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CHAPTER 1
INTRODUCTION

There are many matrices in graph theory which represent some structures of
graphs. Two of them, which are widely studied, are called Laplacian matrix

L = (l;;) which is defined by

d.

:  Of i =F
L= AV if vv; € B(G),

0 otherwise,

and normalized Laplacian matriz £ = (l;;) which is defined by

1 if1 =7,
! L if E(G
== T if v;v; € B(G),
0 otherwise.

Some properties of graphs can be shown by eigenvalues of these matrices even
though we know only their approximations. This is a powerful tool for applying in
quantum physics, chemical quantum, and others. To study in this topic, spectral
graph theory [4] introduced by F.R.K. Chung is recommended.

Every graph can be viewed as a 1-dimensional structure of the object called
a simplicial complex. For a given simplicial complex, the Hodge Laplacian, also

known as the Laplace-de Rham operator, is defined by

Ay = 01101 + 050k = O 10p4 1 + 0,0, = 07, 1051 + 0x0p,



where 0,, : C,, — C,,_; is a boundary map and J,, is its dual map. This operator
was first introduced to study some materials on manifolds, for more details, we
refer the readers to study the topic Hodge theory. Its matrix representation whose
eigenvalues can indicate some properties of simplicial complexes is defined for their
k-dimensional structure namely Hodge k-Laplacian matriz. This matrix is defined
by

Ly = Bk+1BkT+1 + B?ka,

where By, is a matrix representation of a boundary map 9, : C}, — C),_;. However,
the Hodge Laplacian operator or Hodge Laplacian matrix is quite difficult to study
especially for who is not familiar with tools in algebraic topology and differentiable
manifolds.

In 2015, L.H. Lim [11] simplified the definition of Hodge k-Laplacian matrix to
be under a condition in linear algebra. Let A be an m X n real matrix and B an

n X p real matrix such that AB = 0. We call the matrix
A*A+ BB*

a Hodge Laplacian matriz. As a composition of boundary maps is zero, Hodge
k-Laplacian matrix can be viewed simply as a Hodge Laplacian matrix. Being a
Hodge Laplacian matrix, this matrix can be applied in many fields, for example,
to study random walks, ranking theory, data science and others.

If we consider a simplicial complex on its O-dimensional structure and 1-dimensional
structure (i.e. all of its points and all of its edges), then a Hodge 0-Laplacian matrix
and a Laplacian matrix are coincide. In other words, a Hodge k-Laplacian matrix
on simplicial complexes is a generalization of a Laplacian matrix on graphs. This
fact leads us to define a normalized Hodge k-Laplacian matrix on simplicial com-
plexes which is a generalization of a normalized Laplacian matrix on graphs. We
also need a condition of being a Hodge Laplacian matrix to obtain some properties.

In 1993, F. Chung [5] defined a normalized Laplacian as 0§ + pdd, where p
is the density of a given simplicial complex. In 2010, C. Taszus [19] defined a



—)

Figure 1.1: 1-dimensional structure of a simplicial complex can be considered as a
graph.

normalized Laplacian matrix as D™'/2L, D7%/2 where D is a diagonal matrix of
L;. In 2011, D. Horak [9] defined the normalized combinatorial Laplace operator
in order to force an upper bound of the maximal eigenvalue of the operator to
be a constant. In 2018, M. Schaub and others [16] defined a normalized Hodge
1-Laplacian to study random walks on edges. However, matrix representations of
these operators and the matrices defined above are not Hodge Laplacian matrices.

In Chapter 2, we state some preliminaries in graph theory, linear algebra, al-
gebraic topology and Hodge theory. We start Chapter 3 with analyzing Hodge
k-Laplacian matrix on a simplicial complex and study the relation between its
eigenvalues and homology on the simplicial complex. We give a proof of a well-
known fact that the smallest eigenvalue of L, can indicate whether the kth homol-
ogy and the kth cohomology on a given simplicial complex are trivial. In Chapter
4, we define a normalized Hodge k-Laplacian matrix on a simplicial complex for
any non-negative integer k which is a Hodge Laplacian matrix. Using some mate-
rial in linear algebra and this fact, we obtain some properties of the matrix that we
defined. We demonstrate eigenvalues of this matrix for some special cases of sim-
plicial complexes. We obtain that the smallest eigenvalue of £, can also indicate
whether the £th homology and the kth cohomology on a given simplicial complex
are trivial. Moreover, instead of finding eigenvalues of simplicial complexes, we
study a method to find eigenvalues of the matrix by considering the simplicial
complex as a wedge sum of simplices. Finally, in Chapter 5, we apply our matrix

to be a transtion matrix on random walks for a simplicial complex.



CHAPTER II
PRELIMINARIES

In this chapter, we state some basic knowledge in linear algebra, graph theory,

Hodge theory and algebraic topology which are needed in the next three chapters.

2.1 Linear Algebra

For this section, we state some basic tools in linear algebra. For more details, we

recommend [17].

Definition 2.1.1. Let T': V' — V be a linear operator on a vector space V over a
field F. A scalar A € [ is called eigenvalue for T if there is a non-zero v € V such
that T'(v) = Av. A non-zero vector v such that T'(v) = v is called an eigenvector

corresponding to the eigenvalue A. For each A € [, define

Vi={veV|T() =M} =Ker(T — \y).

If A is not an eigenvalue of 7', then V, = {0}; otherwise, we call V, the eigenspace
corresponding to the eigenvalue A\. Any non-zero vector in V, is an eigenvector

corresponding to .

Remark that we can define an eigenvalue, an eigenvector and an eigenspace
of matrix in analogous way, i.e., for any matrix A € M, (F), a scalar A € [F is
called eigenvalue for A if there is a non-zero v € F"™ such that Av = \v. A
non-zero vector v such that Av = Av is called an eigenvector corresponding to

the eigenvalue A. For each A € [, define

Vy={vel"| Av = \v}.



If A is not an eigenvalue of A, then V, = {0}; otherwise, we call V) the eigenspace
corresponding to the eigenvalue A\. Any non-zero vector in V) is an eigenvector
corresponding to A.

Let A be an n x n matrix in M, (R) and V a vector space of dimensional 7.
Define L, : V' — V to be an operator such that L ,(v) = Av. It is easy to check
that L 4 is a linear operator and an eigenvalue (eigenvector, eigenspace) of a matrix
A is an eigenvalue (eigenvector, eigenspace) of L. Thus, any results for a linear
operator can be transferred analogously to results for a matrix as well. We next
state the results in term of a linear operator and let readers keep in mind that
these results hold for any matrix in M, (C).

In this work, for any z,y € C”, the inner product of x and y is defined by

WIAERY et

=1

Moreover, for each x € C", we write
|zl = v/ (z, z).

Definition 2.1.2. Let V be a vector space.
(i) We say that u,v € V' are orthogonal if (u,v) = 0 and write u L v.

(ii) If x € V is orthogonal to every element of a subset W of V', then we say that
x is orthogonal to W and write z 1L W.

(iii) if U, W are subsets of V and u L w for all w € U and all w € W, then we
say that U and W are orthogonal and write U L W.

iv) The set of all € V orthogonal to a set W is denoted by W= and called the
(iv) g y

orthogonal complement of W:

Wt={zeV|x LW}



Proposition 2.1.1. Let T be a linear operation on C". Then there is a unique

linear operation T on V' satisfying
(Tz,y) = (x, T*y) for all x,y € C™.

Definition 2.1.3. The linear operation T™ satisfying Proposition is called
the adjoint of T
Theorem 2.1.2. Let T', S be a linear operator on V. Then
(i) T =T;
(i) (T +S) =T+ 5",
(iii) (TS)* = S*T*;
(iv) If T is invertible, then T* is also invertible and (T*)~t = (T—1)*.

Proof. Let T, S be linear operators on V and x,y € V. Then
(,T"y) = (T"z,y) = (z,Ty).
By Proposition , T* =T. Consider
(2, (T+5)y) = (T+9)z,y) = (Tx,y)+(Sz,y) = (,T"y)+{z, §"y) = (z, (T"+5")y).
This implies (T'+ S)* = T* + S*. Since
(z,(TS)y) = (T'Sx,y) = (Sz, T"y) = (x,5"T"y),

(TS)* = S*T™*. Suppose that T is invertible. Then by (iii) T*(T~1)* = (T1T)* =
I*=1Tand (T7)*T* = (TTY)* = I* = I. Therefore (T*)™! = (T~1)*. O

Definition 2.1.4. Let T be a linear operation on C™. Then T is said to be
self-adjoint if 7% =T



Recall that L 4 is a linear operator on C™ such that L 4(z) = Az, where x € C™.

Since
(Law).y) = (Az,y) = (A2)"5 = 2" ATG = (2, 4 ),
we get
(Lg)" =Ly,
where A* =4 .

Definition 2.1.5. Let A € M, (C). Then A is said to be self-adjoint if A* =

—T
A = A. In particular, any real symmetric matrix is self-adjoint.

Proposition 2.1.3. Let A € M, (C) be a self-adjoint matriz. Then
(i) Any eigenvalue of A is real.

(i) If v € C™ is an eigenvector of A corresponding to an eigenvalue A, then

v € C" is an eigenvector of A* corresponding to an eigenvalue \.
(iii) The eigenspaces associated with distinct eigenvalues are orthogonal.

Proof. To prove the first statement, let A be an eigenvalue of A and v be an

eigenvector corresponding to A\. Then
Mov,v) = (A, v) = (Av,v) = (v, A*v) = (v, Av) = (v, \v) = (v, V).

Since v # 0, this shows that A = X that is A is a real number. To shows the second

statement, we first note that for any self-adjoint matrix B € C™ and = € C",
|Bo|? = (Bx, Bx) = (B'z, B'a) = | B*al?
which implies that |Bz| = || B*z|. Since

(A=) = A" —\[* = A — )\,



A — A\ is self-adjoint. Then by the note,

(4" = AT)o] = (A — ATy = (A — A)o] =0.

Therefore, v is an eigenvector corresponding to eigenvalue A. For the last state-
ment, let A and p be two distinct eigenvalues of A. Note that A\ and u are real
number by (i). Let u and v be eigenvectors corresponding to A and pu, respectively.

Then by (ii), A*v = pv and hence

Mu, v) = (Au,v) = (Au,v) = (u, A*v) = (u, pv) = @{u,v) = pulu,v).

Since A # p, we have (u,v) =0 that is u L v. O

We now introduce an efficient tool for studying an eigenvalue problem called

Rayleigh’s quotient. To study more in this topic, [12] is recommended.

Definition 2.1.6. Let A be an n X n real symmetric matrix. The function

Rayleigh’s quotient R is defined by

T
R(A z) = (x, Ax) _ Az R

(x, ) i

for any x € R™ — {0}.

Lemma 2.1.4. Let A be an n X n real symmetric matriz and X\, < -+ < Ay < Ay

be eigenvalues of A. Then min R(A,x) = A,,.
xzeR”—{0}

Proof. We first note that

min R(A,z) = ||rrhin R(A, z).
x x|=1
Since A is a symmetric matrix, A = PTDP for some orthogonal matrix P and a
diagonal matrix D. Note that |PTz|| = |z|. So, for any x € R™ — {0} such that
|zl = 1,
R(A,x) = 2T Az = (Pz)T D(Px).



Let y = PTz, we have
R(A,y) = R(A, PTx) = (PPT2)TD(PPTz) = 2T Dz = M\ja? + - + )\, 22.

Then, by choosing z = (0,0,...,0,1), we get min R(A,z) = \,. ]

lzl=1

Let T': V' — W. Define
Ker(T)={veV |Tv=0} and Im(T) ={w e W | Jv e V,Tv = w}.

Similarly, for a matrix A € M,,,,,,(C). Define

Ker(A) ={ve C™| Av =0} and Im(A4) = {w € C" | Fv € C™, Av = w}.
Note that Ker(A) and Im(A) that we defined are exactly Ker(L ,) and Im(L ,),
respectively, where L 4 (v) = Av for any v € C".

Proposition 2.1.5. 11/ Let A € M,,,,,(R). Then the followings hold;
(i) Ker(A*A) = Ker(A),
(i) Ker(4°) = Im(4)",
(iii) ITm(A*) = Ker(A)*.
(iv) R" = Ker(A) & Im(A4*)

Proof. (i) It is clear that Ker(A) C Ker(A*A). Let x € R™ such that A*Ax = 0.
Then,
|Az|? = (Az, Az) = (z, A*Az) =0

which implies that Az = 0. Then x € Ker(A). (ii) Let = € Ker(A*). Then

0= (A"z,y) = (z, Ay)
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for any y € R™ that is z € Im(A)*. Let y € Im(A)*. Then,

0= (y, Az) = (A"y, 2)

for any 2z € R®. Then A*y = 0 that is y € Ker(A4*). (iii) By (i), Im(4*)* =
Ker(A**) = Ker(A) and then Im(A4*) = Ker(A)*. (iv) Consider R® = Ker(4) &
Ker(A)*+ = Ker(A) @ Im(A*) by (iii). O

Definition 2.1.7. Let A and B be square matrices. We say that A is similar to
B if there is an invertible matrix P such that B = PAP~ .

Proposition 2.1.6. Let A and B be square matrices such that A is similar to B.

Then all eigenvalues of A and B with their multiplicities are equal.

Proof. Suppose that A is similar to B i.e. there exists an invertible matrix P such
that B = PAP~!. Let v be an eigenvector of B corresponding to eigenvalue .
Then, \v = Bv = PAP 'v and hence A\(P~'v) = A(P~1v). This shows that
P~1y is an eigenvector of A corresponding to eigenvalue A. Since ) is an arbitrary
eigenvalue of B, every eigenvalue of B is an eigenvalue of A. Similarly, we can

show that every eigenvalue of A is an eigenvalue of B. [

Theorem 2.1.7. (Primary Decomposition) Let T : R™ — R™ be a linear operator.

Assume that the minimal polynomial my(x) can be written as
mp(x) = (2= A)™ (2= Ap)™,
where Ay, ..., A\, are distinct element in F. Define
V. =Ker(T'—\,1)™, i=1,... k.
Then each V; is a nonzero, T-invariant subspace of R™ and

RP=V, &8V,
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Lemma 2.1.8. Let T :V - W, S: W — U and R : U — V be bijective linear

maps on finite dimensional spaces. Then
Ker(ST) = Ker(T) = Ker(TR).
Proof. This follows from the fact that T, S and R are injective. O

Anxn 0
P =
( 0] Bmxm)

be a block matrix, where O is the zero matrix. Then X is an eigenvalue of P if and

Lemma 2.1.9. Let

only if X is an eigenvalue of A or B.

Proof. Suppose that A be an eigenvalues of A or B. Then
0 =det(A — AI)det(B — A) = det(P — \I). (2.1)

This shows that A is an eigenvalue of P. Conversely, suppose that A be an eigen-
value of P. Then by (@), det(A—AI) = 0 or det(B— AI) = 0 which implies that

A is an eigenvalue of A or B. ]

2.2 Graph Theory

In this section, we briefly state some basic definitions in graph theory, see [21] for
more details.

Let G = (V, E) be a graph of order n with the vertex set V(G) = {v, v, ..., v,, }
and the edge set E(G). We simply write V and E instead of V(G) and E(G) if G
is clear from the context. Let v; € V(G). We said that v; is adjacent to v, if there
is an edge v;v; between them. We write v; ~ v, to denote that v, is adjacent to v;
and define the degree of v;, denoted by degv,, to be the number of vertices which

are adjacent to v;. The graph without loops and multiple edges between any pairs

of vertices is called a simple graph. A graph which contains no edge is called
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the trivial graph, otherwise it will be called a nontrivial graph. A vertex of
degree 0 is referred as an isolated vertex. A directed graph is a pair (V, F) of
disjoint sets together with two maps I : E — V and T : E — V assigning to every
edge e an initial vertex I(e) and a terminated vertex T'(e), respectively. A graph
which is not a directed graph is called undirected graph. A graph together with
a function mapping each edge to a real number is called a weighted graph.

There are many matrices in graph theory which represent some structures of
graphs. Moreover, some properties of graph can be shown by eigenvalues of these
matrices. To study in this topic, spectral graph theory [4] which is introduced by
F. Chung, is recommended.

We first state definition of a simple matrix called adjacency matrix and then
use it to defines the others.

Let G be a simple undirected graph of order n with a vertex set V.= {v,, vq, ..., v, }

and let d, be the degree of vertex v, for all i € {1,2,...,n}.

Definition 2.2.1. The adjacency matrix A = A(G) = (a;;),,xp, of G is defined
by

170 v, ey

0 otherwise.

Definition 2.2.2. A degree matrix D = D(G) = (d;;),,x,, 18 a diagonal matrix

whose entries are of vertex degrees of graph G, i.e., d;; = d; and d;; = 0 if ¢ # j.

Definition 2.2.3. The Laplacian matrix L = L(G) = (I of G is defined

7 ')n><n
J

by L = D — A which can be written as

d.

, ifi=j,
;=9 -1 if vv; € E(G),

0 otherwise.

Definition 2.2.4. The normalized Laplacian matrix £ = £(G) = (I};),,x,, of
1
G is defined by £ = D" *LD~% where (D" 2),;, = NG if d; # 0 and 0 otherwise.
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More precisely, £ can be written as

1 if i =7,
! 1 if E(G
;=14 — P if v;v; € B(G),
0 otherwise.

Definition 2.2.5. The random walk normalized Laplacian matrix £"™ =

1
LT(G) = (I7) p of G is defined by £™ = DL where (D71);; = 7 if d; #£0

(2

nxn

and 0 otherwise. More precisely, £ can be written as

1 if i = j and degv, # 0,
I = < _degvi if i #+ j and Vv € E(G),
0 otherwise.

\

In this work, we consider only simple nontrivial undirected graphs. Then an
adjacency matrix, a Laplacian matrix and a normalized Laplacian matrix are then
real symmetric matrices and hence self-adjoint matrices. Therefore all eigenvalues
of A(G), L(G) and £(G) are real numbers for any graph G throughout this work.

The Laplacian matrix (or Kirchhoff matrix) is a discrete version of of the Lapla-
cian operator in multivariable calculus. For a given graph G, the second smallest
eigenvalue of the Laplacian matrix is known as algebraic connectivity of the graph.
This eigenvalue can indicate whether the graph is connected. In fact, multiplicity
of zero as an eigenvalue of Laplacian matrix is the number of connected compo-

nents of graph.

Theorem 2.2.1. Let G be a graph. The multiplicity of 0 as an eigenvalue of L(G)

is the number of connected components of graph.

Proof. Note that for any square matrix A, the multiplicity of 0 as an eigenvalue
of A is equal to dim(Ker(A)) by Theorem . We first consider a case that G

is connected. Let G be a connected graph with a vertex set {vy,vy,...,v,}. Let x
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be a nonzero vector such that L(z) = 0. Then

0= (z,Lz) = (z, Dz — Az) = Z —2z,7; + Zdle = Z (z; —x;)%

U~ 5,1<] V;~5,1<]

Since G is connected, this shows that x; = x5, = --- = x,,. Therefore, the dimension

of Ker(L) = 0 that is the multiplicity of eigenvalue 0 is 1.

Next, assume that a graph G has connected components G, G5, ..., G,,. Then,

we can reindex vertices in G and obtain that

where O denotes the zero matrix. Then
Ker(L(G)) = Ker(L(G,)) ® Ker(L(G,)) & -+ & Ker(L(G,,)).
Since each G is connected,
dim Ker(L(G)) = i dim Ker(L(G;)) = m. O]
i=1

Corollary 2.2.2. Let G be a graph. The multiplicity of 0 as an eigenvalue of

L(Q) is the number of connected components of graph.

Proof. Let G be a graph. Assume that a G has connected components G, G, ..., G,,.
Note that £ = D~Y2LD~'/2. For each connected component G; of G, D~Y/2(G,)
is an invertible matrix. Then by Proposition , Ker(L(G;)) = Ker(£(G,)) for
each i. Therefore, dim Ker(L(G,)) = dim Ker(£(G;)). Similar to the proof of
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Theorem .2.1, we can obtain that
Ker(£(G)) = Ker(£(G)) ® Ker(£(Gy)) @ - @ Ker(£(G,,)).
Then
dim Ker(£(G)) = idim Ker(£(G,)) = idim Ker(L(G,)) =m. O
i=1 =1

Definition 2.2.6. A simple graph in which each pair of distinct vertices are ad-
jacent is a complete graph. We denote the complete graph on n vertices by

K

n

Figure 2.1: K,

Proposition 2.2.3. Let K, be a complete graph of order n. Then eigenvalues of
n

L(K,) are 0 (with multiplicities 1) and (with multiplicities n — 1).

n—1

Proof. Let n be a positive integer. Then the normalized Laplacian matrix of a

complete graph K, canbe written as

] 1 1 1
1 nl—l nTl nTl
n—1 n—1 n—1
1 1 1 1
LK, )= — _ 1 . = — —nl_ +J |,
1 1 1 ]

where I, is the n X n identity matrix and J,, is the n x n all-ones matrix. Since K,
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is connected, by Corollary , 0 is an eigenvalue of £(K,,) with multiplicities

1. Note that (1,1,...,1) is an eigenvector corresponding to eigenvalue 0. Let
A be a nonzero eigenvalue of £(K,). Let v be an eigenvector corresponding to
eigenvalue X. Then by Proposition , v is orthogonal to (1,1, ..., 1). Therefore,
L(K,)v= —%[—n[n-l—(]n]v - T This shows that — . is an eigenvalue

—1 n— n—
of £(K,,) with multiplicities n — 1. O

2.3 Algebraic Topology

In this section, we briefly introduce some materials in algebraic topology. As they
are quite abstract, we recommend [[7] and [§] for the readers who are not familiar

with these objects.

2.3.1 Simplicial Complexes

Definition 2.3.1. The smallest convex set in Euclidean space R™ containing n+1
points vy, vy, ...,v,, € V such that v; — vy, ...,v,, — vy are linearly independent

is called n-simplex denoted by [vy,v,...v,] and n is called the dimension of

A subset of [vg,vq,...v,] of cardinality k is called a (k — 1)-face

[Vgs Vs ee V)

of [vy,vq,...v,] and the union of all (n — 1)-faces of [vy,vy,...v,] is called the

n n

boundary of [vy,vy,...v,]. Note that for a O-simplex we define (—1)-face to be

the empty set. See Figure @ for examples.

Definition 2.3.2. A simplicial complex is a finite collection X of simplices such

that
o Any face of a simplex from X is also in X.
o The intersection of two simplices is a face of both simplices.

A dimension of a simplicial complex is defined to be the highest dimension
of simplices in X. If a simplicial complex X has dimension k, we can call X

a simplicial k-complex to specify the dimension of X. We also let a subset
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X* C X be a set containing all k-simplices in X. Figure @ is an example of
simplicial complexes but Figure @ is not a simplicial complex.

For example, the set of vertices V can be viewed as a set of 0-simplices X° and
the set of edges E can be view as a set of 1-simplices X!. In this work, all simplicial
complexes that we consider are supposed to be finite i.e. containing finite vertices.

In order to do a computation, we need to define an orientation of edges. For an
edge [v;,v;] € E, we simply choose the reference orientation of [v;,v,] according
to increasing subscripts. For a higher dimensional simplices, the orientations are
defined base on the orientation of their edges.

In particular, an orientation of k-simplex S* (k > 0) is an equivalence class
of orderings of its vertices, where two orderings are equivalent if they differ by an
even permutation. For a convenience, we denote each k-simplex with [vi()’ ,vik]

where 7, <4 < - <y,

V1o
Vs Us
0/ v v
v, ” A 9 7
2 Vy Vg
Vg

[v1] [v2, vs5] [V4, Vs, V6] [v7,vg, Vg, V10]

Figure 2.2: A O-simplex, a 1-simplex, a 2-simplex and a 3-simplex.

v ve v v
’ 7 9
Uy
VU3 Vs Vg
V2

Figure 2.3: A simplicial 3-complex.
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\.

Figure 2.4: This object is not a simplicial complex.

Definition 2.3.3. If 0,7 € X* are both faces of the same (k + 1)-simplex, we
said that they are upper adjacent, denoted by o ~, 7. If o,7 € X* both have

a common face, we said that they are lower adjacent, denoted by o ~; 7.

Example 2.3.1. Consider a simplicial complex in Figure @ We obtain that

o [V, Vq,03] ~, [Vy,v3,0,] as [v1, 0y, vs] and [vy, v4, v,] are both faces of [vy, vy, V5, v,];

o [vs,v7] ~, [v7,0g] as [vs, v;] and [v7, vg] are both faces of [vs, v,, vg];
o [v;] ~, [vg] as [v7] and [vg] are both faces of [vy, vg];
o [v1,v4] ~; [v3,v,4] as [vy,v,] and [vg,v,] have a common face [v,];

o [vy,Vq,03] ~p [U1,V3,04] aS [V, 04, v5] and [vy,vs,v,] have a common face
[vy, 3]
Definition 2.3.4. Let X be a simplicial complex and k£ be a nonnegative inte-
ger. Let C,(X) (or simply C}) be the finite-dimensional vector space with real
coefficient, whose basis elements are the oriented simplices s¥ € X*. An element
¢;, € C}, is called a k-chain. More precise, ¢;, = ZZ ;sk, where o; € R.

By the above definition, we can represent ¢, = ZZ ;s € Oy with a vector

c = (al,...,ank)T, where n, = |X*|. Thus, C} is isomorphic to R™, so we

determine a chain in C}, as a vector in R”* through this work. Moreover, a change of
the orientation of the basis element s* makes a change in the sign of the coefficient

;. For a further works, we equip each C}, with the standard /2 inner product

<€, Cy >= c?cQ.
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This leads that each €}, has the structure of finite-dimensional Hilbert space.

Definition 2.3.5. Let X be a simplicial complex and k£ be a nonnegative integer.
The dual space of C(X), the set of linear map between C)(X) and R, is called a
space of cochains denoted by C*(X) (or simply C¥) and elements in C* are called

k-cochain.

Remark that we can view a chain C), as a free abelian group whose basis are
elements in X* and a cochain C* as a group of homomorphisms from C}, to R.

Since we consider only finite simplicial complexes, C}. is finite dimensional for

each k. We have
dim(C*) = dim(£(C}, R)) = dim(C},) x dim(R) = dim(C},) x 1 = dim(C},).

Hence, C* is isomorphic to O}, for each k. Similarly to C), we can determine
elements C* as vectors in R™, where n;, = |X*|. We use this fact to work on R™*

instead of C* through this work.

2.3.2 Boundary and Coboundary Maps

For each k£ > 0, we define a map 0, : X;, — X;_; by

k
81«([7}077}17 7vk]) 5= Z(_l)J[UOavb 7Uj—17vj+1; 7Uk]-

It is obvious that this map is a linear map for each k. Hence, we can attend this

map linearly to each C,,.

Definition 2.3.6. For each k > 0, a map 0, : C;,, = C),_; defined on their basis

elements by
k .
8k([UO7vl7 7vk]) = Z(_1>j[1)07 Upy-ee 7Uj—1avj+17 7Uk]

J=0

is called a boundary map.
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We sometimes write 0 or 0, instead of 0y, if its domain is clear from the context
or the dimension of domain does not matter. Moreover, for a (k — 1)-simplex
0 = [Vg, Vs, Vj1,Vj41, - V] Which is a face of k-simplex & = [vg, vy, ..., v;],
we denote the sign of o with respect to 9 with sgn(c,d5) = (—1)7. According to
Definition P.3.1), we remark that we also use 97 to denote the set of all (k—1)-faces

of 7.

9, O
Proposition 2.3.1. [§/ The composition C,, — C,,_; BN C,,_o is zero for any
n > 2.
Proof. Let 0 = [vy,vq, ...,v,] € X™. Then
n -
8n(0> = Z(—I)Z[UO, CAERSTIPRCA N PRC/NS PRIS Un]

=1

and

<_1>Z[UO7 Ul’ ceeey UZ—I’ UZ-‘rl’ ceey Un])

= E 1) {00, oy U 1504115 oo s V15 Uiy 15 e > Up]
7<1
1
+E )~ [V0s v 5 Vi1 Vgt 15 -+ > Vj—15 Vjp 15 o0 Up)-
J>t

By switching indexes i and j, the second sum is the negative of the first. Hence

0,,_10,(c) = 0 as desired. O
With this definition, we now have a sequence of linear maps

8n+1 an 81 80
= C—C,—C, = —=C —Cy—0

which is called a chain complex together with the property 0,,0,, ., = 0 or simply

00 = 0. In other words, we could say that a boundary of boundary is zero.

Note that we extended the sequence by a 0 at the right end with 9, = 0.
Moreover, if we replace each chain group C), with its dual cochain group C* and

replace each boundary map 9,, : C,, — C,,_; by its dual §,, = 9}, : C"1 — C",
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we then obtain

6n+1 671 61 60
e O e O — O = CL — Cy 0.

Definition 2.3.7. The map §,, : C"~! — C™ defined above is called a cobound-

ary map and the sequence is called a cochain complex.

We sometimes write J or J, instead of J,. By Proposition , we directly

obtain that dd = 0 that is a coboundary of coboundary is zero.

2.3.3 Homology and Cohomology

Since 0,04, = 0 and 6;,,,6,, = 0, we have Ker(9,) C Im(9,,) and Ker(d,,,) C
Im(d;,). We now define two groups which are our main points in this work using

these properties as follows:

Definition 2.3.8. Let X be a simplicial complex and £ be a nonnegative integer.

Elements in Ker(9) and Im(9) are called cycles and boundaries, respectively.
: _ Ker(9,) o,

A kth homology of X is defined by Hp(X) = k /Im(akﬂ)' Similarly,

elements in Ker(d) and Im(d) are called cocycles and coboundaries, respectively.

A kth cohomology of X is defined by H*(X) = Ker<5k+1)/1m(5k),

Note that some other books may use the notations H,(X,F) and H*(X,[F)
instead of H,(X) and H*(X) to emphasize that they are working on a field F as
the coefficients of chains and cochains. However, we neglect this point and remind
the readers that we are working on R as we define our chains and cochains at the

beginning of this section.

Remark 1. Since the space of k-chain is defined on real number and simplicial

complexes that we focus on are finite, we have
H,(X) = Hom(H, (X), ) = H*(X),

for any simplicial complex X and for all k. In fact, for general, H,(X) = H*(X)
if X is finite.
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2.3.4 Matrix Representations

Let G be a graph and X* be a set of k-simplices on G. Recall that for each k, C},
and C* are isomorphic to R™, where n, = |X*|. Since 0 and § are linear maps,
we can represent them by matrix representations with an appropriate basis. Let
By, be a matrix representation of 9. We automatically obtain that B} is a matrix
representation for 95 = 0. Note that B, = 0 since 9, is set to be a zero map.

There is a well-known fact that the Laplacian matrix L can be written as
L = B,BT
and hence the normalized Laplacian matrix can be written as

£ =DY2LD Y2 = D-1/2B, BT D-1/2,

1

NG

—2hE\

where D~'/2 is a diagonal matrix and (d;;) if d; # 0 and 0 otherwise.

Recall that for a simplicial complex X,
_ Ker(0
Hy( %) =B g, )

and
HMX) = Ker(5k+1)/1m<5 )
k

where 0, and J,, are a boundary map and a coboundary map, respectively.
Remark that, from now, we consider elements in C}, as vector in RX* and a

matrix By as amap Lp : RIX*I — RIX™' defined by
LBk (U) — Bkv
By Proposition , for each k,

B.B,1 =0and Bi, B =0. (2.2)



Then, we can write H,(X) and H*(X) as
k — T
Hk(X) — Ker(Bk)/Im(Bk+1> and H (X) = I(eI‘(B]H_l)/Irn(Bg)7

where B, is a matrix representation of 9, : C}, — C,._;.

Example 2.3.2. Consider a simplicial 2-complex We get

1%
1 v,

[v1,v5]  [vg,v3]  [v3,v4]  [vg,v]

[v1] 1 0 0 0
B, = [v] o 1 0 1
[vg] 0 w1 1 0
[v4] 0 0 -1 —1
Then
1 0 0 O 1 -1 0 0 1 -1 0
Lo = B, BT = -1 1 0 1 0 1 -1 0 _ -1 3 -1
0 -1 1 0 0 0 1 -1 0 -1 2
o 0 -1 -1 0 1 0 -1 0o —1 —1

which is the Laplacian matrix of the following graph;

23
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2.4 Hodge Theory

For this section, we discuss an efficient tool in Mathematics, the Hodge theory.
This theory, introduced by William Vallance Douglas Hodge in 1930s, is a tool
for studying cohomology and differentiable manifolds. It has applied for various
applications in various fields such as the Hodge theory on metric spaces [2|, Hodge
Laplacian on graphs [11], ranking theory, game theory, neuroscience and others.
As this theory is first introduced for applying in algebraic geometry, there are
many notations which are difficult to study.

In fact, the Hodge Laplacian only requires two matrices (or linear operators)

whose composition is zero, i.e., for a matrix A € M, .. (R) and B € M, (R), the

nxp

assumption for applying Hodge theory is AB = 0. We recommend [[11] written by

L.H. Lim for more details.

Definition 2.4.1. An n X n matrix that can be written as A*A + BB* where
AB=0,AeM,,. ,(R), Be M, (R)is called a Hodge Laplacian matrix.

mxn nxp

Lemma 2.4.1. Let A € M,,,,(R) and B € M,,,,(R). Then all eigenvalues of
A*A + BB* are nonnegative.

Proof. Let x € R™ — {0}. Then (z,(A*A + BB*)x) = (x,A*Az + BB*z) =
(x, A*Az) + (v, BB*z) = (Ax, Az) + (B*z, B*z) = | Az|? + |B*z|? > 0. Then by

Lemma ,
RA“A+ BB".) = (z,(A 7|1-;|—2BB )z) >0
e

and the proof is done. O



25

Let Spec(A) denote a set of eigenvalues of A and Spec”(A) a set of nonzero

eigenvalues of A.

Lemma 2.4.2. Let Ae M,,,.,.(R) and B € M,

nxp

(R) such that AB =0. Then
Spec”(A*A 4+ BB*) = Spec*(A*A) U Spec™(BB*).
Proof. Since AB = 0, we have
Im(BB*) C Ker(A*A) (2.3)

and

Im(A*A) C Ker(BB") (2.4)

Suppose that there exists ¢ # 0 such that
A*Ac+ BB*c = Ac. (2.5)

Assume that A is not an eigenvalue of BB*. Taking A*A into (@) both sides, we
get
A*A(A*Ac) + A*A(BB*c) = A\(A*Ac).

By (@), we have A*A(BB*c) = 0 and hence
A*A(A*Ac) = A(A* Ac).

Suppose that A*Ac = 0 by (@), BB*c = A\c¢. This contradicts with A is not an
eigenvalue of BB*. Therefore A*Ac # 0 and hence ) is an eigenvalue of A*A.

Conversely, suppose that there exists ¢ # 0 such that BB*¢ = Ac. Then
BB*(BB*c) = A\(BB*c). By (), AA*(BB*c) = 0 and hence

(A*A+ BB*)(BB*c) = A*A(BB*c) + BB*(BB*c) = BB*(BB*c) = A(BB*¢).
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Since ¢ and A are nonzero, BB*c = Ac # 0. Then X is an eigenvalue of A*A +
BB*. N

Lemma 2.4.3. Let A € M,,,,(R) and B € M, (R). Assume that AB = 0.
Then
Ker(A*A + BB*) = Ker(A) N Ker(B*) = Ker(4) (2.6)
- = Im(B) :

Proof. 1t is clear that Ker(A)NKer(B*) C Ker(A*A+BB*). To show the converse,
let ¢ € Ker(A*A + BB*). Then

A*Ac = —BB*c. (2.7)

By multiplying both sides of (@) with A, we get —ABB*c = AA*Ac = 0. Thus,
A*Ac € Ker(A). By Proposition , we now have A*Ac € Im(A4*) = Ker(A)*.
So, A*Ac = 0 and ¢ € Ker(A*A) = Ker(A). By multiplying both sides of (@) with
B*, we get 0 = B*A*Ac = —B*BB*c. Then BB*c € Ker(B*). By Proposition
b.1.4, BB*c € Im(B) = Ker(B*)*. So BB*c = 0 and hence ¢ € Ker(BB*) =
Ker(B*). The proof of first equation is done.

Define ¢ : Ker(A4) N Ker(B*) — Ker(A)/Im(B) by x + z + Im(B), for any
x € Ker(A) N Ker(B*). It is easy to see that ¢ is well-defined and linear. By

Proposition (ii), Ker(B*) = Im(B)*. Then

Ker¢p = {z € Ker(4) NKer(B*) | ¢(x) =0}

= {z € Ker(A) NKer(B*) | z € Im(B)}

= {z € Ker(A) NIm(B)* | z € Im(B)}

= {0}.
This shows that ¢ is injective. Let z+Im(B) € Ker(A)/Im<B), where z € Ker(A).
Write = v; + vy where v; € Im(B) and vy, € Im(B)*+ = Ker(B*). Since AB =0,
we have Im(B) C Ker(A). Then, v; € Ker(A) and 0 = Az = A(vy + vy) = Avy +
Avy = Avy. Then v, € Ker(A). Consider ¢(vy) = vy +1Im(B) = z —v; +1Im(B) =
x 4+ Im(B). This shows that ¢ is surjective. O]
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Lemma 2.4.4. Let Ae M, (R) and B € M,

nxp

(R) such that AB =0. Then
(i) Ker(B*) =Im(A*) ® Ker(A*A + BB*);
(i) R™ = Im(A*) @ Ker(A*A + BB*) @ Im(B).
Proof. (i) By Proposition (iv), we get
Ker(B*) = R™ N Ker(B*)
= [Ker(A) & Im(A*)] N Ker(B*)
= [Ker(A) N Ker(B*)] & [Im(A*) N Ker(B*)]

= Ker(A*A + BB*) @ [Im(A*) N Ker(B*)] (By Proposition )
= Ker(A*A + BB*) @ Im(A*) (Since B*A* = 0 i.e. Im(A*) C Ker(B*)).

(ii) By Proposition (iv) and (i), we get

R" = Ker(B*) & Im(B)

=Im(A*) @ Ker(A*A + BB*) & Im(B),

and the proof is done. O

We emphasize that the statement (ii) of Lemma is well-known as a Hodge
decomposition which has various applications especially in ranking theory. See

more in [11].

2.4.1 Hodge Laplacians on Simplicial Complex

Let X be a simplicial complex and X* the set of k-simplices. From now on, we
are going to write boundary maps and coboundary maps in terms of their matrix
representations and elements in C), and C* as vectors on R™, where n, = |X*|.

We now state the definition of a Hodge k-Laplacian matrix as follows:

Definition 2.4.2. Let B, be a matrix representation of 9, : C;, — C\_;. The
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Hodge k-Laplacian of X is defined to be
Ly, = By Biyy + Bj By,

Moreover, we define L;” := B,CHB,CTJrl and Li .= BI'B,.

Remark 2. (i) Since BB, = 0, a Hodge k-Laplacian matrix is a Hodge Lapla-

cian matrix.

(ii) The definition above can be defined with the different notations. For exam-

ple, we can write L, in term of 0 or ¢ or both;

Ly, = 01051 + 030 = 030y, + 0y 1051 = O 10 + 0510y

(iii) Since By = 0, we have

which is a Laplacian matrix.

Theorem 2.4.5. Let X be a simplicial complez, L, a Hodge k-Laplacian matriz
on X and n = |X*|. Then the followings hold.

(i) All eigenvalues of L, are nonnegative.
(ii) Spec*(L,) = Spec*(L;Y) U Spec” (Lovm).
(iii) Tm(BY) @ Ker(L,,) ® Im(B,, ;) = R™.
(iv) Hy(X) = H*(X) = Ker(L,).

(v) Spec(L;P) = Spec(L{T™).

Proof. The proof of (i) to (iv) is done by replacing A = B, and B = B, into

Lemma , Lemma , Lemma (ii) and Lemma P.4.3, respectively. For

the last statement, we claim that for any two linear maps S and T, ST and T'S
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have the same set of eigenvalues. Let S,T be linear maps. Let v be an eigenvector
of ST corresponding to eigenvalue A\. We first assume that A = 0. Then S or T is
not invertible, so is T'S. This implies that A is an eigenvalue of T'S. Next, suppose
that A # 0. Then STv = Av and hence T'S(Tv) = A(Tv). Since X\ # 0, we have
Tv # 0. Then Tv is an eigenvector corresponding to eigenvalue A. Similarly, we
can show that all eigenvalues of T'S are eigenvalues of ST'. So, the clam is done.
Note that L’ = B, B}, and L{%" = B}, | B, and the last statement is done

by the claim. ]

2.5 Random Walks on Graphs

In this section, we briefly introduce notations and definitions about a Markov chain
and a transition probability matriz. We recommend [18] for more details.

A stochastic process {X(t),t € T} is a collection of random variables. The
index T is often interpreted as time. If T is countable, the stochastic process is
said to be a discrete-time process. We call X (t) the state of the process at time ¢

and if X (¢) = ¢, then the process is said to be in state i at time ¢.

Definition 2.5.1. Let {X(¢),t € T'} be a discrete-time stochastic process. Sup-
pose that whenever the process is in state ¢ at time t, there is a fixed probability
M;; that the state at time ¢ +1 is in state j. Then the stochastic process is called

a Markov chain and M;; is called a transition probability.

Definition 2.5.2. Let {X(¢),t € T'} be a Markov chain. Suppose that the set 7'
is finite, then the matrix M = (M,;), where M, is defined in Definition , is

?

called a transition probability matrix of a Markov chain {X(¢),t € T'}.

In other words, a Markov chain is a discrete-time stochastic process such that

any future state X, ; with given the past states X, X;,..., X X,, depends

n—1»
only on the present state X,. That is a transition probability does not depend
upon the history of previous transitions. Note that M,;; € [0,1] for all 4,j and
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Let G be a connected simple graph with a vertex set {vy, vy, ..., Vg, ...y U} A
random walk on graph is a process of walking from the root v, along an edge by
steps to a vertex v,. Since the random walk picks a neighbor of a vertex each step
randomly, random walk on graph is a Markov chain. In this work, all graphs that

we consider are undirected and unweighted. For general studies, see [0].

1
Proposition 2.5.1. Let (D™1),;, = T if d; #+ 0 and O otherwise. Let A be an
i
adjacency matriz of G. Then a transition probability matriz of a random walk on
G is given by M = D71 A.
Proof. Suppose that the current state at time ¢ is v;. Then all states at time ¢ 41
1

which are possible are v; such that v; ~ v;. Therefore M,;; = 7 if d; # 0 and

(2

Example 2.5.1. Let G be the following graph;

() Uy

V1 ] Vs

A transition probability matrix of a random walk on this graph is given by

v, Uy U3 Uy Vs
v, /0 1 0 0 0
v, |1/3 0 1/3 1/3 0
vs] 0 1/3 0 1/3 1/3
v,| 0 1/2 1/2 0 0
v, N0 0 1 0 0

M=D"1A=

Proposition 2.5.2. Let G be a connected graph, L™ a random walk normalized
Laplacian matriz on G. Then P =1 — L™ is a transition probability matrixz of a

random walk on G.
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Proof. Since L = D— A, where D is a degree matrix and A is an adjacency matrix
on G,
P=1-L%"=I-D'L=I-DYD—-A)=D"1A

By Proposition , the proof is done. O]



CHAPTER I11
HODGE LAPLACIAN MATRIX

The Hodge theory on simplicial complexes can be applied in various fields for
many applications. As shown in Section , the Hodge k-Laplacian is the higher
dimensional forms of the Laplacian matrix for a given graph G.

In this chapter, we first generalize a degree matrix and an adjacency matrix
on graphs to be a degree matrix and an adjacency matrix for any dimensions of
simplicial complexes. Next, we analyze Hodge k-Laplacian matrix by writing it
as a degree matrix and an adjacency matrix that we defined. This fact leads us
to obtain the formula of Laplacian operator. We end this chapter with a proof of
the beautiful fact that the kth homology and the kth cohomology of a simplicial
complex are trivial if and only if the smallest eigenvalue of a Hodge k-Laplacian

matrix is nonzero.

3.1 Hodge k-Laplacian

Recall that the Hodge k-Laplacian L, is of the form
Ly = Ly + L™ = B By, + By By,

where B), is a matrix representation of 9, : C;, — C},_;. For the case that k = 0,
L, is exactly a Laplacian matrix L = D — A, where D is a degree matrix and A is

an adjacency matrix.

3.1.1 Degree Matrices on Higher Dimensions

For a degree matrix D = (D,;) = d, if i = j and 0 otherwise, we observe that an

entry d; on its diagonal which is a degree of vertex v, is a number of edges having
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v; as their face. Thus, we analogously define degree matrices on higher dimensions

as followed.

Definition 3.1.1. For each k-simplex o, define a degree of ¢ denoted by dego

to be a number of its upper adjacent elements in (k + 1)-simplex.

Definition 3.1.2. Let X* be a set of all k-simplices of a simplicial complex X. A
degree matrix of X* is defined by Dj_; = (D) xk (x| xk| Where D, = dego if

o = 7 and 0 otherwise.

For k = 0, D} is exactly the same as the degree matrix defined in Definition
. For k£ = 1, degree of an edge e is defined to be a number triangles which
has e as their face. For k = 2, degree of an triangle ¢ is defined to be a number

tetrahedrals which has ¢ as their face and so on.

FExample 3.1.1. From the simplicial complex in Example , we get

[y, V9, v3] [y, Vg, V4] [Ulavs,%] [va, v3,v4]  [v5,v7,v8]  [v7, g, V]

[V, Vg, V3] 1 0 0 0 0 0
[V, Vg, V4] 0 1 0 0 0 0
Dy = [V, Vg, V4] 0 0 h 0 0 0
[Vg, Vg, V4] 0 0 0 1 0 0
[Us, U7, Vg] 0 0 0 0 0 0
[V, Vg, Vg 0 0 0 0 0 0

and D} is the zero matrix.

3.1.2 Adjacency Matrices on Higher Dimensions

Recall that an adjacency matrix on a graph G, denoted by A(G), is defined by
(a;;) = 1if v; is adjacent to v; and 0 otherwise. However, for any two simplices on
higher dimensional, the word adjacent could be considered as upper adjacent or
lower adjacent which is defined in Definition . We define adjacency matrices

which are referred to upper adjacency and lower adjacency as follows:
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Definition 3.1.3. Let X* be a set of all k-simplices of a simplicial g-complex X
and 0 < k < ¢. The upper adjacency matrix of X* is defined by A}’ = (a2®)

oT

where
sgn(o,00)sgn(r,00), ifo~, 7and o,7 € 07,
al =
oT
0, otherwise.
The lower adjacency matrix of X* is defined by A%°"® = (ado") where
“ sgn((ocN7),00)sgn((cN7),01), ifo~; T,
aO'TWH =
0, otherwise.

Ezrample 3.1.2. From the simplicial complex in the example , we get

[V1,v9,v3] [v1,V3,04] [V1,03,04] [vg,v3,v4] [v5,v7,08]  [v7, Vs, V]

[V, Vg, V3] 0 -1 1 -1 0 0
[V, Vg, V] -1 0 =¥ 1 0 0
AP — [V1, Vg, V4] 1 -1 0 -1 0 0
[Vg, Vg, V4] -1 -- —1 0 0 0
[vs, V7, Vg] 0 0 0 0 0 0
[V, Vg, Vg 0 0 0 0 0 0
and
[v1, V9, v5]  [v1,v9,04] (V1 v3,04] Vg, v3,v4] (U5, v7,08] U7, Vg, g
[V, Vg, V3] 0 1 -1 1 0 0
[V1, Vg, V] 1 0 1 -1 0 0
Agown: [V1, Vg, V4] -1 1 0 1 0 0
[Vg, Vg, V4] 1 -1 1 0 0 0
[vs, U7, Vg] 0 0 0 0 0 1
[v7, Vg, Vg 0 0 0 0 1 0

Note that both A;” and A" are | X*| x| X*| symmetric matrices whose entries
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are 1 or —1. For k = 0, since two adjacent vertices always have the different signs,
AgP is —A, where A is an adjacency matrix defined in Definition .

The following proposition states L,” and L{™™ in terms of D}, A’ and
Adown - As entries of AP and Adovn are —1 or 1 and D, 41 is a diagonal matrix,
Ldown

writing L;” and in this way can be useful for doing algebra on them.

Proposition 3.1.1. For k > 1, the matrices L," and L}iOW“ can be written as
Ly =Dy, + AP and L™ = (k+ 1)1, + Ajov™,

where I, D}, A}Y, A" are the | X*| x | X*| identity matriz, a degree matriz,
an upper adjacency matriz and a lower adjacency matrix of simplicial k-complex,

respectively.

Proof. Let X be a simplicial compleX and 0,7 € X*. If 0 = 7, then (L\7),, =

(Bk-‘rl k—i—l oT Z Sgn dega a (Dk+1) and (L%OWH>UT = (BgBk)UT =

o;0€0T

Z (sgn(u, d0))? = k + 1. Next, suppose that o # 7. If ¢ is not upper adjacent
nedo

to 7, then (L"), = 0 = (A;P)

(Allip ) oT?
(Ag™™)

otherwise, (L,”

Jor = sgn(c, 07)sgn(7, 07)

where 0,7 € 97. If o is not lower adjacent to 7, then (L{"®) =0

otherwise, (L{") = sgn(o N 7,00)sgn(c N 1,07) = (Afwn)

[

aT) oT"

Remark 3. For k = 0, Ly® = D] + Ay®” = D — A = L where L is a Laplacian
matrix. However, with this Proposition, Lo"® = I xo; which contradicts with
Ldovn = ByBI = 0. We avoid this confusion by adding the assumption that k > 1

and let the readers keep in mind that LI is a zero matrix.

From Proposition , we obtain the formula of the Hodge Laplacian operator.
Note that, in this work, we only consider unweighted simplicial complexes. For
the formula of the Hodge Laplaician operator on weighted simplicial complexes,

we recommend [9].

Proposition 3.1.2. Letk > 1, f € C* = Hom(C},,R) and o € X*. The operators
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AP =0y 10,41 and ALY := 6,0, are given by

(AP f)(0) =deg(o)f(o)+ Y sen(o,00)sgn(o’,05)f(0"),
o'eX* o~ 0!
0,0’ €07

(A f)(0) = (k+1)f(0) + Y sgn(oNo’,do)sgn(o No’,d0’) f(0).

o’eXk
o~yo’

Proof. Let X be a simplicial complex, f € C* and n = |X¥|. Since X* =

{7, 79, ..., T, } is a basis of C}, we get {7%,72,...,7"} is a basis of C*, where
, 1 ifi=y,
(1) =
0 ifi .

Write f = Zﬁﬂ'i, where 3, € R for each i. Note that f € C* =~ C, =~ R™.

=1

n
It is easy to see that ¢ : C* — R” defined by (Z Bﬂ'i) = (Bys By ey B) T
i=1
is an isomorphism. Then f can be viewed as a column vector (8;, By, ..., 3,) L.
To avoid confusion, we write [f] = (B, B, ..., 5,)%. Note that matrix represen-

tations of A}” and A"™ are L}P and L{°"", respectively. By Proposition ,
L> = D;., + A.". Consider
L"lf] = Dy + 4D

(deg)By+ Y sen(ry,07)sen(r;,07) - B;
T, €XF i~ Ty
T;,T1 €E0T

degm)fot+ S sau(ry,0r)sen(r, 0r) - 6,
TiEXk Ti~uTo
T;, To€0T

(degT,)B, + Y sen(r,, dr)sen(r;, 1) - B;

k
T,EX" Ty~ Th
Ty, Ty €OT .

n

This column vector corresponds to a map A" f = Z v,7¢, where ; is the element
i=1
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in ith row of LyP[f]. Let 7, € X*. Since f(7;) ZB 7I(1),) = BB, for any k, we

have
(A Z %) =

= (deg T8+ ) seu(n, Or)sen(r;, 07) - B

k
T,EXP T, T;
T;,T,€EO0T

= (deg7)f(;)+ D sen(r;, dr)sgn(7;,07) - f(7)).

k
T,EXT, T, T,
T;,T;€0T

By Proposition , Ldovn = (kb + 1)1, + A" Consider
Lif] = ((k+ 1)In + A f]
(k+1)8, + Z sgn(m N 7;, Oy )sgn(my N7;,07;) - f;

T,eEXF
Ti™1T1
(k+1)8; + Z sgn(7y N 7, 075)sgn (7, N 7;,07;) - B;

— T exk
Ti~T2

(k+1)5, + Z sgn(r, N 7;, 0T, )sgn(r,, N1;,0T;) - B;

T,EXE
L Ti~1Tn -
n
This column vector corresponds to a map A%"W“ f= E o, 7', where «; is the
i=1

n

element in ith row of L{"2[f]. Since f(7,) = Z B, (1) = By, for any k, we have

=1
(Adown E Oé 7_]

= (k; +1)3; + Z sgn(r; N 7;,07;)sgn(; N 7;,07;) - B;
TjEX'“
Ti~Ts
=(k+1)f(r;) + Z sgn(r; N 7;,07;)sgu(r; N 75, 07;) f(7;). O

TjeXk
TiT;
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3.2 kth Homology on Simplicial Complex and the Smallest
Eigenvalue of Hodge k-Laplacian Matrix

Sometimes, a chain complex (also a cochain)

8n+1 8n a1 aO
= Coy—C, —C,_ = =0 —Cy—0

is denoted by C, or (C,,d,) (or C* or (C*,4,)). Moreover, for a simplicial complex
X, we can denote a kth-homology on X (or a kth-cohomology on X) by H,(C,)
(or H*(C™)).

A chain complex (or cochian complexes) together with a map f satisfying

of = fo (3.1)

(or a map g satisfying dg = gd) can be viewed as a direct sum of chain complezes
(or a direct sum of cochain complex). To see this, some tools in homological algebra
are required, see more in [3], [L0], [14], [15], [20].

Consider the diagram

Bn+1 Bn
= Coaf ~~—— o ——A C,. , —
J/Ln—&-l J/Ln j/Ln—l
Bn+1 Bn
- C, — . — C,, =
Since
B L . ,=B B .,B  +B B B ,=B B B
n+l1+~n+1 — n+1-n+2~n+2 n+1-n+1"n+1 — n+1-n+1~n+1
and

Lan+1 = Bn+1B7€+1Bn+1 + B?;Ban—i-l = Bn+1BZ+1Bn+1’

this diagram is commute for any n, i.e. B,L, = L B,. Let C? be an eigenspace
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corresponding eigenvalue A of a Hodge Laplacian matrix. Then

Cc.=pc
A

and the direct sum (P, C2,0) is a chain complex with @ = @,0,. Moreover, this

fact implies that a homology commutes with direct sums, i.e. for all n,

n, (@) = @me
) X
we recommend [20] for more details.

Theorem 3.2.1. [1] Let X be a simplicial complex and L, a Hodge k-Laplacian
matriz on X. Let \ be the smallest eigenvalue of L, and H,(X) a kth-homology
on X. Then

A # 0 if and only iof H,(X) = 0.

Proof. Let A # 0 be an eigenvalue of L, and C’é‘ be an eigenspace corresponding

to A. Let ¢ € C such that Byc = 0. Then,

1 1
C = X(BmB;fHC) = Bk+1(XBg+1C)-

That is each cycle of C’é‘ is a boundary. Since X is the smallest eigenvalue of L,
every eigenvalue of L, is also nonzero. This implies that for any A\ every cycle of

C,;\ is a boundary. Then,
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Conversely, let ¢ € C’,i‘ be an eigenvector corresponding to eigenvalue A = 0. Then

0= <Lkzcv C>
= (BB, ¢, ¢) + (B By, c)
= <BkT+1c, BkTJrlc) + (B¢, B,c)

= |Bisicl® + IByel®.

This implies that H,(C) = C}. Hence,

H,(X) = Hy, (@ Cf‘) = @Hk(0*)\> # 0.
Y -

From Remark m, we obtain the following corollary.

Corollary 3.2.2. Let X be a simplicial complex and L, a Hodge k-Laplacian

matriz on X. Let \ be the smallest eigenvalue of L, and H*(X) a kth-cohomology

on X. Then
A #£ 0 if and only if H*(X) = 0.



CHAPTER IV
NORMALIZED HODGE LAPLACIAN MATRIX

In this section, we define a normalized Hodge Laplacian matrix for arbitrary di-
mensions of simplicial complexes which is also a Hodge Laplacian matrix. Then,
we state some properties of the matrix which are obtained directly by being Hodge
Laplacian matrix. Using some results in Chapter 3, we obtain the formula of nor-
malized Hodge Laplacian operator. We also indicate a spectrum of this matrix for
the case that a simplicial complex is itself a simplex. For the second section, we
show that the smallest eigenvalue of £, can indicate whether the kth homology
and the kth cohomology on a given simplicial complex are trivial. We end this
chapter by showing a relation between a spectrum of £ and k-wedge sum of

simplices.

4.1 Definition and Basic Properties

There are several works of defining normalized Laplacian operator and normalized
Laplacian matrix on a simplicial complex.

In 1993, F. Chung [5] defined a normalized Laplacian operator as
00 + pdo,

where p is the density of a given simplicial complex.

In 2010, C. Taszus [19] defined a normalized Laplacian matrix as
(Disa) 2Ly(Dyyy) Y2,

We point out here that (D}, ;)~'/? needs not be invertible matrix.
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In 2011, D. Horak [9] defined a normalized combinatorial Laplace operator in
order to force an upper bound of the maximal eigenvalue of the operator to be a
constant.

In 2018, M. Schaub et al [16] defined a normalized Hodge 1-Laplacian matrix
to study random walks. The matrix is defined by

£, = D,BTD{'B, + B,D,BY D3,

where (Ds)}; 1155 = max{deg[i, j],1}, D; = 2 x diag(|B;D,|1) and Dj is the
diagonal matrix with 1 on the diagonal.

However, matrix representations of these operators and the matrix defined
above are not Hodge Laplacian matrices. We now define a normalized Hodge

Laplacian matrices for arbitrary dimensions of simplicial complexes.

Definition 4.1.1. Let O}, be a space of k-chain of simplicial complex X and X* a
set of all k-simplices on X. Let B, be a matrix representation of a boundary map
0 : C}, = C),_;. The normalized Hodge k-Laplacian matrix £, is defined

by
1/2 —1/2 1/2 1/2
Ly = Dk+{ Bk+1Bkz+1Dk+{ +Dk/+1BiszDk/+1a

where Dkil and DkJrl are | X*| x | X*| diagonal matrices defined by (D,lgfl)m =

max{y/dego,1} if 0 = 7 and 0 otherwise, and D;Jr{ is the inverse of Difl.

Moreover, we define

u 1/2 —1/2
£ =D, \"B, Bl D\,

own , 1/2 1/2
’C% Dk+1B£Bka+1 :

According to this definition, we have
£, =D;"*B,BYD;"* + DI*BTB,D\* = D;*/*B,BTD;"* = .

1/2

A purpose of putting a maximum on D,/"; for each k is to guarantee that DY/?

k+1

is invertible. This leads our definition of £, preserving some properties obtained



43

analogously to properties of Hodge k-Laplacian matrix shown in Theorem .

From the definition, one can see that this matrix is positive definite, real sym-

metric and all of its eigenvalues are real numbers.
1
Vdego

Remark 4. Let (D}, ,)"'/? be a diagonal matrix defined by (D;Hl);i/Q =
if o = 7, dego # 0 and 0 otherwise. By Proposition , we get

(Djoyr) V2L (Dyy )2 = (D) 2D)  (Dy ) P (Dy ) VP AR (D)2
(4.1)
and

“1/2 yup ~—1/2 —1/2 ~1/2 ~1/2 jup ~—1/2
Dk+/1 Lkak:+/1 = Dk+/1 Dk+1Dk+{ 2% Dk+/1 AkPDH{ . (4-2)

Let X be a simplicial complex. If every simplex in X* has nonzero degree, then

—1/2 ’ _ —1/2 yu —1/2 , _ u ’ _
Dk+{ = (Djy1) /2 and hence Dk+é Lkam{ = (Djy1) I/QLkP(DkH) 12,

Suppose that there is a simplex ¢ € X* such that dego = 0. Then for any

T € X*, we have (D} ;) %?),, = 0 and (A;®),. = 0. From the equations

(1) and (1L2), (D},1) V2L (Dyyy)2),, = 0 = (DL LD, 1Y), for any

7 € X*. Similarly, we can show that ((Dj,,) V2L*(Dj},,)"Y?),, = 0 =

(D;i{szngj_éz)w for any 7 € X*. We now conclude that D;i{QLZpD;iQQ =

TO

(Dj1) Y2L{P(D;,, 1)~ '/2. This shows that defining £, by putting a maximum on
a degree matrix instead of using a degree matrix does not change the meaning of
o,

We give the next theorem to support our idea of defining £, to be a Hodge

Laplacian matrix and D;if to be an invertible matrix.

Theorem 4.1.1. Let X be a simplicial complex, £, a normalized Hodge k-
Laplacian matriz on X and n = |X*|. Then the followings hold.

(i) All eigenvalues of £, are nonnegative.
(ii) Spec(£;) = Spec™(£L}P) U Spec™ (Ldowm).

1/2 —1/2 n
(iii) Tm(D}/2, BY) @ Ker(£),) @ Im(D;, *By,,) = R™.
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(iv) Hy(X) =~ H*(X) = Ker(£,,).

Proof. The first, the second and the third statements are done by replacing A =

BkD,tfl and B = D;iéQBkH into Lemma P2.4.1, Lemma and Lemma
(ii), respectively. Note that from the definition of £, we know that D;ﬂQ and
D,lgfl are invertible. In the other words, it can be considered as a representation
of a bijective map. Then by Lemma , we have Kelr(Ble/2 ) = Ker(B,,) and

k+1
Ker(B,{HD;i{Q) =~ Ker(B{., ). Therefore, by Lemma

1/2 —1/2
Ker(B,,D,/%) NKer(BL, D, 11?) = Ker(B,) N Ker(BL, ) = Hy(X)

and the last statement is done. O

There is a well-known fact that eigenvalues of a normalized Laplacian matrix
on a graph are nonnegative. Theorem (i) shows that our definition remains
this fact. By Theorem (ii), we can calculate all of nonzero eigenvalues of
£, by calculating on £, and £9°"" separately. From Theorem (iv), for
a given simplicial complex, we can calculate its homology and cohomology by

considering the kernel of £;. It can be shown that Im(D,lc/leg) >~ Im(B}) and

Im(D;i/kaH) = Im(By,,,). By Theorem and Theorem (iv), we obtain
that Ker(L,;,) = Ker(£,) and hence the decomposition of R in Theorem (iii)

can be considered as a Hodge decomposition.

Proposition 4.1.2. Letk > 1, f € C*¥ = Hom(C,,R) and o € X*. The operator

Zzp corresponding to L)Y is given by

sgn(o,00)sgn(o’,00) .,
d 0
(A" f)(o) = 0.0/ €0

The operator Ziown corresponding to 5%‘”“ s given by
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(Ao £)(0) = (k + 1) max{deg o, 1} f(0)

+ Z max{deg o, 1} max{dego’, 1}sgn(r, do)sgn(r,d0”) f(co”).
o’'eXF o~ 0’
oNo’ =1

Proof. Let X be a simplicial complex, f € C* and n = |X*|. Similar to the proof
of Proposition , we write f = Zﬁﬂi. We write [f] = (B4, By, -, 3,)T. By

=1

(3
Proposition , L.” = Dj_, + AP Consider

LR = (DL D]

—1/2 1/ upy ~—1/2
= (D1 Dy + A7) D]
—1/2 1y ~1/2 ~1/2 4up y—1/2
= (Dk+{ Dk+1Dk+{ + Dk+{ Akak-s-{ )[f]
i sgn(7y, O1)sgu(7;, 0T
s ST SEm 0T, 0
reXP 7y \/deg T, deg 7,
T;,T1EOT
sgn(7y, OT )sgn(;, OT

_ reXkaie do A /deg 7, deg T;

T;,To€OT

5nﬁn + Z SgH(Tn, 87—)Sgn(7—i7 87—) ﬂ

7
S \/deg T, degT;

L Ti,Tnéa;f = |
where
3 1, dego, # 0,
0, dego, =0.

n
This column vector corresponds to a map AP f = Z’Yﬂ'i, where v, is the ele-
i=1

ment in ith row of £;P[f]. Let 7, € X*. If deg 7, = 0, then (Zzpf)(rq) =1, =0.

Suppose that deg 7, # 0. Since f(1;) = Z B;77(r;) = B; for any i, we have
=1
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5+ Z sgn(7,, dT)sgn(7;, 0T) 3

\/deg T degT, ‘
TiEXk,T-N T, 8 q &7

i ulq
T; TqE0T

sgn(t,, 0T)sgn(;, OT)
= I+ > /().
TiGXk,’TiNuTq €8T dCET;
Ti,TqéaT

By Proposition , Lovn = (k + 1)1, + A", Consider

own 1 2 own ]- 2
sl f] = (DL D2 f]

= (D2 ((k+ DI, + Adev™) D2 ) [ f]

= ((k+1)Dyyy + DA AP D2
(k+ D¢ (B)+ > ¢1¢sen(o, 0 )sgn(o, 07;)B;
TiEXk,'riﬂlea
(k+1)95(By) + Z $o9;880(0, 07y )sgn(o, 7;)B;

k Rl
— T,€X®, 7;NTy=0
I 2

(k+1)6,(8,)+ > ¢.¢sen(0,07,)sgn(o,0,)B;

k =
T,eX", 7,01, =0
Ti~1Tn

where ¢, = max{deg7;,1}. This column vector corresponds to a map Z%"W“ f=
n

Zaﬂ'i, where a; is the element in ith row of £4°""[f]. Let 7, € X*. Since
=1

f(r) = Zﬁﬂj(n) = f3; for any i, we have
j=1

B f)r,) =D airi(n,) = a

(2

= (k+ 1) max{deg T 1}Bq
+ Z max{deg 7, 1} max{deg7;, 1}sgn(o, d7,)sgn(c, d7;)5;

k —
T,€X",7,NT=0
T~ Tg

= (k + 1) max{deg 7, 1} f(7,)

+ Z max{deg 7., 1} max{deg 7, 1}sgn(o, d7,)sgn(c, 07;) f(;).

k —
T,€X", 7,01 =0
T~ Tq

]
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Let A and B be n x n matrices. Recall that we denote the set of eigenvalues

of A by Spec(A). Note that a multiset is a set that allows for multiple instances

for each of its elements, for example {0,0,1,1,3}. Let Spec denote a multiset of

eigenvalues of A with their multiplicities. We also denotes a union of multisets by

U and write Spec(A)=8pec(B) when these two multisets are equal.

Proposition 4.1.3. Let X be a k-simplex. Then

E+1 k+1 E+1

(i) Spec(£y)={0, s P S pec( L),

E 7k
k times
(i1) Spec(L;”)={k+1,0,0,...,0}=8pec(L,;” ),
k times

(iii) Spec(LI"™)={k + 1}=8pec(Li™™).

1/2 1/2

Proof. We first note that for a k-simplex X, D,
Spec( Ly )=8pec(L,? )

and

Spec( L) =Spec( Liown),

=D, =1, ;. Then

We remark that Ly” and £y indicate a relation between vertices and edges.

Then we can consider only 1-structure of the simplex which can be seen as a graph.

Moreover, 1-structure of a k-simplex is indeed a complete graph K, ;. Then by

Proposition , the first statement is done.

Let X = [0y,04,...,04] be a k-simplex. We index an (i + 1)th row of B, as

G; = [00,01,..,0;_1,0;41,-.-,04). Then we obtain that
[0gs 01y eee s O]
Gy 1 1
o —1 up T -1

(_1)k+1

(=1
(_1)k+1

(~1)%
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We observe that rank(£;” ) =1 and
dim(Ker(£.2,)) = null(£;P ) = (k+1) —rank(£ ) = (k+ 1) — 1= k.

Therefore, the multiplicity of eigenvalue 0 is k. Moreover, (1,—1,1, ..., (—1)) is
an eigenvector corresponding to eigenvalue k + 1. Then, the second statement is
done.

For the last statement, consider
Lo = By BY = [k +1].

Therefore Spec(£3o") = {k+1}. O

4.2 kth Homology on Simplicial Complex and the Smallest

Eigenvalue of normalized Hodge k-Laplacian Matrix

In Section @, we state a relation between the smallest eigenvalue of Hodge k-
Laplacian matrix on a simplicial complex and its kth homology. Unfortunately,
the normalized Laplacian matrix that we defined does not satisfy (El!) Then,
the chain complex on a given simplicial complex may not be split as a direct sum
of eigenspaces corresponding to eigenvalues of £,. However, the smallest eigen-
value of normalized Hodge k-Laplacian matrix can also tell whether the homology
(or cohomology) of a given simplicial complex is trivial. We prove the following

theorem by using some facts from the last section.

Theorem 4.2.1. Let X be a simplicial complex and £, a normalized Hodge k-
Laplacian matriz on X. Let \ be the smallest eigenvalue of £, and Hp(X) a
kth-homology on X. Then

A # 0 if and only if H,(X) = 0.

Proof. By Theorem (iv) and Theorem (iv), we obtain that Ker(L,,) =
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Ker(£,,). Then dim(Ker(L,)) = dim(Ker(£,)). This implies that the multiplicity
of eigenvalue 0 of L; and £, are equal. Then, by Theorem (i) and Theorem
(i), if the smallest eigenvalue of £, is 0, so is the smallest eigenvalue of L,.
By Theorem , the proof is done. [

Corollary 4.2.2. Let X be a simplicial complex and £;, a normalized Hodge k-
Laplacian matriz on X. Let X be the smallest eigenvalue of £, and H*(X) a
kth-cohomology on X. Then

A\ #£ 0 if and only if H*(X) = 0.

4.3 Spectrum on Normalized Laplacian Matrix of k-wedge

Sum of Simplices

Definition 4.3.1. Given simplicial complexes X; and X, with chosen k-simplices
o € X¥ and 7 € X5. Then, the k-wedge sum X; V, X, is the quotient of the
disjoint union of X; and X, obtained by identifying simplices ¢ and 7 as a single

simplex.

Remark 5. The definition of k-wedge sum is defined for any k such that
k < min{dim(X,),dim(X,)}

since X7* and X7 are empty sets if m > dim(X;) and n > dim(X,).
Ezample 4.3.1. Given simplicial complexes X, = [vy, vy, vy, 3] and Xy = [vy, vs, v4]
with chosen 1-simplices o = [vy, v,] and 7 = [vs, vg]. Then, X, V; X, is shown in

the following figure;

Theorem 4.3.1. Let X, and X, be simplices. Let q be nonnegative integers. If
q < k, then

Spec(LP (X, Vg Xy))=Spec(LiP (X)) U Spec(LiP(X,)).
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V1
v,
Vg *
A o
vy v, ’ )
6 4 V3
VU3

(b) X (c) X1 Vi Xy
(a) X

Proof. We observe that if ¢ < k

LY (X O
L (X, qu2>( e (X) )

0 LX)
where O is the zero matrix. Then, by Lemma , the proof is done. [

Corollary 4.3.2. Let X, and X5 be (k + 1)-simplices. Let q be nonnegative
integers. If q < k, then

Spec(LP(X, V, X;))=8pec(£P(X,)) U Spec(£1P(X,)).

Proof. Note that for a (k4 1)-simplex X, we have D;{Q = Ijxx = D,lcfl. There-

fore, L;” = £;P. By Theorem , the proof is done. O

Example 4.3.2. Given the simplicial complex X;
We observe that
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Then by Corollary ,
Spec(Ly"(X))=Spec(L£5" (X)) U Spec(£3°(X,)) U Spec(£,°(Xs)).
By Proposition ,

Spec(L3(X))={4,0,0,0} U {4,0,0,0} U {4,0,0,0}={4,4,4,0,0,0,0,0,0,0,0,0}.



CHAPTER V
APPLICATIONS OF NORMALIZED HODGE
E-LAPLACIAN MATRIX ON RAMDOM WALKS

In 2019, Schaub et al [16] defined a normalized Hodge 1-Laplacian matrix and
applied the matrix on a random walk on edges. However, they consider simplicial
complxes together with their given directions. The way we define and consider a
random walk on a normalized Hodge 1-Laplacian matrix is much simpler.

Let A = (a;;) be a matrix with real entries. Define |A| = (|a,;|) to guarantee
that all entries of A are nonnegative. The matrix |L,| is well-known as a signless
k-Laplacian. We next define a random walk normalized Hodge k-Laplacian matriz.
Then use the sign | - | to do an application on random walks which means that
we abandon the directions of a given simplicial complex. Note that, by now, all

considered simplicial complexes are connected, i.e. there is a path connecting every

pair of vertices.

5.1 Random Walk Normalized Hodge k-Laplacian Matrix

Definition 5.1.1. Let O}, be a space of k-chain of simplicial complex X and X* a
set of all k-simplices on X. Let B, be a matrix representation of a boundary map
0, : C;, = Ci_;. The random walk normalized Hodge k-Laplacian matrix
LY is defined by
rw —1/2 1/2 _
L = D6 DA = Dl B BL,, + BIByDyy,

where D, ,; and D}, are | X*| x | X*| diagonal matrices defined by, for o, 7 € X*,

(Diy1)or = max{dego,1} if 0 = 7 and 0 otherwise, and Dy}, is the inverse of
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D, . Moreover, we define
rw(up) . -1 T
L = D1 Bry1Brys

£ — BIB D,

Remark 6. Recall that a random walk normalized Laplacian matrix £™ = D~!L

1
where (DY), = 7 if d; # 0 and 0 otherwise.
' 1
Let (Dj.;)"* be a diagonal matrix defined by (Dj_ ).+ = dog if o =7,
o

deg # 0 and 0 otherwise.

Similar to Remark @, we can show that
D Ly = (Dj) ' Ly
for any k. Then,
LY = Di'B,Bf + BIB,D; = D~'L = £*

since D] = D and B, = 0. This shows that £} is a generalization of £™.

Lemma 5.1.1. All eigenvalue (with their multiplicities) of £, are the same with

all eigenvalues (with their multiplicities) of 7"

Proof. Note that £} = D~Y2£, D'/? and D'/? is an invertible matrix. Then, the
proof is done by Proposition . ]

For a random walk on graph, the word walk means walking from vertex to vertex
through edge. The following example gives us a direction to define a random walk

on a simplicial complex.

Example 5.1.1. From the following picture, we consider a process to move from the
edge [1,2] to [4,5]. We observe that we can move [1,2] to [4,5] through vertex or
move through triangle in each step. If intermediary simplices are vertices, one of
paths is

2) 3 4
[1,2] — [2,3] — [3,4] — [4,5].
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If intermediary simplices are triangles, one of paths is

[1,2,3] (2,3,4] (3,4,5]
1,2] ———[2,3] ——— [3,4] —— [4,5].

5.2 Upper k-walk and Lower k-walk

From the idea of Example , we define an upper k-walk and a lower k-walk as

follow.

Definition 5.2.1. A finite sequence of distinct k-simplices {0, 0y, ..., 0, } of path
stating at oy, ending at o, and o; ~, 0, for all ¢ whose intermediaries between
two successive simplices are (k + 1)-simplices is called an upper k-walk. The

simplex oy, is called a root.

Definition 5.2.2. A finite sequence of distinct k-simplices {0, 0y, ..., 0, } of path
stating at o, ending at o,, and o; ~; 0;,; for all i whose intermediaries between
two successive simplices are (k—1)-simplices is called a lower k-walk. The simplex

0, is called a root.

Analogously to a random walk on graph, we call a randomly-process of walking
from the root simplex to another simplex a random upper/lower k-walk. Remark
that we do not allow states at time ¢t and t+ 1 to be the same. Moreover, since the
random upper/lower k-walk picks one of adjacency simplices of the current state

simplex each step randomly, random upper/lower k-walk is a Markov chain.

Ezample 5.2.1. From the following pictures, we can find an upper/lower k-walks

(not need to be unique) from the red simplex to the blue one.

3]
(a) A lower 1-walk [1,3] — [3,4] but there is no an upper 1-walk.
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~@

(a) 5 (c)
(b)

(2,3]
(b) A lower 2-walk [1,2,3] — — [2,3,5] and
[1725374] [2a374a5]
an upper 2-walk [1,2,3] ——— [2,3,4] —— [2, 3, 5].

(c¢) There is no a lower 2-walk and an upper 2-walk on this simplicial complex.

Theorem 5.2.1. Let X be a simplicial complex. Suppose that there exists an upper

k-walk on X. Then the matriz

u 1 rw(up)
Mkp: k—_’_l(lI\X’V\_’("k )

is a transition matriz of a random upper k-walk on X.

Proof. Let X be a simplicial complex. Let X* = {0,,0,,...,0,} be the set of
k-simplices on X and n = |X*|. For each (k + 1)-simplex & which is a coface of
k-simplex o, since & has k + 2 k-faces, there are k + 1 simplices which are upper
adjacent to o. Therefore, if we fix two distinct upper adjacent simplices o, and o,

a transition probability of upper k-walk from state o; at time ¢ to state o; at time
1 1
————— Claim M,* = (M, here M., = —— ———
(k+1)dego; M (M;), where M (k+1)dego;

o; and 0 otherwise. Note that M;; = 0 since we do not allow states at

u

time ¢ and ¢ + 1 to be the same. Let 4,5 € {1,2,...,n} be such that ¢ # j. Then



26

.. = (. Note that - = 1), y hemar . onsider
1,);; = 0. Note that (Dj,,) " L{* = D;!, L' by Remark f|. Consid

n

1 rw(up)
Mij = k—-|—1(|0 - 'Ck e |)'L]
1 1 qu
= k—_H(le-&l-lLkaij

1 / — u
- k+1<|(Dk+1) 1Lkp|)ij
1 / — / / — u ey
A (I(Dhs1) " Diyr + (D) A5 (by Proposition )
1 / — u
- k_|_1'(|(Dk+1> lAlchij' (5.1)

If o, is not upper adjacent to ¢, then (A;");; = 0. From (@), M = 0.

Suppose that o; is upper adjacent to o; and 0;,0; € 95. Then (A4;"),; =

sgn(o;, 07 )sgn(o;, 05) and deg o # 0. From (@),

M = (D) A, )
1 |sen(o;,0)sgn(o;,00)
T k41 deg o,
.-
(k+1)dego;

and the proof is done. O

From Theorem , for £ =0,

1
up __ __r _ _LSTW
My" = ﬁ(”ﬂ/\ o) = Iy — L™ =P,
where P is the matrix stated in Proposition . That is we can consider M,"
as a generalization of a transition matrix of random walk on graphs.
Unfortunately, ll],;w(down) is not suitable for applying to a random lower k-walk.

We use a term of Hodge k-Laplacian matrix L%‘ﬁn instead.

Theorem 5.2.2. Let X be a simplicial complex and X* the set of all k-simplices
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in X. For each k, define a |X*| x |X*| diagonal matriz D, by, for o,7 € X*,

1

o’edo

if o =T;

0, otherwise.

Suppose that there exists a lower k-walk on X. Then the matrix
M = Doy (ILE | = (k + 1)1 x))

is a transition matrixz of a random lower k-walk on X.

Proof. Let X be a simplicial complex and k a nonnegative integer. Let X* =

{0,,04,...,0,} be the set of k-simplices on X and n = |X*|. Define m, =
Z dego’ | — (k+1). Note that, for a k-simplex o, if we fix (k — 1)-simplex

o’€do
o’ € Jo, then deg o’ is a number of cofaces of ¢’ including o. Since the number of

(k—1)-facesof cisk+1, m, = ( Z dego’ | — (k+1) is counting the number
o’€do
of lower adjacent simplices of o. Therefore, if we fix two distinct lower adjacent

simplices o; and o, a transition probability of lower k-walk from state o; at time ¢

1
. Claim M{o¥™ = (M), where M;; =

to state o; at time t + 1 is Mij —
m m

if 0; ~; 0; and 0 otherwise. Note that M;; = 0 since we do not allow states at
time ¢t and ¢ + 1 to be the same. Let 4,5 € {1,2,...,n} be such that ¢ # j. Then
(1,,);; = 0. Consider
M;; = (D (JL5™ = (k + D1,))i;
= (D1 (I(k + 1)1, + A — (k+1)1,,)); (by Proposition )
= (IDgy1 A7)y (5.2)
If o; is not lower adjacent to o, then (A$™),. = 0. By (@), M,. = 0.

L)
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Suppose that o; ~; 0;, then

Mij = (|Ek+1A%OWH|)ij
1

x sgn((o; No;),d0;)sgn((o; No;),00;)

= —. ]

Ezrample 5.2.2. From Example , a Markov chain of a random upper 1-walk

and a Markov chain of a random lower 1-walk on the simplicial complex (b) are

shown as follow:

M = (1 — £707)

[1,2] [1,3) [1,4] [2,3] [2,4] [3,4 [2,5] [3,5] [4,5]

12/ 0 1/4 1/4 1/4 1/4 0 0 0 0
1,3]] 1/4 0 1/4 1/4 0 1/4 0 0 0
14| 1/4 1/4 0 0 1/4 1/4 0 0 0
23] 1/6 1/6 0 o 1/6 1/6 1/6 1/6 0
T 24|16 0 1/6 1/6 0 1/6 1/6 0 1/6
34 0 1/6 1/6 1/6 1/6 0 0 1/6 1/6
2,5 0 0 0 1/4  1/4 0 0 1/4 1/4
3,5 © 0 0 1/4 0 1/4 1/4 0 1/4
4,5\ 0 0 0 0 1/4 1/4 1/4 1/4 0



Mfiown = Ez(lLilown’ - QI\E\)
1,2] [1,3] [1,4] [2,3] [2,4] [3,4] [2,5] [3,5] [4,5]

12/ 0 1/5 1/5 1/5 1/5 0 1/5 0 0
13/l15 o 1/5 1/5 0 1/5 0 1/5 0
14| 15 15 0 0o 1/5 1/5 0 0 1/5
23] 1/6 1/6 0 o 1/6 1/6 1/6 1/6 0
- 24|16 0 1/6 1/6 0 1/6 1/6 0  1/6
34 0o 1/6 1/6 1/6 1/6 0 0 1/6 1/6
25| 1/5 0 0o 1/5 1/5 0 0 1/5 1/5
351 0o 1/5 o0 1/5 0 1/5 1/5 0 1/5
[4,5) \ 0 o 1/5 0 1/5 1/5 1/5 1/5 0




CHAPTER VI
CONCLUSION

6.1 Conclusion and Discussion

Let X be a simplicial complex. Recall the definitions of a Hodge k-Laplacian

matrix and a normalized Hodge k-Laplacian matrix as followed;

Lk > Bk—HBZ:—H + Bisz

and
~1/2 —1/2 1/2 1/2
Ly = Dk-i—{ Bk+1B£+1Dk+{ + DkilBlz:Bkaip
where D,lcfl and D;i{z are | X*| x | X*| diagonal matrices defined by (Dllffl)ﬂ =

max{y/dego,1} if o = 7 and 0 otherwise, and D;i/f is the inverse of D,ifl.

Since 1-stucture of any simplicial complexes is a graph, a Hodge k-Laplacian
matrix on simplicial complexes is a generalization of a Laplacian matrix on graphs
and a normalized Hodge k-Laplacian matrix on simplicial complexes is a general-
ization of a normalized Laplacian matrix on graphs. These two matrices are Hodge
Laplacian matrix and this fact leads us to many properties of them which could
be applied for many applications. Moreover, we obtain that the smallest eigen-
value of both Hodge k-Laplacian and normalized Hodge k-Laplacian on a simplicial
complex can indicate whether the homology (or cohomology) on a given simplicial
complex is trivial. Finally, we obtain a general from of a Markov chain of random

walks on graphs using the matrix that we defined.
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6.2 Further Works

Let X be a simplicial complex and R a commutative ring. Let w : X — R
satisfying that for any o, 05 in X such that oy is a face of o5, then w(oy) | w(oy).
Then a pair (X, w) is called a weighted simplicial complex. In this work, we only
define a Hodge k-Laplacian matrix and a normalized Hodge k-Laplacian matrix on
unweighted simplicial complex. We suggest the readers to general our results to
work on weighted simplicial complexes. Moreover, an interesting point is to check
that whether Theorem and Theorem (iv) hold for a weighted homology
on weighted simplicial complex. For more details in weighted simplicial complex
and weighted homology, see [13] and [22].

Recall that from Lemma (ii), the composition is called a Hodge decom-
position which has many applications in data analysis, ranking, game theory and

others, see [11]. From Theorem (iii), we obtain the decomposition

1/2 -1/2 n
tm(Dy/, BY) © Ker(£,) © (D} Byyy) = R™,

where n is the number of k-simplices of a given simplicial complex. We recommend

to do some applications from this result.
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