
C H A P T E R  I

I N T R O D U C T I O N

M o t i v a t i o n

A t present there are several theoretical approaches to the quantum  trans­

port in  condensed m atte r physics, such as W igner fu n c tio n [l], the density m atrix [2 ], 

Green’s fu n c tio n a l and Feynman’s path integrals[4]. A ll these approaches are all 

equivalent in  the presentation of the quantum  nature in to  the transport process. 

U nfortunately, there is no single theory tha t can un ify  and describe the transport 

phenomena correctly. A ll these theories have th e ir applications and com putational 

strength and weaknesses.

The simplest Boltzmann approach to  the transport theory is a semiclassical 

scheme.lt deals w ith  a well-defined p robab ility  d is tribu tion  tha t changes in  space 

and tim e locally and are governed by an integro-differential equation invo lv ing  

complicated scattering terms. In the quantum  transport theory the problems are 

completely different, in the con text th a t the d is tribu tion  function are nonlocal 

in  space and tim e  and carriers scatter so rap id ly  th a t the scattering processes are 

no longer represented in terms of scattering rate alone. Instead, more details of 

scattering am plitude must be considered and included in to  the description of the

transport equation.
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The quantum  transport problem can be handled by using the W igner 

function, the density m a trix , or the Green’s function approaches. In the W igner 

function  scheme, one attem pts to  retain as much as the classical formalism in 

order to  be able to  express the result in  terms of momentum and velocity which 

is of greatest experim ental interest. The W igner function scheme has a m axim um  

fle x ib ility . B y contrast, the density m a trix  and the Green’s function schemes 

adhere closely to the actual quantum  states. These approaches can be obtained 

at the greatest sensitiv ity  bu t are re latively inflexible in  studying the non-linear 

properties in  the presence of fu ll scattering processes.

The Feynman path integrals scheme relies on the influence functional 

technique[5] in  which the sources of dissipations such as phonons, plasmons, im ­

perfections, have been integrated out and result to  the influence functionals in 

the action function of carriers[6]. This scheme has greatest fle x ib ility  in  studying 

the non-linear transport and channeled transport as in  the case of Landauer’s 

equation[7]. The approxim ations can be made in  different levels, i.e., using mod­

eled influence functional, consider the influence functional in  some lim it or make 

the cum ulant expansion[8] of the influence functional in to  series. In this thesis, 

we would like to  apply the Feynman path integrals method to the problem of 

electron transport in two-dimensional systems which has the greatest physical 

phenomenon, the quantum  H all effect. The system we used here is modeled to be 

the one th a t is believed to be for quantum H all system. The details of our model

w ill be discussed later.
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In  the folowing section we w ill discuss the real two-dimensional systems 

which are used in  experiments. We w ill then discuss th a t how the transverse 

component of conductiv ity  of a two-dimensional electron becomes quantized in 

such a system, and called the quantum  Hall phenomenon. The last section w ill 

be devoted to discussion of our modeled system.

2 - D i m e n s i o n a l  S y s t e m

Two-dimensional systems can be realized in  several classes o f systems. One 

example is the electrons trapped on the surface o f liqu id  helium  at tem perature 

below 2.1 K . Since we cannot make the concentration of electrons to  be high in 

this system, chiefly because the liqu id  surface connot sustain too many electrons 

pressed to  the surface by an electric field. There are two classes of systems in  tha t 

we can make degenerate two-dimensional electrons which electrons occupy up 

to the Fermi energy, Ep] M etal-Oxide-Semiconductor(MOS) space charge layers, 

fig.(1.1a), and semiconductor heterojunctions, fig.(1.1b).



F ig u re ( l. l)  (a) Two-dimensional electron system in  the metal-oxide 

sem iconductor(M OSFET) inversion layer. The ร and D 

represent source and drain (usually n-type doped region) 

respectively. Vg is the gate voltage and Ep  is the Fermi 

energy. Bending in the valence and conduction bands is 

depicted together w ith  wave function ^ (z) and density 

o f state ท (E).



F ig u re ( l. l)  (b) Two-dimensional electron system in  the semiconductor 

heterostructure. The figure depictes the case of selective 

doping in G aAs/A lG aAs system.
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Q u a n t u m  H a l l  S y s t e m s

The range o f phenomena observed in  two-dimensional electronic systems in 

a magnetic field are large and spectacular. Perhaps most spectacular of all are the 

quantum  H all effects. The integer quantum  H all effect, discovered by Klaus von 

K litz in g  [9], occurs in  two dimensional systems placed in a strong perpendicular 

magnetic field (typ ica lly  above 1 Tesla) at low temperatures (typ ica lly  below 1 

K ). I t  is found th a t under certain conditions of such a system, the conductivity 

tensor, a,  takes the form

cr =
0 —ie^/h 

ie2/h  0
(1)

Here h is P lank ’s constant, e is the charge o f the electron and i is a small integer.

In  other words, the current density j  is directed precisely perpendicular to the 

electric field Ê  according to

Ji — a ijEj  (2)

and it  has the quantized m agnitude

j_E &xy — &H ~ ie2 

~น ิ ' (3)

The off-diagonal conductiv ity  is thus given by a com bination of fundamental con­

stants. Most transport properties of these systems can be sim ply described by 

treating them  as macroscopically homogeneous and isotropic conducting plates 

(of size Lx, Ly). Imposing a sufficiently weak electric current ( / z, Iy) gives rise to
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voltage drop across the plates,

บx =  R IX +  Rfj ly

Uy — —R h Ix +  RIy (4)

In  these linear relations, R  and R  are the longitudinal resistances and Rtf  is the 

Hall resistance. In  usual measurements, Iy — 0 and eq.(4) reduces to  O hm ’s law.

and the Hall effect is

บ1 =  RIx (5)

Uy =  —R h Ix (6)

in the ir simplest form. From eqs.(5) and (6) we see tha t measuring the relative 

decreases in voltage yields the ratio

R h / R  =  —Uy/Ux. (7)

Let the electricfie ld  E  ะ= (Ex, Ey ) be homogeneous, i.e. Ex =  Ux/ L x , Ey =  Uy/Ly,  

then, w ith  the corresponding electric current density J =  ( j x, jy ) ,  j x =  Ix/ L 1, 

jy =  Iy/Ly,  eq.(2) can be expressed as

where

E i =  ^ P a i i A h j  =  x ,y )
j

(8)

Pxx — Pyy (9)

Pry ~  Pyx — R h  ■ (10)
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The quantities pxx and Pxy, called the longitudinal and the H all resistivity, respec­

tively, are macroscopic characteristics of the m aterial. Notice here tha t (owing to 

the two-dim ensionality of the system) the measured H all resistance Rf{ — —Uy/Ix 

coincides w ith  the H all res is tiv ity  pXy whereas in  the re lation R  =  pxxL y lL x the 

geometrical factor L y lL x occurs which experim entally is not known w ith  high 

precision.

Expressing the current density in  terms of the electric field, eq.(2),

ji  — a ij Ej  ) 
j

the conductiv ity  tensor aij defined in this way is the inverse of the resistiv ity  

tensor Pij,

=  ( p - % , (11)

ป ี X T -  P i , ' (12)

ay 1 -  -  pC + P % , (13)

or, conversely,

°lx + 2xy Pxy — 'xy
<J2x x  +  a  -  x y 2 '

(14)

The two related entries, a x x  and a y x  are called the long itud ina l and the Hall 

conductivity, respectively. Notice tha t ( if  p X y  ^  0) the conductivity a x x  and 

the resistiv ity  pxx vanish simultaneously. This is why quantum  Hall systems are 

described as being ideal conductors and ideal insulators at the same time. Thus 

at first sight a somewhat paradoxial result is due to  the fact tha t, as expressed
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by eqs.(8) - (14), in a perpendicularmagnetic field the vectors Ê  and J are not 

parallel.

The physical dimension of the conductiv ity  in  two dimensions is (charge)2เ  

action. Thus its atomic un it is e2/ / i ,  — e being the electron charge and h =  2irh 

Planck’s constant. The task of experimental and theoretical investigations is to 

determine the conductivities axx and ayx as functions of electron concentration 

ท =  N /A ,  A =  LxLy, the magnetic field B  and the tem perature T .

For constant fields the simple classical fr ic tio n  model characterized by the 

equation of m otion

m v =  — V  X B  —  eÊ  - — V  (15)

w ith  constant relaxation tim e T ,  and by the average current density form ula

J =  —env, (16)

perm its a steady state (V =  0) such that

"  = พ

where f l  =  e B /m c  is the cyclotron frequancy and

e2
<70 =  —nr  (18)m

the zero-field conductivity. Eq.(17) together w ith  eq.(18) is known as the Drude- 

Zener formula. For B  =  0 ( f i r  <c 0)

<7 ~  (Tq — > oo as T 0๐. (19)
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Thus fric tio n  is needed to get a non-diverging conductivity. On the other hand, 

in  strong magnetic field, i.e. Ü T  ^> 1,

a° 1 ก r _~ ----- >■ บ lo r T  — + ooH 2r 2 (20)

Hence in this l im it  fric tion  is needed to get a nonvanishing conductivity. In  the 

fric tion  model the longitudinal res istiv ity  is independent of the magnetic field,

1p 0 <T 0 (21)

and the Hall res istiv ity  is independent o f the fric tion ,

pxy 1 enc
’ R  '(T o  -fc>

(22)

Both, the conductiv ity  (To and the classical H all conductiv ity  of free and indepen­

dent electrons a°H are s tr ic tly  proportional to the electron concentration. In  terms 

of atomic units,

-2
c r b  =  V - (23)

Owing to  eq.(22),

ท ะ -  V
e_B_
he (24)

indicating th a t for any fixed value of the magnetic field, e B /h c  is the appro­

priate un it for the electron concentration. In  deed, e B /h c  — 1/27vl2B , where 

PB =  y /h /m i ï  is the radius of the classical cyclotron o rb it corresponding to  the 

energy E0 ะ= hftc/ 2 ( oscillator ground state), the so-called magnetic length. For 

reasons to become obvious later, the dimensionless measure of the electron con­

centration

ะ= 2nlBnV (25)
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is called the filling factor and can be expressed in terms of the magnetic flux  

through the plate, fi — f  B  ■ d r , and the elementary quantum of flux, (f)0 =  h c / e ,

น — N  No. of electrons 

<t>/(f)o No. of flux quanta
(26)

This equation is a clear indication of the microscopic significant of น.

As revealed by the experiments of von Klitzing[9] the behavior of a real two 

dimensional system is dram atically different from  that of ideal two dimensional 

electron gas. Indeed, the Hall resistivity of silicon M O SFET as a function o f the 

gate voltage (which is proportional to the electron concentration) was found to 

be constant,

1 h . 1 0Pxy — 7 7 ? ’  ̂ =I e* (27)

w ith in  a certain range around each integer value of the fillin g  factor น. S im ulta ­

neously, the longitudinal resistiv ity was found to  be vanishing ( Vx ~  10“ 14v  in 

these ranges, so tha t by eq.(14),

' y X Î — , z =  1 ,2 ,

=  0.

(28)

(29)

Later this surprising quantum Hall effects has also been observed in  GaAs he t­

erostructure when changing the magnetic field and keeping the electron concen­

tra tio n  fixed[10]. Owing to eq.(25), these two procedures are equivalent. Thus 

the quantum H all effect is characterized by a plateau behavior in  a yx and van­

ishing dissipation in some interval of น around น =  i =  1 ,2 ,.... Figure(1.2) shows
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experimental result of von K litz ing[9]. Nowaday, the experimental accuracy of 

the plateau values is about 1 e r8. W ith  increasing temperatures the w id th  o f the 

plateaus shrinks gradually to zero. W ith  regard to  the quantized plateau values 

the integer quantum Hall effect is entirely universal.
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Figure(1.2) Observed quantum Hall effect by K. von K litz in g  and 

and co-worker[9] in  MOS system.

/
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For high m o b ility  samples, quantized plateaus also occur at some fractional 

effect firs t observed by Tsui, et.al[10], or more precisely the proliferation of integer 

plateaus, is generally believed to be due to the coulomb interaction between the 

electrons. Since this phenomenon is more complex and less understood in  details 

than the integer effect.

Figure(1.3) shows a strongly simplified, schematic view of the integer quan­

tu m  H all effect. I t  is generally believed that F ig .(1.3) displays the correct extrap­

olation of the experimental data to zero temperature: (Jyx  plotted against น is an 

exact step function w ith  jumps at น =  (z -f 1/2) and step values a yx — ie2/h ,  and 

<7XX vanishes everywhere except for น =ะ {i -f  1/2).



Figure(1.3) Schematic graph of Hall conductance versus Fermi energy.

Plateaus have regions of easily measurable w id th  which are

completely fla t to w ith in  1 ppm.
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T h e  M o d e l e d  S y s t e m

The two-dimensional system we used here is modeled to be on the x-y plane 

and described by the coordinates T =  (x , y ) The magnetic field is applied in  —z 

direction in order tha t the minus sign of 2-direction w ill be canceled w ith  the 

minus electron charge, see fig .(1.4). Also we apply the DC-electric field ร  in  the 

direction parallel to  the plane. Furthermore, we add imperfections in to  the system 

which w ill create the electron scattering potential energy V(r).  The imperfections 

model we used w ill be discussed later. The Ham iltonian of this system can be 

w ritte n  in  the form

where m  is an effective mass of an electron and A  is the vector potentia l of 

the magnetic field, B  =  V  X A. This kind of system is believed to be the one 

for the quantum  H all system. The imperfections w ill cause the appearance of the 

long itud ina l component of electron conductivity at the plateau-plateau transitions 

of the transverse component as appear in  experimental results.

In  next chapter, we w ill discuss the form ulation of the Feynman path 

integrals. The form ulation w ill be for the transition amplitude, the propagator, 

and then for the density m atrix . We w ill consider these two quantities for the

(30)

case in  our modeled system.



Figure(1.4) Schematic diagram of a two-dimensional system for our

model. The dots denote im purities.
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