
C H A P T E R  V I

ESTIMATION OF THERMODYNAMIC PROPERTIES  
AND TRANSPORT PROPERTY

6.1 INTRODUCTION
Thermodynamic properties are important for chemical process design and 

simulation o f  any processes. In this chapter, vve will consider methods for estimating 
thermodynamic properties which are necessary for calculating phase equilibria. The 
end o f  this chapter estimation o f  transport property ( liquid viscosity) is taken into 
consideration.

6.2 ESTIMATION OF COMPRESSIBILITY FACTOR(Z) ,MOLAR VOLUME
(V)

The compressibility factor and molar volume can be calculated from cubic 
equation equation (5-2). An equivalent form is equation (5-3). We can solve this 
equation by a numerical method to get values o f  compressibility factor. Molar volume 
can be calculated from

v  = Z R T
~ p ~ (6 -1 )

Solution o f  the above equation provides two values o f  z  and V. For vapor phase, 
compressibility factor and molar volume are z v and V v respectively, and for liquid 
phase, compressibility factor and molar volume are ZL and V L respectively.

6.3 ESTIM ATION OF FUGACITY ( / )  AND FUGACITY COEFFICIENT {(f) )

6.3.1 Fugacity of a pure component
Equation o f  state w ill be used to identify the state o f  vapor-liquid equilibrium  

in pure fluid. At vapor-liquid equilibrium, the equility o f  molar Gibbs free energy in 
the coexisting phases are
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with

so that

g l(t , p ) =.g ' ( t , p)

d G  = - S d T  + V d P

"d_G)
Cd~p)T = V

(6-3)

(6-4)

(6-5)

(6-2)

Front equations o f  state, w e can compute V as a function o f  p and T, only 
equation (6-5) w ill be considered further. Integration o f  equation (6-5) between any 
two pressure p 1 and P2 (at constant temperature) yields

g ( t x, P 2 ) - G { t x, P x) =  Ï W d P  (6 -6 )

If the fluid is an ideal gas, v id -  - 5 so that

Gu(t„P2)-G‘j(t„P,)= f- y r f P  (6-7)

Subtracting equation (6-7) from equation (6 -6 ) gives

[G (7),^ 2} - G " ( r ; , ^2 ) ] - [c (7 i,/> ,) (6-8)

Setting p 1 equal to zero, at the pressure equal to zero all fluids are ideal gases so that

G [ t x, P  =  o) = G u1( t 1, P  =  o) , yields



26

G { T ,  p ) -  G ‘J ( T ,  P )  =  ( ( บ  -  l y j d P  

Fugacity is a thermodynamic function which is defined as

(6-9)

/ =  p  exp jj C ( r , P ) - G ^ l  ท  ^ _ ท ่  1
R T

d P (6-10)

Fugacity coefficient is defined as

f  j G { T , p ) - G iJ{ T , p )
< P = p  =  exp j R T พ ร ่ f t - "p d P (6-11)

From this definition, the fugacity has units o f  pressure and that / -------> p  as
p ------->0  ; that is, the fugacity becomes equal to the pressure at pressures low  enough
that the fluid approaches the ideal gas state. Similarly, the fugacity coefficient

<j) -  —3 -------> 1 as p ------->0  .

The fugacity function has been introduced because its relation to the Gibbs 
free energy makes it useful in phase equilibrium calculations. Criterion for 
equilibrium between two phases is G 1 = G V, when temperature and pressure are 
constant and equal in both phases. Using this result in equation (6-10) yields

f ' { T , P )  = f v{T,P ) (6-12)

as the condition for phase equilibrium. Equation (6-12) can be used as the criterion for 
equilibrium.The fugacity is related to the equation o f  state, the equality o f  fugacities 
provides a direct way o f  doing phase equilibrium calculation using equation o f  state.
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Equations o f  state are in a form in which pressure is an explicit function o f  volume 
and temperature. Therefore, it is useful to have an equation relating the fugacity to an 
integral over volume.

An equation is started with equation (6-11) and using equation (6-13) at 
constant temperature in form

d P  =  ^ d ( P V ) - y d V  =  y d Z - y d V  (6-13)

Integration o f  the above equation provides

' " A 5  —  ir L [  y T p } ; r - l „ Z + ( Z - l ) (6-14)

where z  = P V
~RT

6.3.2 Fugacity of a pure gas species
Fugacity o f  a pure gaseous species can be computed using a volumetric 

equation o f  state, that is

In f ‘ ( r , p ) _ \_ 
~RT

ff'=z' KTII’ ' R T  '
V =00 c v ~ p >d v  -  \ n Z v  + ( Z r -  1) (6-15)

where superscript V has been used to designate for the fugacity and compressibility o f  
vapor phases. The fugacity o f  a pure gas can be computed by integration o f  equation 
(6-15). At low  pressures, where a gas can be described by the ideal gas law.

PV = RT or Z K =1 (6-16)

that is
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that is

\ J  P K o  or f v ( T , P )  =  p  (6-17)

Thus, for a low  pressure gas, the fugacity o f  a species is equal to total pressure.

For Cubic equation
Redlich-Kwong equation

R T  a
v - b ~  T05v { v  + b) (6-18)

l n ^ y  = Z F - 1 - ๒ r \ \ - ฟ ^ 1{ ‘ ^ )  <6-19)

where
0.42748 R l T c2 5

a  = P c (6-20)

b = 0.08664 R T c
P c (6-21)

Soave equation

p  =
R T  a a

v - b ~ v { v  + b) (6-22)

l n y -  = z r - 1 - l n l Î ' I ' - F , (6-23)

where
0.42748 Æ2 7 c 2a  = Pc (6-24)
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0.08664/? 7c 
b =  P c

a  =  [l + (0.48 + 1.57<y -  0.17 6 ๓ 2 )( 1 -  7> ° 5) ]2 (6-26)

(6-25)

Peng-Robinson equation

R T  a a
v - b ~  V 2 + 2 b V - b 2

(6-27)

\a P -  = ( Zr - \ ) - \ i z r - bP^
~RT ; 2.8284b R T

+ 2.414267*/ R T  
-  0.414267* / R T

(6-28)

where

0.45724 R 2 T e 2
a  = P c

(6-29)

0.07780/? 7c
4 — f t -  (6‘30)

a  = [l + (0.37464 + 1.54226(ฃ -  0 .26992cr )( 1 -  7 r '05) ]2 (6-31 )

6.3.3 Fugacity of a pure liquid species
The fugacity o f  a pure liquid species can be computed by equation o f  state as 

follow s:

In f L(T,P) 1 0 ' ' = Z L R T /  p ( R T  ท ]
~RT V - C V ~ P d d v  - \nZL +( Z L l) (6-32)
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where the superscript L is designated for the fugacity and compressibility o f  the liquid 
phase. Integration o f  equation (4-30) w ill be provide the fugacity o f  liquid phase.

For Cubic equation
Soave equation

R T  a a
v - b ~  v{v  + b) (6-33)

z _b_) a a
Tr t

(  b ไIn 1 + 7777\  V ' - J (6-34)

where

a  -
0 A 2 7 4 8 R 2 T c 2

P c (6-35)

b  = 0 M 6 6 4 R T C
7c (6-36)

a  = [l + (0.48 + \.ราCO -  0.176(น2)( 1 -  7>05)]2 (6-37)

Peng-Robinson equation

R T  a a
V - b ~  V 2 + 2 b V - b 2 (6-38)

l n Ç  = ( z ' - l ) - l n ( Z L - bP^
R T J

a
2.8284b R T

Id z 1
+  2 A \ 4 2 b P /  R T  
- 0 A \ 4 2 b P /  R T (6-39)
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where
0.45724/?2 7 c 2

a  = Pc (6-40)

b = 0.07780/? 7c
P c ~ (6-41)

a  =  [ 1 + (0.37464 + 1.54226CO -  0.26992ry2 )( 1 -  T r 0 5 )]2 (6-42)

Fugacity o f  a pure liquid which is calculated by equation o f  state is on for 
saturation line only and the numerical values o f  the liquid phase fugacity and vapor 
phase fugacity are identical along the saturation line.

6.3.4 The fugacity o f species in gaseous and liquid mixtures
The fugacity o f  species in gaseous mixtures is calculated by equation (6-43).

ln ; y ,p RT
1v=z' RT/r RT—  - N rd
T=oo V r y . N  1 * \ _

W - \ n Z ' (6-43)

The fugacity o f  liquid mixtures is calculated by equation (6-44).

In l L( r .  p . x )  1= - U ;RT V-
=ZlRT/I‘ RT■ -N fd

ry.N 1*\ _
\ d V - \ n Z 1 (6-44)

For Cubic equation

RT a
= V - b ~ V 2 +ubV + wb2 (6-45)
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In = ^ - { Z - \ ) - \ n { Z - B * )  +
B *  ( น 2 -4 v v ) 05

b \  2Z+B*(u + { i r - 4 w ) 05)
b  5 i ' 2 Z + B * [ u - ( u 2 - 4 w ) 05) 

(6-46)

(6-47)

b  1 Te,  / P c  1
b  = Y ^ y j T C j  / P c  J

(6-48)

(6-49)

For gaseous mixtures, Z in equation (6-46) is replaced by z v and f  1 in equation 
(6-47) by f v 1 . Constants in equation (6-46), (6-47), (6-48) for cubic equation (RK, 
SRK, PR) are already mentioned in chapter III. For liquid mixtures, we do not have 
the information to calculate (j>i from basic PVT data (Pradeep B. Deshpande,1985). For 
liquid phase, estimation o f  fugacity will use activity coefficient model which can be 
write as

where Yi is called the activity coefficient (in the liquid phase) o f  component i. 
Data for Y i are calculated from experimental-phase equilibrium data. In this work we 
use especially equation o f  state to predict fugacity and fugacity coefficient therefore it 
can not estimate fugacity and fugacity coefficient for liquid mixtures.



6 .4  E S T I M A T I O N  O F  E N T H A L P Y ,  E N T R O P Y ,  E N T H A L P Y  D E P A R T U R E

A N D  E N T R O P Y  D E P A R T U R E

Enthalpy, entropy are useful thermodynamic properties.In analyzing process 
equipment, a variation in these properties can be related to operating variable, for 
example, the temperature rise a fluid in a heat exchanger. Therefore, it is important to 
estimate such property variations as the temperature and pressure.

Evaluation of enthalpy
Enthalpy is a function o f  temperature and pressure. Thus 

H  =  f ( P , T ) (6-50)

d H  = fd _ l f
<â~p) 1.d P  + ' d_  H ]

J )  1,d T (6-51)

A H  = H 1 - H x =

A H  =  H 2 -  H { =

(r2f d  H )  Ç r j â  H ]
l \ d p ) f + t X d T ) r2d T

\ d  P J T d  + ii \ â  T . d T

(6-52)

(6-53)

Enthalpy is a state function, we can compute its change between two states by 
the integration along any convient path. In first method, path ADC, is a process 
consisting o f  a isothermal path and isobaric path. The isothermal change o f  H takes 
place from PI to P2, while the isobaric change occurs from T1 to T2. The second  
method, path ABC, the variation in H is determined at P| from T| to T2 and then the 
variation o f  H from p 1 to P2 is determined at T2. These paths are shown in Figure 6-1.
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Pressure ( P )

Figure 6.1 Isotherms and isobars for changes in enthalpy

In Figure 6 .1 , equation ( 6-52 ) is illustrated by path ADC , whereas equation 
(6-53) refers to path ABC. The net enthalpy change (A // )  is represented the change 
from A to c. The other path is AEFGHC. Calculation AH  by this path, values o f

â  h ') ( d H A
Ô  P ) T and \ â  PJ must be available for the various isotherms and isobars. The

path for determining A H  in Figure 6-1 with values o f  heat capacity at ideal gas state
is (C® ) AQRC , that is

(6-54)
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or

( and ( H° -  HPi )^ are called departure function. c °  is heat capacity 

at ideal gas state and f J C Fd T  is enthalpy change at ideal gas state.

Evaluation of entropy
Entropy is a function o f  temperature and pressure. That is

AH = 1) 11 + | ; CUT-( H" -  H,1 ) 6 (6-55)

ร  =  / { P , T ) (6-56)

ds = ( d  ร \  f â S ' )
<â PJTd P \ d T ) pd T (6-57)

For path ADC

AS = S , - S |  = J “  d P + V m -  d T
2 1 \ d  p )  1. \  \ d  T J  1,

For path ABC

(6-58)

“ ■ ร » - * ■ - ( -
p i ( £ S  

< â  T d T (6-59)

For path AQRC

J m m 01



The term R

Departuer functions
Let L be the value o f  some thermodynamic property o f  pure component (or a 

mixture with a fixed com position) at som e P, T. If L° is defined to be the value o f  L 
at the same temperature and com position but at an ideal gas state and at a reference 
pressure p° then a departure function is defined as L-L° or L°-L. In the reference state 
at T, p°, the molal volume v °  would be given by V°=RT/P°. Departure function can 
be expressed in a term o f  Helmholtz energy (A) at constant temperature and 
com position, the variation in the Helmholtz energy with molar volum e is

Integrating at constant temperature and com position from reference volum e (V° ) to 
the system  volume (V) gives

d A  =  -  P d V (6-62)

A - A " I  Pd (6-63)

We break the integral into two parts:

(6-64)

The first integral requires real gas properties, that is, P=f(V) at constant temperature 
T. The second is an ideal gas properties. Rearrange equation (6-64) gives
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The departure function for A depends on v ° . A-A° does not vanish even for an ideal 
gas unless v °  is chosen to equal V. Other departure functions are obtained from 
equation (6-35):

ร - ร " = - ^  A - A "\- (6-66)

' - s °  = f ( d  p \  R fd V  +  R In——
\ â T J v ~ V _ l  V " )

(6-67)

H - H " =  ( A -  A " ) +  ไ { ร - ร 0 ) +  R T ( Z - \ )  (6 -6 8 )

Evaluation of departure functions
Redlich-Kwong equation

p  =
R T  a

V - b ~  V 2 + u b V  +  \ v b 2

A - A "  = - R T \  In v - b )  Cl . v  +  b
V

(  V - b ^
ร - ร 0 =  R ln-V V  J

* l |n

a  f V  +  b
2 b T \  V

f ,  V )- R T l  V" )

( V  ไ+ R ท —V " J

( 6 - 6 9 )

(6-70)

Soave and Peng-Robinson equations

RT a
p =  V - b ~  V2 +ubV + wb2
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The departure function for A depends on v°. A-A° does not vanish even for an ideal 
gas unless v° is chosen to equal V. Other departure functions are obtained from 
equation (6-35):

ร - ร "  = - ^ ( A - A ' X  (6-66)

$ ( d  p ] R f oJ . d V + R In —7T 7y y \ l  v°  )

H - H ° = (  A - A ° )  +  T \ S - S ° )  +  R T { Z - i )  (6-6 8 )

Evaluation of departure functions
Redlich-Kwong equation

RT a
p  =  V - b ~  V 2 + u b V  +  w b 2

A  -  A "  =  - R T ]  In v - b \ ทv  + b
V V  7 (6-69)

f

ร - ร ' '  = R ln-v - b
V  ) 2bT In-v  +  b

V  ) +  R , " v ) (6-70)

Soave and Peng-Robinson equations

RT a
p =  V - b ~  V2 +ubV + wb2
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A -  A °  =
/>(»2 -  4 พ) 1/2 In

2 Z  +  B * [ u - ( u 2 - 4  พ ) 172)

2  Z + B * ( u  + { u 2 - 4 พ ) 172) J

- R T  ๒

r Z _ B *\ (  น \
\  z  )

( 6 - 7 1 )

- R T v‘V v

ร - ร ,, = R
Z - B

I In 7\  z  )
+ ไ (  Y  ^

+ R (,(1, ’ - 41, ) ' '2 พ  r In 2 Z  +  5  * ( „ - ( „ ’ - 4 v , ) “ )

2 Z  +  Æ * [ m +  ( w2 +  4  พ ) 172 j

where

ô a  R ( ç i  v n
f f - n t J  ะ ? " M *

6 ,7, V'2 a .Tc ,
\  Pcj J

+ M f ajTc,'  
\  P c ,  J

1/2

( 6 - 7 2 )

( 6 - 7 3 )

For Soave equation

J w ,  =  0 .4 8 0 0  +  1 .5 7 4 0 พ , -  0 .1 7 6 0 พ ,2 

ท 11 =  0 .4 2 7 4 8

For Peng-Robinson equation

J w ,  = 0 .3 7 4 6 4  +  1 .5 4 2 2 6 พ , -  0 .2 6 9 9 2 พ ,2 

Q 0 =  0 .4 5 7 2 4

The departure functions of H-H° does not depend upon the value of the 
reference state pressure p°. In contrast ร-ร0 does depend upon p°. Either of two 
reference state is chosen. First, p° is set equal to a unit pressure, for instance, 1 bar if 
that is the pressure unit chosen. Then V°=RT but it is essential to express R in the 
same units of pressure. In the second reference state, p°=p, the system pressure. Then 
v/v°=z , the compressibility factor. In this work, the second reference is chosen 
because it can be compared with other program.
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6.5 ESTIMATION OF VAPOR PRESSURE AND HEAT OF VAPORIZATION

6.5.1 Vapor pressure
Theory and corresponding states correlations

When the vapor phase o f  pure fluid is in equilibrium with the liquid phase, the 
equality o f  chemical potential, temperature, and pressure in both phase leads to the 
Clausius-Clapeyron equation which is expressed as follows:

d P v p  AH v  AH v  
d T  ~  T A V v  ~  ( R T 2 / P v p ) A Z v

(6-74)

d  In P v p  A H v  
d {  1 /  T )  R A Z v (6-75)

In equation (6-74), (6-75), AH v  and AZv refer to difference in the enthapy and 
compressibility factor o f  saturated vapor and saturated liquid. Vapor pressure 
estimation and correlation equations can be derived from an integration o f  equation 
(6-75). An assumption for integration is constant A H v  เ  R A Z v  and isothermal 
condition. The integration o f  equation (6-75) provides

BIn P v p  -  A -  —  y  T

where B  = A H v  / R A Z v

A, B = Constants from reference data

(6-76)

Equation (6-76) is som etim es called the Clapeyron equations. It is a fairly good  
equation for approximating vapor pressure over small temperature intervals but near 
the ceitical point, because both A H v  and AZv are weak function o f  temperature and 
decrease with rising temperature.
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Antoine vapor pressure correlation
Antoine proposed a simple modification o f  equation (6-76) which has been 

w idely used over limited ranges o f  temperature.

In P v p  - A -  (6‘77)

When c = 0  equation (6-77) becom es to the Clapeyron equation. A, B, c  are constants 
o f  Antoine equation which derived from experimental data. Pvp is a vapor pressure in 
bars and T is a temperature in kelvin. The applicable temperature range for Antoine 
equation is not large and in most instances corresponds to a pressure range o f  about 
0.01 to 2 bar. The Antoine equation should not be used outside the stated temperature 
limits. Extrapolation beyond these limits may lead to absurd results.

W agner vapor pressure correlation
Wagner proposed an equation to predict vapor pressure over wide range o f  

temperature in the form o f

Inf  P v p " 
V P c  /

a  T + b  r 15 + C T i + d r ( (6-78)

where T = 1 -  T r

A, B, c  are constants o f  Wagner equation which are derived from experimental data. 
The Wagner equation can be used at condition o f  a reduced temperature o f  0.5 up to 
critical point. Extrapolations outside these range may lead to unaceptable.



6.5.2 Heat of vaporization
Estimation heat o f  vaporization ( A / /J  from the law o f  corresponding states. 
From Clausius-Clapeyron equation (equation 6-74 ), in reduced form, becom es

42

(6-79)

d  In P v p r 
d { 1/ T r ) . Both these

parameters are assumed to be functions o f  Tr or Pvpr.

Pitzer acentric factor correlation
Pitzer et al. have shown that AH v can be related to temprature ( T ), reduced 

temperature ( Tr ) and acentric factor ( CO ). For a close approximation, an analytical 
representation o f  this correlation for 0.6 < Tr < 1.0 is

—  = 7.08(1 -  7> ) 0354 4- 10.95<ช(l -  7» 0 456 R T c (6-80)

Heat of vaporization at normal boiling point( AHvb )

A H vh =  R T c A Z vb[ r b , ln( P c / 1.01325)' 
1 - T b r , (6-81)

Equation (6-81) has been widely em ployed to make estimation o f  AHvb. This form 
has been called Giacalone equation.
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Riedel method
Riedel modified equation (6-81) is proposed as follow s,

AH vh =  1.093R T c  T b  1
In P c -  1.013 
0 .9 3 0 -  T b r (6-82)

Chen method
Chen proposed a relation between AHV, Pvpr and Tr as follow s

A H vh =  R T c T b  1
3.978 77>r -3 .9 5 8  + 1.555๒ P c  

1.07 -  T b , (6-83)

Vetere method
Vetere proposed a relation similar to Chen as follow

0.4343 In Pc -  0.69431 + 0.89584TbAH. =  RTcTb, ----- ~  ' '  r  ,1  , (6-84),A r 0.37691 - 0 3 7 3 0 6 T b ,  +  0 . 1 5 0 7 5 Pc~lTb;2 y ’

Variation of heat of vaporization with temperature
The latent heat o f  vaporization decrease steadily with temperature and is zero 

at the critical point. A widely used correlation between AHV and T is the W atson’s 
correlation

When heat o f  vaporization is predicted by heat o f  vaporization at normal boiling 
point, AHvl in equation (6-84) is replaced by AHvb and Tr[ is reduced temperature at 
boiling point ( Tr! =Tb/Tc ). AHv2 is heat o f  vaporization at reduced temperature Tr2 
( Tr2 =T2/Tc ).

(6-84)y \ - T r J
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6.6 E ST IM A T IO N  OF L IQ U ID  V ISC O SIT Y

Effect o f tem perature on liquid viscosity
The viscosities o f  liquids decrease with increasing temperature either under 

isobaric conditions or as saturated liquids. Van Velzen et al., Yaws et al. and Duhne 
have published constants to allow an estimation o f  liquid viscosities for most liquids 
whose experimental data exist. Correlation o f  experimental liquid viscosity data are 
shown below  this paragraph. The correlation for estimate liquid viscosity have three 
equations as follows:

Equation 1: 
Equation 2: 
Equation 3:

ๆ =A TB
In ทุ=A+B/T
lnr|=A+B/T+CT+DT2

ทุ= Liquid viscosity, centipoises (cp).
T = Temperature, kelvins (K).
A ,B ,C ,D  = Constants to calculate liquid viscosity.
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