MICROEMULSION FORMATION OF SURFACTANT/OILY WASTEWATER SYSTEM AND RELATION TO CLEAN-UP BY FROTH FLOTATON

Ms. Ummarawadee Yanatatsaneejit

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2004 ISBN 974-9651-74-x

Thesis Title:	Microemulsion Formation of Surfactant/Oily Wastewater
	System and Relation to Clean-up by Froth Flotation
By:	Ms. Ummarawadee Yanatatsaneejit
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Sumaeth Chavadej
	Asst. Prof. Pramoch Rangsunvigit
	Prof. John F. Scamehorn
By: Program: Thesis Advisors:	Ms. Ummarawadee Yanatatsaneejit Petrochemical Technology Assoc. Prof. Sumaeth Chavadej Asst. Prof. Pramoch Rangsunvigit Prof. John F. Scamehorn

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Nantaya Janumet . . . College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

 \checkmark

(Prof. Somchai Osuwan)

(Assoc. Prof. Sumaeth Chavadej)

Dramehorn John.

(Prof. John F. Scamehorn)

Premach R

(Asst. Prof. Pramoch Rangsunvigit)

(Prof. David A. Sabatini)

(Chairman)

(Asst. Prof. Pomthong Malakul)

บทคัดย่อ

อมราวดี ญาณทัศนีย์จิต : การเกิดไมโครอิมัลชั้นของระบบที่ประกอบด้วยสารลดแรงตึง ผิวกับน้ำเสียที่มีน้ำมันปนเปื้อน และความสัมพันธ์กับกระบวนการทำให้ลอย (Microemulsion Formation of Surfactant/Oily Wastewater System and Relation to Clean-up by Froth Flotation) อ. ที่ปรึกษา: รศ. คร. สุเมธ ชวเดช ผศ. คร. ปราโมช รังสรรค์วิจิตร และ ศ. คร. สเคม์ มาฮอร์น 108 หน้า ISBN 974-9651-74-x

กระบวนการทำให้ลอย (Froth flotation) เป็นหนึ่งในกระบวนการแยกที่ใช้สารลดแรง โดยกระบวนการนี้สามารถประยุกต์ใช้กับการบำบัดน้ำเสียที่มี ตึงผิวเป็นองค์ประกอบสำคัญ ปริมาณสารปนเปื้อนต่ำในรูปน้ำมันและ/หรืออนุภาคแขวนลอย วิธีการนี้มีข้อคีหลายประการเช่น ต้องการพื้นที่ติดตั้งอุปกรณ์ไม่มาก ประสิทธิภาพการบำบัดสูง สามารถประยุกต์ใช้ได้กับสาร มลพิษหลายชนิด และ ค่าใช้ง่ายในการบำบัดต่ำ โดยในงานวิจัยนี้ได้เลือกศึกษากระบวนการทำให้ ้ลอยแบบกะเพื่อกำจัดน้ำมันที่ปนเปื้อนอยู่ในน้ำเสีย จากงานวิจัยที่ผ่านมาพบว่าประสิทธิภาพของ กระบวนการนี้จะมีค่าสูงสุดเมื่อสารละลายเกิดเป็นไมโครอิมัลชันชนิดที่ 3 ดังนั้นในงานวิจัยนี้จึง ได้นำหลักการของการเกิด ใมโครอิมัลชันมาประยุกต์เข้ากับหลักการทำงานของกระบวนการทำให้ ลอย เพื่อให้เกิดประสิทธิภาพการบำบัดที่สูงที่สุด ในการทำให้เกิดไมโครอิมัลชันนั้น สารลดแรง ตึงผิวที่มีประจุลบ โซเดียม ได-1,3ไดเม็ททิลบิวทิล ซันโฟร์ซักซิเนต (AMA) ถูกนำมาใช้เพื่อทำ ให้เกิดใมโครอิมัลชั้นของน้ำ กับเอทิลเบนซีน ในขณะที่สารลดแรงตึงผิว ชนิดที่มีประจุลบที่ส่วน หางประกอบไปด้วยคาร์บอน 14 – 15 จำนวน และมีกลุ่มโพรพิลีนออกไซด์ 4 กลุ่ม (Alfoterra 145 – 4PO) ถูกนำมาศึกษาการเกิดไมโครอิมัลชันของน้ำ กับดีเซล งานวิจัยชิ้นนี้ได้บ่งชื่ ประสิทธิภาพของกระบวนการทำให้ลอยมีความเกี่ยวข้องกับค่าแรงตึงผิว ซึ่งเป็นคณสมบัติที่ สำคัญของระบบไมโครอิมัลชันชนิคที่ 3 นอกจากนั้นงานวิจัยนี้ยังได้พิจารณาถึงปัจจัยต่างๆ อาทิ ้ความเข้มข้นของสารถดแรงตึงผิว ความเข้มข้นของเกลือโซเดียมกถอไรด์ สัดส่วนของน้ำมัน ต่อ น้ำในน้ำเสีย อัตราการใหลของอากาศ และ สภาวะในการเกิดสมดุลของระบบ ที่มีผลต่อ ประสิทธิภาพการแยกน้ำมัน โดยอธิบายในรูปของค่าแรงตึงผิวและลักษณะสมบัติของฟอง จากผล ระบบที่มีค่าแรงตึงผิวต่ำที่สุดไม่จำเป็นต้องเป็นระบบที่ให้ผลการแยกน้ำมัน การทดลองพบว่า สูงสุดเสมอไป ดังนั้น ค่าแรงตึงผิว ความสามารถการเกิดฟอง และความเสถียรของฟอง ต่างมี บทบาทสำคัญต่อประสิทธิภาพการแยกน้ำมันของกระบวนการทำให้ลอย นอกจากนั้นแล้วยัง พบว่าสัคส่วนของน้ำมันต่อน้ำในน้ำเสียไม่มีผลกระทบต่อประสิทธิภาพการแยกน้ำมัน สำหรับค่า อัตราการใหลของอากาศที่ใช้ในกระบวนการทำให้ลอยนี้ ควรมีค่าเหมาะสมที่ค่าหนึ่งเพื่อให้เกิด

ความสมคุลระหว่างการเกิดฟอง และการแตกกลับของฟอง และท้ายสุด ระบบที่เกิดความสมคุลจะ ก่อให้เกิดประสิทธิภาพการแยกน้ำมันที่มีค่าสูงสุด

ABSTRACT

4391006063: PETROCHEMICAL TECHNOLOGY PROGRAM

Ummarawadee Yanatatsaneejit: Microemulsion Formation of Surfactant/Oily Wastewater System and Relation to Clean-up by Froth Flotation.

Thesis Advisors: Assoc. Prof. Sumaeth Chavadej, Asst. Prof. Pramoch Rangsunvigit, and Prof. John F. Scamehorn, 108 pp. ISBN 974-9651-74-x

Keywords: Froth flotation/ Microemulsion/ Foam characteristic

Froth flotation is one of the surfactant based separation processes which is suitable for treating diluted wastewaters containing oil and/or colloidal particles. In this technique, there are several advantages such as low space requirement, high removal efficiency, flexibility for various pollutants at various scales, and low cost. In this work, batch mode of froth flotation was focused as technique to remove emulsified oil from wastewater. From the previous work, high oil removal was achieved in a Winsor type III microemulsion region. Therefore, microemulsion concept was combined with froth flotation technique to achieve high separation efficiency. Dihexyl sulfosuccinate (Aerosal MA or AMA) was used to prepare microemulsion solutions with ethylbenzene while branched alcohol propoxylate sulfate sodium salt with 14 - 15 carbon number and 4 propylene oxide groups (Alfoterra 145 - 4PO) was utilized to form microemulsion with diesel. Interfacial tension (IFT), which is one of the important characteristics in Winsor type III microemulsions, was investigated as a function of separation efficiency. In addition, performance of froth flotation as a function of foam characteristics was also elucidated. In froth flotation experiments, various parameters such as surfactant concentration, salinity, oil to water ratio, air flow rate, and equilibration condition were studied in order to correlate the oil removal efficiency with IFT value and foam characteristics. From the results, there are conditions of the diesel system where no separation occurs even though IFT value is in the ultra-low range (i.e. 10⁻² mN/m) because the foam characteristics are extremely low. Therefore, both IFT and the

foam characteristics influence the efficiency of oil removal in the froth flotation process. Moreover, the oil removal is not significantly affected by oil to water ratio. In froth flotation operation, air flow rate should be optimized to achieve high removal efficiency. Ultimately, equilibrium condition always yields the highest separation efficiency in froth flotation operation.

ACKNOWLEDGEMENTS

This work cannot be successful without the participation of the following individuals and organizations.

I would like to express my deepest appreciation to my thesis advisors, Professor John F. Scamehorn, Associate Professor Sumaeth Chavadej, and Associate Professor Pramoch Rangsunvigit, for all of their special guidance and assistance while I was conducting my research. Professor John F. Scamehorn is an outstanding advisor and teacher in my life. He always teaches me not only the theoretical knowledge but also the way to think. My thinking process improves a lot with his guidance. Associate Professor Sumaeth Chavadej has taught me a lot about the skill to do experiment and how to write paper as professional. Without his help, writing a lot of papers should be the most difficult for me. In addition, I would like to thank Associate Professor Pramoch Rangsunvigit for his valuable advice about how to solve the problem that occurs during the experiment.

A great thankfulness is forward to Professor David A. Sabatini for his guidance about microemulsion. Moreover, I would like to acknowledge Dr. Edgar J. Acosta for a very great discussion about the concept of microemulsion and surfactant.

I would like to give special thanks to Professor Somchai Osuwan for his kindness being as a chair committee. I also would like to appreciatively thank to Assistant Professor Pomthong Malakul for being as my thesis committee and giving me the valuable comments and suggestions.

It is a pleasure to acknowledge the Thailand Research Fund for supporting this research work and giving me a scholarship and opportunity to study in Ph.D. program.

I would like to give my deep thankfulness to Mr. Pisan Chungchamroenkit for his discussion, a very great idea, and willpower.

Special thanks are forwarded to my friends, Dr. Chantra Tongcumpou, Ms. Anuradee Witthayapanyanon, Ms. Raweewan Klaewkla, Dr. Korada Supat, Ms. Sunisa Watcharasing, and Ms. Suratsawadee Kungsanant for being my good friends and giving me a very great time during doing my research. I would like to express my deepest appreciation to my family. Without their love and support, I would not be able to success my Ph.D. degree.

Finally, special thanks are expressed to the faculty members and staff of the Petroleum and Petrochemical College at Chulalongkorn University and the Institute for Applied Surfactant Research at the University of Oklahoma for providing all facilities needed for this research work.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vii
Table of Contents	ix
List of Tables	xiv
List of Figures	xv

CHAPTER

.

I	INTRODUCTION	1
	1.1 State of Problem	1
	1.2 Objectives	2
	1.3 Scope of Work	2
	1.4 Surfactants	3
	1.5 Emulsion Systems	4
	1.5.1 Microemulsions	5
	1.5.2 Solubilization Parameters	8
	1.6 Principles of Froth Flotation	8
	1.7 Studied Oils as Hazardous Substances	12
	1.7.1 Ortho-dichlorobenzene	12
	1.7.2 Ethylbenzene	13
	1.7.3 Diesel	13
II	CLEAN-UP OF OILY WASTEWATER BY	14
	FROTH FLOTATION: EFFECT OF	
	MICROEMULSION FORMATION II: USE OF	
	ANIONIC/NONIONIC SURFACTANT	
	MIXTURES	

2.1 Abstract

14

1

III

2.2 Introduction	14
2.3 Experimental Section	17
2.3.1 Materials	17
2.3.2 Methodology	17
2.4 Results and Discussion	18
2.4.1 Phase Behavior Results	18
2.4.1.1 Effect of Single Surfactant	19
Concentration on Microemu	lsion
Formation	
2.4.1.2 Effect of Mixed Surfactant	20
Composition on Microemuls	sion
Formation	
2.4.1.3 Effect of NaCl on Microemu	llsion 20
Formation of Mixed Surfacta	ant
System	
2.4.2 Froth Flotation Results	21
2.5 Acknowledgements	22
2.6 References	23
CLEAN-UP OF OILY WASTEWATER BY	33
FROTH FLOTATION: EFFECT OF	
MICROEMULSION FORMATION III: US	E OF
ANIONIC/NONIONIC SURFACTANT	
MIXTURES AND EFFECT OF RELATIVE	;
VOLUMES OF DISSIMILAR PHASES	
3.1 Abstract	33
3.2 Introduction	33
3.3 Experimental Section	35
3.3.1 Materials	35
3.3.2 Methodology	35

IV

3.4 Resul	lts and Discussion	36
3.4.1	Effect of Initial Mixed Surfactant	36
	Concentration on ODCB Removal	
3.4.2	Effect of NaCl Concentration on ODCB	36
	Removal	
3.4.3	Effect of the Presence of Different Phases on	37
	ODCB Removal	
3.4.4	Effect of Weight Fraction of SDS on ODCB	37
	Removal	
3.4.5	Effect of Weight Fraction of SDS and Initial	38
	Mixed Surfactant Concentration on Removal	
	Time	
3.5 Ackn	owledgements	38
3.6 Refer	ences	39
ETHYLE	BENZENE REMOVAL BY FROTH	49
FLOTAT	'ION UNDER CONDITIONS OF	
MIDDLE	-PHASE MICROEMULSION	
FORMA	FION I: INTERFACIAL TENSION,	
FOAMA	BILITY, AND FOAM STABILITY	
4.1 Abstr	act	49
4.2 Introd	luction	49
4.3 Exper	rimental Section	51
4.3.1	Materials	51
4.3.2	Methodology	52
4.4 Resul	ts and Discussion	53
4.4.1	Phase Behavior	53
4.4.2	Foam Formation and Foam Stability	54

xii

	4.4.3 Froth Flotation	55
	4.4.3.1 Maximum Removal of Ethylbenzene	55
	and Surfactant	
	4.4.3.2 Enrichment Ratios and Dynamics of	56
	Flotation	
	4.5 Conclusions	57
	4.6 Acknowledgements	57
	4.7 References	58
V	ETHYLBENZENE REMOVAL BY FROTH	68
	FLOTATION UNDER CONDITIONS OF	
	MIDDLE-PHASE MICROEMULSION	
	FORMATION II: EFFECTS OF AIR FLOW	
	RATE, OIL TO WATER RATIO, AND	
	EQUILIBRATION TIME	
	5.1 Abstract	68
	5.2 Introduction	68
	5.3 Experimental Section	69
	5.3.1 Materials	69
	5.3.2 Methodology	69
	5.4 Results and Discussion	71
	5.4.1 Effect of Oil to Water Ratio on IFT	71
	5.4.2 Foam Formation and Foam Stability	71
	5.4.3 Froth Flotation Performance	72
	5.4.3.1 Removal of Ethylbenzene and	72
	Surfactant	
	5.4.3.2 Dynamics of Flotation	74
	5.5 Conclusions	75
	5.6 Acknowledgements	75
	5.7 References	76

PAGE

VI	DIESEL REMOVAL BY FROTH FLOTATION	83
	UNDER LOW INTERFACIAL TENSION	
	CONDITIONS I: FOAM CHARACTERISTICS,	
	COALESCENCE TIME AND EQUILIBRATION	
	TIME	
	6.1 Abstract	83
	6.2 Introduction	83
	6.3 Experimental Sections	85
	6.3.1 Materials	85
	6.3.2 Methodology	85
	6.4 Results and Discussion	87
	6.4.1 Phase Behavior	87
	6.4.2 Foam Characteristic	88
	6.4.3 Coalescence of Oil Droplets	90
	6.4.4 Froth Flotation	91
	6.4.4.1 Removal of Diesel and Alfoterra	91
	6.4.4.2 Enrichment Ratio of Diesel	93
	6.5 Conclusions	94
	6.6 Acknowledgements	95
	6.7 References	95
VII	CONCLUSIONS AND RECOMMENDATIONS	102
	7.1 Conclusions	102
	7.2 Recommendations	103
	REFERENCES	104
	CURRICULUM VITAE	107

LIST OF TABLES

TABLE

- 5.1 Effect of equilibration conditions on process parameters at fixed 82
 AMA concentration of 0.3 wt%, NaCl concentration of 3 wt%, and oil to water ratio of 1:1
- Effect of equilibration condition on process parameters at fixed 101
 Alfoterra concentration of 0.10 wt%, NaCl concentration of 3
 wt%, and oil to water ratio of 1:1

LIST OF FIGURES

FIGURE

PAGE

1.1	The formation of micelle	3
1.2	Normal micelles and inverse micelles	4
1.3	Schematic diagram of types of microemulsions	6
1.4	Relationship between interfacial tension and phase behavior	7
1.5	Schematic of the foam flotation process	9
2.1	Schematic diagram of the froth flotation system	26
2.2	Volume fractions of water, middle, and oil phases at different	26
	SDS concentrations, with initial oil:water volume ratio of 1:1,	
	and without NaCl	
2.3	Volume fractions of water, middle, and oil phases at different	27
	NP(EO) ₁₀ concentrations, with initial oil:water volume ratio of	
	1:1, and without NaCl	
2.4	Volume fractions of water, middle, and oil phases at 1% by	27
	weight total surfactant concentration, with initial oil:water	
	volume ratio of 1:1, and without NaCl	
2.5	Volume fractions of water, middle, and oil phases at 3% by	28
	weight total surfactant concentration, with initial oil:water	
	volume ratio of 1:1, and without NaCl	
2.6	Volume fractions of water, middle, and oil phases at 5% by	28
	weight total surfactant concentration, with initial oil:water	
	volume ratio of 1:1, and without NaCl	
2.7	Volume fractions of water, middle, and oil phases at 7% by	29
	weight total surfactant concentration, with initial oil:water	
	volume ratio of 1:1, and without NaCl	
2.8	Volume fractions of water, middle, and oil phases at 9% by	29
	weight total surfactant concentration, with initial oil:water	
	volume ratio of 1:1, and without NaCl	

2.9	Volume fractions of water, middle, and oil phases at 1% by	30
	weight total surfactant concentration, X_{SDS} of 0.4, and initial	
	oil:water volume ratio of 1:1	
2.10	Dynamic removal efficiency of ODCB as a function of X_{SDS} at	30
	5% by weight total surfactant concentration with initial	
	oil:water volume ratio of 1:1, and without NaCl	
2.11	Dynamic removal efficiency of SDS as a function of X_{SDS} at	31
	5% by weight total surfactant concentration with initial	
	oil:water volume ratio of 1:1, and without NaCl	
2.12	Dynamic removal efficiency of NP(EO) ₁₀ as a function of X_{SDS}	31
	at 5% by weight total surfactant concentration with initial	
	oil:water volume ratio of 1:1, and without NaCl	
2.13	Comparison between removal efficiency of ODCB, SDS, and	32
	NP(EO) ₁₀ at 5% by weight total surfactant concentration with	
	initial oil:water volume ratio of 1:1, without NaCl, and 120 min	
	aeration time	
2.14	ODCB and water content in collapsed foam fraction as a	32
	function of X_{SDS} at 5% by weight total surfactant concentration	
	with initial oil:water volume ratio of 1:1, without NaCl, and	
	120 min aeration time	
3.1	Schematic of the foam flotation process	41
3.2	Schematic diagram of the froth flotation apparatus	41
3.3	Comparison of ODCB removal between 3% and 5% by weight	42
	total surfactant concentrations at X_{SDS} of 0.2, without NaCl,	
	and initial oil : water ratio of 1:1	
3.4	Comparison of ODCB removal at 3% by weight total surfactant	42
	concentration, X_{SDS} of 0.6, initial oil : water ratio of 1:1, and	
	different NaCl concentrations	

3.5	Comparison of ODCB removal of w-m-o, w-o, and w-m	43
	systems at 3% by weight total surfactant concentration, X_{SDS} of	
	0.2, without NaCl, and initial oil : water ratio of 1:1	
3.6	Comparison of ODCB removal of w-m-o, w-o, and w-m	43
	systems at 3% by weight total surfactant concentration, X_{SDS} of	
	0.4, without NaCl, and initial oil : water ratio of 1:1	
3.7	Comparison of ODCB removal of w-m-o, w-o, and w-m	44
	systems at 3% by weight total surfactant concentration, X_{SDS} of	
	0.6, without NaCl, and initial oil : water ratio of 1:1	
3.8	Comparison of ODCB removal of w-m-o, w-o, and w-m	44
	systems at 3% by weight total surfactant concentration, X_{SDS} of	
	0.8, without NaCl, and initial oil: water ratio of 1:1	
3.9	Comparison of ODCB removal of w-m-o, w-o, and w-m	45
	systems at 5% by weight total surfactant concentration, X_{SDS} of	
	0.2, without NaCl, and initial oil: water ratio of 1:1	
3.10	Comparison of ODCB removal of w-m-o, w-o, and w-m	45
	systems at 5% by weight total surfactant concentration, X_{SDS} of	
	0.4, without NaCl, and initial oil: water ratio of 1:1	
3.11	Comparison of ODCB removal of w-m-o, w-o, and w-m	46
	systems at 5% by weight total surfactant concentration, X_{SDS} of	
	0.6, without NaCl, and initial oil: water ratio of 1:1	
3.12	Comparison of ODCB removal of w-m-o, w-o, and w-m	46
	systems at 5% by weight total surfactant concentration, X_{SDS} of	
	0.8, without NaCl, and initial oil: water ratio of 1:1	
3.13	The foam volume of different systems having different X_{SDS}	47
3.14	Comparison of ODCB removal of w-m-o, w-o, and w-m	47
	systems at 3% by weight total surfactant concentration, without	
	NaCl, initial oil: water ratio of 1:1, and 120 min aeration time	
3.15	Comparison of time required to achieve 50% ODCB removal	48
	of w-m-o system at different fraction of SDS	

PAGE

3.16	Comparison of time required to achieve 50% ODCB removal	48
	of w-o system at different fraction of SDS	
4.1	Schematic diagram of the froth flotation apparatus	61
4.2	Effect of initial AMA concentration on process parameters	61
4.3	Effect of initial NaCl concentration on process parameters (S* = optimal salinity)	62
4.4	Effect of initial AMA concentration on enrichment ratio of	62
	ethylbenzene at 2 wt% NaCl (\blacktriangle) and 3 wt% NaCl (\blacksquare)	
4.5	Effect of initial AMA concentration on foam wetness and foam production rate	63
4.6	Dynamic removal efficiency of ethylbenzene at different initial AMA concentrations	63
4.7	Dynamic removal efficiency of AMA at different initial AMA concentrations	64
4.8	Rate of ethylbenzene removal at different initial AMA concentrations	64
4.9	Rate of AMA removal at different initial AMA concentrations	65
4.10	Dynamic removal efficiency of ethylbenzene at two different NaCl concentrations	65
4.11	Dynamic removal efficiency of surfactant at two different NaCl concentrations	66
4.12	Enrichment ratio of ethylbenzene as a function of time at two different NaCl concentrations	66
4.13	Rate of ethylbenzene removal at two different NaCl concentrations	67
4.14	Rate of AMA removal at two different NaCl concentrations	67
5.1	Schematic diagram of the froth flotation system	78
5.2	Effect of oil to water ratio on process parameters	78
5.3	Effect of superficial air velocity on process parameters	79

Dynamic removal efficiency of ethylbenzene at different oil to	79
water ratios (1:1, 1:4, 1:9, and 1:19 v:v)	
Figure 5.5. Dynamic removal efficiency of AMA at different	80
oil to water ratios (1:1, 1:4, 1:9, and 1:19 v:v)	
Dynamic removal efficiency of ethylbenzene at different	80
superficial air velocities	
Dynamic removal efficiency of AMA at different superficial air	81
velocities	
Dynamic removal efficiency of ethylbenzene for different	81
equilibration conditions	
Schematic diagram of the froth flotation apparatus	98
Proposed mechanism in froth flotation operation	98
Effect of surfactant concentration on process parameters	99
Effect of NaCl concentration on process parameters	99
Effect of oil to water ratio on process parameters	100
Effect of air superficial velocity on process parameters	100
Mechanism for film elasticity	101
	Dynamic removal efficiency of ethylbenzene at different oil towater ratios (1:1, 1:4, 1:9, and 1:19 v:v)Figure 5.5. Dynamic removal efficiency of AMA at differentoil to water ratios (1:1, 1:4, 1:9, and 1:19 v:v)Dynamic removal efficiency of ethylbenzene at differentsuperficial air velocitiesDynamic removal efficiency of AMA at different superficial airvelocitiesDynamic removal efficiency of ethylbenzene for differentequilibration conditionsSchematic diagram of the froth flotation apparatusProposed mechanism in froth flotation operationEffect of surfactant concentration on process parametersEffect of oil to water ratio on process parametersEffect of air superficial velocity on process parametersMechanism for film elasticity