sum in (3.19) is

≪ N√
log logN

∑
|j|≤δ

√
log logN

exp

(
−j

2

3

) ∑
v∈Ij

σ1−1/k(v)

φ(v)
≪ N√

log logN
· log log log logN
(
√
log logN)1/k

.

(3.20)
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Combining together the estimates (3.16)–(3.20), we obtain

Dk(N) ≪ 1

M
+

logM log log log logN

(
√
log logN)1+1/k

+
logM

log logN
.

The assertion follows by choosing M such that M − 1 <
(√

log logN
)1+1/k ≤M .
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