ผลของใตรบิวทิลทินออกใชด์ที่มีต่อการเจริญของคัพภะและการพัฒนาในระยะวัยอ่อนของ กุ้งก้ามกราม Macrobrachium rosenbergii de Man

นายพรฤทธิ์ อริยะวงศ์วัฒน์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาวิทยาศาสตร์สภาวะแวคล้อม สหสาขาวิชาวิทยาศาสตร์สภาวะแวคล้อม บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2543

ISBN 974-13-0822-1 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

EFFECTS OF TRIBUTYLTIN OXIDE ON EMBRYONIC AND LARVAL DEVELOPMENT OF GIANT FRESHWATER PRAWN Macrobrachium rosenbergii de Man

Mr. Pornriddh Ariyavongvadhana

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science Inter-department of Environmental Science

Graduate School
Chulalongkorn University
Academic Year 2000
ISBN 974-13-0822-1

Thesis Title	EFFECTS OF TRIBUTYLTIN OXIDE ON EMBRYONIC AND
	LARVAL DEVELOPMENT OF GIANT FRESHWATER PRAWN
	Macrobrachium rosenbergii de Man
Ву	Mr. Pornriddh Ariyavongvadhana
Field of Study	Environmental Science
Thesis Advisor	Associate Professor Somkiat Piyatiratitivorakul, Ph.D.
Accepted by th	e Graduate School, Chulalongkorn University in Partial Fulfillment of the
Requirements for the M	laster's Degree.
	Dean of Graduate School
	(Professor Suchada Kiranandana, Ph.D.)
Thesis Committee	O's Patangy . Chairman
	Chairman
	(Assistant Professor Pipat Patanaponpaiboon, Ph.D.)
	Thesis Advisor
	(Associate Professor Somkiat Piyatiratitivorakul, Ph.D.)
	Member
	(Assistant Professor Charoen Nitithamyong, Ph.D.)
	Kanokpom Boomsang Member
	(Dr. Kanakharn, Raansang)

(Dr. Kanokporn Boonsong)

พรฤทธิ์ อริยะวงศ์วัฒน์: ผลของไตรบิวทิลทินออกไซค์ต่อการเจริญของคัพภะและการพัฒนาใน ระยะวัยอ่อนของกุ้งก้ามกราม *Macrobrachium rosenbergii* de Man. อาจารย์ที่ปรึกษา: รอง ศาสตราจารย์ คร. สมเกียรติ ปิยะธีรธิติวรกุล. 114 หน้า. ISBN 974-13-0822-1.

การทคสอบพิษเฉียบพลันและรองเฉียบพลันของไตรบิวทิลทินออกไซค์ต่อการเจริญของคัพภะ และการพัฒนาของกุ้งก้ามกรามวัยอ่อน Macrobrachium rosenbergii de Man ภายใต้ภาวะน้ำนิ่ง เปลี่ยนน้ำ ทุก 24 ชั่วโมง พบว่าไข่กุ้งระยะต้นและระยะปลาย ตายร้อยละ 50 ที่ความเข้มข้น 583 และ 720 ใมโครกรัมต่อลิตร ตามลำคับ โดยจวามทนทานมีแนวโน้มเพิ่มขึ้นตามอายุของไข่ สำหรับกุ้งวัยอ่อน ความเข้มข้นที่ทำให้สัตว์ทคลองตายจำนวนครึ่งหนึ่ง เมื่อสัมผัสสารเป็นเวลา 24 ชั่วโมง อยู่ในช่วง 10.3 (ระยะที่ 7) ถึง 12.8 (ระยะที่ 8) ใมโครกรัมต่อลิตร ตามลำคับ เมื่อสัมผัสสารเป็นเวลา 48 ชั่วโมง ความเข้มข้นที่ทำให้ลูกกุ้งจำนวนครึ่งหนึ่งตาย อยู่ระหว่าง 5.8 ถึง 7.7 ใมโครกรัมต่อลิตร ค่าต่ำสุดพบใน ลูกกุ้งระยะที่ 5 ค่าสูงสุดพบในระยะที่ 6 ความไวต่อไตรบิวทิลทินออกไซค์ของลูกกุ้งวัยอ่อนแต่ละระยะ ไม่มีความแตกต่างกันอย่างเด่นชัด ทั้งสองช่วงเวลาของการสัมผัส ในกรณีพิษรองเฉียบพลัน ไตรบิวทิลทิน ออกไซค์ทำให้จำนวนไข่ที่ฟักเป็นตัวลดลง เมื่อสัมผัสลับสารในช่วงความเข้มข้น 250 ถึง 1000 ไมโครกรัมต่อลิตร เป็นเวลา 15 วัน ในกุ้งวัยอ่อนพบว่าการเจริญเติบโตลคลงอย่างมีนัยสำคัญ (P<0.05) เมื่อสัมผัสสารที่ระคับ 0.6 หรือ 1.2 ไมโครกรัมต่อลิตรเป็นเวลา 30 วัน โดยไม่พบความแตกต่างระหว่าง ความเข้มข้นทั้งสอง

ภาควิชา สหสา	ขาวิชาวิทยาศาสตร์สภาวะแวคล้อม วิทยาศาสตร์สภาวะแวคล้อม	ลายมือชื่อนิสิต	many of orland	50-100
สาขาวิชา	วิทยาศาสตร์สภาวะแวคล้อม	ลายมือชื่ออาจารย์ที่ป	รึกษา ผมเพียง	De: dorly
ปีการศึกษา	2543	.ลายมือชื่ออาจารย์ที่บ	ไรึกษาร่วม	

##4172373123: MAJOR ENVIRONMENTAL SCIENCE

Key words: Macrobrachium rosenbergii / GIANT FRESHWATER PRAWN / TRIBUTYLTIN OXIDE / TBTO / EMBRYOTOXIC / LARVAL TOXIC / LCso

PORNRIDDH ARIYAVONGVADHANA: EFFECTS OF TRIBUTYLTIN OXIDE ON EMBRYONIC AND LARVAL DEVELOPMENT OF GIANT FRESHWATER PRAWN *Macrobrachium rosenbergii* de Man. THESIS ADVISER: ASSO. PROF. SOMKIAT PIYATIRATITIVORAKUL, Ph. D. 114 pp. ISBN 974-13-0822-1.

Acute and subacute toxicities of tributyltin oxide (TBTO) were determined in embryos and larvae of giant freshwater prawn, *Macrobrachium rosenbergii* de Man, with static water renewal condition every 24 h. The 96 h LC₅₀s for early and late stage embryos were 583 and 720 µg I^{-1} , respectively. The tolerance to TBTO trend increase with increasing developmental stage. For larvae, the 24 h LC₅₀s were ranging from 10.9 to 12.8 µg I^{-1} , respectively for first and fifth stage larvae. The 48 h LC₅₀s compised between 5.8 and 7.7 µg I^{-1} for fifth and sixth stage larvae, respectively. There appear to be no difference among the 24 h LC₅₀s of first six stages larvae and also 48 h LC₅₀s for second to sixth stage. As regards sublethal effects, hatching success reduced with increasing concentration by 15 days of exposure between 250-1000 µg I^{-1} . Growth was significantly retarded (P<0.05) in larvae treated with 0.6 or 1.2 µg I^{-1} for 30 days without significant difference between the two concentration.

Department Intex-d	enartment of Environmental Sci	ience Student's signature	S good	Jan Bart
Field of study	epartment of Environmental Science	Advisor's signature	Quidas	De: 85007P
Academic year		Co-adviser's signatur		7.

Acknowledgement

The author wishes to extend his deepest gratitude and to acknowledge his indeptedness to his adviser, Associated Professor Dr. Somkiat Piyatiratitivorakul for his unvaluable guidance, constructive suggestion, constant moral, technical, and emotional support throughout the entire thesis course.

The author also wish to express special acknowledgements to Assistant Professor Dr. Pipat Patanaponpaicoon, Assistant Professor Dr. Charoen Nitithamyong, and Dr. Kanokporn Boonsong, chair person and members of the thesis committee for their valuable advice and suggestion.

Special gratitude are expressed to Dr. Supichai Tangchaitong, head of the Marine Science department. Faculty of Science, Chulalongkorn University, for his hospitality and permission to the author for performing his experiment over that period.

Sincerest thanks and credit is paid to Mr. Seri Donnue for his kindly helpfulness, friendship, and especially for his attempt in collecting living specimens in field throughout the experimental period.

Genuine thanks is also paid to Mr. Sakya Pradit, sitter of the MV SEAFDEC and Mrs. Siriporn Pradit, researcher of Southeast Asia Fisheries Development Center for their information of antifouling paint application in SEAFDEC.

The author wish to thanks the Graduate School, Chulalongkorn University for financial supporting in this thesis.

Finally, the author honestly feel profound indebted to his beloved mother, who devotes herself by endeavoring to alter her ordinary life from house-wife to a road curb merchant for serving family and support the author until his post-graduation. His achievement cans not success without her support and encouragement, and also her emotional and spiritual powers giving to him. The author owe special thanks to his brother, who share some of his time to attenuate mother's hard work when the author was in his full-time course work, resulting in extending his graduation.

Contents

		Г	age
Abstract (T	hai)		iv
Abstract (E	nglisł	n)	v
Acknowled	geme	nt	vi
List of Tabl	les		x
List of Figu	ıres		xii
Chapter 1	Intr	oduction	1
	1.1	General	1
	1.2	Objectives	2
	1.3	Hypothesis	2
	1.4	Scope of study	2
	1.5	Expectations	2
Chapter 2	Lite	rature Reviews	3
	2.1	Background	3
	2.2	Types of tributyltin paints	5
		2.2.1 Tributyltin free association system	5
		2.2.2 TBT self polishing copolymer systems	6
	2.3	Tin-free anti-fouling paints	7
	2.4	Tributyltin in fresh water environments	13
		2.4.1 Sources and occurrence	13
		2.4.2 Persistent and fate	13
	2.5	Tributyltin in estuarine environments	14
		2.5.1 Sources and concentrations	14
		2.5.2 Distribution and fate	15
		2.5.3 Degradation processes	18

Contents (cont.)

			Page
	2.6	Recovery of TBT contamination after TBT registrations	19
	2.7	Ingestion, metabolism and bioaccumulation	20
	2.8	Contamination of TBT in biota	38
	2.9	Effects on aquatic organisms	40
		2.9.1 Lethal toxicity	40
		2.9.2 Sublethal toxicity	4 0
		2.9.3 Mechanism of action for TBTO toxicity in shrimps	43
	2.10	Test animals	46
Chapter 3	Mate	erials and Methods	53
	3.1	Test animal	53
		3.1.1 Prawns	53
		3.1.2 Breeding of embryos and larvae	53
		3.1.3 Selected testing stages	54
	3.2	Toxicity tests	54
		3.2.1 Acute toxicity tests	55
		3.2.2 Subacute toxicity tests	57
		3.2.3 Data collection	58
		3.2.4 Statistical analysis	59
Chapter 4	Res	ults and Discussion	60
	4.1	Acute toxicity of TBTO	60
		4.1.1 Embryo toxicity tests	60
		4.1.2 Larval toxicity tests	64
	4.2	Subacute toxicity of TBTO	71
		4.2.1 Embryotoxicity tests	71
		422 Larval toxicity tests	73

Contents (cont.)

		Page
Chapter 5	Con	clusions and Recommendations80
	5.1	Conclusions
	5.2	Recommendations
		5.2.1 Proposed anti-cannibalism toxicity test container
		5.2.2 Research recommended to figure out the status of TBT in Thai waters 88
		5.2.3 Feasibility of Macrobrachium rosenbergii for using as standard testing
		animal93
	5.3	Feasibility of Macrobrachium rosenbergii for using as
		standard testing animal
References	S	90
Appendice	s	100
App	endix	A Lethality of Macrobrachium rosenbergii exposed to different concentrations o
		TBTO10°
App	endi	B Probit Analysis
Riography		

List of Tables

	Page
Table 2.1 Organic a	and metal-based anti-fouling biocides9
Table 2.2 Alternativ	ve anti-fouling biocides and additives, and their possible hazards10
Table 2.3 Comparis	son of Tributyltin Self-Polishing Copolymer (TBT SPC) to Tin-Free Anti-
fouling P	aints11
Table 2.4 Butyltin	concentrations (ng g ⁻¹ wet wt) in organisms collected worldwide23
Table 2.5 Bioconce	entration factors (BCFs) for TBT in aquatic organisms
Table 2.6 Embryon	nic development of Macrobrachium rosenbergii50
Table 2.7 Larval de	evelopment Macrobrachium rosenbergii by Ling (1969b)
versus U	no and Kwon chin soo (1969).
Table 4.1 Mean per	rcent lethality at 24, 48, 72, and 90 h for 3 day-old Macrobrachium rosenbergii
embryos	exposed to different concentrations of TBTO (2nd range finding test)
Table 4.2 Mean per	rcent lethality at 24, 48, 72, and 96 h for 3 day-old Macrobrachium rosenbergia
embryos	exposed to different concentrations of TBTO (3rd range finding test)
Table 4.3 Mean per	rcent lethality at 24, 48, 72, and 96 h for 10 day-old Macrobrachium rosenbergii
embryos	exposed to different concentrations of TBTO (4th range finding test)
Table 4.4 LC50s as	nd mean percent lethality at 48, 72, and 96 h for Macrobrachiumrosenbergi
embryos	exposed to TBTO on different stages of development64
Table 4.5 Mean pe	ercent lethality at 24, 48, and 72 h for 4th-stage Macrobrachium rosenbergin
larvae ex	sposed to different concentrations of TBTO (first trial)
Table 4.6 Mean pe	ercent lethality at 24 and 48 h for 1st, 2nd, and 6th-stage Macrobrachium
rosenber	gii larvae exposed to different concentrations of TBTO (second trial)
Table 4.7 LC50s ar	nd mean percent lethality at 24 h for Macrobrachium rosenbergii larvae exposed
to TBTO	on first to eight stage of development
Table 4.8 LC50s ar	nd mean percent lethality at 48 h for Macrobrachium rosenbergii larvae exposed
to TBTO	on second to sixth stage of development

List of Tables (cont.)

	r age
Table 4.9	Percent survival on 10th day and percent hatching on 16th day of exposure in
	Macrobrachium rosenbergii treated with TBTO
Table 4.10	Percent stage composition and mean stage of 3rd, 4th,and 5th-stage Macrobrachium
	rosenbergii larvae exposed to different concentrations of TBTO for 48 h (pretest)77
Table 4.11	Percent stage composition of sampled Macrobrachium rosenbergii larvae exposed to
	TBTO
Table 4.12	Larval developmental rate after exposed to TBTO
Table 5.1	Data gaps in TBT contamination status in Thai waters
Table 5.2	Feasibility of Macrobrachium rosenbergii for using as standard testing animal94
Table A1	Lethality at 24, 48, 72, and 96 h for 3 day-old Macrobrachium rosenbergii embryos
	exposed to different concentrations of TBTO (2nd range finding test)
Table A2	Lethality at 24, 48, 72, and 96 h for 3 day-old Macrobrachium rosenbergii embryos
	exposed to different concentrations of TBTO (3rd range finding test)
Table A3	Lethality at 24, 48, 72, and 96 h for 10 day-old Macrobrachium rosenbergii embryos
	exposed to different concentrations of TBTO (4th range finding test)
Table A4	Lethality at 24, 48, 72, and 96 h for Macrobrachium rosenbergii embryos exposed to
	different concentrations of TBTO
Table A5	Lethality at 24, 48, and 72 h for 4th-stage Macrobrachium rosenbergii larvae exposed to
	different concentrations of TBTO (first trial)
Table A6	Lethality at 24 and 48 h for 1st, 2nd, and 6th-stage Macrobrachium rosenbergii larvae
	exposed to different concentrations of TBTO (second trial)
Table A7	Lethality at 24 h for 1st- to 8th-stage and 48 h for 2nd- to 6th-stage Macrobrachium
	rosenbergii larvae exposed to different concentrations of TBTO (actual tests)

List of Figures

Pa	ge
g. 2.1 Operational mechanism of a free association paint	6
g. 2.2 Operational mechanism of a TBT self-polishing copolymer paint	7
g. 2.3 Operational mechanisms of some tin-free anti-fouling paints	8
g. 2.4 Salinity effects on the sorption of TBT by the sediment and on the partitioning of TBT in	ıto
the porewater	17
pH effects on the sorption of TBT by the sediment and on the partitioning of TBT in	nto
pore water	17
g. 2.6 Histopathological effects of TBTO on gills and epipodites of <i>Peneaus japonicus</i>	45
g. 2.7 A mature male giant freshwater prawn Macrobrachium rosenbergii de Man	46
g. 2.8 Segmentation and embryonic development	49
g. 2.9 Larval development of <i>Macrobrachium rosenbergii</i> de Man	51
g. 4.1 Mean percent lethality at 24, 48, 72, and 96 h for 3 day-old Macrobrachium rosenber	gii
embryos exposed to different concentrations of TBTO (2nd range finding test)	60
g. 4.2 Mean percent lethality at 24, 48, 72, and 96 h for 3 day-old Macrobrachium rosenber	gii
embryos exposed to different concentrations of TBTO (3rd range findingtest)	61
g. 4.3 Mean percent lethality at 24, 48, 72, and 96 h for 10 day-old Macrobrachium rosenber	gii
embryos exposed to different concentrations of TBTO (4th range finding test)	63
g. 4.4 Mean percent lethality at 24, 48, and 72 h for 4th-stage Macrobrachium rosenber	gii
larvae exposed to different concentrations of TBTO (first trial).	65
g. 4.5 Lethality at 24 and 48 h for 1st, 2nd, and 6th-stage Macrobrachium rosenbergii larv	/ae
exposed to different concentrations of TBTO (second trial)	65
g. 4.6 Embryonic development of <i>Macrobrachium rosenbergii</i>	72
g. 4.7 Percent survival on 10th day and percent hatching on 16th day of exposure	in
Macrobrachium rosenbergii treated with TBTO	73

List of Figures

		Page
Fig. 4.8	Larval developmental rate after exposed to TBTO	75
Fig. 5.1	Schematic diagram of proposed anti-cannibalism toxicity test container	90