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CHAPTER II

THEORETICAL CONSIDERATIONS AND 
LITERATURE REVIEW

2.1 Theoretical considerations

This chapter provides some basic theories behind the present study. First, the 

concept o f color perception needs to be addressed (Section 2.1.1). A description o f  

color spaces is then given in Sections 2.1.2, 2.1.3, and 2.1.4, for CIE XYZ, RGB, and 

sRGB color space, respectively. The main contributions o f this thesis, i.e. digital 

image enhancement and iCAM, are described in Sections 2.1.5 and 2.1.6.

2.1.1 The perception o f color

Color perception involves three basic factors: the source o f light, objects under 

illumination, and the eyes and neural responses o f  observers. The visual process 

begins when radiant energy from the source strikes the object and some o f this energy 

is reflected and passes through the lens to strike the retina in the eye. The retina is 

made up o f a complex network o f cells and neurons. The retina consists o f  a large 

number o f cells which are sensitive to light; these receptors cells are o f  two kinds, 

rods and cones. Rods are sensitive to brightness o f  light only at low illuminate. Cones 

are cells o f  three different types which respond to red, green and blue regions o f light, 
respectively, and it is through these that all colors are seen. When the three type o f  

cones are all stimulated equally, the eye and the brain see achromatic, but if  one types



o f cone is stimulated more than the other two, the image appears to be tinted with the 

corresponding primary hue.

The most central part o f the retina is called the fovea and it has the largest 

concentration o f cells. The fovea vision is used for distinguishing very fine detail, 

such as reading and seeing objects at distance. Outside the fovea, the number o f cones 

is greatly reduced and they are situated quite apart from one another. The rods are 

completely absent from the fovea and fall out to the extreme periphery. The signals 

leave the retina via the optic nerve and eventually arrive at the back o f the brain. The 

brain signals are interpreted through mental impressions that result in perception [5],

2.1.2 The CIE color system

In the study o f the perception o f color, one o f the first mathematically defined 

color spaces was the CIE XYZ color space (also known as CIE 1931 color space), 

created by the International Commission on Illumination (CIE) in 1931. The human 

eye has receptors for short (ร), middle (M), and long (L) wavelengths, also known as 

blue, green, and red receptors. That means that one, in principle, needs three 

parameters to describe a color sensation. A specific method for associating three 

numbers (or tristimulus values) with each color is called a color space, o f which the 

CIE XYZ color space is one o f  many such spaces. However, the CIE XYZ color 

space is special, because it is based on direct measurements o f  the human eye, and 

serves as the basis from which many other color spaces are defined. The CIE XYZ 

color space was derived from a series o f experiments done in the late 1928'ร by พ . 
David Wright [6] and John Guild [7]. Their experimental results were combined into 

the specification o f the CIE RGB color space, from which the CIE XYZ color space
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was derived. This thesis is actually concerned with both o f  these color spaces. In the 

CIE XYZ color space, the tristimulus values are not the ร, M, and L stimuli o f the 

human eye, but rather a set o f tristimulus values called X, Y, and z, which are also 

roughly red, green and blue, respectively. Two light sources may be made up o f  

different mixtures o f  various colors, and yet have the same color (metamerism). If two 

light sources have the same apparent color, then they will have the same tristimulus 

values, no matter what different mixtures o f  light were used to produce them [8],

2.1.2.1 CIE illuminants

The CIE has established a number o f spectral power distributions as 

CIE illuminants for colorimetric. These distributions are based on physical standards, 

such as blackbody radiators or Planckian radiator, or are based on statistical 
representations o f measured light.

CIE illuminant A represents a Planckin radiator with a color 

temperature o f 2856 K, as shown in Figure 2-1. It is used for colorimetric calculations 

when incandescent illumination is o f interest.
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F ig u re  2 -1 : The s p e c tra l  p o w e r  d is tr ib u tio n  o f  C IE  illu m in a n t A [9 ],
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CIE illuminant c is the spectral power distribution o f  illuminant A as 

modified by particular liquid filters defined by the CIE. It represents a daylight 

simulator with a correlated color temperature o f  6774 K, as shown in Figure 2-2.

CIE illuminants D65 and D50 are part o f  the CIE D series illuminants 

that have been statistically defined based upon a large number o f  measurements o f  

nature daylight. Illuminant D65 represents an average daylight with a correlated color 

temperature o f  6500 K, and D50 represents an average daylight with a correlated 

color temperature o f 5003 K, as shown in Figure 2-2. D65 is commonly used in 

colorimetric applications, such as paints, plastics, and textiles. D50 is often used in 

graphic arts and computer industries.

Wavelength, nm

F ig u re  2 -2 : The s p e c tr a l  p o w e r  d is tr ib u tio n  o f  C IE  illu m in a n ts  D 5 0 , D 6 5  a n d  c [9 ].

CIE F series illuminants represent typical spectral power distributions 

for various types o f fluorescent sources including standards cool white, warm white, 
“full spectrum”, and tri-band, 12 in all. CIE illuminant F2 represents a fluorescent 
with a correlated color temperature o f 4230 K. Illuminant F8 represents a fluorescent



D50 simulator with a correlated color temperature o f 5000 K, and illuminant F l l
9

represents a tri-band fluorescent source with a correlated color temperature o f 4000K, 

as shown in Figures 2-3 and 2-4. Tri-band fluorescent sources are popular because o f  

their efficiency, efficacy, and pleasing color-rendering properties.

SfiO 4Ô0 5ÔÛ 660 780

W avelenÿh, nm

F ig u re  2 -3 : The s p e c tr a l  p o w e r  d is tr ib u tio n  o f  C IE  illu m in a n ts  F 2  a n d  F l l  [1 0 ] .

F ig u re  2 -4 : The s p e c tr a l  p o w e r  d is tr ib u tio n  o f  C IE  illu m in a n ts  F 7  a n d  F 8  [1 0 ] .



2 .1 .2 .2  Standard o f  reflectan ce factor

The CIE recommends that reflectance measurement be made relative 

to the perfect reflecting diffuser. There is no object surface that has the properties of 
the perfect reflecting diffuser, but working standards of known spectral reflectance 

factors are normally used. The working standards for reflectance factor measurement 
are called white standard. The effect of an object on light can be described by its 
spectral transmittance or reflectance curve. The spectral reflectance curve describes 
the object just as the spectral power distribution curve describes a source. Figure 2-5 

shows examples of spectral reflectance factor of a perfect reflecting diffuser and a 
sample.

F ig u re  2 -5 : The s p e c tr a l  re fle c ta n c e  f a c to r  o f  a  perfect reflecting diffuser and a
sample [1 1 ] .
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The colorimetric specifications of colors are based on the spectral 
tristimulus values o f 3c (71), ÿ ( A ) ,  a n d  z ( A )  which are also called color matching 

functions. There are two sets of color-matching functions established by the CIE. The 
CIE 1931 standard colorimetric observer was determined from experiments by Guild 

[6] and Wright [7], using a visual field that subtended 2 degrees so that the matching 

stimuli were imaged onto the retina completely within the fovea. In 1964, the CIE 
recommended a set of color-matching functions notated as 
X  10(A ), ÿ 10(T), a n d  z10(/l) for the experiments using a 10° visual field that excluded 

the central fovea. The results for large fields were significantly different from the 2° 
standard, enough to warrant the establishment of the CIE 1964 supplementary 

standard colorimetric observer, sometimes called the 10° observer, as shown in Figure 

2-6. Nowadays standards exist for field size of 2° and 10°.

2 .1 .2 .3  C IE standard observers

F ig u re  2 -6 : C o m p a riso n  o f  c o lo r  m a tch in g  fu n c tio n s  o f  the 1931  C IE  s ta n d a r d  

o b se rv e rs  a n d  th e 1 9 64  C IE  su p p le m e n ta ry  o b se rv e rs  [1 2 ] .
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The CIE tristimulus values X, Y, and Z of color are obtained by 

multiplying together the relative power of a CIE standard illuminant, the reflectance 

or the transmittance of the object and the standard observer function (Figure 2-7).

' I !

X

2 .1 .2 .4  C IE X Y Z  tristim ulus va lu es

w «fil\  V». '(พ . W"

F ig u re  2-1: The C IE  tris tim u lu s  va lu es  X, Y a n d  z  o f  c o lo r  [1 3 ] .

The CIE XYZ tristimulus values are calculated by:

X  = k'ZJSx Rx *A AT 
Y = k^ S x Rx yx AT 
z  = kYSx Rx z x A A 
k = m / i : s xÿx AA

Where, ร /1 is the spectral power distribution of light source

Rx is the spectral reflectance factor o f object

X1, ÿ x, z x are the color matching functions

k is a norm alizin g  constant
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AA is the measurement wavelength interval

X /1 is summation across wavelength

By convention, the value Y = 100, assigned to perfect white object 

reflecting or transmitting 100% at all wavelengths, or to the perfect colorless sample. 

Thus, a value o f  100 is the maximum value that Y can have for non fluorescent 

sample.

2.1.3 RGB color space

The RGB color space is commonly used for specifying colors based on the 

additive-mixing theory. In the case o f CRT monitor, the three primaries are the 

particular color emitted by the three phosphors. It is therefore highly device 

dependent; the same color may be specified as two different sets o f  numbers on two 

different monitors. The RGB color space is the device dependent color space, which 

defines colors within a unit cube by additive-color-mixing model. Red, green and blue 

are additive primaries represented by the three axes o f cube as shown in Figure 2-8. 

All colors within the cube can be represented as the triplet (R, G, B), where values R, 

G and B are assigned in the range from 0 to 1. An important characteristic o f  the 

additive system is that the object itself is a light emitter such as a television. Scanners 

and computer monitor are also used the RGB space. RGB values in one device might
not look the same as RGB values in other devices.
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F ig u re  2 -8 : R G B  c o lo r  s p a c e  [1 4 ] ,

2.1.4 sRGB color space

sRGB color space, or standard RGB (Red Green Blue), is an RGB color space 

created cooperatively by Hewlett-Packard and Microsoft Corporation [15]. sRGB 

defines the red, green, and blue primaries as color where one o f  the three channels is 

at the maximum value and the other two are at zero. In CIE xy chromaticity 

coordinates red is at [0.6400, 0.3300], green is at [0.3000, 0.6000] and blue is at 

[0.1500, 0.0600] and white point is the D65 white point at [0.3127, 0.3290], sRGB 

has been criticized for poor placement o f these primary colors. If you restrict the 

indexes to the 0 to 1 range, you are unable to address outside the gamut, which is well

inside the set o f visible colors to a human, as shown in Figure 2-9.
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F ig u re  2 -9 : C IE  1931  x y  ch ro m a tic  d ia g ra m  sh o w in g  th e  g a m u t o f  th e  sR G B  c o lo r  

s p a c e  a n d  lo c a tio n  o f  p r im a ry . The D 6 5  w h ite  p o in t  is  sh o w n  in c e n te r  [1 5 ] .

2.1.4.1 The forward transformation

sRGB can be transformed to CIE XYZ using Equations 2.1-2.5.

The 8 bit integer RGB values are converted to floating point non-linear 

sR’G ’B ’ values as follows:

R ’sRGB = Rsbit / 255.0

G’ sR G B  = G8bit / 255.0 (2.2)

B ’ sR G B  = Bgbit / 255.0
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The nonlinear R’G’B’ values are transformed to linear R, G, and B values by:

If R ’sRGB, G ’srgb, B ’srgb < 0.04045 

R = R ’srgb/ 12.92

G= G’srgb/ 12.92 (2.3)

B = B ’srgb/ 12.92

else if R’sRGB,, G ’srgb, B ’srgb >0.04045

R = ((R’sRGB+ 0.055)/ 1.055) 24

G = ((G ’srgb +0.055) / 1.055) 2 4 (2.4)

B = ((B ’srgb+0.055)/ 1.055) 24

Then convert to XYZ by:

X  
Y
z

0.4124 0.3576 0.1805' ~R
= 0.2126 0.7152 0.0722 G

0.0193 0.1192 0.9505 B
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2.1.4.2 The reverse transformation

From CIE XYZ, it is also possible to obtain sRGB. The first step is to 
calculate linear RGB values (Equation 2.6).

R ' 3.2406 -1.5372 -0.4986' X
G =ะ -0.9689 1.8758 0.0415 Y
B 0.0557 -0.2040 1.0570 Z

The red, green and blue phosphor chromaticities and D65 white point result in the 
following relationship between D65 tristimulus values and linear RGB values. Any 
values greater than 1.0 or less than 0.0 are clipped to 1.0 and 0.0

If R ,G ,B  < 0.0031308 

R ’srgb= 12.92 x R

G ’srgb = 12.92 X G (2.7)

B ’srgb = 12.92 x B 

else if R, G, B > 0.0031308

R'sRGB = 1.055 x R (10/2 4)- 0.055

G’srgb = 1.055 X G (10/2-4) -  0.055 (2.8)

B ’srgb= 1.055 x B (10/24)- 0.055
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The nonlinear R ’G’B ’ values are then converted into 8 bit integers by: 

R-8bit = 255.0 X R ’sRGB

G8bit = 255.0 x G’srgb (2.9)

Bgbit = 255.0 X B ’sRGB

2.1.5 Digital image enhancement

In computer graphics, the process o f improving the quality o f  a digitally stored 

image by manipulating the image with software is quite easy. For example, it is 

possible to make an image lighter or darker, or to increase or decrease contrast. 

Advanced image enhancement software also supports many filters for altering images 

in various ways. Programs specialized for image enhancements are sometimes called 

image editors [16].

2.1.5.1 Image histogram

Understanding image histograms is probably the single most important 
concept to become familiar with when working with pictures from a digital camera. A  

histogram can tell whether or not this image has been properly exposed, whether the 

lighting is harsh or flat, and what adjustments will work best. It will not only improve 

your skills on the computer, but as a photographer as well.
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Each pixel in an image has a color which has been produced by some 

combination o f  the primary colors red, green, and blue (RGB). Each o f these colors 

can have a brightness value ranging from 0 to 255 for a digital image with a bit depth 

o f  8 bits. A RGB histogram is obtained when the computer scans through each o f  

these RGB brightness values and counts how many pixels are at each level from 0 

through 255 [17]. Other types o f  histograms exist, although all w ill have the same 

basic layout as the histogram example shown in Figure 2-10.

sh ad e*ร^ _1 Midtones^ ^H'qhliohts^

F ig u re  2 -1 0 : The h is to g ra m  e x a m p le  [1 7 ] .

2.1.5.1.1 Tones

The region where most o f  the brightness values are present is called the 

"tonal range." Tonal range can vary drastically from image to image, so developing 

an intuition for how numbers map to actual brightness values is often critical— both 

before and after the photo has been taken. There is no one "ideal histogram" which 

all images should try to mimic; histograms should merely be representative o f  the 

tonal range in the scene and what the photographer wishes to convey.
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F ig u re  2 -1 1 :  The h is to g ra m  ex a m p le  o f  h igh  c o n tr a s t  [1 7 ] .

Figure 2-11 is an example image which contains a very broad tonal 
range, with markers to illustrate where regions in the scene map to brightness levels 
on the histogram. This coastal scene contains very few midtones, but does have 

plentiful shadow and highlight regions in the lower left and upper right of the image, 

respectively. This translates into a histogram which has a high pixel count on both the 
far left and right-hand sides.

Lighting is often not as extreme as the last example. Conditions of 
ordinary and even lighting, when combined with a properly exposed subject, will 

usually produce a histogram which peaks in the centre gradually taper off into the 
shadows and highlights. With the exception of the direct sunlight reflecting off the 
top of the building and off some windows, the boat scene to the right is quite evenly 
lit (Figure 2-12). Most cameras will have no trouble automatically reproducing an 
image which has a histogram similar to the one shown in Figure 2-12.
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F ig u re  2 -1 2 :  The h is to g ra m  ex a m p le  w ith  p e a k s  in th e  c e n te r  [1 7 ] .  

2.1.5.1.2 Contrast

A histogram can also describe the amount of contrast. Contrast is a 
measure of the difference in brightness between light and dark areas in a scene. 
Broad histograms reflect a scene with significant contrast, whereas narrow histograms 
reflect less contrast and may appear flat or dull. This can be caused by any 

combination of subject matter and lighting conditions. Photos taken in the fog will 
have low contrast, while those taken under strong daylight will have higher contrast

[17].

C ontrast can  h ave  a sig n ifica n t v isu a l im pact on  an im age by

em p h a siz in g  texture, as sh o w n  in  F igure 2 -1 3 . T he h igh  contrast w ater has deeper



shadows and more pronounced highlights, creating texture which "pops" out at the
viewer.

2 2

F ig u re  2 -1 3 : D iffe re n c e  b e tw een  lo w  c o n tra s t a n d  h igh  c o n tr a s t  [1 7 ] .

2.1.5.2 Dynamic range

Dynamic range is the range of tonal difference between the lightest 
light and darkest dark o f an image. The higher the dynamic range, the more potential 

shades can be represented, although the dynamic range does not automatically 

correlate to the number of tones reproduced. For instance, high-contrast microfilm 
exhibits a broad dynamic range, but renders few tones. Dynamic range also describes 
a digital system's ability to reproduce tonal information. This capability is most 

important for continuous-tone documents that exhibit smoothly varying tones, and for 

photographs it may be the single most important aspect of image quality [18].
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2.1.5.3 Bit depth

Bit depth quantifies how many unique colors are available in an 
image's color palette in terms of the number of 0's and 1 'ร, or "bits," which are used to 
specify each color. This does not mean that the image necessarily uses all o f these 

colors, but that it can instead specify colors with that level o f precision. For a 

grayscale image, the bit depth quantifies how many unique shades are available. 

Images with higher bit depths can encode more shades or colors since there are more 
combinations of 0's and l's available.

Every color pixel in a digital image is created through some 

combination of the three primary colors: red, green, and blue. Each primary color is 

often referred to as a "color channel" and can have any range o f intensity values 
specified by its bit depth. The bit depth for each primary color is termed the "bits per 

channel." The "bits per pixel" (bpp) refers to the sum of the bits in all three color 
channels and represents the total colors available at each pixel. Confusion arises 

frequently with color images because it may be unclear whether a posted number 

refers to the bits per pixel or bits per channel. Using "bpp" as a suffix helps 
distinguish these two terms [19],

«

Most color images from digital cameras have 8 bits per channel and so 
they can use a total of eight 0's and l's. This allows for 28 or 256 different 
combinations—translating into 256 different intensity values for each primary color. 
When all three primary colors are combined at each pixel, this allows for as many as 
28 3 or 16,777,216 different colors, or "true color." This is referred to as 24 bits per 
pixel since each pixel is composed of three 8-bit color channels. The number of
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colors available for any X-bit image is just 2X, if X refers to the bits per pixel, and 23x 

if X refers to the bits per channel. The following Table 2-1 shows different image 

types in terms of bits (bit depth), total colors available, and common names.

T a b le  2 -1 : The d iffe ren t im a g e  ty p e s  in te rm s  o f  b its  (b it d ep th ), to ta l  c o lo r s  a v a ila b le ,

a n d  com m on  n am es [1 9 ] ,

Bits Per Pixel Number of Colors Available Common Name(s)
1 2 Monochrome
2 4 CGA
4 16 EGA
8 256 VGA
16 65536 XGA.Hiqh Color
24 16777216 SVGA, True Color
32 16777216 +Transparencv
48 281 Trillion

2.1.5.4 Image Filtering

Digital image can be processed in a variety o f ways. The most 
common one is called filtering and creates a new image as a result of processing the 

pixels of an existing image. Each pixel in the output image is computed as a function 

o f one or several pixels in the original image, usually located near the location of the 

output pixel. If the function used does some kind of interpolation (e.g. linear, cubic or 
Gaussian), then the result will look smoother than the original, but care needs to be 
taken that the output values are not computed from too many input pixels, or the 
resulting image may get blurred. The most common purpose for this interpolation is
anti aliasing [20].
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2.1.5.4.1 Gaussian filter

The Gaussian smoothing operator is a 2-D convolution operator that is 

used to blur images and remove detail and noise. In 2-D, an isotropic (i.e. circularly 
symmetric) Gaussian has the form in Equation 2-10 [21].

G ( * , y )
1

Ina 1

x' +y1
e r (2- 10)

From Equation 2-10, the variables taking effects with the shape o f filter are cr and 

size o f the filter, X and y.

This distribution is shown in Figure 2-14.

F ig u re  2 -1 4 :  2 -D  G a u ss ia n  d is tr ib u tio n  w ith  m ean  (0, 0) a n d  a  = 1 [2 1 ] ,
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F ig u re  2 -1 5 :  D iffe ren t sh a p e s  o f  G a u ssia n  f i l t e r  w h en  c h a n g in g  a .

F ig u re  2 -1 6 : D iffe ren t s h a p e s  o f  G a u ssia n  f i l t e r  w hen c h a n g in g  s iz e  o f f i l te r .
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The ideal of Gaussian smoothing is to use this 2-D distribution as a 

‘point-spread’ function and this is achieved by convolution. Since the image is stored 
as a collection o f discrete pixels, we need to produce a discrete approximation to the 

Gaussian function before we can perform the convolution. In theory, the Gaussian 

distribution is non-zero everywhere, which would require an infinitely large 

convolution kernel, but in practice it is effectively zero more than about three standard 
deviations from the mean, and so we can truncate the kernel at this point.

One o f the principle justifications for using the Gaussian as a 
smoothing filter is due to its frequency response. Most convolutions based smoothing 

filters act as low-pass frequency filters. This means that their effect is to remove low 
spatial frequency components from an image.

2.1.5.4.2 Convolution filter

Convolution is a simple mathematical operation which is fundamental 
to many common image processing operators. Convolution provides a way of 

“multiplying together” two arrays of numbers, generally of different sizes, but of the 
same dimensionality, to produce a third array of numbers of the same dimensionality. 

This can be used in image processing to implement operators whose output pixel 

values are simple linear combinations of certain input pixel values [22], Convolution 
is the modification o f a pixel's value on the basis of the value of neighboring pixels. 
Images are convolved by multiplying each pixel and its neighbors by a numerical 
matrix, called a kernel. This matrix is essentially moved over each pixel in the image, 
each pixel under the matrix is multiplied by the appropriate matrix value, the total is



summed and normalized, and the central pixel is replaced by the result. Figure 2-17
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shows an example image and kernel that we will use to illustrate convolution.

• r r ^ s r r r p — ฟ — ะ
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F ig u re  2 -1 7 :  A n  ex a m p le  im a g e  (left) a n d  k ern e l (righ t) f o r  illu s tra tin g  co n vo lu tio n

[2 3 ] .

The convolution is performed by sliding the kernel over the image, 

generally starting at the top left comer, so as to move the kernel through all the 

positions where the kernel fits entirely within the boundaries of the image. (Note that 

implementations differ in what they do at the edges of images as explained below.) 
Each kernel position corresponds to a single output pixel, the value o f which is 

calculated by multiplying together the kernel value and the underlying image pixel 
value for each of the cells in the kernel, and then adding all these numbers together. 
So in example, the value of the bottom right pixel in the output image will be given 
by:

C (x ,y ) ~  P \ \ m พ +  P l \ m 2\ +  P i \ m 3l +  P \2 m \2 +  P l 2 m 22 +  P i2 m ท  +  P n m  13 +  / ?23m 23 / ?33m 33
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At the edge of an image we usually want the filter to act as if the pixels 

beyond the edge are “just like” the ones in the image. So, for example, we can 

perform computations as if the (nonexistent) column of pixels just to the left of the 
image is identical to the left-most column of the image (Figure2-18).

I « I I
1 1 1 1

F ig u re  2 -1 8 : A n  ex a m p le  co n v o lu tio n  a t th e e d g e  o f  an im a g e  [2 3 ] .

2.1.6 iCAM

A next generation of image enhancement is image appearance model, namely 

iCAM for image color appearance model [2], An iCAM capable of predicting 
perceived color difference between complex image stimuli is a useful tool, but has 
some limitations. Just as a color appearance model is necessary to fully describe the 

appearance o f color stimuli, an image appearance model is necessary to describe 

spatially complex color stimuli. Color appearance models allow for the description of 
attributes such as lightness, brightness, colorfulness, chroma, and hue. Image 
appearance models extend upon this to also predict such attributes as sharpness, 
graininess, contrast, and resolution.
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F ig u re  2 -1 9 :  F lo w c h a r t o f  th e iC A M  im a g e  a p p e a ra n c e  m o d e l  [2 4 ] ,

Figure 2-19 presents a flow chart of the general framework for the iCAM 

image appearance model as applied to complex stimuli still image, originally 

presented by Fairchild and Johnson [24], This represents the traditional appearance 
modeling approach o f treating each pixel as a stimulus in a point-wise fashion. The 
process is to start with tristimulus values for the stimulus and adapting white point 

and luminance values for the adapting level and surround. The tristumulus values are 

transformed to RGB values that are utilized in a linear, von Kries adaptation 
transform identical to the one proposed for the CIECAM02 color appearance model 
[25] as shown in Equations 2-11 to 2-13.

"R X
G =  47-02 Y
B Z

(2- 11)
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M1V1 C A T  02

0.7328
-0.7036
0.0030

0.4296
1.6975
0.0136

-0.1624
0.0061
0.9834

(2- 12)

R . = ' y  f
w R

+ ( 1 - / ) )
w J

(2-13)

The linear von Kries transform with an incomplete adaptation term, D, is 
given in Equation 2-13 for a single sensor. The primary difference between the iCAM 

chromatic adaptation transform and the CIECAM02 transform is in the definition of 

the white point, R w in Equation 2-13. The iCAM transform uses a low-pass version of 

the image itself as the adapting white point to perform a localized adaptation. This 
adaptation can be a chromatic adaptation, as described in Equation 2-13, or can be 

luminance only adaptation Yw tristimulus values of D65. This can be accomplished by 
replacing Equation 2-11 with Equation 2-14.

~R~ y
G = M1 V I C A T  02 Y
B Y

(2-14)

The stimulus is replaced with an image and the adapting stimulus becomes a 

spatially low-pass image. The specific low-pass filters used for the adapting images 

depend on viewing distance and application. Additionally, in some image rendering 
circumstances it might be desirable to have different low-pass adapting images for 
luminance and chromatic information to avoid desaturation of the rendered images 
due to local chromatic adaptation (decrease in visual sensitivity to the color of the 
stimulus). The adapting luminance is also derived from a low-pass image of the



luminance channel and the surround luminance is derived from another low-pass
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image derived from a larger spatial extent. The surround luminance from low-pass 

image is used to calculate a degree-of-adaptation factor, D and a series of power 
function, Fl as a function o f adaptation luminance, L a , for various viewing 
conditions, as shown in Equations 2-15 to 2-16.

f 1 ]D  = F 1 - e {  92 JUeJ (2-15)

^ =  0.2
( 5 ^ + 1 ) ,

(5 L J  + 0.1 1 -
V V

\ 5 L A + ly ( 5 £ , ) (2-16)

The surround exponents calculated in the previous equation are actually used 

in the transform from XYZ tristimulus values to IPT appearance space. The first stage 
in this transforms is to convert the XYZ units into LMS cone responses. These cone 
responses are then compressed using a nonlinear power function which is modified on 

a per-pixel-basis by the surround map calculated (Equations 2-17 to 2-18). Typically 

the LMS responses are brought into the IPT appearance space for calculation of 
appearance correlates such as lightness, chroma, and hue (Equation 2-19).

'  L '  0.4002 0.7075 -0.0807' ^D65
M -- -0.2280 1.1500 0.0612 YD6ร
ร 0.0 0.0 0.9184 _ ̂ D65 .

L '  = LMYFl ; L >  0 
L '  = - \ L \ 0A3Fl ; L <  0 (2-18)
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r 0.4000 0.4000 0.2000 ' V
p = 4.4550 -4.8510 0.3960 M  '
T 0.8056 0.3572 -1.1628 ร '

To invert the IPT image back for display we can invert Equation 2-18 for a 
single surround condition. This is shown in Equation 2-20. The LMS cone responses, 
after applying the surround tone reproduction functions, are then converted back into 
CIE XYZ tristimulus values.

L ' =  z°43 ; L > 0
1

(2-20)
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2.2 Literature review

The image color appearance model, iCAM, was proposed by Fairchild and 

Johnson [2] as a model capable o f predicting the appearance o f spatially-simple color 

stimuli under a wide variety of viewing conditions. The model was applied to images 

by treating each pixel as an independent stimulus. Its revolutionary advances in color 

appearance modeling would require more rigorous treatment o f spatial appearance 
phenomena. Several examples of the performance of iCAM were given in the study 

by Fairchild and Johnson including its prediction of simultaneous contrast, crispening, 
and spreading, high dynamic range tone mapping.

Johnson and Fairchild [3] described the use o f iCAM in rendering high 

dynamic range images for display. Recent advances in color imaging have led to 

systems that are capable o f capturing high dynamic range (HDR) scenes, as described 

by Debevec [26] and Xiao et al [27], There has been research in development o f tone 
reproduction algorithms for rendering high dynamic range images onto lower 

dynamic range display.

A number of algorithms related to scene rendering were investigated in a study 

by Moroney and Tastl [4], They conducted an experiment to compare performance of 
McCann 99 Retinex and iCAM. Three high dynamic range grayscale images were 
rendered using the algorithms tested. Then ten observers performed a rank ordering of 
the printed rendering obtained. The results varied by image with iCAM being most 
preferred for one of the images, McCann 99 Retinex being most preferred for one of 
the images and a tie for all three rendering for the third image.
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Wang et al. [28] described methods for assessing perceptual image quality 

traditionally attempted to quantify the visibility of error (differences) between a 

distorted image and a reference image using a variety of known properties of the 
human visual system. Under the assumption that human visual perception is highly 
adapted for extracting structural information from a scene, they introduced an 

alternative complementary framework for quality assessment based on the 

degradation of structural information. As a specific example of this concept, they 
developed a structural similarity index (SSIM) that compares local patterns of pixel 
intensities which have been normalized for luminance and contrast. The results 
showed that SSIM index agreed well with human perception of image quality.

In summary, the previous studies have proved the capability of iCAM to 
enhance image quality, but yet given a clear instruction as to what types of the 

specific low-pass filter should be used. In addition, in Moroney and Tastl’s study, the 
performance of iCAM was tested in comparison with other algorithms for grayscale 

images, i.e. color were not considered in this study. The results from visual 
experiments revealed that iCAM should be implemented differently for different 
images, as it was found that iCAM performed best for only one out of three images. 
The present study thus aimed to determine the type of filter with respect to size and 

shape of the filter, in order to obtain an optimum image enhancement. Quantitative 
analysis using the SSIM index was employed to investigate the quality of images 
enhanced by iCAM, together with subjective analysis based on the method of rank
order.
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