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Let 𝑋 be a simplicial complex, 𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1 a boundary map on 𝑋 and 𝐵𝑘 a

matrix representation of 𝜕𝑘. A Hodge 𝑘-Laplacian matrix on simplicial complexes

is defined by 𝐿𝑘 = 𝐵𝑘+1𝐵𝑇
𝑘+1 + 𝐵𝑇

𝑘 𝐵𝑘 which is a generalization of a Laplacian

matrix 𝐿 on graphs. In this work, we study a Hodge 𝑘-Laplacian matrix and then

generalize a normalized Laplacian matrix ℒ on graphs to a normalized Hodge 𝑘-

Laplacian matrix ℒ𝑘 (i.e. ℒ0 = ℒ) on simplicial complexes. This matrix is also

a Hodge Laplacian matrix and this fact leads some useful properties. We also

obtain that the smallest eigenvalue of a normalized Hodge 𝑘-Laplacian indicates

whether the homology (or cohomology) on a given simplicial complex is trivial. We

demonstrate eigenvalues of ℒ𝑘 for some special cases and study a relation between

its eigenvalues and 𝑞-wedge sum of simplices. We finally apply this matrix for

random walks on simplicial complexes.
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CHAPTER I

INTRODUCTION

There are many matrices in graph theory which represent some structures of

graphs. Two of them, which are widely studied, are called Laplacian matrix

𝐿 = (𝑙𝑖𝑗) which is defined by

𝑙𝑖𝑗 =

⎧{{{
⎨{{{⎩

𝑑𝑖 if 𝑖 = 𝑗,

−1 if 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺),

0 otherwise,

and normalized Laplacian matrix ℒ = (𝑙′𝑖𝑗) which is defined by

𝑙′𝑖𝑗 =

⎧{{{
⎨{{{⎩

1 if 𝑖 = 𝑗,

− 1
√𝑑𝑖𝑑𝑗

if 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺),

0 otherwise.

Some properties of graphs can be shown by eigenvalues of these matrices even

though we know only their approximations. This is a powerful tool for applying in

quantum physics, chemical quantum, and others. To study in this topic, spectral

graph theory [4] introduced by F.R.K. Chung is recommended.

Every graph can be viewed as a 1-dimensional structure of the object called

a simplicial complex. For a given simplicial complex, the Hodge Laplacian, also

known as the Laplace–de Rham operator, is defined by

Δ𝑘 = 𝜕𝑘+1𝜕∗
𝑘+1 + 𝜕∗

𝑘𝜕𝑘 = 𝜕𝑘+1𝛿𝑘+1 + 𝛿𝑘𝜕𝑘 = 𝛿∗
𝑘+1𝛿𝑘+1 + 𝛿𝑘𝛿∗

𝑘,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

where 𝜕𝑛 ∶ 𝐶𝑛 → 𝐶𝑛−1 is a boundary map and 𝛿𝑛 is its dual map. This operator

was first introduced to study some materials on manifolds, for more details, we

refer the readers to study the topic Hodge theory. Its matrix representation whose

eigenvalues can indicate some properties of simplicial complexes is defined for their

𝑘-dimensional structure namely Hodge 𝑘-Laplacian matrix. This matrix is defined

by

𝐿𝑘 = 𝐵𝑘+1𝐵𝑇
𝑘+1 + 𝐵𝑇

𝑘 𝐵𝑘,

where 𝐵𝑘 is a matrix representation of a boundary map 𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1. However,

the Hodge Laplacian operator or Hodge Laplacian matrix is quite difficult to study

especially for who is not familiar with tools in algebraic topology and differentiable

manifolds.

In 2015, L.H. Lim [11] simplified the definition of Hodge 𝑘-Laplacian matrix to

be under a condition in linear algebra. Let 𝐴 be an 𝑚 × 𝑛 real matrix and 𝐵 an

𝑛 × 𝑝 real matrix such that 𝐴𝐵 = 0. We call the matrix

𝐴∗𝐴 + 𝐵𝐵∗

a Hodge Laplacian matrix. As a composition of boundary maps is zero, Hodge

𝑘-Laplacian matrix can be viewed simply as a Hodge Laplacian matrix. Being a

Hodge Laplacian matrix, this matrix can be applied in many fields, for example,

to study random walks, ranking theory, data science and others.

If we consider a simplicial complex on its 0-dimensional structure and 1-dimensional

structure (i.e. all of its points and all of its edges), then a Hodge 0-Laplacian matrix

and a Laplacian matrix are coincide. In other words, a Hodge 𝑘-Laplacian matrix

on simplicial complexes is a generalization of a Laplacian matrix on graphs. This

fact leads us to define a normalized Hodge 𝑘-Laplacian matrix on simplicial com-

plexes which is a generalization of a normalized Laplacian matrix on graphs. We

also need a condition of being a Hodge Laplacian matrix to obtain some properties.

In 1993, F. Chung [5] defined a normalized Laplacian as 𝜕𝛿 + 𝜌𝛿𝜕, where 𝜌
is the density of a given simplicial complex. In 2010, C. Taszus [19] defined a



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Figure 1.1: 1-dimensional structure of a simplicial complex can be considered as a
graph.

normalized Laplacian matrix as 𝐷−1/2𝐿𝑘𝐷−1/2, where 𝐷 is a diagonal matrix of

𝐿𝑘. In 2011, D. Horak [9] defined the normalized combinatorial Laplace operator

in order to force an upper bound of the maximal eigenvalue of the operator to

be a constant. In 2018, M. Schaub and others [16] defined a normalized Hodge

1-Laplacian to study random walks on edges. However, matrix representations of

these operators and the matrices defined above are not Hodge Laplacian matrices.

In Chapter 2, we state some preliminaries in graph theory, linear algebra, al-

gebraic topology and Hodge theory. We start Chapter 3 with analyzing Hodge

𝑘-Laplacian matrix on a simplicial complex and study the relation between its

eigenvalues and homology on the simplicial complex. We give a proof of a well-

known fact that the smallest eigenvalue of 𝐿𝑘 can indicate whether the 𝑘th homol-

ogy and the 𝑘th cohomology on a given simplicial complex are trivial. In Chapter

4, we define a normalized Hodge 𝑘-Laplacian matrix on a simplicial complex for

any non-negative integer 𝑘 which is a Hodge Laplacian matrix. Using some mate-

rial in linear algebra and this fact, we obtain some properties of the matrix that we

defined. We demonstrate eigenvalues of this matrix for some special cases of sim-

plicial complexes. We obtain that the smallest eigenvalue of ℒ𝑘 can also indicate

whether the 𝑘th homology and the 𝑘th cohomology on a given simplicial complex

are trivial. Moreover, instead of finding eigenvalues of simplicial complexes, we

study a method to find eigenvalues of the matrix by considering the simplicial

complex as a wedge sum of simplices. Finally, in Chapter 5, we apply our matrix

to be a transtion matrix on random walks for a simplicial complex.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

In this chapter, we state some basic knowledge in linear algebra, graph theory,

Hodge theory and algebraic topology which are needed in the next three chapters.

2.1 Linear Algebra

For this section, we state some basic tools in linear algebra. For more details, we

recommend [17].

Definition 2.1.1. Let 𝑇 ∶ 𝑉 → 𝑉 be a linear operator on a vector space 𝑉 over a

field 𝔽. A scalar 𝜆 ∈ 𝔽 is called eigenvalue for 𝑇 if there is a non-zero 𝑣 ∈ 𝑉 such

that 𝑇 (𝑣) = 𝜆𝑣. A non-zero vector 𝑣 such that 𝑇 (𝑣) = 𝜆𝑣 is called an eigenvector

corresponding to the eigenvalue 𝜆. For each 𝜆 ∈ 𝔽, define

𝑉𝜆 = {𝑣 ∈ 𝑉 ∣ 𝑇 (𝑣) = 𝜆𝑣} = Ker(𝑇 − 𝜆𝐼𝑉 ).

If 𝜆 is not an eigenvalue of 𝑇 , then 𝑉𝜆 = {0}; otherwise, we call 𝑉𝜆 the eigenspace

corresponding to the eigenvalue 𝜆. Any non-zero vector in 𝑉𝜆 is an eigenvector

corresponding to 𝜆.

Remark that we can define an eigenvalue, an eigenvector and an eigenspace

of matrix in analogous way, i.e., for any matrix 𝐴 ∈ 𝑀𝑛(𝔽), a scalar 𝜆 ∈ 𝔽 is

called eigenvalue for 𝐴 if there is a non-zero 𝑣 ∈ 𝔽𝑛 such that 𝐴𝑣 = 𝜆𝑣. A

non-zero vector 𝑣 such that 𝐴𝑣 = 𝜆𝑣 is called an eigenvector corresponding to

the eigenvalue 𝜆. For each 𝜆 ∈ 𝔽, define

𝑉𝜆 = {𝑣 ∈ 𝔽𝑛 ∣ 𝐴𝑣 = 𝜆𝑣}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

If 𝜆 is not an eigenvalue of 𝐴, then 𝑉𝜆 = {0}; otherwise, we call 𝑉𝜆 the eigenspace

corresponding to the eigenvalue 𝜆. Any non-zero vector in 𝑉𝜆 is an eigenvector

corresponding to 𝜆.

Let 𝐴 be an 𝑛 × 𝑛 matrix in 𝑀𝑛(ℝ) and 𝑉 a vector space of dimensional 𝑛.

Define 𝐿𝐴 ∶ 𝑉 → 𝑉 to be an operator such that 𝐿𝐴(𝑣) = 𝐴𝑣. It is easy to check

that 𝐿𝐴 is a linear operator and an eigenvalue (eigenvector, eigenspace) of a matrix

𝐴 is an eigenvalue (eigenvector, eigenspace) of 𝐿𝐴. Thus, any results for a linear

operator can be transferred analogously to results for a matrix as well. We next

state the results in term of a linear operator and let readers keep in mind that

these results hold for any matrix in 𝑀𝑛(ℂ).
In this work, for any 𝑥, 𝑦 ∈ ℂ𝑛, the inner product of x and y is defined by

⟨𝑥, 𝑦⟩ =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖.

Moreover, for each 𝑥 ∈ ℂ𝑛, we write

‖𝑥‖ = √⟨𝑥, 𝑥⟩.

Definition 2.1.2. Let 𝑉 be a vector space.

(i) We say that 𝑢, 𝑣 ∈ 𝑉 are orthogonal if ⟨𝑢, 𝑣⟩ = 0 and write 𝑢 ⟂ 𝑣.

(ii) If 𝑥 ∈ 𝑉 is orthogonal to every element of a subset 𝑊 of 𝑉 , then we say that

𝑥 is orthogonal to 𝑊 and write 𝑥 ⟂ 𝑊 .

(iii) if 𝑈, 𝑊 are subsets of 𝑉 and 𝑢 ⟂ 𝑤 for all 𝑢 ∈ 𝑈 and all 𝑤 ∈ 𝑊 , then we

say that 𝑈 and 𝑊 are orthogonal and write 𝑈 ⟂ 𝑊 .

(iv) The set of all 𝑥 ∈ 𝑉 orthogonal to a set 𝑊 is denoted by 𝑊 ⟂ and called the

orthogonal complement of 𝑊 :

𝑊 ⟂ = {𝑥 ∈ 𝑉 ∣ 𝑥 ⟂ 𝑊}.
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Proposition 2.1.1. Let 𝑇 be a linear operation on ℂ𝑛. Then there is a unique

linear operation 𝑇 ∗ on 𝑉 satisfying

⟨𝑇 𝑥, 𝑦⟩ = ⟨𝑥, 𝑇 ∗𝑦⟩ for all 𝑥, 𝑦 ∈ ℂ𝑛.

Definition 2.1.3. The linear operation 𝑇 ∗ satisfying Proposition 2.1.1 is called

the adjoint of 𝑇 .

Theorem 2.1.2. Let 𝑇 , 𝑆 be a linear operator on 𝑉 . Then

(i) 𝑇 ∗∗ = 𝑇 ;

(ii) (𝑇 + 𝑆)∗ = 𝑇 ∗ + 𝑆∗ ;

(iii) (𝑇 𝑆)∗ = 𝑆∗𝑇 ∗;

(iv) If 𝑇 is invertible, then 𝑇 ∗ is also invertible and (𝑇 ∗)−1 = (𝑇 −1)∗.

Proof. Let 𝑇 , 𝑆 be linear operators on 𝑉 and 𝑥, 𝑦 ∈ 𝑉 . Then

⟨𝑥, 𝑇 ∗∗𝑦⟩ = ⟨𝑇 ∗𝑥, 𝑦⟩ = ⟨𝑥, 𝑇 𝑦⟩.

By Proposition 2.1.1, 𝑇 ∗∗ = 𝑇 . Consider

⟨𝑥, (𝑇 +𝑆)∗𝑦⟩ = ⟨(𝑇 +𝑆)𝑥, 𝑦⟩ = ⟨𝑇 𝑥, 𝑦⟩+⟨𝑆𝑥, 𝑦⟩ = ⟨𝑥, 𝑇 ∗𝑦⟩+⟨𝑥, 𝑆∗𝑦⟩ = ⟨𝑥, (𝑇 ∗+𝑆∗)𝑦⟩.

This implies (𝑇 + 𝑆)∗ = 𝑇 ∗ + 𝑆∗. Since

⟨𝑥, (𝑇 𝑆)∗𝑦⟩ = ⟨𝑇 𝑆𝑥, 𝑦⟩ = ⟨𝑆𝑥, 𝑇 ∗𝑦⟩ = ⟨𝑥, 𝑆∗𝑇 ∗𝑦⟩,

(𝑇 𝑆)∗ = 𝑆∗𝑇 ∗. Suppose that 𝑇 is invertible. Then by (iii) 𝑇 ∗(𝑇 −1)∗ = (𝑇 −1𝑇 )∗ =
𝐼∗ = 𝐼 and (𝑇 −1)∗𝑇 ∗ = (𝑇 𝑇 −1)∗ = 𝐼∗ = 𝐼 . Therefore (𝑇 ∗)−1 = (𝑇 −1)∗.

Definition 2.1.4. Let 𝑇 be a linear operation on ℂ𝑛. Then 𝑇 is said to be

self-adjoint if 𝑇 ∗ = 𝑇 .
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Recall that 𝐿𝐴 is a linear operator on ℂ𝑛 such that 𝐿𝐴(𝑥) = 𝐴𝑥, where 𝑥 ∈ ℂ𝑛.

Since

⟨𝐿𝐴(𝑥), 𝑦⟩ = ⟨𝐴𝑥, 𝑦⟩ = (𝐴𝑥)𝑇 𝑦 = 𝑥𝑇 𝐴𝑇 𝑦 = ⟨𝑥, 𝐴𝑇 𝑦⟩,

we get

(𝐿𝐴)∗ = 𝐿𝐴∗,

where 𝐴∗ = 𝐴𝑇 .

Definition 2.1.5. Let 𝐴 ∈ 𝑀𝑛(ℂ). Then 𝐴 is said to be self-adjoint if 𝐴∗ =
𝐴𝑇 = 𝐴. In particular, any real symmetric matrix is self-adjoint.

Proposition 2.1.3. Let 𝐴 ∈ 𝑀𝑛(ℂ) be a self-adjoint matrix. Then

(i) Any eigenvalue of 𝐴 is real.

(ii) If 𝑣 ∈ ℂ𝑛 is an eigenvector of 𝐴 corresponding to an eigenvalue 𝜆, then

𝑣 ∈ ℂ𝑛 is an eigenvector of 𝐴∗ corresponding to an eigenvalue 𝜆.

(iii) The eigenspaces associated with distinct eigenvalues are orthogonal.

Proof. To prove the first statement, let 𝜆 be an eigenvalue of 𝐴 and 𝑣 be an

eigenvector corresponding to 𝜆. Then

𝜆⟨𝑣, 𝑣⟩ = ⟨𝜆𝑣, 𝑣⟩ = ⟨𝐴𝑣, 𝑣⟩ = ⟨𝑣, 𝐴∗𝑣⟩ = ⟨𝑣, 𝐴𝑣⟩ = ⟨𝑣, 𝜆𝑣⟩ = 𝜆⟨𝑣, 𝑣⟩.

Since 𝑣 ≠ 0, this shows that 𝜆 = 𝜆 that is 𝜆 is a real number. To shows the second

statement, we first note that for any self-adjoint matrix 𝐵 ∈ ℂ𝑛 and 𝑥 ∈ ℂ𝑛,

‖𝐵𝑥‖2 = ⟨𝐵𝑥, 𝐵𝑥⟩ = ⟨𝐵∗𝑥, 𝐵∗𝑥⟩ = ‖𝐵∗𝑥‖2

which implies that ‖𝐵𝑥‖ = ‖𝐵∗𝑥‖. Since

(𝐴 − 𝜆𝐼)∗ = 𝐴∗ − 𝜆𝐼∗ = 𝐴 − 𝜆𝐼,
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𝐴 − 𝜆𝐼 is self-adjoint. Then by the note,

‖(𝐴∗ − 𝜆𝐼)𝑣‖ = ‖(𝐴 − 𝜆𝐼)∗𝑣‖ = ‖(𝐴 − 𝜆𝐼)𝑣‖ = 0.

Therefore, 𝑣 is an eigenvector corresponding to eigenvalue 𝜆. For the last state-

ment, let 𝜆 and 𝜇 be two distinct eigenvalues of 𝐴. Note that 𝜆 and 𝜇 are real

number by (i). Let 𝑢 and 𝑣 be eigenvectors corresponding to 𝜆 and 𝜇, respectively.

Then by (ii), 𝐴∗𝑣 = 𝜇𝑣 and hence

𝜆⟨𝑢, 𝑣⟩ = ⟨𝜆𝑢, 𝑣⟩ = ⟨𝐴𝑢, 𝑣⟩ = ⟨𝑢, 𝐴∗𝑣⟩ = ⟨𝑢, 𝜇𝑣⟩ = 𝜇⟨𝑢, 𝑣⟩ = 𝜇⟨𝑢, 𝑣⟩.

Since 𝜆 ≠ 𝜇, we have ⟨𝑢, 𝑣⟩ = 0 that is 𝑢 ⟂ 𝑣.

We now introduce an efficient tool for studying an eigenvalue problem called

Rayleigh’s quotient. To study more in this topic, [12] is recommended.

Definition 2.1.6. Let 𝐴 be an 𝑛 × 𝑛 real symmetric matrix. The function

Rayleigh’s quotient 𝑅 is defined by

𝑅(𝐴, 𝑥) = ⟨𝑥, 𝐴𝑥⟩
⟨𝑥, 𝑥⟩ = 𝑥𝑇 𝐴𝑥

𝑥𝑇 𝑥 ∈ ℝ,

for any 𝑥 ∈ ℝ𝑛 − {0}.

Lemma 2.1.4. Let 𝐴 be an 𝑛 × 𝑛 real symmetric matrix and 𝜆𝑛 ≤ ⋯ ≤ 𝜆2 ≤ 𝜆1

be eigenvalues of 𝐴. Then min
𝑥∈ℝ𝑛−{0}

𝑅(𝐴, 𝑥) = 𝜆𝑛.

Proof. We first note that

min
𝑥

𝑅(𝐴, 𝑥) = min
‖𝑥‖=1

𝑅(𝐴, 𝑥).

Since 𝐴 is a symmetric matrix, 𝐴 = 𝑃 𝑇 𝐷𝑃 for some orthogonal matrix 𝑃 and a

diagonal matrix 𝐷. Note that ‖𝑃 𝑇 𝑥‖ = ‖𝑥‖. So, for any 𝑥 ∈ ℝ𝑛 − {0} such that

‖𝑥‖ = 1,

𝑅(𝐴, 𝑥) = 𝑥𝑇 𝐴𝑥 = (𝑃𝑥)𝑇 𝐷(𝑃𝑥).
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Let 𝑦 = 𝑃 𝑇 𝑥, we have

𝑅(𝐴, 𝑦) = 𝑅(𝐴, 𝑃 𝑇 𝑥) = (𝑃𝑃 𝑇 𝑥)𝑇 𝐷(𝑃𝑃 𝑇 𝑥) = 𝑥𝑇 𝐷𝑥 = 𝜆1𝑥2
1 + ⋯ + 𝜆𝑛𝑥2

𝑛.

Then, by choosing 𝑥 = (0, 0, … , 0, 1), we get min
‖𝑥‖=1

𝑅(𝐴, 𝑥) = 𝜆𝑛.

Let 𝑇 ∶ 𝑉 → 𝑊 . Define

Ker(𝑇 ) = {𝑣 ∈ 𝑉 ∣ 𝑇 𝑣 = 0} and Im(𝑇 ) = {𝑤 ∈ 𝑊 ∣ ∃𝑣 ∈ 𝑉 , 𝑇 𝑣 = 𝑤}.

Similarly, for a matrix 𝐴 ∈ 𝑀𝑛×𝑚(ℂ). Define

Ker(𝐴) = {𝑣 ∈ ℂ𝑚 ∣ 𝐴𝑣 = 0} and Im(𝐴) = {𝑤 ∈ ℂ𝑛 ∣ ∃𝑣 ∈ ℂ𝑚, 𝐴𝑣 = 𝑤}.

Note that Ker(𝐴) and Im(𝐴) that we defined are exactly Ker(𝐿𝐴) and Im(𝐿𝐴),
respectively, where 𝐿𝐴(𝑣) = 𝐴𝑣 for any 𝑣 ∈ ℂ𝑛.

Proposition 2.1.5. [11] Let 𝐴 ∈ 𝑀𝑛×𝑚(ℝ). Then the followings hold;

(i) Ker(𝐴∗𝐴) = Ker(𝐴),

(ii) Ker(𝐴∗) = Im(𝐴)⟂,

(iii) Im(𝐴∗) = Ker(𝐴)⟂.

(iv) ℝ𝑛 = Ker(𝐴) ⊕ Im(𝐴∗)

Proof. (i) It is clear that Ker(𝐴) ⊂ Ker(𝐴∗𝐴). Let 𝑥 ∈ ℝ𝑛 such that 𝐴∗𝐴𝑥 = 0.

Then,

‖𝐴𝑥‖2 = ⟨𝐴𝑥, 𝐴𝑥⟩ = ⟨𝑥, 𝐴∗𝐴𝑥⟩ = 0

which implies that 𝐴𝑥 = 0. Then 𝑥 ∈ Ker(𝐴). (ii) Let 𝑥 ∈ Ker(𝐴∗). Then

0 = ⟨𝐴∗𝑥, 𝑦⟩ = ⟨𝑥, 𝐴𝑦⟩
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for any 𝑦 ∈ ℝ𝑛 that is 𝑥 ∈ Im(𝐴)⟂. Let 𝑦 ∈ Im(𝐴)⟂. Then,

0 = ⟨𝑦, 𝐴𝑧⟩ = ⟨𝐴∗𝑦, 𝑧⟩

for any 𝑧 ∈ ℝ𝑛. Then 𝐴∗𝑦 = 0 that is 𝑦 ∈ Ker(𝐴∗). (iii) By (ii), Im(𝐴∗)⟂ =
Ker(𝐴∗∗) = Ker(𝐴) and then Im(𝐴∗) = Ker(𝐴)⟂. (iv) Consider ℝ𝑛 = Ker(𝐴) ⊕
Ker(𝐴)⟂ = Ker(𝐴) ⊕ Im(𝐴∗) by (iii).

Definition 2.1.7. Let 𝐴 and 𝐵 be square matrices. We say that 𝐴 is similar to

𝐵 if there is an invertible matrix 𝑃 such that 𝐵 = 𝑃𝐴𝑃 −1.

Proposition 2.1.6. Let 𝐴 and 𝐵 be square matrices such that 𝐴 is similar to 𝐵.

Then all eigenvalues of 𝐴 and 𝐵 with their multiplicities are equal.

Proof. Suppose that 𝐴 is similar to 𝐵 i.e. there exists an invertible matrix 𝑃 such

that 𝐵 = 𝑃𝐴𝑃 −1. Let 𝑣 be an eigenvector of 𝐵 corresponding to eigenvalue 𝜆.

Then, 𝜆𝑣 = 𝐵𝑣 = 𝑃𝐴𝑃 −1𝑣 and hence 𝜆(𝑃 −1𝑣) = 𝐴(𝑃 −1𝑣). This shows that

𝑃 −1𝑣 is an eigenvector of 𝐴 corresponding to eigenvalue 𝜆. Since 𝜆 is an arbitrary

eigenvalue of 𝐵, every eigenvalue of 𝐵 is an eigenvalue of 𝐴. Similarly, we can

show that every eigenvalue of 𝐴 is an eigenvalue of 𝐵.

Theorem 2.1.7. (Primary Decomposition) Let 𝑇 ∶ ℝ𝑛 → ℝ𝑛 be a linear operator.

Assume that the minimal polynomial 𝑚𝑇 (𝑥) can be written as

𝑚𝑇 (𝑥) = (𝑥 − 𝜆1)𝑚1 ⋯ (𝑥 − 𝜆𝑘)𝑚𝑘 ,

where 𝜆1, … , 𝜆𝑘 are distinct element in 𝔽. Define

𝑉𝑖 = Ker(𝑇 − 𝜆𝑖𝐼)𝑚𝑖 , 𝑖 = 1, … , 𝑘.

Then each 𝑉𝑖 is a nonzero, 𝑇 -invariant subspace of ℝ𝑛 and

ℝ𝑛 = 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑘.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

Lemma 2.1.8. Let 𝑇 ∶ 𝑉 → 𝑊 , 𝑆 ∶ 𝑊 → 𝑈 and 𝑅 ∶ 𝑈 → 𝑉 be bijective linear

maps on finite dimensional spaces. Then

Ker(𝑆𝑇 ) ≅ Ker(𝑇 ) ≅ Ker(𝑇 𝑅).

Proof. This follows from the fact that 𝑇 , 𝑆 and 𝑅 are injective.

Lemma 2.1.9. Let

𝑃 = ⎛⎜
⎝

𝐴𝑛×𝑛 O
O 𝐵𝑚×𝑚

⎞⎟
⎠

be a block matrix, where O is the zero matrix. Then 𝜆 is an eigenvalue of 𝑃 if and

only if 𝜆 is an eigenvalue of 𝐴 or 𝐵.

Proof. Suppose that 𝜆 be an eigenvalues of 𝐴 or 𝐵. Then

0 = det(𝐴 − 𝜆𝐼) det(𝐵 − 𝜆𝐼) = det(𝑃 − 𝜆𝐼). (2.1)

This shows that 𝜆 is an eigenvalue of 𝑃 . Conversely, suppose that 𝜆 be an eigen-

value of 𝑃 . Then by (2.1), det(𝐴 − 𝜆𝐼) = 0 or det(𝐵 − 𝜆𝐼) = 0 which implies that

𝜆 is an eigenvalue of 𝐴 or 𝐵.

2.2 Graph Theory

In this section, we briefly state some basic definitions in graph theory, see [21] for

more details.

Let 𝐺 = (𝑉 , 𝐸) be a graph of order 𝑛 with the vertex set 𝑉 (𝐺) = {𝑣1, 𝑣2, ..., 𝑣𝑛}
and the edge set 𝐸(𝐺). We simply write 𝑉 and 𝐸 instead of 𝑉 (𝐺) and 𝐸(𝐺) if 𝐺
is clear from the context. Let 𝑣𝑖 ∈ 𝑉 (𝐺). We said that 𝑣𝑖 is adjacent to 𝑣𝑗 if there

is an edge 𝑣𝑖𝑣𝑗 between them. We write 𝑣𝑖 ∼ 𝑣𝑗 to denote that 𝑣𝑖 is adjacent to 𝑣𝑗

and define the degree of 𝑣𝑖, denoted by deg 𝑣𝑖, to be the number of vertices which

are adjacent to 𝑣𝑖. The graph without loops and multiple edges between any pairs

of vertices is called a simple graph. A graph which contains no edge is called
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the trivial graph, otherwise it will be called a nontrivial graph. A vertex of

degree 0 is referred as an isolated vertex. A directed graph is a pair (𝑉 , 𝐸) of

disjoint sets together with two maps 𝐼 ∶ 𝐸 → 𝑉 and 𝑇 ∶ 𝐸 → 𝑉 assigning to every

edge 𝑒 an initial vertex 𝐼(𝑒) and a terminated vertex 𝑇 (𝑒), respectively. A graph

which is not a directed graph is called undirected graph. A graph together with

a function mapping each edge to a real number is called a weighted graph.

There are many matrices in graph theory which represent some structures of

graphs. Moreover, some properties of graph can be shown by eigenvalues of these

matrices. To study in this topic, spectral graph theory [4] which is introduced by

F. Chung, is recommended.

We first state definition of a simple matrix called adjacency matrix and then

use it to defines the others.

Let 𝐺 be a simple undirected graph of order n with a vertex set 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛}
and let 𝑑𝑖 be the degree of vertex 𝑣𝑖 for all 𝑖 ∈ {1, 2, ..., 𝑛}.

Definition 2.2.1. The adjacency matrix 𝐴 = 𝐴(𝐺) = (𝑎𝑖𝑗)𝑛×𝑛 of 𝐺 is defined

by

𝑎𝑖𝑗 =
⎧{
⎨{⎩

1 if 𝑣𝑖𝑣𝑗 ∈ 𝐸,

0 otherwise.

Definition 2.2.2. A degree matrix 𝐷 = 𝐷(𝐺) = (𝑑𝑖𝑗)𝑛×𝑛 is a diagonal matrix

whose entries are of vertex degrees of graph 𝐺, i.e., 𝑑𝑖𝑖 = 𝑑𝑖 and 𝑑𝑖𝑗 = 0 if 𝑖 ≠ 𝑗.

Definition 2.2.3. The Laplacian matrix 𝐿 = 𝐿(𝐺) = (𝑙𝑖𝑗)𝑛×𝑛 of 𝐺 is defined

by 𝐿 = 𝐷 − 𝐴 which can be written as

𝑙𝑖𝑗 =

⎧{{{
⎨{{{⎩

𝑑𝑖 if 𝑖 = 𝑗,

−1 if 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺),

0 otherwise.

Definition 2.2.4. The normalized Laplacian matrix ℒ = ℒ(𝐺) = (𝑙′𝑖𝑗)𝑛×𝑛 of

𝐺 is defined by ℒ = 𝐷− 1
2 𝐿𝐷− 1

2 where (𝐷− 1
2 )𝑖𝑖 = 1

√𝑑𝑖
if 𝑑𝑖 ≠ 0 and 0 otherwise.
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More precisely, ℒ can be written as

𝑙′𝑖𝑗 =

⎧{{{
⎨{{{⎩

1 if 𝑖 = 𝑗,

− 1
√𝑑𝑖𝑑𝑗

if 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺),

0 otherwise.

Definition 2.2.5. The random walk normalized Laplacian matrix ℒ𝑟𝑤 =
ℒ𝑟𝑤(𝐺) = (𝑙𝑟𝑤

𝑖𝑗 )𝑛×𝑛 of 𝐺 is defined by ℒ𝑟𝑤 = 𝐷−1𝐿 where (𝐷−1)𝑖𝑖 = 1
𝑑𝑖

if 𝑑𝑖 ≠ 0
and 0 otherwise. More precisely, ℒ𝑟𝑤 can be written as

𝑙𝑟𝑤
𝑖𝑗 =

⎧{{{
⎨{{{⎩

1 if 𝑖 = 𝑗 and deg 𝑣𝑖 ≠ 0,

− 1
deg 𝑣𝑖

if 𝑖 ≠ 𝑗 and 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺),

0 otherwise.

In this work, we consider only simple nontrivial undirected graphs. Then an

adjacency matrix, a Laplacian matrix and a normalized Laplacian matrix are then

real symmetric matrices and hence self-adjoint matrices. Therefore all eigenvalues

of 𝐴(𝐺), 𝐿(𝐺) and ℒ(𝐺) are real numbers for any graph 𝐺 throughout this work.

The Laplacian matrix (or Kirchhoff matrix) is a discrete version of of the Lapla-

cian operator in multivariable calculus. For a given graph 𝐺, the second smallest

eigenvalue of the Laplacian matrix is known as algebraic connectivity of the graph.

This eigenvalue can indicate whether the graph is connected. In fact, multiplicity

of zero as an eigenvalue of Laplacian matrix is the number of connected compo-

nents of graph.

Theorem 2.2.1. Let 𝐺 be a graph. The multiplicity of 0 as an eigenvalue of 𝐿(𝐺)
is the number of connected components of graph.

Proof. Note that for any square matrix 𝐴, the multiplicity of 0 as an eigenvalue

of 𝐴 is equal to dim(Ker(𝐴)) by Theorem 2.1.7. We first consider a case that 𝐺
is connected. Let 𝐺 be a connected graph with a vertex set {𝑣1, 𝑣2, … , 𝑣𝑛}. Let 𝑥
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be a nonzero vector such that 𝐿(𝑥) = 0. Then

0 = ⟨𝑥, 𝐿𝑥⟩ = ⟨𝑥, 𝐷𝑥 − 𝐴𝑥⟩ = ∑
𝑣𝑖∼𝑣𝑗,𝑖<𝑗

−2𝑥𝑖𝑥𝑗 + ∑
𝑖

𝑑𝑖𝑥2
𝑖 = ∑

𝑣𝑖∼𝑣𝑗,𝑖<𝑗
(𝑥𝑖 − 𝑥𝑗)2.

Since 𝐺 is connected, this shows that 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛. Therefore, the dimension

of Ker(𝐿) = 0 that is the multiplicity of eigenvalue 0 is 1.

Next, assume that a graph 𝐺 has connected components 𝐺1, 𝐺2, … , 𝐺𝑚. Then,

we can reindex vertices in 𝐺 and obtain that

𝐿(𝐺) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐿(𝐺1) O O O

O 𝐿(𝐺2) O O

⋮ ⋮ ⋱ ⋮
O O O 𝐿(𝐺𝑚)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where O denotes the zero matrix. Then

Ker(𝐿(𝐺)) = Ker(𝐿(𝐺1)) ⊕ Ker(𝐿(𝐺2)) ⊕ ⋯ ⊕ Ker(𝐿(𝐺𝑚)).

Since each 𝐺𝑖 is connected,

dim Ker(𝐿(𝐺)) =
𝑚

∑
𝑖=1

dim Ker(𝐿(𝐺𝑖)) = 𝑚.

Corollary 2.2.2. Let 𝐺 be a graph. The multiplicity of 0 as an eigenvalue of

ℒ(𝐺) is the number of connected components of graph.

Proof. Let 𝐺 be a graph. Assume that a 𝐺 has connected components 𝐺1, 𝐺2, … , 𝐺𝑚.

Note that ℒ = 𝐷−1/2𝐿𝐷−1/2. For each connected component 𝐺𝑖 of 𝐺, 𝐷−1/2(𝐺𝑖)
is an invertible matrix. Then by Proposition 2.1.8, Ker(𝐿(𝐺𝑖)) ≅ Ker(ℒ(𝐺𝑖)) for

each 𝑖. Therefore, dim Ker(𝐿(𝐺𝑖)) = dim Ker(ℒ(𝐺𝑖)). Similar to the proof of
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Theorem 2.2.1, we can obtain that

Ker(ℒ(𝐺)) = Ker(ℒ(𝐺1)) ⊕ Ker(ℒ(𝐺2)) ⊕ ⋯ ⊕ Ker(ℒ(𝐺𝑚)).

Then

dim Ker(ℒ(𝐺)) =
𝑚

∑
𝑖=1

dim Ker(ℒ(𝐺𝑖)) =
𝑚

∑
𝑖=1

dim Ker(𝐿(𝐺𝑖)) = 𝑚.

Definition 2.2.6. A simple graph in which each pair of distinct vertices are ad-

jacent is a complete graph. We denote the complete graph on 𝑛 vertices by

𝐾𝑛.

Figure 2.1: 𝐾4

Proposition 2.2.3. Let 𝐾𝑛 be a complete graph of order 𝑛. Then eigenvalues of

ℒ(𝐾𝑛) are 0 (with multiplicities 1) and 𝑛
𝑛 − 1 (with multiplicities 𝑛 − 1).

Proof. Let 𝑛 be a positive integer. Then the normalized Laplacian matrix of a

complete graph 𝐾𝑛 canbe written as

ℒ(𝐾𝑛) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − 1
𝑛 − 1 − 1

𝑛 − 1 ⋯ − 1
𝑛 − 1

− 1
𝑛 − 1 1 − 1

𝑛 − 1 ⋯ − 1
𝑛 − 1

− 1
𝑛 − 1 − 1

𝑛 − 1 1 ⋯ − 1
𝑛 − 1

⋮ ⋮ ⋮ ⋱ ⋮
− 1

𝑛 − 1 − 1
𝑛 − 1 − 1

𝑛 − 1 ⋯ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= − 1
𝑛 − 1[−𝑛𝐼𝑛 + 𝐽𝑛],

where 𝐼𝑛 is the 𝑛×𝑛 identity matrix and 𝐽𝑛 is the 𝑛×𝑛 all-ones matrix. Since 𝐾𝑛
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is connected, by Corollary 2.2.1, 0 is an eigenvalue of ℒ(𝐾𝑛) with multiplicities

1. Note that (1, 1, … , 1) is an eigenvector corresponding to eigenvalue 0. Let

𝜆 be a nonzero eigenvalue of ℒ(𝐾𝑛). Let 𝑣 be an eigenvector corresponding to

eigenvalue 𝜆. Then by Proposition 2.1.3, 𝑣 is orthogonal to (1, 1, … , 1). Therefore,

ℒ(𝐾𝑛)𝑣 = − 1
𝑛 − 1[−𝑛𝐼𝑛 +𝐽𝑛]𝑣 = 𝑛

𝑛 − 1𝑣. This shows that 𝑛
𝑛 − 1 is an eigenvalue

of ℒ(𝐾𝑛) with multiplicities 𝑛 − 1.

2.3 Algebraic Topology

In this section, we briefly introduce some materials in algebraic topology. As they

are quite abstract, we recommend [7] and [8] for the readers who are not familiar

with these objects.

2.3.1 Simplicial Complexes

Definition 2.3.1. The smallest convex set in Euclidean space ℝ𝑚 containing 𝑛+1
points 𝑣0, 𝑣1, … , 𝑣𝑛 ∈ 𝑉 such that 𝑣1 − 𝑣0, … , 𝑣𝑛 − 𝑣0 are linearly independent

is called 𝑛-simplex denoted by [𝑣0, 𝑣1, … 𝑣𝑛] and 𝑛 is called the dimension of

[𝑣0, 𝑣1, … 𝑣𝑛]. A subset of [𝑣0, 𝑣1, … 𝑣𝑛] of cardinality 𝑘 is called a (𝑘 − 1)-face

of [𝑣0, 𝑣1, … 𝑣𝑛] and the union of all (𝑛 − 1)-faces of [𝑣0, 𝑣1, … 𝑣𝑛] is called the

boundary of [𝑣0, 𝑣1, … 𝑣𝑛]. Note that for a 0-simplex we define (−1)-face to be

the empty set. See Figure 2.2 for examples.

Definition 2.3.2. A simplicial complex is a finite collection 𝑋 of simplices such

that

• Any face of a simplex from 𝑋 is also in 𝑋.

• The intersection of two simplices is a face of both simplices.

A dimension of a simplicial complex is defined to be the highest dimension

of simplices in 𝑋. If a simplicial complex 𝑋 has dimension 𝑘, we can call 𝑋
a simplicial 𝑘-complex to specify the dimension of 𝑋. We also let a subset
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𝑋𝑘 ⊂ 𝑋 be a set containing all 𝑘-simplices in 𝑋. Figure 2.3 is an example of

simplicial complexes but Figure 2.4 is not a simplicial complex.

For example, the set of vertices 𝑉 can be viewed as a set of 0-simplices 𝑋0 and

the set of edges 𝐸 can be view as a set of 1-simplices 𝑋1. In this work, all simplicial

complexes that we consider are supposed to be finite i.e. containing finite vertices.

In order to do a computation, we need to define an orientation of edges. For an

edge [𝑣𝑖, 𝑣𝑗] ∈ 𝐸, we simply choose the reference orientation of [𝑣𝑖, 𝑣𝑗] according

to increasing subscripts. For a higher dimensional simplices, the orientations are

defined base on the orientation of their edges.

In particular, an orientation of 𝑘-simplex 𝑆𝑘 (𝑘 > 0) is an equivalence class

of orderings of its vertices, where two orderings are equivalent if they differ by an

even permutation. For a convenience, we denote each 𝑘-simplex with [𝑣𝑖0
, … , 𝑣𝑖𝑘

]
where 𝑖𝑜 < 𝑖1 < ⋯ < 𝑖𝑘.

Figure 2.2: A 0-simplex, a 1-simplex, a 2-simplex and a 3-simplex.

Figure 2.3: A simplicial 3-complex.
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Figure 2.4: This object is not a simplicial complex.

Definition 2.3.3. If 𝜎, 𝜏 ∈ 𝑋𝑘 are both faces of the same (𝑘 + 1)-simplex, we

said that they are upper adjacent, denoted by 𝜎 ∼𝑢 𝜏 . If 𝜎, 𝜏 ∈ 𝑋𝑘 both have

a common face, we said that they are lower adjacent, denoted by 𝜎 ∼𝑙 𝜏 .

Example 2.3.1. Consider a simplicial complex in Figure 2.3. We obtain that

• [𝑣1, 𝑣2, 𝑣3] ∼𝑢 [𝑣2, 𝑣3, 𝑣4] as [𝑣1, 𝑣2, 𝑣3] and [𝑣2, 𝑣3, 𝑣4] are both faces of [𝑣1, 𝑣2, 𝑣3, 𝑣4];

• [𝑣5, 𝑣7] ∼𝑢 [𝑣7, 𝑣8] as [𝑣5, 𝑣7] and [𝑣7, 𝑣8] are both faces of [𝑣5, 𝑣7, 𝑣8];

• [𝑣7] ∼𝑢 [𝑣8] as [𝑣7] and [𝑣8] are both faces of [𝑣7, 𝑣8];

• [𝑣1, 𝑣4] ∼𝑙 [𝑣3, 𝑣4] as [𝑣1, 𝑣4] and [𝑣3, 𝑣4] have a common face [𝑣4];

• [𝑣1, 𝑣2, 𝑣3] ∼𝑙 [𝑣1, 𝑣3, 𝑣4] as [𝑣1, 𝑣2, 𝑣3] and [𝑣1, 𝑣3, 𝑣4] have a common face

[𝑣1, 𝑣3].

Definition 2.3.4. Let 𝑋 be a simplicial complex and 𝑘 be a nonnegative inte-

ger. Let 𝐶𝑘(𝑋) (or simply 𝐶𝑘) be the finite-dimensional vector space with real

coefficient, whose basis elements are the oriented simplices 𝑠𝑘
𝑖 ∈ 𝑋𝑘. An element

𝑐𝑘 ∈ 𝐶𝑘 is called a 𝑘-chain. More precise, 𝑐𝑘 = ∑𝑖 𝛼𝑖𝑠𝑘
𝑖 , where 𝛼𝑖 ∈ ℝ.

By the above definition, we can represent 𝑐𝑘 = ∑𝑖 𝛼𝑖𝑠𝑘
𝑖 ∈ 𝐶𝑘 with a vector

c = (𝛼1, … , 𝛼𝑛𝑘
)𝑇 , where 𝑛𝑘 = |𝑋𝑘|. Thus, 𝐶𝑘 is isomorphic to ℝ𝑛𝑘 , so we

determine a chain in 𝐶𝑘 as a vector in ℝ𝑛𝑘 through this work. Moreover, a change of

the orientation of the basis element 𝑠𝑘
𝑖 makes a change in the sign of the coefficient

𝛼𝑖. For a further works, we equip each 𝐶𝑘 with the standard 𝑙2 inner product

< 𝑐1, 𝑐2 >= 𝑐𝑇
1 𝑐2.
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This leads that each 𝐶𝑘 has the structure of finite-dimensional Hilbert space.

Definition 2.3.5. Let 𝑋 be a simplicial complex and 𝑘 be a nonnegative integer.

The dual space of 𝐶𝑘(𝑋), the set of linear map between 𝐶𝑘(𝑋) and ℝ, is called a

space of cochains denoted by 𝐶𝑘(𝑋) (or simply 𝐶𝑘) and elements in 𝐶𝑘 are called

𝑘-cochain.

Remark that we can view a chain 𝐶𝑘 as a free abelian group whose basis are

elements in 𝑋𝑘 and a cochain 𝐶𝑘 as a group of homomorphisms from 𝐶𝑘 to ℝ.

Since we consider only finite simplicial complexes, 𝐶𝑘 is finite dimensional for

each 𝑘. We have

dim(𝐶𝑘) = dim(ℒ(𝐶𝑘, ℝ)) = dim(𝐶𝑘) × dim(ℝ) = dim(𝐶𝑘) × 1 = dim(𝐶𝑘).

Hence, 𝐶𝑘 is isomorphic to 𝐶𝑘 for each 𝑘. Similarly to 𝐶𝑘, we can determine

elements 𝐶𝑘 as vectors in ℝ𝑛𝑘 , where 𝑛𝑘 = |𝑋𝑘|. We use this fact to work on ℝ𝑛𝑘

instead of 𝐶𝑘 through this work.

2.3.2 Boundary and Coboundary Maps

For each 𝑘 ≥ 0, we define a map 𝜕𝑘 ∶ 𝑋𝑘 → 𝑋𝑘−1 by

𝜕𝑘([𝑣0, 𝑣1, … , 𝑣𝑘]) =
𝑘

∑
𝑗=0

(−1)𝑗[𝑣0, 𝑣1, … , 𝑣𝑗−1, 𝑣𝑗+1, … , 𝑣𝑘].

It is obvious that this map is a linear map for each 𝑘. Hence, we can attend this

map linearly to each 𝐶𝑘.

Definition 2.3.6. For each 𝑘 ≥ 0, a map 𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1 defined on their basis

elements by

𝜕𝑘([𝑣0, 𝑣1, … , 𝑣𝑘]) =
𝑘

∑
𝑗=0

(−1)𝑗[𝑣0, 𝑣1, … , 𝑣𝑗−1, 𝑣𝑗+1, … , 𝑣𝑘]

is called a boundary map.
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We sometimes write 𝜕 or 𝜕∗ instead of 𝜕𝑘 if its domain is clear from the context

or the dimension of domain does not matter. Moreover, for a (𝑘 − 1)-simplex

𝜎 = [𝑣0, 𝑣1, … , 𝑣𝑗−1, 𝑣𝑗+1, … , 𝑣𝑘] which is a face of 𝑘-simplex 𝜎 = [𝑣0, 𝑣1, … , 𝑣𝑘],
we denote the sign of 𝜎 with respect to 𝜕𝜎 with sgn(𝜎, 𝜕𝜎) = (−1)𝑗. According to

Definition 2.3.1, we remark that we also use 𝜕𝜎 to denote the set of all (𝑘−1)-faces

of 𝜎.

Proposition 2.3.1. [8] The composition 𝐶𝑛
𝜕𝑛−→ 𝐶𝑛−1

𝜕𝑛−1−−→ 𝐶𝑛−2 is zero for any

𝑛 ≥ 2.

Proof. Let 𝜎 = [𝑣0, 𝑣1, … , 𝑣𝑛] ∈ 𝑋𝑛. Then

𝜕𝑛(𝜎) =
𝑛

∑
𝑖=1

(−1)𝑖[𝑣0, 𝑣1, ...., 𝑣𝑖−1, 𝑣𝑖+1, ..., 𝑣𝑛]

and

𝜕𝑛−1𝜕𝑛(𝜎) = 𝜕𝑛−1 (
𝑛

∑
𝑖=1

(−1)𝑖[𝑣0, 𝑣1, ...., 𝑣𝑖−1, 𝑣𝑖+1, ..., 𝑣𝑛])

= ∑
𝑗<𝑖

(−1)𝑖(−1)𝑗[𝑣0, … , 𝑣𝑗−1, 𝑣𝑗+1, … , 𝑣𝑖−1, 𝑣𝑖+1, … , 𝑣𝑛]

+ ∑
𝑗>𝑖

(−1)𝑖(−1)𝑗−1[𝑣0, … , 𝑣𝑖−1, 𝑣𝑖+1, … , 𝑣𝑗−1, 𝑣𝑗+1, … , 𝑣𝑛].

By switching indexes 𝑖 and 𝑗, the second sum is the negative of the first. Hence

𝜕𝑛−1𝜕𝑛(𝜎) = 0 as desired.

With this definition, we now have a sequence of linear maps

⋯ → 𝐶𝑛+1
𝜕𝑛+1−−→ 𝐶𝑛

𝜕𝑛−→ 𝐶𝑛−1 → ⋯ → 𝐶1
𝜕1−→ 𝐶0

𝜕0−→ 0

which is called a chain complex together with the property 𝜕𝑛𝜕𝑛+1 = 0 or simply

𝜕𝜕 = 0. In other words, we could say that a boundary of boundary is zero.

Note that we extended the sequence by a 0 at the right end with 𝜕0 = 0.

Moreover, if we replace each chain group 𝐶𝑘 with its dual cochain group 𝐶𝑘 and

replace each boundary map 𝜕𝑛 ∶ 𝐶𝑛 → 𝐶𝑛−1 by its dual 𝛿𝑛 = 𝜕∗
𝑛 ∶ 𝐶𝑛−1 → 𝐶𝑛,
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we then obtain

⋯ ← 𝐶𝑛+1
𝛿𝑛+1←−− 𝐶𝑛 𝛿𝑛←− 𝐶𝑛−1 ← ⋯ ← 𝐶1 𝛿1

←− 𝐶0
𝛿0←− 0.

Definition 2.3.7. The map 𝛿𝑛 ∶ 𝐶𝑛−1 → 𝐶𝑛 defined above is called a cobound-

ary map and the sequence is called a cochain complex.

We sometimes write 𝛿 or 𝛿∗ instead of 𝛿𝑘. By Proposition 2.3.1, we directly

obtain that 𝛿𝛿 = 0 that is a coboundary of coboundary is zero.

2.3.3 Homology and Cohomology

Since 𝜕𝑘𝜕𝑘+1 = 0 and 𝛿𝑘+1𝛿𝑘 = 0, we have Ker(𝜕𝑘) ⊂ Im(𝜕𝑘+1) and Ker(𝛿𝑘+1) ⊂
Im(𝛿𝑘). We now define two groups which are our main points in this work using

these properties as follows:

Definition 2.3.8. Let 𝑋 be a simplicial complex and 𝑘 be a nonnegative integer.

Elements in Ker(𝜕) and Im(𝜕) are called cycles and boundaries, respectively.

A 𝑘th homology of 𝑋 is defined by 𝐻𝑘(𝑋) = Ker(𝜕𝑘)⧸Im(𝜕𝑘+1). Similarly,

elements in Ker(𝛿) and Im(𝛿) are called cocycles and coboundaries, respectively.

A 𝑘th cohomology of 𝑋 is defined by 𝐻𝑘(𝑋) = Ker(𝛿𝑘+1)⧸Im(𝛿𝑘).

Note that some other books may use the notations 𝐻𝑘(𝑋, 𝔽) and 𝐻𝑘(𝑋, 𝔽)
instead of 𝐻𝑘(𝑋) and 𝐻𝑘(𝑋) to emphasize that they are working on a field 𝔽 as

the coefficients of chains and cochains. However, we neglect this point and remind

the readers that we are working on ℝ as we define our chains and cochains at the

beginning of this section.

Remark 1. Since the space of 𝑘-chain is defined on real number and simplicial

complexes that we focus on are finite, we have

𝐻𝑘(𝑋) ≅ Hom(𝐻𝑘(𝑋), ℝ) ≅ 𝐻𝑘(𝑋),

for any simplicial complex 𝑋 and for all 𝑘. In fact, for general, 𝐻𝑘(𝑋) ≅ 𝐻𝑘(𝑋)
if 𝑋 is finite.
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2.3.4 Matrix Representations

Let 𝐺 be a graph and 𝑋𝑘 be a set of 𝑘-simplices on 𝐺. Recall that for each 𝑘, 𝐶𝑘

and 𝐶𝑘 are isomorphic to ℝ𝑛𝑘 , where 𝑛𝑘 = |𝑋𝑘|. Since 𝜕 and 𝛿 are linear maps,

we can represent them by matrix representations with an appropriate basis. Let

𝐵𝑘 be a matrix representation of 𝜕𝑘. We automatically obtain that 𝐵𝑇
𝑘 is a matrix

representation for 𝜕∗
𝑘 = 𝛿𝑘. Note that 𝐵0 = 0 since 𝜕0 is set to be a zero map.

There is a well-known fact that the Laplacian matrix 𝐿 can be written as

𝐿 = 𝐵1𝐵𝑇
1

and hence the normalized Laplacian matrix can be written as

ℒ = 𝐷−1/2𝐿𝐷−1/2 = 𝐷−1/2𝐵1𝐵𝑇
1 𝐷−1/2,

where 𝐷−1/2 is a diagonal matrix and (𝑑𝑖𝑖)−1/2 = 1
√𝑑𝑖

if 𝑑𝑖 ≠ 0 and 0 otherwise.

Recall that for a simplicial complex 𝑋,

𝐻𝑘(𝑋) = Ker(𝜕𝑘)⧸Im(𝜕𝑘+1)

and
𝐻𝑘(𝑋) = Ker(𝛿𝑘+1)⧸Im(𝛿𝑘),

where 𝜕𝑘 and 𝛿𝑘 are a boundary map and a coboundary map, respectively.

Remark that, from now, we consider elements in 𝐶𝑘 as vector in ℝ|𝑋𝑘| and a

matrix 𝐵𝑘 as a map 𝐿𝐵𝑘
∶ ℝ|𝑋𝑘| → ℝ|𝑋𝑘−1| defined by

𝐿𝐵𝑘
(𝑣) = 𝐵𝑘𝑣.

By Proposition 2.3.1, for each 𝑘,

𝐵𝑘𝐵𝑘+1 = 0 and 𝐵𝑇
𝑘+1𝐵𝑇

𝑘 = 0. (2.2)
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Then, we can write 𝐻𝑘(𝑋) and 𝐻𝑘(𝑋) as

𝐻𝑘(𝑋) = Ker(𝐵𝑘)⧸Im(𝐵𝑘+1) and 𝐻𝑘(𝑋) = Ker(𝐵𝑇
𝑘+1)⧸Im(𝐵𝑇

𝑘 ),

where 𝐵𝑘 is a matrix representation of 𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1.

Example 2.3.2. Consider a simplicial 2-complex We get

𝐵1 =

[𝑣1, 𝑣2] [𝑣2, 𝑣3] [𝑣3, 𝑣4] [𝑣2, 𝑣4]

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

[𝑣1] 1 0 0 0
[𝑣2] −1 1 0 1
[𝑣3] 0 −1 1 0
[𝑣4] 0 0 −1 −1

Then

𝐿0 = 𝐵1𝐵𝑇
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
−1 1 0 1
0 −1 1 0
0 0 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 0 0
0 1 −1 0
0 0 1 −1
0 1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

which is the Laplacian matrix of the following graph;
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2.4 Hodge Theory

For this section, we discuss an efficient tool in Mathematics, the Hodge theory.

This theory, introduced by William Vallance Douglas Hodge in 1930s, is a tool

for studying cohomology and differentiable manifolds. It has applied for various

applications in various fields such as the Hodge theory on metric spaces [2], Hodge

Laplacian on graphs [11], ranking theory, game theory, neuroscience and others.

As this theory is first introduced for applying in algebraic geometry, there are

many notations which are difficult to study.

In fact, the Hodge Laplacian only requires two matrices (or linear operators)

whose composition is zero, i.e., for a matrix 𝐴 ∈ 𝑀𝑚×𝑛(ℝ) and 𝐵 ∈ 𝑀𝑛×𝑝(ℝ), the

assumption for applying Hodge theory is 𝐴𝐵 = 0. We recommend [11] written by

L.H. Lim for more details.

Definition 2.4.1. An 𝑛 × 𝑛 matrix that can be written as 𝐴∗𝐴 + 𝐵𝐵∗ where

𝐴𝐵 = 0, 𝐴 ∈ 𝑀𝑚×𝑛(ℝ), 𝐵 ∈ 𝑀𝑛×𝑝(ℝ) is called a Hodge Laplacian matrix.

Lemma 2.4.1. Let 𝐴 ∈ 𝑀𝑚×𝑛(ℝ) and 𝐵 ∈ 𝑀𝑛×𝑝(ℝ). Then all eigenvalues of

𝐴∗𝐴 + 𝐵𝐵∗ are nonnegative.

Proof. Let 𝑥 ∈ ℝ𝑛 − {0}. Then ⟨𝑥, (𝐴∗𝐴 + 𝐵𝐵∗)𝑥⟩ = ⟨𝑥, 𝐴∗𝐴𝑥 + 𝐵𝐵∗𝑥⟩ =
⟨𝑥, 𝐴∗𝐴𝑥⟩ + ⟨𝑥, 𝐵𝐵∗𝑥⟩ = ⟨𝐴𝑥, 𝐴𝑥⟩ + ⟨𝐵∗𝑥, 𝐵∗𝑥⟩ = ‖𝐴𝑥‖2 + ‖𝐵∗𝑥‖2 ≥ 0. Then by

Lemma 2.1.4,

𝑅(𝐴∗𝐴 + 𝐵𝐵∗, 𝑥) = ⟨𝑥, (𝐴∗𝐴 + 𝐵𝐵∗)𝑥⟩
‖𝑥‖2 ≥ 0

and the proof is done.
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Let Spec(𝐴) denote a set of eigenvalues of 𝐴 and Spec∗(𝐴) a set of nonzero

eigenvalues of 𝐴.

Lemma 2.4.2. Let 𝐴 ∈ 𝑀𝑚×𝑛(ℝ) and 𝐵 ∈ 𝑀𝑛×𝑝(ℝ) such that 𝐴𝐵 = 0. Then

Spec∗(𝐴∗𝐴 + 𝐵𝐵∗) = Spec∗(𝐴∗𝐴) ∪ Spec∗(𝐵𝐵∗).

Proof. Since 𝐴𝐵 = 0, we have

Im(𝐵𝐵∗) ⊂ Ker(𝐴∗𝐴) (2.3)

and

Im(𝐴∗𝐴) ⊂ Ker(𝐵𝐵∗) (2.4)

Suppose that there exists 𝑐 ≠ 0 such that

𝐴∗𝐴𝑐 + 𝐵𝐵∗𝑐 = 𝜆𝑐. (2.5)

Assume that 𝜆 is not an eigenvalue of 𝐵𝐵∗. Taking 𝐴∗𝐴 into (2.5) both sides, we

get

𝐴∗𝐴(𝐴∗𝐴𝑐) + 𝐴∗𝐴(𝐵𝐵∗𝑐) = 𝜆(𝐴∗𝐴𝑐).

By (2.3), we have 𝐴∗𝐴(𝐵𝐵∗𝑐) = 0 and hence

𝐴∗𝐴(𝐴∗𝐴𝑐) = 𝜆(𝐴∗𝐴𝑐).

Suppose that 𝐴∗𝐴𝑐 = 0 by (2.5), 𝐵𝐵∗𝑐 = 𝜆𝑐. This contradicts with 𝜆 is not an

eigenvalue of 𝐵𝐵∗. Therefore 𝐴∗𝐴𝑐 ≠ 0 and hence 𝜆 is an eigenvalue of 𝐴∗𝐴.

Conversely, suppose that there exists 𝑐 ≠ 0 such that 𝐵𝐵∗𝑐 = 𝜆𝑐. Then

𝐵𝐵∗(𝐵𝐵∗𝑐) = 𝜆(𝐵𝐵∗𝑐). By (2.3), 𝐴𝐴∗(𝐵𝐵∗𝑐) = 0 and hence

(𝐴∗𝐴 + 𝐵𝐵∗)(𝐵𝐵∗𝑐) = 𝐴∗𝐴(𝐵𝐵∗𝑐) + 𝐵𝐵∗(𝐵𝐵∗𝑐) = 𝐵𝐵∗(𝐵𝐵∗𝑐) = 𝜆(𝐵𝐵∗𝑐).
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Since 𝑐 and 𝜆 are nonzero, 𝐵𝐵∗𝑐 = 𝜆𝑐 ≠ 0. Then 𝜆 is an eigenvalue of 𝐴∗𝐴 +
𝐵𝐵∗.

Lemma 2.4.3. Let 𝐴 ∈ 𝑀𝑚×𝑛(ℝ) and 𝐵 ∈ 𝑀𝑛×𝑝(ℝ). Assume that 𝐴𝐵 = 0.

Then

Ker(𝐴∗𝐴 + 𝐵𝐵∗) = Ker(𝐴) ∩ Ker(𝐵∗) ≅ Ker(𝐴)⧸Im(𝐵). (2.6)

Proof. It is clear that Ker(𝐴)∩Ker(𝐵∗) ⊂ Ker(𝐴∗𝐴+𝐵𝐵∗). To show the converse,

let 𝑐 ∈ Ker(𝐴∗𝐴 + 𝐵𝐵∗). Then

𝐴∗𝐴𝑐 = −𝐵𝐵∗𝑐. (2.7)

By multiplying both sides of (2.7) with 𝐴, we get −𝐴𝐵𝐵∗𝑐 = 𝐴𝐴∗𝐴𝑐 = 0. Thus,

𝐴∗𝐴𝑐 ∈ Ker(𝐴). By Proposition 2.1.5, we now have 𝐴∗𝐴𝑐 ∈ Im(𝐴∗) = Ker(𝐴)⟂.

So, 𝐴∗𝐴𝑐 = 0 and 𝑐 ∈ Ker(𝐴∗𝐴) = Ker(𝐴). By multiplying both sides of (2.7) with

𝐵∗, we get 0 = 𝐵∗𝐴∗𝐴𝑐 = −𝐵∗𝐵𝐵∗𝑐. Then 𝐵𝐵∗𝑐 ∈ Ker(𝐵∗). By Proposition

2.1.5, 𝐵𝐵∗𝑐 ∈ Im(𝐵) = Ker(𝐵∗)⟂. So 𝐵𝐵∗𝑐 = 0 and hence 𝑐 ∈ Ker(𝐵𝐵∗) =
Ker(𝐵∗). The proof of first equation is done.

Define 𝜙 ∶ Ker(𝐴) ∩ Ker(𝐵∗) → Ker(𝐴)⧸Im(𝐵) by 𝑥 ↦ 𝑥 + Im(𝐵), for any

𝑥 ∈ Ker(𝐴) ∩ Ker(𝐵∗). It is easy to see that 𝜙 is well-defined and linear. By

Proposition 2.1.5 (ii), Ker(𝐵∗) = Im(𝐵)⟂. Then

Ker𝜙 = {𝑥 ∈ Ker(𝐴) ∩ Ker(𝐵∗) ∣ 𝜙(𝑥) = 0}
= {𝑥 ∈ Ker(𝐴) ∩ Ker(𝐵∗) ∣ 𝑥 ∈ Im(𝐵)}
= {𝑥 ∈ Ker(𝐴) ∩ Im(𝐵)⟂ ∣ 𝑥 ∈ Im(𝐵)}
= {0}.

This shows that 𝜙 is injective. Let 𝑥+Im(𝐵) ∈ Ker(𝐴)⧸Im(𝐵), where 𝑥 ∈ Ker(𝐴).
Write 𝑥 = 𝑣1 + 𝑣2 where 𝑣1 ∈ Im(𝐵) and 𝑣2 ∈ Im(𝐵)⟂ = Ker(𝐵∗). Since 𝐴𝐵 = 0,

we have Im(𝐵) ⊂ Ker(𝐴). Then, 𝑣1 ∈ Ker(𝐴) and 0 = 𝐴𝑥 = 𝐴(𝑣1 + 𝑣2) = 𝐴𝑣1 +
𝐴𝑣2 = 𝐴𝑣2. Then 𝑣2 ∈ Ker(𝐴). Consider 𝜙(𝑣2) = 𝑣2 + Im(𝐵) = 𝑥−𝑣1 + Im(𝐵) =
𝑥 + Im(𝐵). This shows that 𝜙 is surjective.
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Lemma 2.4.4. Let 𝐴 ∈ 𝑀𝑚×𝑛(ℝ) and 𝐵 ∈ 𝑀𝑛×𝑝(ℝ) such that 𝐴𝐵 = 0. Then

(i) Ker(𝐵∗) = Im(𝐴∗) ⊕ Ker(𝐴∗𝐴 + 𝐵𝐵∗);

(ii) ℝ𝑛 = Im(𝐴∗) ⊕ Ker(𝐴∗𝐴 + 𝐵𝐵∗) ⊕ Im(𝐵).

Proof. (i) By Proposition 2.1.5 (iv), we get

Ker(𝐵∗) = ℝ𝑛 ∩ Ker(𝐵∗)

= [Ker(𝐴) ⊕ Im(𝐴∗)] ∩ Ker(𝐵∗)

= [Ker(𝐴) ∩ Ker(𝐵∗)] ⊕ [Im(𝐴∗) ∩ Ker(𝐵∗)]

= Ker(𝐴∗𝐴 + 𝐵𝐵∗) ⊕ [Im(𝐴∗) ∩ Ker(𝐵∗)] (By Proposition 2.4.3)

= Ker(𝐴∗𝐴 + 𝐵𝐵∗) ⊕ Im(𝐴∗) (Since 𝐵∗𝐴∗ = 0 i.e. Im(𝐴∗) ⊂ Ker(𝐵∗)).

(ii) By Proposition 2.1.5 (iv) and (i), we get

ℝ𝑛 = Ker(𝐵∗) ⊕ Im(𝐵)

= Im(𝐴∗) ⊕ Ker(𝐴∗𝐴 + 𝐵𝐵∗) ⊕ Im(𝐵),

and the proof is done.

We emphasize that the statement (ii) of Lemma 2.4.4 is well-known as a Hodge

decomposition which has various applications especially in ranking theory. See

more in [11].

2.4.1 Hodge Laplacians on Simplicial Complex

Let 𝑋 be a simplicial complex and 𝑋𝑘 the set of 𝑘-simplices. From now on, we

are going to write boundary maps and coboundary maps in terms of their matrix

representations and elements in 𝐶𝑘 and 𝐶𝑘 as vectors on ℝ𝑛𝑘 , where 𝑛𝑘 = |𝑋𝑘|.
We now state the definition of a Hodge 𝑘-Laplacian matrix as follows:

Definition 2.4.2. Let 𝐵𝑘 be a matrix representation of 𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1. The
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Hodge 𝑘-Laplacian of 𝑋 is defined to be

𝐿𝑘 = 𝐵𝑘+1𝐵𝑇
𝑘+1 + 𝐵𝑇

𝑘 𝐵𝑘,

Moreover, we define 𝐿up
𝑘 ∶= 𝐵𝑘+1𝐵𝑇

𝑘+1 and 𝐿down
𝑘 ∶= 𝐵𝑇

𝑘 𝐵𝑘.

Remark 2. (i) Since 𝐵𝑘𝐵𝑘+1 = 0, a Hodge 𝑘-Laplacian matrix is a Hodge Lapla-

cian matrix.

(ii) The definition above can be defined with the different notations. For exam-

ple, we can write 𝐿𝑘 in term of 𝜕 or 𝛿 or both;

𝐿𝑘 = 𝜕𝑘+1𝜕∗
𝑘+1 + 𝜕∗

𝑘𝜕𝑘 = 𝛿∗
𝑘𝛿𝑘 + 𝛿𝑘−1𝛿∗

𝑘−1 = 𝜕𝑘+1𝛿𝑘 + 𝛿𝑘−1𝜕𝑘.

(iii) Since 𝐵0 = 0, we have

𝐿0 = 𝐵1𝐵𝑇
1 + 𝐵𝑇

0 𝐵0 = 𝐵1𝐵𝑇
1 = 𝐿

which is a Laplacian matrix.

Theorem 2.4.5. Let 𝑋 be a simplicial complex, 𝐿𝑘 a Hodge 𝑘-Laplacian matrix

on 𝑋 and 𝑛 = |𝑋𝑘|. Then the followings hold.

(i) All eigenvalues of 𝐿𝑘 are nonnegative.

(ii) Spec∗(𝐿𝑘) = Spec∗(𝐿up
𝑘 ) ∪ Spec∗(𝐿down

𝑘 ).

(iii) Im(𝐵𝑇
𝑘 ) ⊕ Ker(𝐿𝑘) ⊕ Im(𝐵𝑘+1) ≅ ℝ𝑛.

(iv) 𝐻𝑘(𝑋) ≅ 𝐻𝑘(𝑋) ≅ Ker(𝐿𝑘).

(v) Spec(𝐿up
𝑘 ) = Spec(𝐿down

𝑘+1 ).

Proof. The proof of (i) to (iv) is done by replacing 𝐴 = 𝐵𝑘 and 𝐵 = 𝐵𝑘+1 into

Lemma 2.4.1, Lemma 2.4.2, Lemma 2.4.4 (ii) and Lemma 2.4.3, respectively. For

the last statement, we claim that for any two linear maps 𝑆 and 𝑇 , 𝑆𝑇 and 𝑇 𝑆
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have the same set of eigenvalues. Let 𝑆, 𝑇 be linear maps. Let 𝑣 be an eigenvector

of 𝑆𝑇 corresponding to eigenvalue 𝜆. We first assume that 𝜆 = 0. Then 𝑆 or 𝑇 is

not invertible, so is 𝑇 𝑆. This implies that 𝜆 is an eigenvalue of 𝑇 𝑆. Next, suppose

that 𝜆 ≠ 0. Then 𝑆𝑇 𝑣 = 𝜆𝑣 and hence 𝑇 𝑆(𝑇 𝑣) = 𝜆(𝑇 𝑣). Since 𝜆 ≠ 0, we have

𝑇 𝑣 ≠ 0. Then 𝑇 𝑣 is an eigenvector corresponding to eigenvalue 𝜆. Similarly, we

can show that all eigenvalues of 𝑇 𝑆 are eigenvalues of 𝑆𝑇 . So, the clam is done.

Note that 𝐿up
𝑘 = 𝐵𝑘+1𝐵𝑇

𝑘+1 and 𝐿down
𝑘+1 = 𝐵𝑇

𝑘+1𝐵𝑘+1 and the last statement is done

by the claim.

2.5 Random Walks on Graphs

In this section, we briefly introduce notations and definitions about a Markov chain

and a transition probability matrix. We recommend [18] for more details.

A stochastic process {𝑋(𝑡), 𝑡 ∈ 𝑇 } is a collection of random variables. The

index 𝑇 is often interpreted as time. If 𝑇 is countable, the stochastic process is

said to be a discrete-time process. We call 𝑋(𝑡) the state of the process at time 𝑡
and if 𝑋(𝑡) = 𝑖, then the process is said to be in state 𝑖 at time 𝑡.

Definition 2.5.1. Let {𝑋(𝑡), 𝑡 ∈ 𝑇 } be a discrete-time stochastic process. Sup-

pose that whenever the process is in state 𝑖 at time 𝑡, there is a fixed probability

𝑀𝑖𝑗 that the state at time 𝑡 + 1 is in state 𝑗. Then the stochastic process is called

a Markov chain and 𝑀𝑖𝑗 is called a transition probability.

Definition 2.5.2. Let {𝑋(𝑡), 𝑡 ∈ 𝑇 } be a Markov chain. Suppose that the set 𝑇
is finite, then the matrix 𝑀 = (𝑀𝑖𝑗), where 𝑀𝑖𝑗 is defined in Definition 2.5.1, is

called a transition probability matrix of a Markov chain {𝑋(𝑡), 𝑡 ∈ 𝑇 }.

In other words, a Markov chain is a discrete-time stochastic process such that

any future state 𝑋𝑛+1 with given the past states 𝑋0, 𝑋1, … , 𝑋𝑛−1, 𝑋𝑛 depends

only on the present state 𝑋𝑛. That is a transition probability does not depend

upon the history of previous transitions. Note that 𝑀𝑖𝑗 ∈ [0, 1] for all 𝑖, 𝑗 and

∑𝑗 𝑀𝑖𝑗 = 1.
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Let 𝐺 be a connected simple graph with a vertex set {𝑣0, 𝑣1, … , 𝑣𝑘, … , 𝑣𝑛}. A

random walk on graph is a process of walking from the 𝑟𝑜𝑜𝑡 𝑣0 along an edge by

steps to a vertex 𝑣𝑘. Since the random walk picks a neighbor of a vertex each step

randomly, random walk on graph is a Markov chain. In this work, all graphs that

we consider are undirected and unweighted. For general studies, see [6].

Proposition 2.5.1. Let (𝐷−1)𝑖𝑖 = 1
𝑑𝑖

if 𝑑𝑖 ≠ 0 and 0 otherwise. Let 𝐴 be an

adjacency matrix of 𝐺. Then a transition probability matrix of a random walk on

𝐺 is given by 𝑀 = 𝐷−1𝐴.

Proof. Suppose that the current state at time 𝑡 is 𝑣𝑖. Then all states at time 𝑡 + 1
which are possible are 𝑣𝑗 such that 𝑣𝑖 ∼ 𝑣𝑗. Therefore 𝑀𝑖𝑗 = 1

𝑑𝑖
if 𝑑𝑖 ≠ 0 and

𝑀𝑖𝑗 = 0 if 𝑑𝑖 = 0. This shows that 𝑀𝑖𝑗 = (𝐷−1𝐴)𝑖𝑗.

Example 2.5.1. Let 𝐺 be the following graph;

A transition probability matrix of a random walk on this graph is given by

𝑀 = 𝐷−1𝐴 =

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑣1 0 1 0 0 0
𝑣2 1/3 0 1/3 1/3 0
𝑣3 0 1/3 0 1/3 1/3
𝑣4 0 1/2 1/2 0 0
𝑣5 0 0 1 0 0

Proposition 2.5.2. Let 𝐺 be a connected graph, ℒrw a random walk normalized

Laplacian matrix on 𝐺. Then 𝑃 = 𝐼 − ℒrw is a transition probability matrix of a

random walk on 𝐺.
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Proof. Since 𝐿 = 𝐷−𝐴, where 𝐷 is a degree matrix and 𝐴 is an adjacency matrix

on 𝐺,

𝑃 = 𝐼 − ℒrw = 𝐼 − 𝐷−1𝐿 = 𝐼 − 𝐷−1(𝐷 − 𝐴) = 𝐷−1𝐴.

By Proposition 2.5.1, the proof is done.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

HODGE LAPLACIAN MATRIX

The Hodge theory on simplicial complexes can be applied in various fields for

many applications. As shown in Section 2.4.1, the Hodge 𝑘-Laplacian is the higher

dimensional forms of the Laplacian matrix for a given graph 𝐺.

In this chapter, we first generalize a degree matrix and an adjacency matrix

on graphs to be a degree matrix and an adjacency matrix for any dimensions of

simplicial complexes. Next, we analyze Hodge 𝑘-Laplacian matrix by writing it

as a degree matrix and an adjacency matrix that we defined. This fact leads us

to obtain the formula of Laplacian operator. We end this chapter with a proof of

the beautiful fact that the 𝑘th homology and the 𝑘th cohomology of a simplicial

complex are trivial if and only if the smallest eigenvalue of a Hodge 𝑘-Laplacian

matrix is nonzero.

3.1 Hodge 𝑘-Laplacian

Recall that the Hodge 𝑘-Laplacian 𝐿𝑘 is of the form

𝐿𝑘 = 𝐿up
𝑘 + 𝐿down

𝑘 = 𝐵𝑘+1𝐵𝑇
𝑘+1 + 𝐵𝑇

𝑘 𝐵𝑘,

where 𝐵𝑘 is a matrix representation of 𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1. For the case that 𝑘 = 0,

𝐿𝑘 is exactly a Laplacian matrix 𝐿 = 𝐷 − 𝐴, where 𝐷 is a degree matrix and 𝐴 is

an adjacency matrix.

3.1.1 Degree Matrices on Higher Dimensions

For a degree matrix 𝐷 = (𝐷𝑖𝑗) = 𝑑𝑖 if 𝑖 = 𝑗 and 0 otherwise, we observe that an

entry 𝑑𝑖 on its diagonal which is a degree of vertex 𝑣𝑖 is a number of edges having
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𝑣𝑖 as their face. Thus, we analogously define degree matrices on higher dimensions

as followed.

Definition 3.1.1. For each 𝑘-simplex 𝜎, define a degree of 𝜎 denoted by deg 𝜎
to be a number of its upper adjacent elements in (𝑘 + 1)-simplex.

Definition 3.1.2. Let 𝑋𝑘 be a set of all 𝑘-simplices of a simplicial complex 𝑋. A

degree matrix of 𝑋𝑘 is defined by 𝐷′
𝑘+1 = (𝐷′

𝜎𝜏)|𝑋𝑘|×|𝑋𝑘| where 𝐷′
𝜎𝜏 = deg 𝜎 if

𝜎 = 𝜏 and 0 otherwise.

For 𝑘 = 0, 𝐷′
1 is exactly the same as the degree matrix defined in Definition

3.1.2. For 𝑘 = 1, degree of an edge 𝑒 is defined to be a number triangles which

has 𝑒 as their face. For 𝑘 = 2, degree of an triangle 𝑡 is defined to be a number

tetrahedrals which has 𝑡 as their face and so on.

Example 3.1.1. From the simplicial complex in Example 2.3.1, we get

𝐷′
3 =

[𝑣1, 𝑣2, 𝑣3] [𝑣1, 𝑣2, 𝑣4] [𝑣1, 𝑣3, 𝑣4] [𝑣2, 𝑣3, 𝑣4] [𝑣5, 𝑣7, 𝑣8] [𝑣7, 𝑣8, 𝑣9]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

[𝑣1, 𝑣2, 𝑣3] 1 0 0 0 0 0
[𝑣1, 𝑣2, 𝑣4] 0 1 0 0 0 0
[𝑣1, 𝑣3, 𝑣4] 0 0 1 0 0 0
[𝑣2, 𝑣3, 𝑣4] 0 0 0 1 0 0
[𝑣5, 𝑣7, 𝑣8] 0 0 0 0 0 0
[𝑣7, 𝑣8, 𝑣9] 0 0 0 0 0 0

and 𝐷′
4 is the zero matrix.

3.1.2 Adjacency Matrices on Higher Dimensions

Recall that an adjacency matrix on a graph 𝐺, denoted by 𝐴(𝐺), is defined by

(𝑎𝑖𝑗) = 1 if 𝑣𝑖 is adjacent to 𝑣𝑗 and 0 otherwise. However, for any two simplices on

higher dimensional, the word adjacent could be considered as upper adjacent or

lower adjacent which is defined in Definition 2.3.3. We define adjacency matrices

which are referred to upper adjacency and lower adjacency as follows:
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Definition 3.1.3. Let 𝑋𝑘 be a set of all 𝑘-simplices of a simplicial 𝑞-complex 𝑋
and 0 ≤ 𝑘 ≤ 𝑞. The upper adjacency matrix of 𝑋𝑘 is defined by 𝐴up

𝑘 = (𝑎up
𝜎𝜏)

where

𝑎up
𝜎𝜏 =

⎧{
⎨{⎩

sgn(𝜎, 𝜕𝜎)sgn(𝜏, 𝜕𝜎), if 𝜎 ∼𝑢 𝜏 and 𝜎, 𝜏 ∈ 𝜕𝜎,

0, otherwise.

The lower adjacency matrix of 𝑋𝑘 is defined by 𝐴down
𝑘 = (𝑎down

𝜎𝜏 ) where

𝑎down
𝜎𝜏 =

⎧{
⎨{⎩

sgn((𝜎 ∩ 𝜏), 𝜕𝜎)sgn((𝜎 ∩ 𝜏), 𝜕𝜏), if 𝜎 ∼𝑙 𝜏,

0, otherwise.

Example 3.1.2. From the simplicial complex in the example 2.3.1, we get

𝐴up
2 =

[𝑣1, 𝑣2, 𝑣3] [𝑣1, 𝑣2, 𝑣4] [𝑣1, 𝑣3, 𝑣4] [𝑣2, 𝑣3, 𝑣4] [𝑣5, 𝑣7, 𝑣8] [𝑣7, 𝑣8, 𝑣9]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

[𝑣1, 𝑣2, 𝑣3] 0 −1 1 −1 0 0
[𝑣1, 𝑣2, 𝑣4] −1 0 −1 1 0 0
[𝑣1, 𝑣3, 𝑣4] 1 −1 0 −1 0 0
[𝑣2, 𝑣3, 𝑣4] −1 1 −1 0 0 0
[𝑣5, 𝑣7, 𝑣8] 0 0 0 0 0 0
[𝑣7, 𝑣8, 𝑣9] 0 0 0 0 0 0

and

𝐴down
2 =

[𝑣1, 𝑣2, 𝑣3] [𝑣1, 𝑣2, 𝑣4] [𝑣1, 𝑣3, 𝑣4] [𝑣2, 𝑣3, 𝑣4] [𝑣5, 𝑣7, 𝑣8] [𝑣7, 𝑣8, 𝑣9]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

[𝑣1, 𝑣2, 𝑣3] 0 1 −1 1 0 0
[𝑣1, 𝑣2, 𝑣4] 1 0 1 −1 0 0
[𝑣1, 𝑣3, 𝑣4] −1 1 0 1 0 0
[𝑣2, 𝑣3, 𝑣4] 1 −1 1 0 0 0
[𝑣5, 𝑣7, 𝑣8] 0 0 0 0 0 1
[𝑣7, 𝑣8, 𝑣9] 0 0 0 0 1 0

Note that both 𝐴up
𝑘 and 𝐴down

𝑘 are |𝑋𝑘|×|𝑋𝑘| symmetric matrices whose entries
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are 1 or −1. For 𝑘 = 0, since two adjacent vertices always have the different signs,

𝐴up
0 is −𝐴, where 𝐴 is an adjacency matrix defined in Definition 2.2.1.

The following proposition states 𝐿up
𝑘 and 𝐿down

𝑘 in terms of 𝐷′
𝑘+1, 𝐴up

𝑘 and

𝐴down
𝑘 . As entries of 𝐴up

𝑘 and 𝐴down
𝑘 are −1 or 1 and 𝐷′

𝑘+1 is a diagonal matrix,

writing 𝐿up
𝑘 and 𝐿down

𝑘 in this way can be useful for doing algebra on them.

Proposition 3.1.1. For 𝑘 ≥ 1, the matrices 𝐿up
𝑘 and 𝐿down

𝑘 can be written as

𝐿up
𝑘 = 𝐷′

𝑘+1 + 𝐴up
𝑘 and 𝐿down

𝑘 = (𝑘 + 1)𝐼𝑘 + 𝐴down
𝑘 ,

where 𝐼𝑘, 𝐷′
𝑘+1, 𝐴up

𝑘 , 𝐴down
𝑘 are the |𝑋𝑘| × |𝑋𝑘| identity matrix, a degree matrix,

an upper adjacency matrix and a lower adjacency matrix of simplicial 𝑘-complex,

respectively.

Proof. Let 𝑋 be a simplicial complex and 𝜎, 𝜏 ∈ 𝑋𝑘. If 𝜎 = 𝜏 , then (𝐿up
𝑘 )𝜎𝜏 =

(𝐵𝑘+1𝐵𝑇
𝑘+1)𝜎𝜏 = ∑

𝜎;𝜎∈𝜕𝜎
sgn(𝜎, 𝜕𝜎)2 = deg 𝜎 = (𝐷𝑘+1)𝜎𝜏 and (𝐿down

𝑘 )𝜎𝜏 = (𝐵𝑇
𝑘 𝐵𝑘)𝜎𝜏 =

∑
𝜇∈𝜕𝜎

(sgn(𝜇, 𝜕𝜎))2 = 𝑘 + 1. Next, suppose that 𝜎 ≠ 𝜏 . If 𝜎 is not upper adjacent

to 𝜏 , then (𝐿up
𝑘 )𝜎𝜏 = 0 = (𝐴up

𝑘 )𝜎𝜏 , otherwise, (𝐿up
𝑘 )𝜎𝜏 = sgn(𝜎, 𝜕𝜎)sgn(𝜏, 𝜕𝜎) =

(𝐴up
𝑘 )𝜎𝜏 , where 𝜎, 𝜏 ∈ 𝜕𝜎. If 𝜎 is not lower adjacent to 𝜏 , then (𝐿down

𝑘 )𝜎𝜏 = 0 =
(𝐴down

𝑘 )𝜎𝜏 , otherwise, (𝐿down
𝑘 )𝜎𝜏 = sgn(𝜎 ∩ 𝜏, 𝜕𝜎)sgn(𝜎 ∩ 𝜏, 𝜕𝜏) = (𝐴down

𝑘 )𝜎𝜏 .

Remark 3. For 𝑘 = 0, 𝐿up
0 = 𝐷′

1 + 𝐴up
0 = 𝐷 − 𝐴 = 𝐿 where 𝐿 is a Laplacian

matrix. However, with this Proposition, 𝐿down
0 = 𝐼|𝑋0| which contradicts with

𝐿down
0 = 𝐵0𝐵𝑇

0 = 0. We avoid this confusion by adding the assumption that 𝑘 ≥ 1
and let the readers keep in mind that 𝐿down

0 is a zero matrix.

From Proposition 3.1.1, we obtain the formula of the Hodge Laplacian operator.

Note that, in this work, we only consider unweighted simplicial complexes. For

the formula of the Hodge Laplaician operator on weighted simplicial complexes,

we recommend [9].

Proposition 3.1.2. Let 𝑘 ≥ 1, 𝑓 ∈ 𝐶𝑘 = 𝐻𝑜𝑚(𝐶𝑘, ℝ) and 𝜎 ∈ 𝑋𝑘. The operators
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Δup
𝑘 ∶= 𝜕𝑘+1𝛿𝑘+1 and Δdown

𝑘 ∶= 𝛿𝑘𝜕𝑘 are given by

(Δup
𝑘 𝑓)(𝜎) = deg(𝜎)𝑓(𝜎) + ∑

𝜎′∈𝑋𝑘,𝜎∼𝑢𝜎′

𝜎,𝜎′∈𝜕𝜎

sgn(𝜎, 𝜕𝜎)sgn(𝜎′, 𝜕𝜎)𝑓(𝜎′),

(Δdown
𝑘 𝑓)(𝜎) = (𝑘 + 1)𝑓(𝜎) + ∑

𝜎′∈𝑋𝑘
𝜎∼𝑙𝜎′

sgn(𝜎 ∩ 𝜎′, 𝜕𝜎)sgn(𝜎 ∩ 𝜎′, 𝜕𝜎′)𝑓(𝜎′).

Proof. Let 𝑋 be a simplicial complex, 𝑓 ∈ 𝐶𝑘 and 𝑛 = |𝑋𝑘|. Since 𝑋𝑘 =
{𝜏1, 𝜏2, … , 𝜏𝑛} is a basis of 𝐶𝑘, we get {𝜏1, 𝜏2, … , 𝜏𝑛} is a basis of 𝐶𝑘, where

𝜏 𝑖(𝜏𝑗) =
⎧{
⎨{⎩

1 if 𝑖 = 𝑗,

0 if 𝑖 ≠ 𝑗.

Write 𝑓 =
𝑛

∑
𝑖=1

𝛽𝑖𝜏 𝑖, where 𝛽𝑖 ∈ ℝ for each 𝑖. Note that 𝑓 ∈ 𝐶𝑘 ≅ 𝐶𝑘 ≅ ℝ𝑛.

It is easy to see that 𝜙 ∶ 𝐶𝑘 → ℝ𝑛 defined by (
𝑛

∑
𝑖=1

𝛽𝑖𝜏 𝑖) ↦ (𝛽1, 𝛽2, … , 𝛽𝑛)𝑇

is an isomorphism. Then 𝑓 can be viewed as a column vector (𝛽1, 𝛽2, … , 𝛽𝑛)𝑇 .

To avoid confusion, we write [𝑓] = (𝛽1, 𝛽2, … , 𝛽𝑛)𝑇 . Note that matrix represen-

tations of Δup
𝑘 and Δdown

𝑘 are 𝐿up
𝑘 and 𝐿down

𝑘 , respectively. By Proposition 3.1.1,

𝐿up
𝑘 = 𝐷′

𝑘+1 + 𝐴up
𝑘 . Consider

𝐿up
𝑘 [𝑓] = (𝐷′

𝑘+1 + 𝐴up
𝑘 )[𝑓]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(deg 𝜏1)𝛽1 + ∑
𝜏𝑖∈𝑋𝑘,𝜏𝑖∼𝑢𝜏1

𝜏𝑖,𝜏1∈𝜕𝜏

sgn(𝜏1, 𝜕𝜏)sgn(𝜏𝑖, 𝜕𝜏) ⋅ 𝛽𝑖

(deg 𝜏2)𝛽2 + ∑
𝜏𝑖∈𝑋𝑘,𝜏𝑖∼𝑢𝜏2

𝜏𝑖,𝜏2∈𝜕𝜏

sgn(𝜏2, 𝜕𝜏)sgn(𝜏𝑖, 𝜕𝜏) ⋅ 𝛽𝑖

⋮
(deg 𝜏𝑛)𝛽𝑛 + ∑

𝜏𝑖∈𝑋𝑘,𝜏𝑖∼𝑢𝜏𝑛
𝜏𝑖,𝜏𝑛∈𝜕𝜏

sgn(𝜏𝑛, 𝜕𝜏)sgn(𝜏𝑖, 𝜕𝜏) ⋅ 𝛽𝑖

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This column vector corresponds to a map Δup
𝑘 𝑓 =

𝑛
∑
𝑖=1

𝛾𝑖𝜏 𝑖, where 𝛾𝑖 is the element
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in 𝑖th row of 𝐿up
𝑘 [𝑓]. Let 𝜏𝑖 ∈ 𝑋𝑘. Since 𝑓(𝜏𝑘) =

𝑛
∑
𝑗=1

𝛽𝑗𝜏 𝑗(𝜏𝑘) = 𝛽𝑘 for any 𝑘, we

have
(Δup

𝑘 )(𝜏𝑖) =
𝑛

∑
𝑗=1

𝛾𝑗𝜏 𝑗(𝜏𝑖) = 𝛾𝑖

= (deg 𝜏𝑖)𝛽𝑖 + ∑
𝜏𝑗∈𝑋𝑘,𝜏𝑗∼𝑢𝜏𝑖

𝜏𝑗,𝜏𝑖∈𝜕𝜏

sgn(𝜏𝑖, 𝜕𝜏)sgn(𝜏𝑗, 𝜕𝜏) ⋅ 𝛽𝑗

= (deg 𝜏𝑖)𝑓(𝜏𝑖) + ∑
𝜏𝑗∈𝑋𝑘,𝜏𝑗∼𝑢𝜏𝑖

𝜏𝑗,𝜏𝑖∈𝜕𝜏

sgn(𝜏𝑖, 𝜕𝜏)sgn(𝜏𝑗, 𝜕𝜏) ⋅ 𝑓(𝜏𝑗).

By Proposition 3.1.1, 𝐿down
𝑘 = (𝑘 + 1)𝐼𝑛 + 𝐴down

𝑘 . Consider
𝐿down

𝑘 [𝑓] = ((𝑘 + 1)𝐼𝑛 + 𝐴down
𝑘 )[𝑓]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(𝑘 + 1)𝛽1 + ∑
𝜏𝑖∈𝑋𝑘
𝜏𝑖∼𝑙𝜏1

sgn(𝜏1 ∩ 𝜏𝑖, 𝜕𝜏1)sgn(𝜏1 ∩ 𝜏𝑖, 𝜕𝜏𝑖) ⋅ 𝛽𝑖

(𝑘 + 1)𝛽2 + ∑
𝜏𝑖∈𝑋𝑘
𝜏𝑖∼𝑙𝜏2

sgn(𝜏2 ∩ 𝜏𝑖, 𝜕𝜏2)sgn(𝜏2 ∩ 𝜏𝑖, 𝜕𝜏𝑖) ⋅ 𝛽𝑖

⋮
(𝑘 + 1)𝛽𝑛 + ∑

𝜏𝑖∈𝑋𝑘
𝜏𝑖∼𝑙𝜏𝑛

sgn(𝜏𝑛 ∩ 𝜏𝑖, 𝜕𝜏𝑛)sgn(𝜏𝑛 ∩ 𝜏𝑖, 𝜕𝜏𝑖) ⋅ 𝛽𝑖

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This column vector corresponds to a map Δdown
𝑘 𝑓 =

𝑛
∑
𝑖=1

𝛼𝑖𝜏 𝑖, where 𝛼𝑖 is the

element in 𝑖th row of 𝐿down
𝑘 [𝑓]. Since 𝑓(𝜏𝑘) =

𝑛
∑
𝑗=1

𝛽𝑗𝜏 𝑗(𝜏𝑘) = 𝛽𝑘 for any 𝑘, we have

(Δdown
𝑘 )(𝜏𝑖) =

𝑛
∑
𝑗=1

𝛼𝑗𝜏 𝑗(𝜏𝑖) = 𝛼𝑖

= (𝑘 + 1)𝛽𝑖 + ∑
𝜏𝑗∈𝑋𝑘
𝜏𝑗∼𝑙𝜏𝑖

sgn(𝜏𝑖 ∩ 𝜏𝑗, 𝜕𝜏𝑖)sgn(𝜏𝑖 ∩ 𝜏𝑗, 𝜕𝜏𝑗) ⋅ 𝛽𝑗

= (𝑘 + 1)𝑓(𝜏𝑖) + ∑
𝜏𝑗∈𝑋𝑘
𝜏𝑗∼𝑙𝜏𝑖

sgn(𝜏𝑖 ∩ 𝜏𝑗, 𝜕𝜏𝑖)sgn(𝜏𝑖 ∩ 𝜏𝑗, 𝜕𝜏𝑗)𝑓(𝜏𝑗).
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3.2 𝑘th Homology on Simplicial Complex and the Smallest

Eigenvalue of Hodge 𝑘-Laplacian Matrix

Sometimes, a chain complex (also a cochain)

⋯ → 𝐶𝑛+1
𝜕𝑛+1−−→ 𝐶𝑛

𝜕𝑛−→ 𝐶𝑛−1 → ⋯ → 𝐶1
𝜕1−→ 𝐶0

𝜕0−→ 0

is denoted by 𝐶∗ or (𝐶∗, 𝜕∗) (or 𝐶∗ or (𝐶∗, 𝛿∗)). Moreover, for a simplicial complex

𝑋, we can denote a 𝑘th-homology on 𝑋 (or a 𝑘th-cohomology on 𝑋) by 𝐻𝑘(𝐶∗)
(or 𝐻𝑘(𝐶∗)).

A chain complex (or cochian complexes) together with a map 𝑓 satisfying

𝜕𝑓 = 𝑓𝜕 (3.1)

(or a map 𝑔 satisfying 𝛿𝑔 = 𝑔𝛿) can be viewed as a direct sum of chain complexes

(or a direct sum of cochain complex). To see this, some tools in homological algebra

are required, see more in [3], [10], [14], [15], [20].

Consider the diagram

⋯ → 𝐶𝑛+1
𝐵𝑛+1−−→ 𝐶𝑛

𝐵𝑛−→ 𝐶𝑛−1 → ⋯
↓↓↓↓↓↓↓↓
𝐿𝑛+1

↓↓↓↓↓↓↓↓
𝐿𝑛

↓↓↓↓↓↓↓↓
𝐿𝑛−1

⋯ → 𝐶𝑛+1
𝐵𝑛+1−−→ 𝐶𝑛

𝐵𝑛−→ 𝐶𝑛−1 → ⋯

Since

𝐵𝑛+1𝐿𝑛+1 = 𝐵𝑛+1𝐵𝑛+2𝐵𝑇
𝑛+2 + 𝐵𝑛+1𝐵𝑇

𝑛+1𝐵𝑛+1 = 𝐵𝑛+1𝐵𝑇
𝑛+1𝐵𝑛+1

and

𝐿𝑛𝐵𝑛+1 = 𝐵𝑛+1𝐵𝑇
𝑛+1𝐵𝑛+1 + 𝐵𝑇

𝑛 𝐵𝑛𝐵𝑛+1 = 𝐵𝑛+1𝐵𝑇
𝑛+1𝐵𝑛+1,

this diagram is commute for any 𝑛, i.e. 𝐵∗𝐿∗ = 𝐿∗𝐵∗. Let 𝐶𝜆
∗ be an eigenspace
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corresponding eigenvalue 𝜆 of a Hodge Laplacian matrix. Then

𝐶∗ = ⨁
𝜆

𝐶𝜆
∗

and the direct sum (⨁𝜆 𝐶𝜆
∗ , 𝜕) is a chain complex with 𝜕 = ⊕∗𝜕∗. Moreover, this

fact implies that a homology commutes with direct sums, i.e. for all 𝑛,

𝐻𝑛 (⨁
𝜆

𝐶𝜆
∗ ) ≅ ⨁

𝜆
𝐻𝑛(𝐶𝜆

∗ ),

we recommend [20] for more details.

Theorem 3.2.1. [1] Let 𝑋 be a simplicial complex and 𝐿𝑘 a Hodge 𝑘-Laplacian

matrix on 𝑋. Let 𝜆 be the smallest eigenvalue of 𝐿𝑘 and 𝐻𝑘(𝑋) a 𝑘th-homology

on 𝑋. Then

𝜆 ≠ 0 if and only if 𝐻𝑘(𝑋) = 0.

Proof. Let 𝜆 ≠ 0 be an eigenvalue of 𝐿𝑘 and 𝐶𝜆
𝑘 be an eigenspace corresponding

to 𝜆. Let 𝑐 ∈ 𝐶𝜆
𝑘 such that 𝐵𝑘𝑐 = 0. Then,

𝑐 = 1
𝜆(𝐵𝑘+1𝐵𝑇

𝑘+1𝑐) = 𝐵𝑘+1( 1
𝜆𝐵𝑇

𝑘+1𝑐).

That is each cycle of 𝐶𝜆
𝑘 is a boundary. Since 𝜆 is the smallest eigenvalue of 𝐿𝑘,

every eigenvalue of 𝐿𝑘 is also nonzero. This implies that for any 𝜆 every cycle of

𝐶𝜆
𝑘 is a boundary. Then,

𝐻𝑘(𝑋) = 𝐻𝑘 (⨁
𝜆

𝐶𝜆) ≅ ⨁
𝜆

𝐻𝑘(𝐶𝜆) = 0.
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Conversely, let 𝑐 ∈ 𝐶𝜆
𝑘 be an eigenvector corresponding to eigenvalue 𝜆 = 0. Then

0 = ⟨𝐿𝑘𝑐, 𝑐⟩

= ⟨𝐵𝑘+1𝐵𝑇
𝑘+1𝑐, 𝑐⟩ + ⟨𝐵𝑇

𝑘 𝐵𝑘𝑐, 𝑐⟩

= ⟨𝐵𝑇
𝑘+1𝑐, 𝐵𝑇

𝑘+1𝑐⟩ + ⟨𝐵𝑘𝑐, 𝐵𝑘𝑐⟩

= ‖𝐵𝑇
𝑘+1𝑐‖2 + ‖𝐵𝑘𝑐‖2.

This implies that 𝐻𝑘(𝐶𝜆
∗ ) = 𝐶𝜆

𝑘 . Hence,

𝐻𝑘(𝑋) = 𝐻𝑘 (⨁
𝜆

𝐶𝜆
∗ ) ≅ ⨁

𝜆
𝐻𝑘(𝐶𝜆

∗ ) ≠ 0.

From Remark 1, we obtain the following corollary.

Corollary 3.2.2. Let 𝑋 be a simplicial complex and 𝐿𝑘 a Hodge 𝑘-Laplacian

matrix on 𝑋. Let 𝜆 be the smallest eigenvalue of 𝐿𝑘 and 𝐻𝑘(𝑋) a 𝑘th-cohomology

on 𝑋. Then

𝜆 ≠ 0 if and only if 𝐻𝑘(𝑋) = 0.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

NORMALIZED HODGE LAPLACIAN MATRIX

In this section, we define a normalized Hodge Laplacian matrix for arbitrary di-

mensions of simplicial complexes which is also a Hodge Laplacian matrix. Then,

we state some properties of the matrix which are obtained directly by being Hodge

Laplacian matrix. Using some results in Chapter 3, we obtain the formula of nor-

malized Hodge Laplacian operator. We also indicate a spectrum of this matrix for

the case that a simplicial complex is itself a simplex. For the second section, we

show that the smallest eigenvalue of ℒ𝑘 can indicate whether the 𝑘th homology

and the 𝑘th cohomology on a given simplicial complex are trivial. We end this

chapter by showing a relation between a spectrum of ℒup
∗ and 𝑘-wedge sum of

simplices.

4.1 Definition and Basic Properties

There are several works of defining normalized Laplacian operator and normalized

Laplacian matrix on a simplicial complex.

In 1993, F. Chung [5] defined a normalized Laplacian operator as

𝜕𝛿 + 𝜌𝛿𝜕,

where 𝜌 is the density of a given simplicial complex.

In 2010, C. Taszus [19] defined a normalized Laplacian matrix as

(𝐷′
𝑘+1)−1/2𝐿𝑘(𝐷′

𝑘+1)−1/2.

We point out here that (𝐷′
𝑘+1)−1/2 needs not be invertible matrix.
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In 2011, D. Horak [9] defined a normalized combinatorial Laplace operator in

order to force an upper bound of the maximal eigenvalue of the operator to be a

constant.

In 2018, M. Schaub et al [16] defined a normalized Hodge 1-Laplacian matrix

to study random walks. The matrix is defined by

ℒ1 = 𝐷2𝐵𝑇
1 𝐷−1

1 𝐵1 + 𝐵2𝐷3𝐵𝑇
2 𝐷−1

2 ,

where (𝐷2)[𝑖,𝑗],[𝑖,𝑗] = max{deg[𝑖, 𝑗], 1}, 𝐷1 = 2 × diag(|𝐵1𝐷2|1) and 𝐷3 is the

diagonal matrix with 1
3 on the diagonal.

However, matrix representations of these operators and the matrix defined

above are not Hodge Laplacian matrices. We now define a normalized Hodge

Laplacian matrices for arbitrary dimensions of simplicial complexes.

Definition 4.1.1. Let 𝐶𝑘 be a space of 𝑘-chain of simplicial complex 𝑋 and 𝑋𝑘 a

set of all 𝑘-simplices on 𝑋. Let 𝐵𝑘 be a matrix representation of a boundary map

𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1. The normalized Hodge 𝑘-Laplacian matrix ℒ𝑘 is defined

by

ℒ𝑘 = 𝐷−1/2
𝑘+1 𝐵𝑘+1𝐵𝑇

𝑘+1𝐷−1/2
𝑘+1 + 𝐷1/2

𝑘+1𝐵𝑇
𝑘 𝐵𝑘𝐷1/2

𝑘+1,

where 𝐷1/2
𝑘+1 and 𝐷−1/2

𝑘+1 are |𝑋𝑘| × |𝑋𝑘| diagonal matrices defined by (𝐷1/2
𝑘+1)𝜎𝜏 =

max{√deg 𝜎,1} if 𝜎 = 𝜏 and 0 otherwise, and 𝐷−1/2
𝑘+1 is the inverse of 𝐷1/2

𝑘+1.

Moreover, we define

ℒup
𝑘 ∶= 𝐷−1/2

𝑘+1 𝐵𝑘+1𝐵𝑇
𝑘+1𝐷−1/2

𝑘+1 ,

ℒdown
𝑘 ∶= 𝐷1/2

𝑘+1𝐵𝑇
𝑘 𝐵𝑘𝐷1/2

𝑘+1.

According to this definition, we have

ℒ0 = 𝐷−1/2
1 𝐵1𝐵𝑇

1 𝐷−1/2
1 + 𝐷1/2

1 𝐵𝑇
0 𝐵0𝐷1/2

1 = 𝐷−1/2
1 𝐵1𝐵𝑇

1 𝐷−1/2
1 = ℒ.

A purpose of putting a maximum on 𝐷1/2
𝑘+1 for each 𝑘 is to guarantee that 𝐷1/2

𝑘+1

is invertible. This leads our definition of ℒ𝑘 preserving some properties obtained
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analogously to properties of Hodge 𝑘-Laplacian matrix shown in Theorem 4.1.1.

From the definition, one can see that this matrix is positive definite, real sym-

metric and all of its eigenvalues are real numbers.

Remark 4. Let (𝐷′
𝑘+1)−1/2 be a diagonal matrix defined by (𝐷′

𝑘+1)−1/2
𝜎𝜏 = 1√deg 𝜎

if 𝜎 = 𝜏 , deg 𝜎 ≠ 0 and 0 otherwise. By Proposition 3.1.1, we get

(𝐷′
𝑘+1)−1/2𝐿up

𝑘 (𝐷′
𝑘+1)−1/2 = (𝐷′

𝑘+1)−1/2𝐷′
𝑘+1(𝐷′

𝑘+1)−1/2+(𝐷′
𝑘+1)−1/2𝐴up

𝑘 (𝐷′
𝑘+1)−1/2

(4.1)

and

𝐷−1/2
𝑘+1 𝐿up

𝑘 𝐷−1/2
𝑘+1 = 𝐷−1/2

𝑘+1 𝐷′
𝑘+1𝐷−1/2

𝑘+1 + 𝐷−1/2
𝑘+1 𝐴up

𝑘 𝐷−1/2
𝑘+1 . (4.2)

Let 𝑋 be a simplicial complex. If every simplex in 𝑋𝑘 has nonzero degree, then

𝐷−1/2
𝑘+1 = (𝐷′

𝑘+1)−1/2 and hence 𝐷−1/2
𝑘+1 𝐿up

𝑘 𝐷−1/2
𝑘+1 = (𝐷′

𝑘+1)−1/2𝐿up
𝑘 (𝐷′

𝑘+1)−1/2.
Suppose that there is a simplex 𝜎 ∈ 𝑋𝑘 such that deg 𝜎 = 0. Then for any

𝜏 ∈ 𝑋𝑘, we have ((𝐷′
𝑘+1)−1/2)𝜎𝜏 = 0 and (𝐴up

𝑘 )𝜎𝜏 = 0. From the equations

(4.1) and (4.2), ((𝐷′
𝑘+1)−1/2𝐿up

𝑘 (𝐷′
𝑘+1)−1/2)𝜎𝜏 = 0 = (𝐷−1/2

𝑘+1 𝐿up
𝑘 𝐷−1/2

𝑘+1 )𝜎𝜏 for any

𝜏 ∈ 𝑋𝑘. Similarly, we can show that ((𝐷′
𝑘+1)−1/2𝐿up

𝑘 (𝐷′
𝑘+1)−1/2)𝜏𝜎 = 0 =

(𝐷−1/2
𝑘+1 𝐿up

𝑘 𝐷−1/2
𝑘+1 )𝜏𝜎 for any 𝜏 ∈ 𝑋𝑘. We now conclude that 𝐷−1/2

𝑘+1 𝐿up
𝑘 𝐷−1/2

𝑘+1 =
(𝐷′

𝑘+1)−1/2𝐿up
𝑘 (𝐷′

𝑘+1)−1/2. This shows that defining ℒ𝑘 by putting a maximum on

a degree matrix instead of using a degree matrix does not change the meaning of

ℒup
𝑘 .

We give the next theorem to support our idea of defining ℒ𝑘 to be a Hodge

Laplacian matrix and 𝐷−1/2
𝑘+1 to be an invertible matrix.

Theorem 4.1.1. Let 𝑋 be a simplicial complex, ℒ𝑘 a normalized Hodge 𝑘-

Laplacian matrix on 𝑋 and 𝑛 = |𝑋𝑘|. Then the followings hold.

(i) All eigenvalues of ℒ𝑘 are nonnegative.

(ii) Spec∗(ℒ𝑘) = Spec∗(ℒup
𝑘 ) ∪ Spec∗(ℒdown

𝑘 ).

(iii) Im(𝐷1/2
𝑘+1𝐵𝑇

𝑘 ) ⊕ Ker(ℒ𝑘) ⊕ Im(𝐷−1/2
𝑘+1 𝐵𝑘+1) ≅ ℝ𝑛.
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(iv) 𝐻𝑘(𝑋) ≅ 𝐻𝑘(𝑋) ≅ Ker(ℒ𝑘).

Proof. The first, the second and the third statements are done by replacing 𝐴 =
𝐵𝑘𝐷1/2

𝑘+1 and 𝐵 = 𝐷−1/2
𝑘+1 𝐵𝑘+1 into Lemma 2.4.1, Lemma 2.4.2 and Lemma 2.4.4

(ii), respectively. Note that from the definition of ℒ𝑘, we know that 𝐷−1/2
𝑘+1 and

𝐷1/2
𝑘+1 are invertible. In the other words, it can be considered as a representation

of a bijective map. Then by Lemma 2.1.8, we have Ker(𝐵𝑘𝐷1/2
𝑘+1) ≅ Ker(𝐵𝑘) and

Ker(𝐵𝑇
𝑘+1𝐷−1/2

𝑘+1 ) ≅ Ker(𝐵𝑇
𝑘+1). Therefore, by Lemma 2.1.8

Ker(𝐵𝑘𝐷1/2
𝑘+1) ∩ Ker(𝐵𝑇

𝑘+1𝐷−1/2
𝑘+1 ) ≅ Ker(𝐵𝑘) ∩ Ker(𝐵𝑇

𝑘+1) ≅ 𝐻𝑘(𝑋)

and the last statement is done.

There is a well-known fact that eigenvalues of a normalized Laplacian matrix

on a graph are nonnegative. Theorem 4.1.1 (i) shows that our definition remains

this fact. By Theorem 4.1.1 (ii), we can calculate all of nonzero eigenvalues of

ℒ𝑘 by calculating on ℒup
𝑘 and ℒdown

𝑘 separately. From Theorem 4.1.1 (iv), for

a given simplicial complex, we can calculate its homology and cohomology by

considering the kernel of ℒ𝑘. It can be shown that Im(𝐷1/2
𝑘+1𝐵𝑇

𝑘 ) ≅ Im(𝐵𝑇
𝑘 ) and

Im(𝐷−1/2
𝑘+1 𝐵𝑘+1) ≅ Im(𝐵𝑘+1). By Theorem 3.2.1 and Theorem 4.1.1 (iv), we obtain

that Ker(𝐿𝑘) = Ker(ℒ𝑘) and hence the decomposition of ℝ𝑛 in Theorem 4.1.1 (iii)

can be considered as a Hodge decomposition.

Proposition 4.1.2. Let 𝑘 ≥ 1, 𝑓 ∈ 𝐶𝑘 = 𝐻𝑜𝑚(𝐶𝑘, ℝ) and 𝜎 ∈ 𝑋𝑘. The operator

Δ̃up
𝑘 corresponding to ℒup

𝑘 is given by

(Δ̃up
𝑘 𝑓)(𝜎) =

⎧{{
⎨{{⎩

𝑓(𝜎) + ∑
𝜎′∈𝑋𝑘,𝜎∼𝑢𝜎′

𝜎,𝜎′∈𝜕𝜎

sgn(𝜎, 𝜕𝜎)sgn(𝜎′, 𝜕𝜎)√deg 𝜎 deg 𝜎′ 𝑓(𝜎′), deg 𝜎 ≠ 0,

0 deg 𝜎 = 0.

The operator Δ̃down
𝑘 corresponding to ℒdown

𝑘 is given by



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45

(Δ̃down
𝑘 𝑓)(𝜎) = (𝑘 + 1) max{deg 𝜎, 1}𝑓(𝜎)

+ ∑
𝜎′∈𝑋𝑘,𝜎∼𝑙𝜎′

𝜎∩𝜎′=𝜏

max{deg 𝜎, 1} max{deg 𝜎′, 1}sgn(𝜏, 𝜕𝜎)sgn(𝜏, 𝜕𝜎′)𝑓(𝜎′).

Proof. Let 𝑋 be a simplicial complex, 𝑓 ∈ 𝐶𝑘 and 𝑛 = |𝑋𝑘|. Similar to the proof

of Proposition 3.1.2, we write 𝑓 =
𝑛

∑
𝑖=1

𝛽𝑖𝜏 𝑖. We write [𝑓] = (𝛽1, 𝛽2, … , 𝛽𝑛)𝑇 . By

Proposition 3.1.1, 𝐿up
𝑘 = 𝐷′

𝑘+1 + 𝐴up
𝑘 . Consider

ℒup
𝑘 [𝑓] = (𝐷−1/2

𝑘+1 𝐿up
𝑘 𝐷−1/2

𝑘+1 )[𝑓]
= (𝐷−1/2

𝑘+1 (𝐷′
𝑘+1 + 𝐴up

𝑘 )𝐷−1/2
𝑘+1 )[𝑓]

= (𝐷−1/2
𝑘+1 𝐷′

𝑘+1𝐷−1/2
𝑘+1 + 𝐷−1/2

𝑘+1 𝐴up
𝑘 𝐷−1/2

𝑘+1 )[𝑓]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿1𝛽1 + ∑
𝜏𝑖∈𝑋𝑘,𝜏𝑖∼𝑢𝜏1

𝜏𝑖,𝜏1∈𝜕𝜏

sgn(𝜏1, 𝜕𝜏)sgn(𝜏𝑖, 𝜕𝜏)
√deg 𝜏1 deg 𝜏𝑖

𝛽𝑖

𝛿2𝛽2 + ∑
𝜏𝑖∈𝑋𝑘,𝜏𝑖∼𝑢𝜏2

𝜏𝑖,𝜏2∈𝜕𝜏

sgn(𝜏2, 𝜕𝜏)sgn(𝜏𝑖, 𝜕𝜏)
√deg 𝜏2 deg 𝜏𝑖

𝛽𝑖

⋮
𝛿𝑛𝛽𝑛 + ∑

𝜏𝑖∈𝑋𝑘,𝜏𝑖∼𝑢𝜏𝑛
𝜏𝑖,𝜏𝑛∈𝜕𝜏

sgn(𝜏𝑛, 𝜕𝜏)sgn(𝜏𝑖, 𝜕𝜏)
√deg 𝜏𝑛 deg 𝜏𝑖

𝛽𝑖

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where

𝛿𝑖 =
⎧{
⎨{⎩

1, deg 𝜎𝑖 ≠ 0,

0, deg 𝜎𝑖 = 0.

This column vector corresponds to a map Δ̃up
𝑘 𝑓 =

𝑛
∑
𝑖=1

𝛾𝑖𝜏 𝑖, where 𝛾𝑖 is the ele-

ment in 𝑖th row of ℒup
𝑘 [𝑓]. Let 𝜏𝑞 ∈ 𝑋𝑘. If deg 𝜏𝑞 = 0, then (Δ̃up

𝑘 𝑓)(𝜏𝑞) = 𝛾𝑞 = 0.

Suppose that deg 𝜏𝑞 ≠ 0. Since 𝑓(𝜏𝑖) =
𝑛

∑
𝑗=1

𝛽𝑗𝜏 𝑗(𝜏𝑖) = 𝛽𝑖 for any 𝑖, we have
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(Δ̃up
𝑘 𝑓)(𝜏𝑞) =

𝑛
∑
𝑖=1

𝛾𝑖𝜏 𝑖(𝜏𝑞) = 𝛾𝑞

= 𝛽𝑞 + ∑
𝜏𝑖∈𝑋𝑘,𝜏𝑖∼𝑢𝜏𝑞

𝜏𝑖,𝜏𝑞∈𝜕𝜏

sgn(𝜏𝑞, 𝜕𝜏)sgn(𝜏𝑖, 𝜕𝜏)
√deg 𝜏𝑞 deg 𝜏𝑖

𝛽𝑖

= 𝑓(𝜏𝑞) + ∑
𝜏𝑖∈𝑋𝑘,𝜏𝑖∼𝑢𝜏𝑞

𝜏𝑖,𝜏𝑞∈𝜕𝜏

sgn(𝜏𝑞, 𝜕𝜏)sgn(𝜏𝑖, 𝜕𝜏)
√deg 𝜏𝑞 deg 𝜏𝑖

𝑓(𝜏𝑖).

By Proposition 3.1.1, 𝐿down
𝑘 = (𝑘 + 1)𝐼𝑛 + 𝐴down

𝑘 . Consider
ℒdown

𝑘 [𝑓] = (𝐷1/2
𝑘+1𝐿down

𝑘 𝐷1/2
𝑘+1)[𝑓]

= (𝐷1/2
𝑘+1((𝑘 + 1)𝐼𝑛 + 𝐴down

𝑘 )𝐷1/2
𝑘+1)[𝑓]

= ((𝑘 + 1)𝐷𝑘+1 + 𝐷1/2
𝑘+1𝐴down

𝑘 𝐷1/2
𝑘+1)[𝑓]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(𝑘 + 1)𝜙1(𝛽1) + ∑
𝜏𝑖∈𝑋𝑘,𝜏𝑖∩𝜏1=𝜎

𝜏𝑖∼𝑙𝜏1

𝜙1𝜙𝑖sgn(𝜎, 𝜕𝜏1)sgn(𝜎, 𝜕𝜏𝑖)𝛽𝑖

(𝑘 + 1)𝜙2(𝛽2) + ∑
𝜏𝑖∈𝑋𝑘,𝜏𝑖∩𝜏2=𝜎

𝜏𝑖∼𝑙𝜏2

𝜙2𝜙𝑖sgn(𝜎, 𝜕𝜏2)sgn(𝜎, 𝜕𝜏𝑖)𝛽𝑖

⋮
(𝑘 + 1)𝜙𝑛(𝛽𝑛) + ∑

𝜏𝑖∈𝑋𝑘,𝜏𝑖∩𝜏𝑛=𝜎
𝜏𝑖∼𝑙𝜏𝑛

𝜙𝑛𝜙𝑖sgn(𝜎, 𝜕𝜏𝑛)sgn(𝜎, 𝜕𝜏𝑖)𝛽𝑖

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where 𝜙𝑖 = max{deg 𝜏𝑖, 1}. This column vector corresponds to a map Δ̃down
𝑘 𝑓 =

𝑛
∑
𝑖=1

𝛼𝑖𝜏 𝑖, where 𝛼𝑖 is the element in 𝑖th row of ℒdown
𝑘 [𝑓]. Let 𝜏𝑞 ∈ 𝑋𝑘. Since

𝑓(𝜏𝑖) =
𝑛

∑
𝑗=1

𝛽𝑗𝜏 𝑗(𝜏𝑖) = 𝛽𝑖 for any 𝑖, we have

(Δ̃down
𝑘 𝑓)(𝜏𝑞) =

𝑛
∑
𝑖=1

𝛼𝑖𝜏 𝑖(𝜏𝑞) = 𝛼𝑞

= (𝑘 + 1) max{deg 𝜏𝑞, 1}𝛽𝑞

+ ∑
𝜏𝑖∈𝑋𝑘,𝜏𝑖∩𝜏𝑞=𝜎

𝜏𝑖∼𝑙𝜏𝑞

max{deg 𝜏𝑞, 1} max{deg 𝜏𝑖, 1}sgn(𝜎, 𝜕𝜏𝑞)sgn(𝜎, 𝜕𝜏𝑖)𝛽𝑖

= (𝑘 + 1) max{deg 𝜏𝑞, 1}𝑓(𝜏𝑞)
+ ∑

𝜏𝑖∈𝑋𝑘,𝜏𝑖∩𝜏𝑞=𝜎
𝜏𝑖∼𝑙𝜏𝑞

max{deg 𝜏𝑞, 1} max{deg 𝜏𝑖, 1}sgn(𝜎, 𝜕𝜏𝑞)sgn(𝜎, 𝜕𝜏𝑖)𝑓(𝜏𝑖).
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Let 𝐴 and 𝐵 be 𝑛 × 𝑛 matrices. Recall that we denote the set of eigenvalues

of 𝐴 by Spec(𝐴). Note that a multiset is a set that allows for multiple instances

for each of its elements, for example {0, 0, 1, 1, 3}. Let 𝒮𝑝𝑒𝑐 denote a multiset of

eigenvalues of 𝐴 with their multiplicities. We also denotes a union of multisets by

⊔ and write 𝒮𝑝𝑒𝑐(𝐴)=̇𝒮𝑝𝑒𝑐(𝐵) when these two multisets are equal.

Proposition 4.1.3. Let 𝑋 be a 𝑘-simplex. Then

(i) 𝒮𝑝𝑒𝑐(ℒup
0 )=̇{0, 𝑘 + 1

𝑘 , 𝑘 + 1
𝑘 , … , 𝑘 + 1

𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘 times

}=̇𝒮𝑝𝑒𝑐(𝐿up
0 ),

(ii) 𝒮𝑝𝑒𝑐(ℒup
𝑘−1)=̇{𝑘 + 1, 0, 0, … , 0⏟

𝑘 times

}=̇𝒮𝑝𝑒𝑐(𝐿up
𝑘−1),

(iii) 𝒮𝑝𝑒𝑐(ℒdown
𝑘 )=̇{𝑘 + 1}=̇𝒮𝑝𝑒𝑐(𝐿down

𝑘 ).

Proof. We first note that for a 𝑘-simplex 𝑋, 𝐷−1/2
𝑘 = 𝐷1/2

𝑘 = 𝐼𝑘+1. Then

𝒮𝑝𝑒𝑐(ℒup
𝑘−1)=̇𝒮𝑝𝑒𝑐(𝐿up

𝑘−1)

and

𝒮𝑝𝑒𝑐(ℒdown
𝑘 )=̇𝒮𝑝𝑒𝑐(𝐿down

𝑘 ).

We remark that 𝐿up
0 and ℒup

0 indicate a relation between vertices and edges.

Then we can consider only 1-structure of the simplex which can be seen as a graph.

Moreover, 1-structure of a 𝑘-simplex is indeed a complete graph 𝐾𝑘+1. Then by

Proposition 2.2.3, the first statement is done.

Let 𝑋 = [𝜎0, 𝜎1, … , 𝜎𝑘] be a 𝑘-simplex. We index an (𝑖 + 1)th row of 𝐵𝑘 as

̂𝜎𝑖 ∶= [𝜎0, 𝜎1, … , 𝜎𝑖−1, 𝜎𝑖+1, … , 𝜎𝑘]. Then we obtain that

𝐵𝑘 =

[𝜎0, 𝜎1, … , 𝜎𝑘]

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

̂𝜎0 1
̂𝜎1 −1

⋮ ⋮
̂𝜎𝑘 (−1)𝑘

and ℒup
𝑘−1 = 𝐵𝑘𝐵𝑇

𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 ⋯ (−1)𝑘

−1 1 ⋯ (−1)𝑘+1

⋮ ⋮ ⋱ ⋮
(−1)𝑘 (−1)𝑘+1 ⋯ (−1)2𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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We observe that rank(ℒup
𝑘−1) = 1 and

dim(Ker(ℒup
𝑘−1)) = null(ℒup

𝑘−1) = (𝑘 + 1) − rank(ℒup
𝑘−1) = (𝑘 + 1) − 1 = 𝑘.

Therefore, the multiplicity of eigenvalue 0 is 𝑘. Moreover, (1, −1, 1, … , (−1)𝑘) is

an eigenvector corresponding to eigenvalue 𝑘 + 1. Then, the second statement is

done.

For the last statement, consider

ℒdown
𝑘 = 𝐵𝑘𝐵𝑇

𝑘 = [𝑘 + 1].

Therefore Spec(ℒdown
𝑘 ) = {𝑘 + 1}.

4.2 𝑘th Homology on Simplicial Complex and the Smallest

Eigenvalue of normalized Hodge 𝑘-Laplacian Matrix

In Section 3.2, we state a relation between the smallest eigenvalue of Hodge 𝑘-

Laplacian matrix on a simplicial complex and its 𝑘th homology. Unfortunately,

the normalized Laplacian matrix that we defined does not satisfy (3.1). Then,

the chain complex on a given simplicial complex may not be split as a direct sum

of eigenspaces corresponding to eigenvalues of ℒ𝑘. However, the smallest eigen-

value of normalized Hodge 𝑘-Laplacian matrix can also tell whether the homology

(or cohomology) of a given simplicial complex is trivial. We prove the following

theorem by using some facts from the last section.

Theorem 4.2.1. Let 𝑋 be a simplicial complex and ℒ𝑘 a normalized Hodge 𝑘-

Laplacian matrix on 𝑋. Let 𝜆 be the smallest eigenvalue of ℒ𝑘 and 𝐻𝑘(𝑋) a

𝑘th-homology on 𝑋. Then

𝜆 ≠ 0 if and only if 𝐻𝑘(𝑋) = 0.

Proof. By Theorem 2.4.5 (iv) and Theorem 4.1.1 (iv), we obtain that Ker(𝐿𝑘) ≅
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Ker(ℒ𝑘). Then dim(Ker(𝐿𝑘)) = dim(Ker(ℒ𝑘)). This implies that the multiplicity

of eigenvalue 0 of 𝐿𝑘 and ℒ𝑘 are equal. Then, by Theorem 2.4.5 (i) and Theorem

4.1.1 (i), if the smallest eigenvalue of ℒ𝑘 is 0, so is the smallest eigenvalue of 𝐿𝑘.

By Theorem 3.2.1 , the proof is done.

Corollary 4.2.2. Let 𝑋 be a simplicial complex and ℒ𝑘 a normalized Hodge 𝑘-

Laplacian matrix on 𝑋. Let 𝜆 be the smallest eigenvalue of ℒ𝑘 and 𝐻𝑘(𝑋) a

𝑘th-cohomology on 𝑋. Then

𝜆 ≠ 0 if and only if 𝐻𝑘(𝑋) = 0.

4.3 Spectrum on Normalized Laplacian Matrix of 𝑘-wedge

Sum of Simplices

Definition 4.3.1. Given simplicial complexes 𝑋1 and 𝑋2 with chosen 𝑘-simplices

𝜎 ∈ 𝑋𝑘
1 and 𝜏 ∈ 𝑋𝑘

2 . Then, the 𝑘-wedge sum 𝑋1 ∨𝑘 𝑋2 is the quotient of the

disjoint union of 𝑋1 and 𝑋2 obtained by identifying simplices 𝜎 and 𝜏 as a single

simplex.

Remark 5. The definition of 𝑘-wedge sum is defined for any 𝑘 such that

𝑘 ≤ min{dim(𝑋1), dim(𝑋2)}

since 𝑋𝑚
1 and 𝑋𝑛

2 are empty sets if 𝑚 > dim(𝑋1) and 𝑛 > dim(𝑋2).

Example 4.3.1. Given simplicial complexes 𝑋1 = [𝑣0, 𝑣1, 𝑣2, 𝑣3] and 𝑋2 = [𝑣4, 𝑣5, 𝑣6]
with chosen 1-simplices 𝜎 = [𝑣1, 𝑣2] and 𝜏 = [𝑣5, 𝑣6]. Then, 𝑋1 ∨1 𝑋2 is shown in

the following figure;

Theorem 4.3.1. Let 𝑋1 and 𝑋2 be simplices. Let 𝑞 be nonnegative integers. If

𝑞 < 𝑘, then

𝒮𝑝𝑒𝑐(𝐿up
𝑘 (𝑋1 ∨𝑞 𝑋2))=̇𝒮𝑝𝑒𝑐(𝐿up

𝑘 (𝑋1)) ⊔ 𝒮𝑝𝑒𝑐(𝐿up
𝑘 (𝑋2)).
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(a) 𝑋1

(b) 𝑋2 (c) 𝑋1 ∨1 𝑋2

Proof. We observe that if 𝑞 < 𝑘

𝐿up
𝑘 (𝑋1 ∨𝑞 𝑋2) = ⎛⎜

⎝

𝐿up
𝑘 (𝑋1) O

O 𝐿up
𝑘 (𝑋2)

⎞⎟
⎠

,

where O is the zero matrix. Then, by Lemma 2.1.9, the proof is done.

Corollary 4.3.2. Let 𝑋1 and 𝑋2 be (𝑘 + 1)-simplices. Let 𝑞 be nonnegative

integers. If 𝑞 < 𝑘, then

𝒮𝑝𝑒𝑐(ℒup
𝑘 (𝑋1 ∨𝑞 𝑋2))=̇𝒮𝑝𝑒𝑐(ℒup

𝑘 (𝑋1)) ⊔ 𝒮𝑝𝑒𝑐(ℒup
𝑘 (𝑋2)).

Proof. Note that for a (𝑘 + 1)-simplex 𝑋, we have 𝐷−1/2
𝑘+1 = 𝐼|𝑋𝑘| = 𝐷1/2

𝑘+1. There-

fore, 𝐿up
𝑘 = ℒup

𝑘 . By Theorem 4.3.1, the proof is done.

Example 4.3.2. Given the simplicial complex 𝑋;

We observe that

𝑋 = (𝑋1 ∨1 𝑋2) ∨0 𝑋3.
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Then by Corollary 4.3.2,

𝒮𝑝𝑒𝑐(ℒup
2 (𝑋))=̇𝒮𝑝𝑒𝑐(ℒup

2 (𝑋1)) ⊔ 𝒮𝑝𝑒𝑐(ℒup
2 (𝑋2)) ⊔ 𝒮𝑝𝑒𝑐(ℒup

2 (𝑋3)).

By Proposition 4.1.3,

𝒮𝑝𝑒𝑐(ℒup
2 (𝑋))=̇{4, 0, 0, 0} ⊔ {4, 0, 0, 0} ⊔ {4, 0, 0, 0}=̇{4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

APPLICATIONS OF NORMALIZED HODGE

𝑘-LAPLACIAN MATRIX ON RAMDOM WALKS

In 2019, Schaub et al [16] defined a normalized Hodge 1-Laplacian matrix and

applied the matrix on a random walk on edges. However, they consider simplicial

complxes together with their given directions. The way we define and consider a

random walk on a normalized Hodge 1-Laplacian matrix is much simpler.

Let 𝐴 = (𝑎𝑖𝑗) be a matrix with real entries. Define |𝐴| = (|𝑎𝑖𝑗|) to guarantee

that all entries of 𝐴 are nonnegative. The matrix |𝐿𝑘| is well-known as a signless

𝑘-Laplacian. We next define a random walk normalized Hodge 𝑘-Laplacian matrix.

Then use the sign | ⋅ | to do an application on random walks which means that

we abandon the directions of a given simplicial complex. Note that, by now, all

considered simplicial complexes are connected, i.e. there is a path connecting every

pair of vertices.

5.1 Random Walk Normalized Hodge 𝑘-Laplacian Matrix

Definition 5.1.1. Let 𝐶𝑘 be a space of 𝑘-chain of simplicial complex 𝑋 and 𝑋𝑘 a

set of all 𝑘-simplices on 𝑋. Let 𝐵𝑘 be a matrix representation of a boundary map

𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1. The random walk normalized Hodge 𝑘-Laplacian matrix

ℒrw
𝑘 is defined by

ℒrw
𝑘 = 𝐷−1/2

𝑘+1 ℒ𝑘𝐷1/2
𝑘+1 = 𝐷−1

𝑘+1𝐵𝑘+1𝐵𝑇
𝑘+1 + 𝐵𝑇

𝑘 𝐵𝑘𝐷𝑘+1,

where 𝐷𝑘+1 and 𝐷−1
𝑘+1 are |𝑋𝑘| × |𝑋𝑘| diagonal matrices defined by, for 𝜎, 𝜏 ∈ 𝑋𝑘,

(𝐷𝑘+1)𝜎𝜏 = max{deg 𝜎, 1} if 𝜎 = 𝜏 and 0 otherwise, and 𝐷−1
𝑘+1 is the inverse of
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𝐷𝑘+1. Moreover, we define

ℒrw(up)
𝑘 ∶= 𝐷−1

𝑘+1𝐵𝑘+1𝐵𝑇
𝑘+1,

ℒrw(down)
𝑘 ∶= 𝐵𝑇

𝑘 𝐵𝑘𝐷𝑘+1.

Remark 6. Recall that a random walk normalized Laplacian matrix ℒ𝑟𝑤 = 𝐷−1𝐿
where (𝐷−1)𝑖𝑖 = 1

𝑑𝑖
if 𝑑𝑖 ≠ 0 and 0 otherwise.

Let (𝐷′
𝑘+1)−1 be a diagonal matrix defined by (𝐷′

𝑘+1)−1
𝜎𝜏 = 1

deg 𝜎 if 𝜎 = 𝜏 ,

deg ≠ 0 and 0 otherwise.

Similar to Remark 4, we can show that

𝐷−1
𝑘+1𝐿up

𝑘 = (𝐷′
𝑘+1)−1𝐿up

𝑘

for any 𝑘. Then,

ℒrw
0 = 𝐷−1

1 𝐵1𝐵𝑇
1 + 𝐵𝑇

0 𝐵0𝐷1 = 𝐷−1𝐿 = ℒrw

since 𝐷′
1 = 𝐷 and 𝐵0 = 0. This shows that ℒrw

𝑘 is a generalization of ℒrw.

Lemma 5.1.1. All eigenvalue (with their multiplicities) of ℒ𝑘 are the same with

all eigenvalues (with their multiplicities) of ℒ𝑟𝑤
𝑘 .

Proof. Note that ℒrw
𝑘 = 𝐷−1/2ℒ𝑘𝐷1/2 and 𝐷1/2 is an invertible matrix. Then, the

proof is done by Proposition 2.1.6.

For a random walk on graph, the word walk means walking from vertex to vertex

through edge. The following example gives us a direction to define a random walk

on a simplicial complex.

Example 5.1.1. From the following picture, we consider a process to move from the

edge [1, 2] to [4, 5]. We observe that we can move [1, 2] to [4, 5] through vertex or

move through triangle in each step. If intermediary simplices are vertices, one of

paths is

[1, 2]
[2]
−→ [2, 3]

[3]
−→ [3, 4]

[4]
−→ [4, 5].
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If intermediary simplices are triangles, one of paths is

[1, 2]
[1,2,3]
−−→ [2, 3]

[2,3,4]
−−→ [3, 4]

[3,4,5]
−−→ [4, 5].

5.2 Upper 𝑘-walk and Lower 𝑘-walk

From the idea of Example 5.1.1, we define an upper 𝑘-walk and a lower 𝑘-walk as

follow.

Definition 5.2.1. A finite sequence of distinct 𝑘-simplices {𝜎0, 𝜎1, … , 𝜎𝑛} of path

stating at 𝜎0, ending at 𝜎𝑛 and 𝜎𝑖 ∼𝑢 𝜎𝑖+1 for all 𝑖 whose intermediaries between

two successive simplices are (𝑘 + 1)-simplices is called an upper 𝑘-walk. The

simplex 𝜎0 is called a root.

Definition 5.2.2. A finite sequence of distinct 𝑘-simplices {𝜎0, 𝜎1, … , 𝜎𝑛} of path

stating at 𝜎0, ending at 𝜎𝑛 and 𝜎𝑖 ∼𝑙 𝜎𝑖+1 for all 𝑖 whose intermediaries between

two successive simplices are (𝑘−1)-simplices is called a lower 𝑘-walk. The simplex

𝜎0 is called a root.

Analogously to a random walk on graph, we call a randomly-process of walking

from the root simplex to another simplex a random upper/lower 𝑘-walk. Remark

that we do not allow states at time 𝑡 and 𝑡+1 to be the same. Moreover, since the

random upper/lower 𝑘-walk picks one of adjacency simplices of the current state

simplex each step randomly, random upper/lower 𝑘-walk is a Markov chain.

Example 5.2.1. From the following pictures, we can find an upper/lower 𝑘-walks

(not need to be unique) from the red simplex to the blue one.

(a) A lower 1-walk [1, 3]
[3]
−→ [3, 4] but there is no an upper 1-walk.
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(a)

(b)
(c)

(b) A lower 2-walk [1, 2, 3]
[2,3]
− → [2, 3, 5] and

an upper 2-walk [1, 2, 3]
[1,2,3,4]
−−−→ [2, 3, 4]

[2,3,4,5]
−−−→ [2, 3, 5].

(c) There is no a lower 2-walk and an upper 2-walk on this simplicial complex.

Theorem 5.2.1. Let 𝑋 be a simplicial complex. Suppose that there exists an upper

𝑘-walk on 𝑋. Then the matrix

𝑀up
𝑘 = 1

𝑘 + 1(|𝐼|𝑋𝑘| − ℒrw(up)
𝑘 |)

is a transition matrix of a random upper 𝑘-walk on 𝑋.

Proof. Let 𝑋 be a simplicial complex. Let 𝑋𝑘 = {𝜎1, 𝜎2, … , 𝜎𝑛} be the set of

𝑘-simplices on 𝑋 and 𝑛 = |𝑋𝑘|. For each (𝑘 + 1)-simplex 𝜎 which is a coface of

𝑘-simplex 𝜎, since 𝜎 has 𝑘 + 2 𝑘-faces, there are 𝑘 + 1 simplices which are upper

adjacent to 𝜎. Therefore, if we fix two distinct upper adjacent simplices 𝜎𝑖 and 𝜎𝑗,

a transition probability of upper 𝑘-walk from state 𝜎𝑖 at time 𝑡 to state 𝜎𝑗 at time

𝑡 + 1 is 𝑀𝑖𝑗 = 1
(𝑘 + 1) deg 𝜎𝑖

. Claim 𝑀up
𝑘 = (𝑀𝑖𝑗), where 𝑀𝑖𝑗 = 1

(𝑘 + 1) deg 𝜎𝑖
if 𝜎𝑖 ∼𝑢 𝜎𝑗 and 0 otherwise. Note that 𝑀𝑖𝑖 = 0 since we do not allow states at

time 𝑡 and 𝑡 + 1 to be the same. Let 𝑖, 𝑗 ∈ {1, 2, … , 𝑛} be such that 𝑖 ≠ 𝑗. Then



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56

(𝐼𝑛)𝑖𝑗 = 0. Note that (𝐷′
𝑘+1)−1𝐿up

𝑘 = 𝐷−1
𝑘+1𝐿up

𝑘 by Remark 6. Consider

𝑀𝑖𝑗 = 1
𝑘 + 1(|0 − ℒrw(up)

𝑘 |)𝑖𝑗

= 1
𝑘 + 1(|𝐷−1

𝑘+1𝐿up
𝑘 |)𝑖𝑗

= 1
𝑘 + 1(|(𝐷′

𝑘+1)−1𝐿up
𝑘 |)𝑖𝑗

= 1
𝑘 + 1(|(𝐷′

𝑘+1)−1𝐷′
𝑘+1 + (𝐷′

𝑘+1)−1𝐴up
𝑘 |)𝑖𝑗 (by Proposition 3.1.1)

= 1
𝑘 + 1(|(𝐷′

𝑘+1)−1𝐴up
𝑘 |)𝑖𝑗. (5.1)

If 𝜎𝑖 is not upper adjacent to 𝜎𝑗, then (𝐴up
𝑘 )𝑖𝑗 = 0. From (5.1), 𝑀up

𝑖𝑗 = 0.
Suppose that 𝜎𝑖 is upper adjacent to 𝜎𝑗 and 𝜎𝑖, 𝜎𝑗 ∈ 𝜕𝜎. Then (𝐴up

𝑘 )𝑖𝑗 =
sgn(𝜎𝑖, 𝜕𝜎)sgn(𝜎𝑗, 𝜕𝜎) and deg 𝜎 ≠ 0. From (5.1),

𝑀up
𝑖𝑗 = 1

𝑘 + 1(|((𝐷′
𝑘+1)−1𝐴up

𝑘 )𝑖𝑗|)

= 1
𝑘 + 1 ∣sgn(𝜎𝑖, 𝜕𝜎)sgn(𝜎𝑗, 𝜕𝜎)

deg 𝜎𝑖
∣

= 1
(𝑘 + 1) deg 𝜎𝑖

and the proof is done.

From Theorem 5.2.1, for 𝑘 = 0,

𝑀up
0 = 1

0 + 1(|𝐼|𝑉 | − ℒrw
0 |) = 𝐼|𝑉 | − ℒrw = 𝑃,

where 𝑃 is the matrix stated in Proposition 2.5.2. That is we can consider 𝑀up
𝑘

as a generalization of a transition matrix of random walk on graphs.

Unfortunately, ℒrw(down)
𝑘 is not suitable for applying to a random lower 𝑘-walk.

We use a term of Hodge 𝑘-Laplacian matrix 𝐿down
𝑘+1 instead.

Theorem 5.2.2. Let 𝑋 be a simplicial complex and 𝑋𝑘 the set of all 𝑘-simplices
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in 𝑋. For each 𝑘, define a |𝑋𝑘| × |𝑋𝑘| diagonal matrix 𝐷𝑘+1 by, for 𝜎, 𝜏 ∈ 𝑋𝑘,

(𝐷𝑘+1)𝜎𝜏 =

⎧{{{
⎨{{{⎩

1

( ∑
𝜎′∈𝜕𝜎

deg 𝜎′) − (𝑘 + 1)
, if 𝜎 = 𝜏;

0, otherwise.

Suppose that there exists a lower 𝑘-walk on 𝑋. Then the matrix

𝑀down
𝑘 = 𝐷𝑘+1(|𝐿down

𝑘 | − (𝑘 + 1)𝐼|𝑋𝑘|)

is a transition matrix of a random lower 𝑘-walk on 𝑋.

Proof. Let 𝑋 be a simplicial complex and 𝑘 a nonnegative integer. Let 𝑋𝑘 =
{𝜎1, 𝜎2, … , 𝜎𝑛} be the set of 𝑘-simplices on 𝑋 and 𝑛 = |𝑋𝑘|. Define 𝑚𝜎 =

( ∑
𝜎′∈𝜕𝜎

deg 𝜎′) − (𝑘 + 1). Note that, for a 𝑘-simplex 𝜎, if we fix (𝑘 − 1)-simplex

𝜎′ ∈ 𝜕𝜎, then deg 𝜎′ is a number of cofaces of 𝜎′ including 𝜎. Since the number of

(𝑘 − 1)-faces of 𝜎 is 𝑘 + 1, 𝑚𝜎 = ( ∑
𝜎′∈𝜕𝜎

deg 𝜎′) − (𝑘 + 1) is counting the number

of lower adjacent simplices of 𝜎. Therefore, if we fix two distinct lower adjacent

simplices 𝜎𝑖 and 𝜎𝑗, a transition probability of lower 𝑘-walk from state 𝜎𝑖 at time 𝑡
to state 𝜎𝑗 at time 𝑡 + 1 is 𝑀𝑖𝑗 = 1

𝑚𝜎𝑖

. Claim 𝑀down
𝑘 = (𝑀𝑖𝑗), where 𝑀𝑖𝑗 = 1

𝑚𝜎𝑖
if 𝜎𝑖 ∼𝑙 𝜎𝑗 and 0 otherwise. Note that 𝑀𝑖𝑖 = 0 since we do not allow states at

time 𝑡 and 𝑡 + 1 to be the same. Let 𝑖, 𝑗 ∈ {1, 2, … , 𝑛} be such that 𝑖 ≠ 𝑗. Then

(𝐼𝑛)𝑖𝑗 = 0. Consider

𝑀𝑖𝑗 = (𝐷𝑘+1(|𝐿down
𝑘 | − (𝑘 + 1)𝐼𝑛))𝑖𝑗

= (𝐷𝑘+1(|(𝑘 + 1)𝐼𝑛 + 𝐴down
𝑘 | − (𝑘 + 1)𝐼𝑛))𝑖𝑗 (by Proposition 3.1.1)

= (|𝐷𝑘+1𝐴down
𝑘 |)𝑖𝑗. (5.2)

If 𝜎𝑖 is not lower adjacent to 𝜎𝑗, then (𝐴down
𝑘 )𝑖𝑗 = 0. By (5.2), 𝑀𝑖𝑗 = 0.
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Suppose that 𝜎𝑖 ∼𝑙 𝜎𝑗, then

𝑀𝑖𝑗 = (|𝐷𝑘+1𝐴down
𝑘 |)𝑖𝑗

= ∣ 1
𝑚𝜎𝑖

× sgn((𝜎𝑖 ∩ 𝜎𝑗), 𝜕𝜎𝑖)sgn((𝜎𝑖 ∩ 𝜎𝑗), 𝜕𝜎𝑗)∣

= 1
𝑚𝜎𝑖

.

Example 5.2.2. From Example 5.2.1, a Markov chain of a random upper 1-walk

and a Markov chain of a random lower 1-walk on the simplicial complex (b) are

shown as follow:

𝑀up
1 = 1

2(|𝐼|𝐸| − ℒrw(up)
1 |)

=

[1, 2] [1, 3] [1, 4] [2, 3] [2, 4] [3, 4] [2, 5] [3, 5] [4, 5]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

[1,2] 0 1/4 1/4 1/4 1/4 0 0 0 0
[1,3] 1/4 0 1/4 1/4 0 1/4 0 0 0
[1,4] 1/4 1/4 0 0 1/4 1/4 0 0 0
[2,3] 1/6 1/6 0 0 1/6 1/6 1/6 1/6 0
[2,4] 1/6 0 1/6 1/6 0 1/6 1/6 0 1/6
[3,4] 0 1/6 1/6 1/6 1/6 0 0 1/6 1/6
[2,5] 0 0 0 1/4 1/4 0 0 1/4 1/4
[3,5] 0 0 0 1/4 0 1/4 1/4 0 1/4
[4,5] 0 0 0 0 1/4 1/4 1/4 1/4 0
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𝑀down
1 = 𝐷2(|𝐿down

1 | − 2𝐼|𝐸|)

=

[1, 2] [1, 3] [1, 4] [2, 3] [2, 4] [3, 4] [2, 5] [3, 5] [4, 5]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

[1,2] 0 1/5 1/5 1/5 1/5 0 1/5 0 0
[1,3] 1/5 0 1/5 1/5 0 1/5 0 1/5 0
[1,4] 1/5 1/5 0 0 1/5 1/5 0 0 1/5
[2,3] 1/6 1/6 0 0 1/6 1/6 1/6 1/6 0
[2,4] 1/6 0 1/6 1/6 0 1/6 1/6 0 1/6
[3,4] 0 1/6 1/6 1/6 1/6 0 0 1/6 1/6
[2,5] 1/5 0 0 1/5 1/5 0 0 1/5 1/5
[3,5] 0 1/5 0 1/5 0 1/5 1/5 0 1/5
[4,5] 0 0 1/5 0 1/5 1/5 1/5 1/5 0



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

CONCLUSION

6.1 Conclusion and Discussion

Let 𝑋 be a simplicial complex. Recall the definitions of a Hodge 𝑘-Laplacian

matrix and a normalized Hodge 𝑘-Laplacian matrix as followed;

𝐿𝑘 = 𝐵𝑘+1𝐵𝑇
𝑘+1 + 𝐵𝑇

𝑘 𝐵𝑘

and

ℒ𝑘 = 𝐷−1/2
𝑘+1 𝐵𝑘+1𝐵𝑇

𝑘+1𝐷−1/2
𝑘+1 + 𝐷1/2

𝑘+1𝐵𝑇
𝑘 𝐵𝑘𝐷1/2

𝑘+1,

where 𝐷1/2
𝑘+1 and 𝐷−1/2

𝑘+1 are |𝑋𝑘| × |𝑋𝑘| diagonal matrices defined by (𝐷1/2
𝑘+1)𝜎𝜏 =

max{√deg 𝜎,1} if 𝜎 = 𝜏 and 0 otherwise, and 𝐷−1/2
𝑘+1 is the inverse of 𝐷1/2

𝑘+1.

Since 1-stucture of any simplicial complexes is a graph, a Hodge 𝑘-Laplacian

matrix on simplicial complexes is a generalization of a Laplacian matrix on graphs

and a normalized Hodge 𝑘-Laplacian matrix on simplicial complexes is a general-

ization of a normalized Laplacian matrix on graphs. These two matrices are Hodge

Laplacian matrix and this fact leads us to many properties of them which could

be applied for many applications. Moreover, we obtain that the smallest eigen-

value of both Hodge 𝑘-Laplacian and normalized Hodge 𝑘-Laplacian on a simplicial

complex can indicate whether the homology (or cohomology) on a given simplicial

complex is trivial. Finally, we obtain a general from of a Markov chain of random

walks on graphs using the matrix that we defined.
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6.2 Further Works

Let 𝑋 be a simplicial complex and 𝑅 a commutative ring. Let 𝑤 ∶ 𝑋 → 𝑅
satisfying that for any 𝜎1, 𝜎2 in 𝑋 such that 𝜎1 is a face of 𝜎2, then 𝑤(𝜎1) ∣ 𝑤(𝜎2).
Then a pair (𝑋, 𝑤) is called a weighted simplicial complex. In this work, we only

define a Hodge 𝑘-Laplacian matrix and a normalized Hodge 𝑘-Laplacian matrix on

unweighted simplicial complex. We suggest the readers to general our results to

work on weighted simplicial complexes. Moreover, an interesting point is to check

that whether Theorem 3.2.1 and Theorem 4.1.1 (iv) hold for a weighted homology

on weighted simplicial complex. For more details in weighted simplicial complex

and weighted homology, see [13] and [22].

Recall that from Lemma 2.4.4 (ii), the composition is called a Hodge decom-

position which has many applications in data analysis, ranking, game theory and

others, see [11]. From Theorem 4.1.1 (iii), we obtain the decomposition

Im(𝐷1/2
𝑘+1𝐵𝑇

𝑘 ) ⊕ Ker(ℒ𝑘) ⊕ Im(𝐷−1/2
𝑘+1 𝐵𝑘+1) ≅ ℝ𝑛,

where 𝑛 is the number of 𝑘-simplices of a given simplicial complex. We recommend

to do some applications from this result.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES

[1] Aharoni, R., Berger, E. and Meshulam, R.: Eigenvalues and Homology of
Flag Complexes and Vector Representations of Graphs. Geom. funct. anal.
15, 555-566 (2005).

[2] Bartholdi, L., Schick, T., Smale, N. and Smale, S.: Hodge Theory on Metric
Spaces. Found. Comput. Math. 12, 1-48 (2012).

[3] Cartan, H. and Eilenberg, S.: Homological Algebra, Princeton University
Press, New Jersey, 1956.

[4] Chung, F.R.K.: Spectral Graph Theory, American Mathematical Society,
United State, 1997.

[5] Chung, F.R.K.: The Laplacian of a Hypergraph. Proc. DIMACS Ser. Discrete
Math. Theoret. Comput. Sci. 10, 21-36 (1993).

[6] Chung, K.L.: Elementary Probability Theory with Stochastic Process,
Springer-Verlag, New York, USA, 1979.

[7] Dieck, T. T. Algebraic Topology. EMS Textbooks in Mathematics. Germany;
European Mathematical Society, 2008.

[8] Hatcher, A.: Algebraic Topology, Cambridge University, Cambridge, UK,
2002.

[9] Horak, D. and Jost, J.: Spectra of Combinatorial Laplace Operators on Sim-
plicial Complexes. Adv. Math. 244, 303-336 (2013).

[10] Kauffman, L.H.: Topological Quantum Information, Virtual Jones Polynomi-
als and Khovanov Homology. New J. Phys. 13 (2011).

[11] Lim, L.H.: Hodge Laplacians on Graphs. In Proceedings of Symposia in Ap-
plied Mathematics, Geometry and Topology in Statistical inference, Amer.
Math. Soc., 73 (2015).

[12] Parlett, B.N.: The Symmetric Eigenvalue Problem, Society for Industrial and
Applied Mathematics, Philadelphia, 1997.

[13] Ren, S., Wu, C. and Wu, J.: Weighted Persistent Homology. Rocky Mt. J.
Math. 48, 2661-2687 (2018).

[14] Rotman, J.J.: An Introduction to Homological Algebra, Springer, USA, 2009.

[15] Rowen, L.H.: Graduate Algebra: Noncommutative View, American Mathe-
matical Society, USA, 2008.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

63

[16] Schaub, M.T., Horn, A.R.P., Lippner, G., Jadbabaie, A. : Random Walks
on Simplicial Complexes and the Normalized Hodge 1-Laplacian, arXiv:
1807.05044, 2018.

[17] Sheldon, A.: Linear Algebra Done Right, Springer, New York, 1997.

[18] Sheldon, M.R.: Introduction to Probability Models, Academic Press, USA,
2010.

[19] Taszus, C. : Higher order Laplace Beltrami Spectra of Networks, Friedrich-
SchillerUniversitt Jena Fakultt fr Mathematik und Informatik, Master’s the-
sis, 2010.

[20] Weibel, C.A.: An Introduction to Homological Algebra, Cambridge University
Press, USA, 1997.

[21] Wilson, R. J. Introduction to graph theory. 4th edition. United Kingdom;
Longman group, 1998.

[22] Wu, C., Ren, S., Wu, J. and Xia, K.: Discrete Morse Theory for Weighted
Simplicial Complexes. Topol. Its Appl. 270, 1-19 (2020).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64

VITA

Name : Miss Nalinpat Ponoi

Date of Birth : 29 March 1996

Place of Birth : Chumphon, Thailand

Education : B.Sc. (Mathematics), Prince of Songkla University, 2016

Scholarship : Science Achievement Scholarship of Thailand (SAST)


	Abstract in Thai
	Abstract in English
	Acknowledgements
	INTRODUCTION
	PRELIMINARIES
	Linear Algebra
	Graph Theory
	Algebraic Topology
	Simplicial Complexes
	Boundary and Coboundary Maps
	Homology and Cohomology
	Matrix Representations

	Hodge Theory
	Hodge Laplacians on Simplicial Complex

	Random Walks on Graphs

	HODGE LAPLACIAN MATRIX
	Hodge k-Laplacian
	Degree Matrices on Higher Dimensions
	Adjacency Matrices on Higher Dimensions

	kth Homology on Simplicial Complex and the Smallest Eigenvalue of Hodge k-Laplacian Matrix

	NORMALIZED HODGE LAPLACIAN MATRIX
	Definition and Basic Properties
	kth Homology on Simplicial Complex and the Smallest Eigenvalue of normalized Hodge k-Laplacian Matrix
	Spectrum on Normalized Laplacian Matrix of k-wedge Sum of Simplices

	APPLICATIONS OF NORMALIZED HODGE k-LAPLACIAN MATRIX ON RAMDOM WALKS
	Random Walk Normalized Hodge k-Laplacian Matrix
	Upper k-walk and Lower k-walk

	CONCLUSION
	Conclusion and Discussion
	Further Works

	REFERENCES 
	VITA

