การปรับเทียบแบบจำลองทางคณิตศาสตร์ เพื่อการจัดการคุณภาพน้ำผิวดิน บริเวณโรงไฟฟ้าและเหมืองแม่เมาะ

นางสาว อิศรา พิริยะพิเศษพงศ์

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สหสาขาวิชาวิทยาศาสตร์สภาวะแวดล้อม บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2540 ISBN 974 - 638 - 065 - 6 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

CALIBRATION OF MATHEMATICAL MODEL FOR SURFACE WATER QUALITY MANAGEMENT AT MAE MOH POWER PLANT AND MINE

Miss Isara Piriyapisedpong

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science
Inter-department of Environmental Science
Graduate School
Chulalongkorn University
Acadamic Year 1997
ISBN 974 - 638 - 065 - 6

หัวข้อวิทยานิพนธ์ การปรับเทียบแบบจำลองทางคณิตศาสตร์ เพื่อการจัดการคุณภาพน้ำผิวดิน บริเวณโรงไฟฟ้าและเหมืองแม่เมาะ โดย นางสาวอิศรา พิริยะพิเศษพงศ์ สหสาขาวิชา วิทยาศาสตร์สภาวะแวดล้อม อาจารย์ที่ปรึกษา ผู้ช่วยศาสตราจารย์ ดร.ทวีวงศ์ ศรีบุรี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

.คณบดีบัณฑิตวิทยาลัย

ศาสตราจารย์ นายแพทย์ศุภวัฒน์ ชุติวงศ์)

คณะกรรมการสอบวิทยานิพนธ์

mos อังามีตับระธานกรรมการ

(ผู้ช่วยศาสตราจารย์ ดร.กำธร ธีรคุปต์)

..อาจารย์ที่ปรึกษา

(ผู้ช่วยศศัสตราจารย์ ดร.ทวีวงศ์ ศรีบุรี)

@าจอง มระทัศฐสหารสาร_{กรรมการ}

(อาจารย์ ดร.อาจอง ประทัตสุนทรสาร)

....กรรมการ

(อาจาย์ ดร.ศุภิชัย ตั้งใจตรง)

พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงผล่นเดียว

อิศรา พิริยะพิเศษพงศ์ : การปรับเทียบแบบจำลองทางคณิตศาสตร์ เพื่อการจัดการคุณภาพน้ำ ผิวดิน บริเวณโรงไฟฟ้าและเหมืองแม่เมาะ (CALIBRATION OF MATHEMATICAL MODEL FOR SURFACE WATER QUALITY MANAGEMENT AT MAE MOH POWER PLANT AND M:NE) อ.ที่ปรึกษา ผศ.ดร.ทวีวงศ์ ศรีบุรี , 118 หน้า ISBN 974 - 638 - 065 - 6

การปรับเทียบแบบจำลองทางคณิตศาสตร์ เพื่อการจัดการคุณภาพน้ำผิวดิน บริเวณโรงไฟฟ้าและ เหมืองแม่เมาะ โดยใช้แบบจำลองทางคณิตศาสตร์ "MIKE 11 " 2 ส่วน คือ Hydrodynamic model (HD model) และ Transport Dispersion model (TD model) เพื่อวิเคราะห์ค่าทางซลศาสตร์และค่าการแพร่กระจายของมลสาร ในลำน้ำแม่เมาะ ซึ่งพารามิเตอร์คุณภาพน้ำที่ศึกษา คือ ปริมาณของแข็งที่ละลายได้ทั้งหมด (Total Dissolved Solids; TDS) และซัลเฟต (Sulfate) ซึ่งเป็นมลสารที่สำคัญอันเนื่องมาจากการดำเนินกิจกรรมของโรงไฟฟ้าและ เหมืองแม่เมาะ โดยขอบเขตของต้นน้ำอยู่ห่างจากโรงไฟฟ้า หน่วยที่ 1 - 3 ประมาณ 2 กิโลเมตร ซึ่งรองรับน้ำทิ้ง จากเหมืองแม่เมาะและโรงไฟฟ้า หน่วยที่ 1 - 3 และอยู่ห่างจากโรงไฟฟ้า หน่วยที่ 4 - 13 ประมาณ 2 กิโลเมตร ซึ่งรองรับน้ำทิ้งจากโรงไฟฟ้า หน่วยที่ 4 - 13 ขอบเขตท้ายน้ำอยู่ห่างจากอ่างแม่เมาะ ประมาณ 1 กิโลเมตร โดยมี สถานีปรับเทียบแบบจำลองทางคณิตศาสตร์ เก็บสำรวจในช่วงเดือนมกราคมถึงมิถุนายน พ.ศ. 2540 โดยการไฟฟ้า ฝ่ายผลิตแห่งประเทศไทย (กฟผ.) ซึ่งผลการปรับเทียบแบบจำลองโดย HD model คำนวณค่าสัมประสิทธิ์ความ ขรุขระแมนนิ่ง (Manning's n) มีค่าระหว่าง 0.033 - 0.050 เมตร ^{1/3}/ วินาที และโดย TD model คำนวณค่า สัมประสิทธิ์การแพร่กระจาย (Dispersion Coefficient) มีค่าระหว่าง 700 - 900 เมตร ²/วินาที ค่าที่ได้จากการปรับ เทียบ นำมาใช้ในการตรวจสอบความถูกต้องของแบบจำลอง

ผลการตรวจสอบความถูกต้องของแบบจำลอง โดยใช้ข้อมูลที่เก็บสำรวจในช่วงเดือนกรกฎาคมถึง ตุลาคม พ.ศ. 2540 พบว่าระดับน้ำ ปริมาณของแข็งที่ละลายได้ทั้งหมดและซัลเฟตจากการคำนวณ มีค่าใกล้เคียง กับข้อมูลจากการสำรวจ ซึ่งเมื่อนำมาทดสอบหาค่าสัมประสิทธิ์สหสัมพันธ์อย่างง่าย ได้ค่า r = 0.9201 , 0.9461 และ 0.9429 ตามลำดับ และค่าจากข้อมูลทั้งสอง ไม่มีความแตกต่างอย่างมีนัยสำคัญ (Paired t-test) ที่ระดับ ความเชื่อมั่น 95 %

ภาควิชา	ลายมือชื่อนิสิต ซิสาา พิริมะพิเศษเทศ
สาขาวิชา วิทยาต่าล่ตรุลภาวะแวกล้อม	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา <u>2540</u>	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

พิมพ์ตันฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

: MAJOR

INTER-DEPARTMENT OF ENVIRONMENTAL SCIENCE

KEY WORD: MATHEMATICAL MODEL / WATER QUALITY

ISARA PIRIYAPISEDPONG: CALIBRATION OF MATHEMATICAL MODEL FOR SURFACE WATER QUALITY

MANAGEMENT AT MAE MOH POWER PLANT AND MINE

THESIS ADVISOR: ASST.PROF.THAVIVONGSE SRIBURI, Ph.D., 118 pp.

ISBN 974 - 638 - 065 - 6

Calibration of a mathematical model for surface water quality management at the Mae Moh power plants and lignite mine is based on two modules of the mathematical model "MIKE 11" the Hydrodynamic model (HD model) and the Transport Dispersion model (TD model). The purpose of this study is to analyze hydraulic and dispersion characteristics of the Mae Moh channel. Water quality parameters are total dissolved solids and sulfate which are important pollutants originating from operation of the Mae Moh power plants and mine. The upper boundary of the analyzed area are far from the unit 1 - 3 power plants approximately 2 kilometres which collects the drainage from the unit 1 - 3 power plants and Mae Moh mine and far from the unit 4 - 13 power plants approximately 2 kilometres which collects the drainage from the unit 4 - 13 power plants. The lower boundary is far from the Mae Moh reservior about 1 kilometre. The calibrated station of water level and water quality parameters is far from the Mae Moh reservior about 200 metres. All calibrated data were collected during the period between January and June 1997 by the Electricity Generating Authority of Thailand (EGAT). Using these data to calibrate of the mathematical model , it was found that values for Roughness coefficient (Manning's n) are between 0.033 and 0.050 m^{1/3}/sec and values for Dispersion coefficient are between 700 and 900 m²/sec. The calibrated values were used to verify the mathematical model.

Collected data in the period between July and October 1997 were used to verify the mathematical model. The calculated values for water level, total dissolved solids and sulfate closely match the survey data and gave the simple correlation; r = 0.9201, 0.9461 and 0.9429 respectively. The values for the two data sets are not significantly different (Paired t-test) at the 95 % confidence interval.

ภาควิชา INTER - DEPARTMENT สาขาวิชา ENVIRONMENTAL SCIENCE ปีการศึกษา 1997

ลายมือชื่อนิสิต อิสาา พิริมะพิเศเ

ลายมือชื่ออาจารย์ที่ปรึกษา......

ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จลุล่วงได้ด้วยดีด้วยความช่วยเหลือและสนับสนุนจากบุคคล หลายๆ ฝ่าย ข้าพเจ้าใคร่ขอขอบพระคุณ ผู้ช่วยศาสตราจารย์ ดร.ทวีวงศ์ ศรีบุรี อาจารย์ที่ปรึกษา วิทยานิพนธ์ ที่ช่วยกรุณาให้คำปรึกษาและแนะแนวทางในการแก้ปัญหาในช่วงที่ทำวิทยานิพนธ์ตลอด มา พร้อมได้รับความอนุเคราะห์โปรแกรม MIKE 11 จากสถาบันวิจัยสภาวะแวดล้อม จุฬาลงกรณ์ มหาวิทยาลัย

ขอขอบพระคุณ ผู้ช่วยศาสตราจารย์ ดร.กำธร ธีรคุปต์ ประธานกรรมการสอบ วิทยานิพนธ์ อาจารย์ ดร.อาจอง ประทัดสุนทรสาร และอาจารย์ ดร.ศุภิชัย ตั้งใจตรง ที่กรุณาสละเวลา อันมีค่ายิ่งในการเป็นกรรมการสอบวิทยานิพนธ์ พร้อมกับให้ข้อคิดเห็นและข้อเสนอแนะ ตลอดจนช่วย ตรวจรายละเอียดต่างๆ ในวิทยานิพนธ์ฉบับนี้

ขอขอบคุณ เจ้าหน้าที่ฝ่ายสิ่งแวดล้อม ฝ่ายสำรวจและฝ่ายวางแผนและบริหารเหมือง แม่เมาะ การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย ที่กรุณาให้ความอนุเคราะห์ข้อมูลต่างๆ ในการดำเนินการ ของแบบจำลองและเครื่องมือในการทำวิทยานิพนธ์ รวมทั้ง Dr.Nguyen Huu Thoi คุณจิรวัฒน์ กณสุต จากสถาบันเทคโนโลยีแห่งเอเชีย และคุณกฤษฎา มหาสันทนะ ที่ได้ให้คำแนะนำและถ่ายทอดวิธีการ ดำเนินการของแบบจำลองทางคณิตศาสตร์ MIKE 11

ขอขอบคุณ บัณฑิตวิทยาลัย บริษัทไทยอาชาฮีโซดาไฟ จำกัด ที่ได้ให้ทุนสนับสนุน การศึกษาวิจัยในครั้งนี้บางส่วน

ขอขอบคุณ เพื่อนๆ สหสาขาวิชาวิทยาศาสตร์สภาวะแวดล้อมทุกท่าน ที่ได้ให้ความ ช่วยเหลือ จนกระทั่งประกอบเป็นวิทยานิพนธ์ฉบับนี้ขึ้น

ท้ายนี้ข้าพเจ้าขอกราบขอบพระคุณคุณพ่อคุณแม่และบุคคลในครอบครัวที่ให้ความรัก และกำลังใจตลอดมาจนสำเร็จการศึกษา

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	٩
บทคัดย่อภาษาอังกฤษ	ৰ
กิตติกรรมประกาศ	ฉ
สารบัญ	ช
สารบัญตาราง	ា
สารบัญรูป	ผ
บทที่ 1. บทน้ำ	1
2. ทบทวนเอกสาร	7
3. แบบจำลองทางคณิตศาสตร์ " MIKE 11 "	24
4. อุปกรณ์และวิธีดำเนินการ	45
5. ผลการศึกษาและวิจารณ์ผล	57
6. สรุปผลการศึกษาและข้อเสนอแนะ	67
รายการอ้างอิง	71
ภาคผนวก	74
ประวัติผู้เขียน	118

สารบัญตาราง

ตารางที่		หน้า
ก-1	มาตรฐานการระบายน้ำทิ้งจากแหล่งกำเนิดประเภทโรงงานอุตสาหกรรม	
	และนิคมอุตสาหกรรม	76
ก-2	มาตรฐานคุณภาพน้ำผิวดิน	77
ก-3	มาตรฐานคุณภาพน้ำดื่ม	79
	ผลวิเคราะห์คุณภาพน้ำบริเวณโรงไฟฟ้าและเหมืองแม่เมาะ พ.ศ. 2539	83
	ผลวิเคราะห์คุณภาพน้ำบริเวณโรงไฟฟ้าและเหมืองแม่เมาะ พ.ศ. 2540	84
	อัตราการไหลของน้ำ ณ สถานี 1280 เดือนมกราคม - ตุลาคม พ.ศ. 2540	95
	• อัตราการไหลของน้ำ ณ สถานี EXT-2 เดือนมกราคม - ตุลาคม พ.ศ. 2540	98
	ระดับน้ำ ณ สถานี EXT-6 เดือนมกราคม - ตุลาคม พ.ศ. 2540	101
	ระดับน้ำ ณ สถานี EXT-8 เดือนมกราคม - ตุลาคม พ.ศ. 2540	104
	ผลการตรวจสอบระดับน้ำจากการคำนวณและจากการสำรวจ ณ สถานี EXT-6	,
	เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	107
P -6	ปริมาณของแข็งที่ละลายได้ทั้งหมด ณ สถานี 1280, EXT-2, EXT-6 และEXT-8	
	เดือนมกราคม - ตุลาคม พ.ศ. 2540	109
ค -7	ปริมาณขัลเฟต ณ สถานี 1280, EXT-2, EXT-6 และEXT-8	
	เดือนมกราคม - ตุลาคม พ.ศ. 2540	111
ค -8	้ ผลการตรวจสอบปริมาณของแข็งที่ละลายได้ทั้งหมดและซัลเฟตจากการคำนวณ	
	และจากการสำรวจ ณ สถานี EXT-6 เดือนกรกฎาคม - ตลาคม พ.ศ. 2540	113

สารบัญรูป

รูปที่			หน้า
	2.1	ความสัมพันธ์ระหว่างข้อมูลเข้าและข้อมูลออก	7
	2.2	กระบวนการหลักในการสร้างแบบจำลองของระบบ	10
	2.3	ขั้นตอนการพัฒนาแบบจำลองทางคณิตศาสตร์ของระบบต่างๆ	13
	2.4	วัฏจักรกำมะถัน	18
	2.5	ผลของ pH ที่มีต่อสมดุลของไฮโดรเจนซัลไฟด์-ซัลไฟด์อิออน	19
	2.6	การเกิด H ₂ S ในท่อน้ำทิ้งและการกัดกร่อนในส่วนบนของท่อน้ำทิ้ง	20
	3.1	แผนภาพรูปแบบการจำลองสภาพของแบบจำลอง MIKE 11	25
	3.2	หน้าตัดลำน้ำที่พิจารณาเป็นลำน้ำรูปสี่เหลี่ยมหลายๆ รูป	28
		หน้าตัดลำน้ำที่พิจารณาในสมการ Resistance Radius	31
	3.4	หน้าตัดลำน้ำที่พิจารณาในสมการ Hydraulic Radius	33
		กริดต่างๆ ตามหน้าตัดลำน้ำ	34
		Centered 6 - point Abbott Scheme	34
	3.7	Centering of continuity equation in 6 - point Abbott Scheme	35
	3.8	Centering of Momentum equation in 6-point Abbott Scheme	37
	4.1	แผนภาพแสดงขั้นตอนในการคำนวณโดยแบบจำลอง MIKE 11	47
	4.2	แสดงพื้นที่ศึกษาและลักษณะโครงข่ายของน้ำแม่เมาะและห้วยเปิด	49
	4.3	อัตราการไหลของน้ำแม่เมาะ ณ สถานี 1280 และห้วยเปิด ณ สถานี EXT-2	
		เดือนมกราคม - มิถุนายน พ.ศ. 2540	50
	4.4	ระดับน้ำของลำน้ำแม่เมาะ ณ สถานี EXT-6 และ EXT-8	
		เดือนมกราคม - มิถุนายน พ.ศ. 2540	50
	4.5	ปริมาณของแข็งที่ละลายได้ทั้งหมด ณ สถานี 1280, EXT-2, EXT-6 และ EXT-8	
		เดือนมกราคม - มิถุนายน พ.ศ. 2540	52
	4.6	ปริมาณซัลเฟต ณ สถานี 1280, EXT-2, EXT-6 และ EXT-8	
		เดือนมกราคม - มิถุนายน พ.ศ. 2540	52
	4.7	อัตราการไหลของน้ำแม่เมาะ ณ สถานี 1280 และห้วยเปิด ณ สถานี EXT-2	
		เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	54

4.8	ระดับน้ำของลำน้ำแม่เมาะ ณ สถานี EXT-6 และ EXT-8	
	เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	54
4.9	ปริมาณของแข็งที่ละลายได้ทั้งหมด ณ สถานี 1280, EXT-2, EXT-6 และ EXT-8	
	เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	. 55
4.10	ปริมาณซัลเฟต ณ สถานี 1280, EXT-2, EXT-6 และ EXT-8	
	เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	55
5.1	ลักษณะโครงข่ายของน้ำแม่เมาะและน้ำห้วยเปิด	58
5.2	ผลการปรับเทียบค่าระดับน้ำจากการคำนวณกับจากการสำรวจ ณ สถานี EXT-6	
	เดือนมกราคม - มิถุนายน พ.ศ. 2540	59
5.3	ผลการตรวจสอบค่าระดับน้ำจากการคำนวณกับจากการสำรวจ ณ สถานี EXT-6	
	เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	59
5.4	ผลการปรับเทียบปริมาณของแข็งที่ได้ละลายได้ทั้งหมดจากการคำนวณกับ	
	จากการสำรวจ ณ สถานี EXT-6 เดือนมกราคม - มิถุนายน พ.ศ. 2540	61
5.5	ผลการตรวจสอบปริมาณของแข็งที่ได้ละลายได้ทั้งหมดจากการคำนวณกับ	
	จากการสำรวจ ณ สถานี EXT-6 เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	61
5.6	ผลการปรับเทียบปริมาณซัลเฟตจากการคำนวณกับจากการสำรวจ	
	ณ สถานี EXT-6 เดือนมกราคม - มิถุนายน พ.ศ. 2540	62
5.7	ผลการตรวจสอบปริมาณซัลเฟตจากการคำนวณกับจากการสำรวจ	
	ณ สถานี EXT-6 เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	62
5.8	ปริมาณของแข็งที่ได้ละลายได้ทั้งหมดและซัลเฟตเฉลี่ยตามระยะทาง	
	ของลำน้ำแม่เมาะ เดือนมกราคม - มิถุนายน พ.ศ. 2540	63
5.9	ปริมาณของแข็งที่ได้ละลายได้ทั้งหมดและซัลเฟตเฉลี่ยตามระยะทาง	
	ของลำน้ำแม่เมาะ เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	63
5.10	ความสัมพันธ์ระหว่างระดับน้ำจากการคำนวณกับจากการสำรวจ	
	เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	65
5.11	ความสัมพันธ์ระหว่างปริมาณของแข็งที่ได้ละลายได้ทั้งหมดจากการคำนวณ	
	กับจากการสำรวจ เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	66
5.12	ความสัมพันธ์ระหว่างปริมาณซัลเฟตจากการคำนวณกับจากการสำรวจ	
	เดือนกรกฎาคม - ตุลาคม พ.ศ. 2540	66
ข-1	แผนที่แสดงจุดเก็บตัวอย่างน้ำ บริเวณโรงไฟฟ้าและเหมืองแม่เมาะ	81
91-2	แผนผังการใหลของน้ำ บริเวณโรงไฟฟ้าและเหมืองแม่เมาะ	82

ข-3	ค่าต่ำสุด-สูงสุดของปริมาณของแข็งที่ละลายได้ทั้งหมดในแหล่งน้ำ	
	บริเวณโรงไฟฟ้าและเหมืองแม่เมาะ พ.ศ. 2539	85
ข-4	ค่าต่ำสุด-สูงสุดของปริมาณซัลเฟตในแหล่งน้ำ	
	บริเวณโรงไฟฟ้าและเหมืองแม่เมาะ พ.ศ. 2539	85
ข-5	ค่าต่ำสุด-สูงสุดของปริมาณของแข็งที่ละลายได้ทั้งหมดในแหล่งน้ำ	
	บริเวณโรงไฟฟ้าและเหมืองแม่เมาะ พ.ศ. 2540	86
ข-6	ค่าต่ำสุด-สูงสุดของปริมาณซัลเฟตในแหล่งน้ำ	
	บริเวณโรงไฟฟ้าและเหมืองแม่เมาะ พ.ศ. 2540	86
ข-7	ค่าต่ำสุด-สูงสุดและค่าเฉลี่ยของปริมาณน้ำฝน	
	บริเวณโรงไฟฟ้าและเหมืองแม่เมาะ พ.ศ. 2517-2540	87
ข-8	ปริมาณน้ำฝนรายเดือน บริเวณโรงไฟฟ้าและเหมืองแม่เมาะ พ.ศ. 2540	87
ค-1	รูปตัดขวาง (cross section) ของลำน้ำแม่เมาะ	
	ระยะทาง (chainage) ที่ 1.00 กิโลเมตร	89
ค-2	รูปตัดขวาง (cross section) ของลำน้ำแม่เมาะ	
	ระยะทาง (chainage) ที่ 3.05 กิโลเมตร	89
ค-3	รูปตัดขวาง (cross section) ของลำน้ำแม่เมาะ	
	ระยะทาง (chainage) ที่ 3.80 กิโลเมตร	90
P -4	รูปตัดขวาง (cross section) ของลำน้ำแม่เมาะ	
	ระยะทาง (chainage) ที่ 5.50 กิโลเมตร	90
ค-5	รูปตัดขวาง (cross section) ของลำน้ำแม่เมาะ	
	ระยะทาง (chainage) ที่ 6.60 กิโลเมตร	91
A -6	รูปตัดขวาง (cross section) ของลำน้ำแม่เมาะ	
	ระยะทาง (chainage) ที่ 9.80 กิโลเมตร	91
ค-7	รูปตัดขวาง (cross section) ของลำน้ำแม่เมาะ	
	ระยะทาง (chainage) ที่ 10.30 กิโลเมตร	92
n -8	รูปตัดขวาง (cross section) ของลำน้ำแม่เมาะ	
	ระยะทาง (chainage) ที่ 10.80 กิโลเมตร	92
ค-9	รูปตัดขวาง (cross section) ของลำน้ำแม่เมาะ	
	ระยะทาง (chainage) ที่ 11.20 กิโลเมตร	93

	รูปตัดขวาง (cross section) ของลำน้ำห้วยเปิด	
	ระยะทาง (chainage) ที่ 0.00 กิโลเมตร	93
P-11	รูปตัดขวาง (cross section) ของลำน้ำหัวยเปิด	
	ระยะทาง (chainage) ที่ 0.50 กิโลเมตร	94
P-12	รูปตัดขวาง (cross section) ของลำน้ำหัวยเปิด	
	ระยะทาง (chainage) ที่ 1.00 กิโลเมตร	94

Ċ