REFERENCES

- Ross, S.D. in Inorganic Infrared and Raman Spectra pp. 64-66, McGraw-Hill Co., London, 1972.
- 2. Carter, R.L. "Vibrational Selection Rules in Solids" J. Chem. Educ., 48 (1971) : 297-302.
- 3. Krynaux, G.N. and Schutte, C.J.H. "Infrared Spectra of Solid Solutions of Clo₃⁻ and Clo₄⁻ in KI and KBr Lattices" Spectrochim. Acta., 21 (1965) : 1947-1955.
- 4. Finch, A., Gates, P.N. and Radcliffe, K. in Chemical Applications of Far Infrared Spectroscopy pp. 223-226, Wiley & Sons, New York, 1970.
- 5. Barraclough C.G. and Bilander, I. "Site Splitting of the Mn0⁻₄ Vibrational Modes in a KCl0₄ Lattice" <u>Aust. J. Chem.</u> 23 (1970) : 1471-1472.
- 6. Kato, R and Holfe, J. "Vibration Frequencies of NO_2^- and NO_3^- Ions in KBr Crystals" J. Chem. Phys., 47 (1967) : 1901-1910.
- 7. Hisatsune, I.C. and Linnehan, D.G. "Thermal Decomposition of the Perchlorate Ion in a Potassium Chloride Matrix" J. Phys. Chem., 74 (1970) : 4091-4095.
- 8. Ritzhaupt, G. and Devlin, J.P. "Vibrational Spectra of Molecular Ions Isolated in Glassy and Crystalline Alkali Metal Oxyanion Salt Matrices" J. Chem. Phys., 65 (1976) : 5246-5249.

- 9. Chang, I.F. and Mitra, S.S. "Long Wavelength Optical Phonons in Mixed Crystals" Adv. in Phys., 20 (1971) : 359-375.
- 10. Barker, A.S. and Sievers, A.J. "Optical Studies of the Vibrational Properties of Disordered Solids" <u>Revs. Mod.</u> Phys., 47 (1975) : S 1.
- 11. Nichols, H.F. and Frech, R. "Internal Optic Modes of NaClO₃/ NaBrO₃ Mixed Crystals" <u>J. Chem. Phys</u>., 71(2), (1979): 1016-1023.
- 12. "Internal Optical Modes of RbCl0₃/ RbBr0₃ Mixed Crystals" J. Chem. Phys., 72(8), (1980) : 4437-4444.
- 13. Frech, R. "Intramolecular Mode Mixing in NaClO₃ and NaBrO₃"
 J. Chem. Phys., 76(1), (1982) : 86-89.
- 14. Brooker, M.H., Quist, A.S. and Boyd, G.E. "Raman Spectral Studies of Molten Lithium Nitrate- Lithium Perchlorate" Chem. Phys. Letters, 9 (1971) : 242-246.
- 15. Stammreich, H., Bassi, D. and Sala, O. "Infrared Spectra of Cro_4^{2-} Solution" Spectrochim. Acta., 12 (1958) : 403-407.
- 16. Nakamoto K. in Infrared Spectra of Inorganic and Coordination Compounds pp. 111-113, Wiley-Interscience, New York, 1963.
- 17. Wu, G.J. and Frech, R. "Normal Vibrational Modes Resulting from the Lifting of Degeneracies in Anisotropic Crystals: The Internal Optic Modes of K₂SO₄" <u>J. Chem. Phys.</u>, 64 (1976) : 4897-4900.

- 19. Ishigame, M. and Yamashita, S. "Raman Scattering in K₂SO₄ at High Temperatures" Phys. Stat. Sol (b) 116(49), (1983) : 49-56.
- 20. Schroeder, R.A., Lippincott, E.R. and Weir, C.E. "Low Temperature Infrared Spectra of Crystalline Inorganic Compounds Containing Tetrahedral Anions" J. Inorg. Nucl. Chem., 28(1966) : 1397-1409.
- 21. Carter, R.L. and Bricker, C.E. "Laser-Raman Spectra of Crystalline K_2CrO_4 , RbCrO₄ and Cs_2CrO_4 " Spectrochim. Acta., 27A (1971) : 569-580.
- 22. Bencivenni, L. and Gingerich, K.A. "Infrared Spectra of Matrix-isolated Gaseous Ternary Oxides M₂XO₄" J. Chem. Phys., 76(1982) : 53-56.
- 23. Alkins, R.M. and Gingerich, K.A. "Matrix Isolation IR and Raman Studies of the Molecules Na_2SO_4 and K_2SO_4 " <u>Chem. Phys. Letters</u>, 53(1978) : 347-349.
- 24. Mullin, J.W. in <u>Crystallization</u> pp. 101-105, Butterworths, London, 1961.
- 25. Volmer, M. "Über Keimbildung und Keimwirkung als Spezialfälle der heterrogenen Katalyse" <u>Z. Electrochem</u>., 35(1929) : 555-559.
- 26. Mason, B. in Principles of Geochemistry, 3rd ed., pp. 149-153, John Wiley & Sons, New York, 1983.
- 27. Hrostowski, H.J. and Pimentel, G.C. "Interpretation of the Infrared and Raman Spectra of Mixed Crystals" J. Chem. Phys., 19(1951) : 661-662.

148

۴.

28.Hornig, D.F. "The Wighther the Vield Spectra of Molecules and Complex Ions in Crystals" J. Chem. Phys., 16(1948) : 1063-1076.

29. Halford, R.S. "Motions of Molecules in Condended Systems: I. Selection Rules, Relative Intensities, and Orientation Effects for Raman and Infrared Spectra" J. Chem. Phys., 14(1946) : 8-15.

- 30. Straughan, B.P. and Walker, S. in <u>Spectroscopy</u> Vol. 2. pp. 208-209, John-Wiley & Sons Inc. New York, 1976.
- 31. Bhagavantam, S. and Venkatarayudu, T. "Selection Rules for Molecular Crystals" Proc. Ind. Acad. Sci., A9 (1939):224-228.
- 32. Balkanski, M. and Teng, M.K. "Raman Scattering in KNO₃ Phase I, II, III" Phy. Review, 176(1968) : 1098-1099.
- 33. Tobias, R.S. "Raman Spectroscopy in Inorganic Chemistry. I. Theory" J. Chem. Educ., 44(1967) : 2-8.

34. Kettle, S.F.A., Jayasooriya, U.A. and Norrby, L.J.

"A Reinterpretation of the Internal Mode Vibrational Spectra of Ammonium Sulphate (I)" To be published.

35. Pistorius "Powder Diffraction Data of Potassium Chromate"

Z. Physik. Chem. (New Series) 35(1962) : 109-121.

- 36. Swanson and Fuyat "Powder Diffraction Data of Potassium Sulphate" NBS Circular 539 Vol. 3. (1953).
- 37. Amornjarusiri, K. "A Qualitative and Quantitative Study of Inorganic Fertilizer by X-rays and Chemical Analyses" Master's Thesis, Department of Chemistry, Graduate School, Chulalongkorn University, 1979, pp. 126.
- 38. Wyckoff R.W. in Crystal Structures Vol.III. pp. 95-98, Interscience, New York, 1948.

÷

APPENDIX A.

Calculation of the Number and Activity of Vibrations of a Molecule XY Belonging to the Point Group Td.

1.0

a) Determination of the Infrared Activity.

Consider the rotation of a line joining the origin to a point (x, y, z) through an angle \ominus , in a clockwise sense, the new coordinates (x, y, z) are

 $x = x \cos \theta + y \sin \theta$ $y = -x \sin \theta + y \cos \theta$ z = z

or in the matrix form

x		COS 0	sin θ	•	x
ý	=	-sin ©	сөв Ө	θ	У
z		0	0	1	z.

The character for this rotation $X(C) = 1+2\cos \Theta$.

If the rotation is combined with a reflection, the new coordinates are :

$$x'' = x \cos \theta + y \sin \theta$$
$$y'' = -x \sin \theta + y \cos \theta$$
$$z''' = -z$$

The character for the improper rotation $\chi(s) = -1+2\cos \Theta$.

For the inversion, $\mathbf{x} = -\mathbf{x}$, $\mathbf{y} = -\mathbf{y}$ and $\mathbf{z} = -\mathbf{z}$, the character $\mathcal{X}(\mathbf{i})$ is -3 (by putting $\mathcal{O} = 180^{\circ}$ in $-1+2\cos \mathcal{O}$)

For the reflection, x = -x, y = y, z = z, the character $\chi(\delta)$ is 1 (by putting $\Theta = 0^{\circ}$ in $-1+2\cos\Theta$).

The character $\mathcal{K}(\mu)$ of the reducible representation of the dipole moment $T(\mu)$ is constructed as in Table 50. which shows the characters for each operation in T_d . + sign in $\mathcal{K}(\mu)$ refers to the proper rotations (C_n^k). - sign refers to the improper rotations(S_n^k), reflections (δ) and inversion (i).

Table 50. Calculation of χ (μ) for T_d

E	8 C ₃	3 C ₂	6 S ₄	6 6 d	
0	120	180	90	0	
3	0	-1	-1	1	
	E 0 3	$ \begin{array}{c cc} E & 8 C_3 \\ \hline 0 & 120 \\ \hline 3 & 0 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

T _d (h=24)	E	8 C ₃	3 C ₂	6 S ₄	6 6 d
A 1	1	1	1	1	1
A2	1	1	1	-1	-1
E	2	-1	2	0	0
T ₁	3	0	-1	1	-1
т ₂	3	0	-1	-1	1

To determine how many times each of the irreducible representations \prod_{j} of $\mathbf{T}_{\mathbf{d}}$, occurs in the reducible representation of the dipole moment $\prod (\mathcal{M})$, the following formula is applied.

$$\mathcal{A}_{\mathbf{j}} = \frac{1}{\mathbf{h}} \frac{\leq}{\mathbf{R}} \mathbf{n} \times (\mathbf{R}) \xrightarrow{\boldsymbol{\gamma}}_{\mathbf{j}} (\mathbf{R})$$

 $\begin{array}{l} \mathcal{A}_{j} & \text{is the number of times } \overline{\Gamma}_{j} \text{ appears in } \overline{\Gamma}(\mathcal{M}). \\ \textbf{h} & \text{is the number of operations in the point group.} \\ \textbf{n} & \text{is the number of lelements in the class of operation.} \\ \overline{\Upsilon}(\textbf{R}) & \text{is the character of the reducible representation } \overline{\Gamma}(\mathcal{M}). \\ \overline{\Upsilon}(\textbf{R}) & \text{is the character of the irreducible representation } \overline{\Gamma}_{j}. \end{array}$

 A_j can be calculated by using the character of the reducible representations in Table 50 and the character of the irreducible representations in Table 51. Since there are 24 operations in T_d , h = 24.

$$\mathcal{A} (A_{1}) = \frac{1}{24} \left[(1) (4) (3) + (8) (1) (0) + (3) (1) (-1) + (6) (1) (-1) + (6) (1) (1) \right] = 0$$

$$\mathcal{A} (A_{2}) = \frac{24}{124} \left[(1) (4) (3) + (8) (1) (0) + (3) (1) (-1) + (6) (1) (-1) + (6) (1) (-1) \right] = 0$$

$$\mathcal{A} (E) = \frac{1}{24} \left[(4) (2) (3) + (8) (-1) (0) + (3) (2) (-1) + (6) (-1) (0) + (6) (1) (0) \right] = 0$$

$$\mathcal{A} (T) = \frac{1}{24} \left[(1) (3) (3) + (8) (0) (0) + (3) (-1) (-1) + (6) (1) (-1) + (6) (1) (-1) \right] = 0$$

$$\mathcal{A} (T) = \frac{1}{24} \left[(1) (3) (3) + (8) (0) (0) + (3) (-1) (-1) + (6) (-1) (-1) + (6) (1) (1) \right] = 1$$

If vibrations of an irreducible representation are infrared active, \mathcal{A}_j will be equal to 1, if they are inactive, \mathcal{A}_j will be zero.

It is seen that T_2 occurs once in the reducible representation of the dipole moment $\Gamma(\mathcal{M})$, therefore only T_2 is infrared active.

b) Determination of the Raman Activity

Consider the polarizability referred to two sets of axes ox, oy, oz; ox, oy, ez . If a rotation by an angle Θ about the z-axis causes the components of the polarizability to undergo the changes $\propto_{xx} \longrightarrow \ll''_{xx}$, $\propto_{yy} \longrightarrow \ll''_{yy}$, ...etc. The new six components of the polarizability are :

$$\begin{aligned} & \swarrow_{\mathbf{x}\mathbf{x}} = \overset{\sim}{\mathbf{x}}_{\mathbf{x}} \cos^{2}\theta + \overset{\sim}{\mathbf{y}}_{\mathbf{y}\mathbf{y}} \sin^{2}\theta + 2\overset{\sim}{\mathbf{x}}_{\mathbf{x}\mathbf{y}} \sin\theta\cos\theta \\ & \swarrow_{\mathbf{y}\mathbf{y}} = \overset{\sim}{\mathbf{x}}_{\mathbf{x}} \sin^{2}\theta + \overset{\sim}{\mathbf{y}}_{\mathbf{y}\mathbf{y}} \cos^{2}\theta - 2\overset{\sim}{\mathbf{x}}_{\mathbf{x}\mathbf{y}}\sin\theta\cos\theta \\ & \checkmark_{\mathbf{z}\mathbf{z}'} = \overset{\sim}{\mathbf{z}}_{\mathbf{z}\mathbf{z}} \\ & \checkmark_{\mathbf{y}\mathbf{z}} = +\overset{\sim}{\mathbf{z}}_{\mathbf{z}\mathbf{z}}\cos\theta + \overset{\sim}{\mathbf{z}}_{\mathbf{x}}\sin\theta \\ & \checkmark_{\mathbf{y}\mathbf{z}} = +\overset{\sim}{\mathbf{y}}_{\mathbf{z}}\cos\theta + \overset{\sim}{\mathbf{z}}_{\mathbf{x}}\sin\theta \\ & \overset{\sim}{\mathbf{z}}_{\mathbf{x}'} = +\overset{\sim}{\mathbf{y}}_{\mathbf{z}}\sin\theta + \overset{\sim}{\mathbf{z}}_{\mathbf{z}\mathbf{x}}\cos\theta \\ & \overset{\sim}{\mathbf{z}}_{\mathbf{x}'} = -\overset{\sim}{\mathbf{x}}_{\mathbf{x}}\sin\theta\cos\theta + \overset{\sim}{\mathbf{z}}_{\mathbf{y}\mathbf{z}}\sin\theta\cos\theta + \overset{\sim}{\mathbf{x}}_{\mathbf{y}\mathbf{z}}\sin\theta\cos\theta + \overset{\sim}{\mathbf{x}}_{\mathbf{x}}(\cos^{2}\theta - \sin^{2}\theta) \end{aligned}$$

 $\begin{bmatrix} \boldsymbol{\omega}_{xx} \\ \boldsymbol{\omega}_{yy} \\ \boldsymbol{\omega}_{yy} \\ \boldsymbol{\omega}_{zz} \\ \boldsymbol{\omega}_{yz} \\ \boldsymbol{\omega}_{zx} \\ \boldsymbol{\omega}_{zx} \\ \boldsymbol{\omega}_{zx} \\ \boldsymbol{\omega}_{zx} \end{bmatrix} = \begin{bmatrix} \cos^{2}\theta & \sin^{2}\theta & 0 & 2\sin\theta\cos\theta & 0 & 0 \\ \sin^{2}\theta & \cos^{2}\theta & 0 & -2\sin\theta\cos\theta & 0 & 0 \\ \sin^{2}\theta & \cos^{2}\theta & 0 & -2\sin\theta\cos\theta & 0 & 0 \\ \boldsymbol{\omega}_{yy} \\ \boldsymbol{\omega}_{zz} \\ \boldsymbol{\omega}_{zz} \\ \boldsymbol{\omega}_{zx} \\ \boldsymbol{$

The character of the transformation matrix is

or in the matrix form

4 $\cos^2 \pm 2 \cos \theta$, or 2 $\cos \Theta (\pm 1 \pm 2\cos \Theta)$

+ sign refers to the proper rotations (C_m^k) .

- sign refers to the improper rotations $(S_{\underline{n}}^{\underline{k}})$, reflection (6) and inversion (i).

The character $\mathcal{X}(\ll)$ of the reducible representation for the polarizability $\prod (\ll)$ is constructed in Table 52. which shows the characters for each operation in \mathbf{T}_d .

	E	8 C ₃	3C ₂	6 S ₄	66
Θ	0	120	180	90	0
$\chi(\alpha) = 2\cos \theta(\pm 1 + 2\cos \theta)$	6	0	2	0	2

Table 52. Calculation of $\chi(\alpha)$ for the point group T,

To determine how many times each of the irreducible representations \prod_j of T occurs in the reducible representations of the polarizability $\prod_{(\infty)}$, the formula $\mathcal{A}_j = \frac{1}{h} \sum_{\substack{R}} \chi(R) \quad \chi_j$ (R) is used as in the procedure previously described.

 \mathcal{A}_{j} can be calculated by using the character of the reducible representations in Table 52. and the character of the irreducible representations in Table 51 .

$$\mathcal{A}(A_{1}) = \frac{1}{24} \left[(1)(1)(6) + (8)(1)(0) + (3)(1)(2) + (6)(1)(0) + (6)(1)(2) \right] = 1$$

$$\mathcal{A}(A_{2}) = \frac{1}{24} \left[(1)(1)(6) + (8)(1)(0) + (3)(1)(2) + (6)(-1)(0) + (6)(-1)(2) \right] = 0$$

$$\mathcal{A}(E) = \frac{1}{24} \left[(4)(2)(6) + (8)(-1)(0) + (3)(2)(2) + (6)(0)(0) + (6)(0)(2) \right] = 1$$

$$\mathcal{A}(T_{1}) = \frac{1}{24} \left[(1)(3)(6) + (8)(0)(0) + (3)(-1)(2) + (6)(1)(0) + (6)(-1)(2) \right] = 6$$

$$\mathcal{A}(T_{2}) = \frac{1}{24} \left[(1)(3)(6) + (8)(0)(0) + (3)(-1)(2) + (6)(-1)(0) + (6)(1)(2) \right] = 1$$

It is seen that the irreducible representations A_1 , E and T_2 occur in the reducible representation of the polarizability $T(\ll)$, therefore, A_1 , E and T_2 are Raman active.

APPENDIX B.

The Determination of Unit Cell Parameters by X-ray Powder Diffraction Method.

From Bragg law,

$$n \stackrel{\wedge}{\sim} = 2 d \sin \theta$$

$$\left(\frac{1}{d}\right)^{2} = \left(\frac{2 \sin \theta}{\lambda}\right)^{2} \quad (n=1)$$

$$= \frac{4 \sin^{2} \theta}{\lambda^{2}}$$

In orthorhombic system, the interplanar spacing d_{hkl} , is a function both of the plane indices (hkl), and the lattice constants (a,b,c) as in the following :

 $\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{1^2}{c^2}$ $\frac{4 \sin^2 \theta}{\lambda^2} = \frac{h^2}{a^2} + \frac{k}{b^2} + \frac{1^2}{c^2}$ $\frac{4 \sin^2 \theta}{\lambda^2} = \frac{1}{4} \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{1^2}{c^2} \right)$ $\left(\frac{\sin^2 \theta}{\lambda} \right)^2 = Ah^2 + Bk^2 + C1^2$ ere $A = \frac{1}{4a^2}$ $B = \frac{1}{4b^2}$ $C = \frac{1}{4c^2}$

where

156

Least Square Method.

 $(1) \mathbf{x} \mathbf{h}^2$

$$A h^{2} + B k^{2} + C 1^{2} = \left(\frac{\sin \theta}{\lambda}\right)^{2} \qquad (1)^{-1}$$

$$A \leq h^{2} + B \leq k^{2} + C \leq 1^{2} = \leq \left(\frac{\sin \theta}{\lambda}\right)^{2} \qquad (2)$$

$$A \quad h^{4} + B \quad h^{2}k^{2} + C \quad h^{2} \quad 1^{2} = \left(\underbrace{\sin \Theta \quad h}{\nearrow}\right)_{2}^{2}$$

$$A \neq h^{4} + B \neq (h^{2}k^{2}) + C \neq (h^{2} \quad 1^{2}) = \left(\underbrace{\sin \Theta \quad h}{\nearrow}\right)_{2}^{2}$$

$$A \quad h^{2} \quad k^{2} + B \quad k^{4} + C \quad k^{2} \quad 1^{2} = \left(\underbrace{\sin \Theta \quad k}{\nearrow}\right)_{2}^{2}$$

$$A \neq (h^{2} \quad k^{2}) + B \neq k^{4} + C \neq (k^{2} \quad 1^{2}) = \left(\underbrace{\sin \Theta \quad k}{\nearrow}\right)_{2}^{2}$$

$$A \neq h^{2} \neq (h^{2} \quad k^{2}) + B \neq k^{2} \neq (h^{2}k^{2}) + C \neq (1^{2} \neq (h^{2}k^{2})) = \left(\underbrace{\sin \Theta}_{\nearrow}\right)^{2} (h^{2}k^{2})$$

$$(3) x \neq k^{2}$$

$$A \neq h^{4} \neq k^{2} + B \neq k^{2} \neq (h^{2}k^{2}) + C \neq (k^{2} + (h^{2}k^{2})) = \left(\underbrace{\sin \Theta}_{\nearrow}\right)^{2} \neq k^{2}$$

$$(5)$$

$$(3) x \neq k^{2}$$

$$A \neq h^{4} \neq k^{2} + B \neq k^{2} \neq (h^{2}k^{2}) + C \neq k^{2} \neq (h^{2}1^{2}) = \left(\underbrace{\sinh \Theta}_{\nearrow}\right)^{2} \neq k^{2}$$

$$(6)$$

(5)-(6)

$$A \left[\sum h^{2} (h^{2} k^{2}) - \sum h^{4} k^{2} \right] + C \left[\sum 1^{2} (h^{2} k^{2}) - \sum k^{2} (h^{2} 1^{2}) + \sum (\frac{\sin \theta}{\lambda})^{2} (h^{2} k^{2}) - \sum (\frac{\sin \theta}{\lambda})^{2} k^{2} \right]$$
(7)

$$(3)_{x \neq (k^{2}1^{2})} = 4 \neq (k^{2}1^{2}) + B \neq (h^{2}k^{2}) \neq (k^{2}1^{2}) + C \neq (h^{2}1^{2}) \neq (k^{2}1^{2}) = 2 (k^{2}1^{$$

$$(2)_{\mathbf{x}} \leq (h^{2}k^{2})$$

$$A \leq h^{2} \leq (h^{2}k^{2}) + B \leq k^{2} \leq (h^{2}k^{2}) + C \leq 1^{2} \leq (h^{2}k^{2}) = \langle (\underline{\sin \Theta}) \leq (h^{2}k^{2}) \rangle$$

$$(11)$$

$$(4)_{\mathbf{x}} \leq h^{2}$$

$$A \leq h^{2} \leq (h^{2}k^{2}) + B \leq k^{4} \leq h^{2} + C \leq (k^{2}1^{2}) \leq h^{2} = \langle (\underline{\sin \Theta} k)^{2} \leq h^{2} \rangle$$

$$(12)$$

$$(11) - (12)$$

$$B \left[\leq k^{2} \leq (h^{2}k^{2}) - \leq k^{4} \leq h^{2} \right] + C \left[\leq 1^{2} \leq (h^{2}k^{2}) - \leq (k^{2}1^{2}) \leq h^{2} \right] = \langle (\underline{\sin \Theta} k)^{2} \leq (h^{2}k^{2}) - \langle (\underline{\sin \Theta} k) \rangle \leq h^{2} \rangle$$

$$(13)$$

For convenience, the various terms are replaced by the following letters;

Ł	h ²	81	Р	
4	h ⁴	-	Q	
٤	k ²	=	- V	
٤	k ⁴	=	R	
٤	1 ²	=	Т	
٤	$(\mathbf{h}^2 \mathbf{k}^2)$	1	U	
٤	(h ² 1 ²)	=	W	
٤	$\langle \mathbf{k^2 l^2} \rangle$	=	х	
2	$\left(\frac{\sin \theta}{2}\right)^2$	=	Y	
4	(sing h	$\frac{1}{2}$ =	Z	
5	$\left(\frac{\sin e \mathbf{k}}{\lambda}\right)$	2 =	S	

So,

(7) is written as:

$$A \begin{bmatrix} P & U & -Q & V \end{bmatrix} + C \begin{bmatrix} T & U & -V & W \end{bmatrix} = Y & U & -Z & V \quad (14)$$
(10) is written as:

$$A \begin{bmatrix} Q & X & -U & W \end{bmatrix} + B \begin{bmatrix} U & X & -R & W \end{bmatrix} = Z & X & -S & W \quad (15)$$
(13) is written as :

$$B \begin{bmatrix} V & U & -R & P \end{bmatrix} + C \begin{bmatrix} T & U & -X & P \end{bmatrix} = Y & U & -S & P \quad (16)$$
Three unknown A, B, C can be found from three equations;
14, 15, 16.

APPENDIX C

Crystal Structures of Potassium Chromate and Potassium Sulphate. (38)

Potassium Chromate

Potassium chromate has an orthorhombic system, space group Pnma (D_{2h}^{16}), four formula units per unit cell (Z= 4).

The unit cell dimensions are :

$$a = \beta = \gamma = 90^{\circ}$$

 $a = 7.61 A$
 $b = 5.92 A$
 $c = 10.10 A$

Table 53. Atomic positions and parameters of potassium chromate.

Atom	Position	X	У	2
K (1)	(4c)	0.644	1/4	0.417
K (2)	(4c)	0.000	1/4	-0.305
Cr	(4c)	0.230	1/4	0.417
0 (1)	(4c)	0.019	1/4	0.417
0 (2)	(4c)	0.300	1/4	0.561
0 (3)	(8 d)	0.300	0.028	0.345

.

Potassium Sulphate

14

Potassium sulphate has an orthorhombic system, space group Pnma (D_{2h}^{16}), four formula units per unit cell (Z = 4).

The unit cell dimensions are

≪ =	B	-	Y	=	90 [°]
	·		a	=	7.483 Å
			b	=	5.772 Å
			с	=	10.072 Å

Table $54\,{f \circ}\,{f Atomic}$ posttions and parameters of potassium sulphate $[\,{f \circ}\,$

Atom	Position	x	У	2
K (1)	(4c)	0.6768	1/4	0.4182
K (2)	(4c)	- 0.0115	1/4	- 0.2954
S	(4c)	0.2358	1/4	0.4155
0 (1)	(4c)	0.0315	1/4	0.4032
0 (2)	(4c)	0.2970	1/4	0.5579
0 (3)	(8d)	0.2997	0.0410	0.3484

Table 55. Structural data and sulphate ion sites in potassium sulphate.

x	У	z
0.2358	0.4155	1/4
-0.2358	-0.4155	- 1/4
0.7358	0.0845	1/4
-0.7358	_0.0845	- 1/4
	x 0.2358 -0.2358 0.7358 -0.7358	x y 0.2358 0.4155 -0.2358 -0.4155 0.7358 0.0845 -0.7358 -0.0845

The nearest potassium ions to the sulphur atom at (0.2358, 0.4155, 1/4) in the x, y and z directions are at (0.6768, 0.4182, 1/4), (0.1768, 0.0818, 1/4), and (0.3232, 0.5818, -1/4) with the distance of 3.300 Å, 3.390 Å, and 3.400 Å, respectively. (See Figure 37.)

Figure 37 Potassium-sulphur distances of potassium sulphate.

Vita

Miss Wimonrat Trakarnpruk was born on March, 7, 1956. in Bangkok. She received her B.Sc. in Chemistry from Faculty of Science, Chulalongkorn University. Since 1981, she has been a graduate student in Inorganic Chemistry in Chulalongkorn University.