CHAPTER I
FEYNMAN PATH INTEGRATION

Introduction

In this chapter, we would like to show how we can formulate the Feynman
propagator from evolution operators of Schrodinger quantum mechanics. The
details of the calculations of propagator from path SUMMations can be found
in the text of Feynman and Hibbsfl1]. Also, we show the formulation of the
statistical operator in terms of path integrals. This statistical operator will be

used in the calculation process of the quantum average in our work.
Propagator from Evolution Operator

The wave function "Jz(f) of a quantum mechanical system with a Hamilto-

nian 1 evolves according to the Schrbdinger equation

in" r = ** (31)

Its solution, developing from 'F(fo) at to, may be presented in the form

) = 0(t,to) (t0),t > t0, (32)

where the unitary evolution operator, U , satisfies the equation

"% " = HW(Mo), (33)
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with U(tO,tO) = 1. It may be formally solved in terms of a time-ordered exponen-

tial
U(tto = Texpr-ny 'HOs). (34),
The time-ordering operator, T, acts according to the following definition

tin ->tin_ 1> ... > ti2 > il > (35)

where (ii,...,fn) is a permutation of the indices (1,..., ). Thus in the evolution
operator eq.(34), time is the ordering parameter. If the Hamiltonian IHI'[) has an
explicit time dependence, then the integrand in the evolution operator contains

time both explicitly and as the ordering parameter

U{tto = Texpr-n-a 'He{s)ash . (36)

It was shown by Feynman[12] that under the ordering operator sign in
eq.(35) one may consider the operators to be commutative and handle them as

numerical functions of the ordering parameter.
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Path Integral in Phase Space

Let a system be described by a Hamiltonian function
[ e'(0p+™ )/i(a,b;t)dnadn/3 (37)

in the phase space with the canonical coordinates P= (pi,....pn), 0= (Cfl,..,q)
analogously a,/3 are n-dimensional vectors, dd= =o. and dha =dal...dan,
h3 = CK3ICK3H The quantization is carried out by establishing the corre-
spondence to this function of the operator (Hamiltonian) 71 = ii(p,q;t), where
D= (i, ;0 = (Qh,..esN) are the momentum and coordinate operators,
Unambiguity of the quantization is achieved by a certain ordering of the non-

commutative operators »iqi = 1 , ). Ifitis chosen in the symmetric form
Rlbdit) = [ Hh(a, b0 e, (39)

the function in eq.(37) is @ Weyl symbol of the Hamiltonian[13]. To any operator

written in the symmetric form, its Weyl symbol is defined analogously.

For an operator A(p, CI) its matrix elements in the coordinate representation

and trace are determined by certain integral transform of its Weyl symbol

<il4(p.Dl«0> = @rhy'/ ApU jU exp( ~*)) ap (39)
TrA(p,§) = (inh),, / A(p, q)d"pd"q. (40)

From eq.(37) the composition rule follows: ifA:A1A2, then

1

Alp,q) = W/Al(pl,QI)A2(p2aQQ)



1dpidngidnp2dneg- (41)
Using the Weyl symbol in eq.(37) of the Hamiltonian allows on the basis of eq.(41)

to represent the matrix elements of the evolution operator, eq.(36),

<,iM(Mo)i,o> = £"°"exp{sS(Mo)} n " fi)" (42)
in term of path integral in phase space, where a classical action functional is
introduced

Mol = 2020 )20 )220 )] > 2() = ~d~- (43)
Making a partition of the time segment [Mo] into N parts:
0 — QAL xnp L BYE v —t (44)

and introducing a set of approximative paths

gm () - gpere oo -si-ivio = g(to),qn = q(t); (45)
h) = e (46)
for sj-1 < < sj.5 = I,...,iV, we obtain a finite dimension from which after a

limiting transition jV — o (so that maxj(sj —si_x —0) a path integral results:
I’ _ .(5)
£ h 1 > 77
(47)

For systems with Hamiltonian functions which are quadratic in p:

) = QJA]}Pk-ak{q)]mkl\pi-at(q)]+V(q,) (48)
YA =
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the path integral in momentum space in eq.(42) may be accomplished explicitly[14].

Namely, after the change of variables

i) = ak{als)) ¢ A(rln YIBEL' @ (49)

the action functional eq.(43) takes the form
] = £0S)aG)] )b
o PS)MKp'l(s)ds (50)

with a Lagrange function

) = ZIZIZ "mkigi +"2ak(g)ok- V(g, ). (51)

L jt=l
After this the path integrals in the coordinate S) and momentum P(5) spaces
are separated, and the matrix elements of the evolution operator eq.(42) are rep-

resented

< Q(L0N0> = 5 vigdexp(" E(0ls)q@N Js* (2
in terms of Feynman path integrals[ll], the propagator K(q, (ﬂt—tO) =< Q\ﬂ(t,tO)\Cp>

Making use of a set of approximated paths eq.(45) one may formally carry out
the integrals over momenta and obtain the Feynman path integral by the above

described limiting transition in the finite-dimension approximation

E% [()]®,« = Kml . <r 1N * (%)
where on account of eqs.(47) and(51) the normalizing factors assume the form

det |Im ft:ll 1112

i sy o) .



Exceptionally important are path integrals of Gaussian functionals, with a La-
grange function which is quadratic in both CI(S) and CI(S) (they constitute the ba-
sis of a constructive definition of a path integral) which have the form of eq.(52).
Such path integrals may be expressed explicitly[11]5through the stationary path

q(S) obeying the Euler-Lagrange equations,

S5 kg = 0t ) 6

with boundary conditions q(te) = qo.q(t) = g

<qutg0> - fooen (: /60080 Ky 6o

The time-dependent pre-exponential factor has been calculated on the basis of

eq.(53) in a rather general form in refs.[15, 16], see also [17].
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Path Integrals Representation for Density Matrix

The statistical operator p{t) of a mixed ensemble of systems with Hamil-

tonian 11 obeys the von Neumann (or quantum Liouville) equation

o
il 57)

Its solution developing from p(to) at to may be represented analogously to eq.(32),

in the form

=]
—
—
—
1

U(t,to)p(to)U~1{t,to),t » to, (58)
where the operator which is the inverse of eq.(36)

Udiw = f-lop Jlins{)d™
*(t,10) (59)

s expressed in terms of a reverse time-ordered exponential. The reverse time-

ordering operator is defined by the expression

n

P LAY = A A0 A,
i=1
i Sl B ¥y w5l (60)

In terms of path integrals, the density matrix of eq.(58) may be written in the

coordinate representation as

pleg) = <glpw >

= < Q\Upfto)U4g > (61)
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Inserting the complete set f dq\qX q\—l into eq.(61), then we get the result

p{q,9') = Jdgo Jd% < g\i\go >< qgolp(to)lgo >< q'o\i~x\q > . (62)

From the expression of < Q\U\Cp> in eq.(52), we get

pad) - dp (0%
'] \/[Cﬁ]J A oexp{n dS(C(q,(ﬂ )
-C{g',q'5))ds}: (63

This is the expression of path integrals representation of density matrix and will

be used extensively in our calculations of quantum transport problem.
Propagator for the Modeled System

From our modeled system discussed in the previous chapter, we would
like to write down the expression of the propagator of such system. From the

expression of the Hamiltonian in eq.(30), its corresponding Lagrangian is
£Er,r;t) = "mr2+ -Aar =V(r) (64)

The potential V(I’) depends on the kind and configuration of the imperfections.
We would like to suppose that if the imperfections are being fixed scatterers of
impurities and randomly distributed, this is called random system [18]. we also
suppose that the scattering processes are two-body interactions, then we can write

the potential term as

V(r) - ]IiDV(r-Ri) (65)
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where Rl s the site of impurity. With this Lagrangian, the propagator can be

expressed as
KITXAT) = vieexp dC{rr]t)- Fo dtV()}  6)

To consider the dynamical properties of an electron, we would like to take an effect
of scattering with impurities by averaging the propagator over all the scattering

potential at all sites via the expression
Ka(rT,rOT) = 3 dVP(V)K(rT,ro]T) (67)

P(V) is the potential distribution. Because the impurities are randomly dis-
tributed, then, for the system of the area A, the probability to find one impurity
located in the small area OR is ARIA . Then for all impurities we get the

distribution
() fdﬁil af_dRHl a(v ) Wr &

where the delta function is used to contraint that the scattering is a type we
choose. With this expression of the potential distribution, the averaged propagator

of eq.(67) becomes to be

Ka(rT,r0]T) = 3 dVP{V)s V[)exf?  -ut vinw

N
J T>[tlexiic(rfit)dt J N e-Klo V(rt-R)dt (69)

where we have integrated the potential V and used the delta function. At this

step of calculation, we would like to use the identity

Xf XD+ s 0)
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The averaged propagator of eq.(69) comes into the form

Kav{rT,r0-T) = Jv[rt]exfd

exp ln (2] 1)} (71)

At this stage, we further suppose that the scattering potential is weak, then we
can expand the exponential term of scattering potential on the right hand side of

eq.(71) into series and keep only the first non-vanishing term, then we get

l<av(rT,r0]T) = J v[rt]le*ii dQr'1)
exp ar'W(rt-re) (72)

where we have assumed that the configuration average of the scattering potential

s zero, f jyv(rt_R) = 0 , and define the potential correlation function
(t—t) = Ny dRv(t—R)v(rt —R) (73)

which is a nonlocal function in time. For the second term on the right hand side of

eq.(72) may be expressed it in terms of the impurity Influence function P(r[,l'ti)

, @S

Kfurt) = o~ J dtd0 dtw(rt—rt) (74)

This term will cause the difficulty in the evaluation of the corresponding propaga-
tor in eq.(72). There are many ways to overcome this difficulty. What we expect
to do here is using the model of influence functional instead of using the direct
function from the Coulomb or screened Coulomb interactions. We would like to

use the gau35|an MOCE] of this potential correlation functionfis]

(rt-1y) = - (75)
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where we have put two parameters into this model. The first one is the strength
of the scattering,, which we call the correlation strength and the second one
is the range of the correlation, L , Which is called the correlation length. More
details of our calculation will be shown in the subsequence chapter and in the next
section we would like to discuss the expression of the density matrix in Feynman

path integrals representaion for our chosen model.



Density Matrix for the Modeled System

From the Lagrangian of our model system in eq.(64), we can write down

the density matrix, in path integrals representation 2q.(63), as

p(rT Ty = dred drop(rorg)
L TR0 dClr) -V (rt),
e 1111 GHERT- V(D) m

The averaged density matrix can be evaluated with the scattering potential dis-

tribution in eq.(67), and results in the expression

pav{rT,rX) = J dr°) droP(ro,r'0)

V[l prgtexpir deent)-ay, ro)

expl—r2 J dt'( (ﬂ'rt>)'2W(rt'r't,)
HMrt- g (17)

This expression is derived under using of identity of eq.(70) and the assumption
of weak scattering potential. This resulting averaged density matrix will be used
in the procedure of quantum averaging in our studying the quantum transport

problem in subsequence chapters.
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