PREPARATION AND CHARACTERIZATION OF HEXANOYL CHITOSAN/POLYCAPROLACTONE BLEND FILMS

Ms. Wimol Wongsin

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2002

ISBN 974-03-1603-4

Thesis Title : Preparation and Characterization of Hexanoyl

Chitosan/Polycaprolactone Blend Films

By : Wimol Wongsin

Program : Polymer Science

Thesis Advisors : Dr. Ratana Rujiravanit

Dr. Manit Nithitanakul

Prof. Seiichi Tokura

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahiat. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Dr. Ratana Rujiravanit)

Rature Rujnavanit

(Dr. Mark Nithitanakul)

(Prof. Seiichi Tokura)

(Assoc. Prof. Sujitra Wonkasemjit)

(Assoc. Prof. Anuvat Sirivat)

Anwalsoniot

ABSTRACT

4372022063 : POLYMER SCIENCE PROGRAM

Wimol Wongsin: Preparation and Characterization of Hexanoyl

Chitosan/Polycaprolactone Blend Films.

Thesis Advisors: Prof. Seiichi Tokura, Dr. Ratana Rujiravanit,

and Dr. Manit Nithitanakul, 47 pp. ISBN 974-03-1603-4

Keywords : Chitosan/ Hexanoyl chitosan/ Polycaprolactone/ Blend films

Hexanoyl chitosan (H-chitosan) was prepared and blended with polycaprolactone (PCL) at various blend compositions. Films of the blends were prepared by solution casting technique using chloroform as a solvent. Permeability studies of the films showed that the oxygen barrier property of PCL films increased by blending with H-chitosan. Results from mechanical tests performed on the films showed that H-chitosan could be blended with up to 30% PCL with only a slight decrease in tensile strength compared with pure H-chitosan. Small particle size and good dispersion of PCL in the H-chitosan matrix were observed from scanning electron micrographs. On the other hand, the elongation at break of PCL films increased with lowering H-chitosan content. The thermal properties and crystalline structure of PCL were not altered by blending with H-chitosan. Interactions between H-chitosan and PCL in the blend films could not be detected by FT-IR and therefore are presumed to be quite weak.

บทคัดย่อ

วิมล วงษ์ศิลป์ : การเตรียมและวิเคราะห์สมบัติของฟิล์มที่ได้จากพอลิเมอร์ผสมระหว่าง เฮกซะ โนอิลไค โตแซนและพอลิคาร์ โพรแลค โตน (Preparation and Characterization of Hexanoyl Chitosan/Polycaprolactone Blend Films) อ. ที่ปรึกษา : ศ. คร. เซอิจิ โทคุระ คร. รัตนา รุจิรวนิช และ คร. มานิตย์ นิธิธนากุล 47 หน้า ISBN 974-03-1603-4

เฮกซะ โนอิล ไก โตแซน ได้ถูกสังเคราะห์ขึ้นและนำมาผสมกับพอลิการ์ โพรแลก โตนใน อัตราส่วนที่ต่างกัน เพื่อเตรียมฟิล์มของสารพอลิเมอร์ผสม โดยทำการละลายเฮกซะ โนอิล ไก โต แซนและพอลิการ์ โพรแลก โตนในตัวทำละลายระบบเดียวกันคือ กลอ โรฟอร์ม จากผลการ วิเคราะห์สมบัติการซึมผ่านของก๊าซออกซิเจนของแผ่นฟิล์มของพอลิเมอร์ผสมพบว่า สมบัติการ สกัดกั้นการซึมผ่านของก๊าซออกซิเจนของพอลิการ์ โพรแลก โตนฟิล์มเพิ่มขึ้นเมื่อผสมกับเฮกซะ โนอิล ไก โตแซน จากผลของการวิเคราะห์สมบัติเชิงกลของฟิล์มพบว่า พอลิการ์ โพรแลก โตน สามารถผสมกับเฮกซะ โนอิล ไก โตแซนในอัตราส่วน 30 ต่อ 70 โดยที่สมบัติการทนแรงดึงของ ฟิล์มสารพอลิเมอร์ผสมลดลงเพียงเล็กน้อยเมื่อเปรียบเทียบกับฟิล์มของเฮกซะ โนอิล ไก โตแซน เพียงอย่างเคียว ภาพจากกล้องสแกนนึ่งอิเล็กตรอนไมโครส โคปพบว่า ขนาดอนุภาคของพอลิการ์ โพรแลก โตนเพิ่มขึ้นเมื่อผสมกับเฮกซะ โนอิล ไก โตแซน นอกจากนี้ ค่าอัตราการเปลี่ยนแปลงความยาวต่อความยาวเดิมที่จุดขาดของฟิล์มพอลิการ์ โพรแลก โตนเพิ่มขึ้นเมื่อผสมกับเฮกซะ โนอิล ไก โตแซน ในปริมาณเล็กน้อย สมบัติทางความร้อนและ โครง สร้างผลึกของพอลิการ์ โพรแลก โตนไม่เปลี่ยนแปลงเมื่อผสมกับเฮกซะ โนอิล ไก โตแซน พันธะที่ เกิดขึ้นระหว่างเฮกซะ โนอิล ไก โตแซนกับพอลิการ์ โพรแลก โตนอาจเป็นพันธะที่อ่อน ดังนั้นจึงไม่ สามารถตรวจพบได้ด้วยเครื่องฟูเรียทรานส์ฟอร์มสเปกโตร โฟโตมิเตอร์

ACKNOWLEDGEMENTS

The author would like to thank the Petroleum and Petrochemical College, Chulalongkorn University where the author have gained the knowledge in polymer science. The author would like to express her grateful appreciation to her advisors, Prof. Seiichi Tokura, Dr. Ratana Rujiravanit and Dr. Manit Nithitanakul, for their support, continuous suggestion and encouragement throughout this research work. It's her honor and pleasure to work with all of them.

The author would like to thank Surapon Foods (Public) Co., Ltd., Thailand for kindly supplying shrimp shells and KPT Coorporation, Thailand for kindly supplying 50% (w/w) sodium hydroxide solution. The author would like to express her special thanks to Mr. John W. Ellis for providing technical knowledge and helpful suggestions and also to all Petroleum and Petrochemical College's staff for their assistance.

Finally, the author would like to thank her friends, Ph.D., and first year students for their helpfulness and encouragement. The author is also greatly indebted to her family for their financial support, love, and understanding during her studies.

TABLE OF CONTENTS

		PAGE
Tit	le Page	i
Ab	Abstract (in English) Abstract (in Thai)	
Ab		
Ac	Acknowledgements	
Tal	Table of Contents	
Lis	List of Tables	
Lis	List of Figures	
Lis	st of Schemes	X
CHAPTER		
I	INTRODUCTION	1
II	LITERATURE SURVEY	3
III	EXPERIMENTAL	11
	3.1 Materials	11
	3.2 Equipment	11
	3.2.1 Fourier Transform Infrared Spectroscopy	11
	3.2.2 Nuclear Magnetic Resonance Spectrometry	11
	3.2.3 Elemental Analysis	12
	3.2.4 Differential Scanning Calorimeter	12
	3.2.5 Scanning Electron Microscopy	12
	3.2.6 Wide-angle-X-ray Diffractometer	12
	3.2.7 Thermogravimetric Analysis	13
	3.2.8 Tensile Tester	13
	3.2.9 Gas Permeability Tester	13
	3.3 Methodology	14
	3.3.1 Preparation of Chitin	14
	3.3.2 Preparation of Chitosan	14

CHAPTER		PAGE
	3.3.3 Preparation of Hexanoyl Chitosan (H-Chitosan)	14
	3.3.4 Preparation of H-Chitosan/ PCL Blend Films	15
	3.3.5 Viscosity-average Molecular Weight	
	Measurement of Chitosan	15
	3.3.6 Degree of Deacetylation of Chitosan	16
IV	RESULTS AND DISCUSSION	17
	4.1 Chemical Structure of Chitosan and H-Chitosan	17
	4.2 Chemical Structure of H-Chitosan/PCL Blend Films	20
	4.3 Morphology	21
	4.4 Miscibility	24
	4.5 Thermal Stability	26
	4.6 Crystalline Structure	27
	4.7 Mechanical Properties	29
	4.8 Oxygen Barrier Property	30
V	CONCLUSIONS	33
	REFERENCES	34
	APPENDICES	38
	Appendix A Characterization of chitosan and H-chitosan	38
	Appendix B Characterization of H-chitosan/PCL blend films	41
	CURRICULUM VITAE	47

LIST OF TABLES

TABLE		PAGE
A1	Viscosity-average molecular weight of chitosan	38
A2	Degree of substitution of H-chitosan from elemental analysis	40
B1	Thermal properties of H-chitosan/PCL blend films	
	from DSC analysis	41
B2	Decomposition temperatures of H-chitosan/PCL blend films	
	from TGA	42
В3	Mechanical properties of H-chitosan/PCL blend films	43
B4	Oxygen permeability measurement of H-chitosan/PCL blend films	45

LIST OF FIGURES

FIGURE		PAGE
4.1	FT-IR spectra of (a) chitosan and (b) H-chitosan	17
4.2	¹ H-NMR spectrum of H-chitosan	18
4.3	¹³ C-NMR spectrum of H-chitosan	19
4.4	FT-IR spectra of H-chitosan/PCL blend films.	
	H-chitosan/PCL blend composition: (a) 100/0 (H-chitosan);	
	(b) 80/20; (c) 40/60; (d) 60/40; (e) 80/20; and (f) 0/100 (PCL)	21
4.5	SEM micrographs of H-chitosan/PCL blend films.	
	H-chitosan/PCL blend composition: (a) 100/0 (H-chitosan);	
	(b) 80/20; (c) 40/60; (d) 60/40; (e) 80/20; and (f) 0/100 (PCL)	23
4.6	DSC thermograms of H-chitosan/PCL blend films.	
	H-chitosan/PCL blend composition: (a) (100/0) H-chitosan;	
	(b) 40/60; (c) 60/40; and (d) 0/100 (PCL)	24
4.7	Glass transition temperature of H-chitosan/PCL blend films	
	as a function of H-chitosan content	25
4.8	Melting temperature of H-chitosan/PCL blend films	
	as a function of H-chitosan content	25
4.9	TGA thermograms of (a) H-chitosan; (b) blend with 40%	
	H-chitosan content; and (c) PCL	27
4.10	WAXD patterns of H-chitosan/PCL blend films.	
	H-chitosan/PCL blend composition: (a) 100/0 (H-chitosan);	
	(b) 80/20; (c) 40/60; (d) 60/40; (e) 80/20; and (f) 0/100 (PCL)	28
4.11	Tensile strength of H-chitosan/PCL blend films	
	as a function of H-chitosan content	29
4.12	Elongation at break of H-chitosan/PCL blend films	
	as a function of H-chitosan content	30
4.13	Oxygen permeability of H-chitosan/PCL blend films	
	as a function of H-chitosan content	31
A1	η_{sp}/c and $ln(\eta_{rel})/c$ against concentration of chitosan solution	39

LIST OF SCHEMES

SCHEME		PAGE
2.1	Chemical structures of (a) chitin and (b) chitosan	3
2.2	Chemical structure of poly(ε-caprolactone)	7
3.1	Synthesis reaction of H-chitosan	15