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CHATER IlI

FEYNMAN PATH INTEGRALS APPROACH TO
QUANTUM TRANSPORT PROBLEMS

Introduction

The starting point for the transport phenomena is to calculate the expec-

tation value of the velocity,
v A 3 Sanslim Tr(rpt) (78)

where » is the density matrix of the system, »« must be known very accurately
in order to get a sensible result. At zero temperature, as in the case of a random
potential, the system is in a well defined state at all times, then the expectation

value can be determined from its wave function,
L = AMim J ty*(r,t)r$(r,t)dr, (79)

where ~(r,1) is the wave function of the system. In both cases, either the
density matrix or the state wave functions must be known very accurately. It
is quite difficult to get such information from a system with imperfections or
having interactions with its environment. Feynman’s path integrals methods can
be used to cure these problems[4, 19]. The trick is that we first eliminate the
dynamical variables of the environment”], such as the oscillation modes, results in
the influence functional or average the density matrix over all interaction energies

with imperfections [18], results to the impurity influence functional[6].
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In next section we will show how we can write down the equation for
momentum and energy conservations and in the following section we will show how
we can determine the expectation value of the velocity at steady state, calculated
by using Feynman’s path integrals. We also discuss the effectiveness of this method
on the study of the non-linear property of transport problems, or the so-called
strong-field case. In the last section we will discuss the weak field case, also called
the linear transport problem. We will also discuss the transport of an electron in

two-dimensional system in the presence of magnetic field.
Conservation Laws and Constants of Motion

Two of the most useful expressions in the transport theory are equations
expressing the conservation of momentum and conservation of energy. These, as
well as most other relations of a similar nature, can be derived in the path integral

representation as follows [L1]. Consider the identity

|3 VPAVEeRSTO) = 1 3 DIy o

in which (XC,X[) and (yuy't) are equivalent pairs of integration variables. Ffagx]
is any function in xcxon. If now we let Yt = XU+ Art, where A << 1, ITis
function of time, and V[Xt\:V[yt\. Inserting this into the left hand side above

and expanding to the lowest order in A we obtain

0 = / o / / Dz Dlz!] exp(S[ze, 2']) (g) n (81)
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If we let rT = n(r —<2)) then we recover the equation for the conservation of
momentum in the direction at time <o- This is the same as replacing the path
Xt by the path X[+ an6(r —t2), which in classical mechanics leads to Lagrange’s
equation of motion. Letting rT = (r —f2) leads to a constant of the motion

analogous to the momentum in the direction

Time invariance lies at the root of energy conservation. Thus, replacing yt
by X(t+\Y(t)) —X(Q)i-XI] ()Wt impries that tetting IT=2(r)ir in eq.(81) will yield
the equation for energy conservation at f2 if 7(f) :G(t —tZ) For 7(f) = (f —f2)
one obtains the constant of the motion corresponding to energy. Equivalenty, one
could replace each path Xlin the original path integral by x (f+ A%(f)). The change
of variables T — f T An(f) can be used to avoid the functional differentiations;

however, care must be taken to take any x(f —f') into

x(f =t f Amf —1)) = x(f+ ATI() =L —Am(F)
+A7?(F- 0 - A€ (0)

ot =dr(l — and (/0 —(1 + Ar(r))drdr

the latter two being valid to first order in A

We first consider the following simple example. If the classical action SCis

given by

% = / dtL(a, 1, 1) (82)
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then the path variation Yt:Xt+ Xii(t)Xt,which results in
65C = Xy dty(t)xt(6C/oxt) = o (83)

would yield, upon letting T = [+

s = o Ar(\- Ajje@Tivg + Aj(e).e - X(t)) (84)

s0 that

§§]C Cf (dc d(wg\/d_xT) del )20 -

Hence

<o d(xde/dx) - dc dc dH
at dt dt dt dt

the usual expression for conservation of energy in classical mechanics. (Note that

X6C/6x = dc/dx —d(xdc/ax)/dt —dc/d)

Applying the above method to our influence functional s”z,a:'], as ex-

pressed in eq.(76), we obtain for the conservation of momentum the expression

1B | Ad$XX)/\

ft + < X > AN e=NaAe -

(87)

where $(z,x") is the impurities influence functional;

$(*,*') - 2ftd ds'( (x -x ")-2 (x -x3)+ (x11- x"'))- (88)

To calculate the invariant corresponding to momentum, one integrates

eq.(87) between some initial time and some final time t, and obtain

m«x-: +« ed<A>t+

= constant of the motion (89)
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Here A is the vector potential for the constant magnetic field B,A=-\B XX For
A independent of X, < mx™A > is a constant of the motion for a free particle
(< p >). (Recall that the kinetic momentum is usually defined to be X =
p—\A.) However, for uniform magnetic fitelds, the invariant for a free particle is
<mx+-2A >as long as A independent of time. The remaining terms in eq.(89)
express the residual between momentum gained from the applied field and that

loss to the medium and to the Hall current.

The principle utility of quantities such as eg.(89) is that constant of the
motion represent invariants which can be used to label basis states in an expan-
sion. For example, in writing out evolution equations (Liouville’s equations) for
the density matrix of the system, it is customary to use as a basis the momentum
state of either free or uniformly accelerating carriers corresponding to zero-order
Hamiltonians for non-interacting particles. The interactions then drive the evo-
|ution of the system. Such an approach is adequate when indeed the state of the
carrier is well characterized by one of these basis states at any given time. How-
ever, when the scattering becomes sufficiently strong that the particles cannot
be described, either theoretically or experimentally, as occupying a well-defined
momentum state at any time (ie., the drift time in a given state is so small
that the state is unacceptably broadened), then the utility of this basis and the
applicability of expansions in such a basis are called into serious question. In
the absence of dissipation the concept of quasiparticles is sometimes adequate

to handle self-energy renormalizations. But in the presence of the applied fields
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and dissipation, where energy and momentum are continually acquired from the
applied fields and transferred to the medium at nonnegligible rates, quasiparticle

bases are inadequate for the reasons given.

In sharp contrast to bases of particles or quasiparticles behaving ballisti-
cally between collisions, the representation developed below in the context of an
approximate influence functional describes carriers whose motion mimics that of
the carriers under the actual conditions of the problem. For particles in these
states, constants of the motion such as eq.(89) are preserved between scatterings
characterized by scattering rate reflecting differences between the actual evolution
of the system and its stimulated evolution. In this manner such invariants of an
approximate influence functional can serve as an adequate basis for working out

evolution equations.

The corresponding. equation for conservation of energy and the related
constant of the motion can be obtained from time invariance as indicated. The

result Is

f<i>tdd_<imi>im < §(:,.)>1
2t at

Expression eq.(90) illustrates how the energy absorbed from the applied fields is
distributed to the kinetic and interaction energies. From eg.(90), we note that
there is an absence of a term in the magnetic field, since a static magnetic field

cannot alter the energy of a charged particle.
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As with momentum, an integration over time of eq.(90) will give US an

energy related invariant in the following form
Aoxmx St o+ < §(z,X) >t — dt'f < Xt
= constant of the motion (92)

Here, as in eq.(87), each term, each expectation value, is represented by its path

integration expectation value indicated above,

The primary purpose of expressions eq.(87)-eq.(91) lies not only in their im-
plications for steady state quantities but in that such quantities evaluated for more
general models can be used as bases for density matrices in place of free-particle
energy and momenta. We turn now to the evaluation of the above expectation

values.
Non-linear Transport

To determine the transport problem of our model system, let we consider

the equation for the conservation of momentum expressed in eq.(87),
X
ft+Bocist-m<tst = M)@Pf—) & (92)

where the expectation is made with respect to the density matrix of the system

in Feynman path integrals representation,
() = 5 areo drt(rt- rt) df0; crp(ro)()
ovpeas P (F Xt (1] %)
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where the action fucntion [r,r] s the short hand notation of the one appear
in eq.(76);

T . .
SR = [ ds (R0 - £ 1) + 66 7) (94)
At steady state of eq.(92), < r = 0, the rate of momentum gains from the applied

fields is balanced to the rate to the momentum lose into the system by scattering

with impurities, then eq.(92) reduces to

eB . JO(F7) )
fr+ — €KW 7 <——3F >t (95)

At this steady state condition, we say that an electron will move with constant
drift velocity £)

To consider this equation more explicitly, let us move our problem on to
the moving reference frame, R, which moves with the same velocity of an electron,

R = £) That is let us make the transformation

t - Rt+ t
R—t+ut (96)

where and " are the fluctuations of the electronic paths on the moving frame
result from scattering with impurities. In transport problem, the important quan-
tity is the drift velocity of the carriers which is expressed in terms of the applied
fields, then we will neglect the equation for the fluctuations on the left hand side
of eq.(95) and we will get

ft+?c£evo - <6¢S‘;“')>t. (97)
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The right hand side of this equation is the task of our calculation in this thesis
work. We first simplify them by looking at the expression of the impurity influence
functional <>(r,r"), eq.(88), and then write the potential correlation function in
terms of its Fourier transformed form

it-tv] = Mo {J)ea(rr) [os)

k
Since in our model system, we will use the gaussian function for the potential

correlation function, then its Fourier component will have the property (k) =

(—k).

Under the transformation of eq.(96), the symmetry property of the (k)
and the condition for the averaging process, we can write the expression for eq.(97)

as

T — cvey = JPRe-~Annrw(k)k ] daeiklo{ T

I Kk(uT~ )\ (99)

where the expectation appear on the right hand side of this equation has an
expression as

(@kU~uw) = 3 dujdu'j { J—uj)s dus dulp(u0, 0)
o V[ Vutlek
exp {h Jo ACON T E A (L )3(100)

where fl is the Lorentz force which acts on electron on the moving frame. The

right hand side of eq.(ioo) contains all information of the applied fields, B and
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. 1f we do not cut any terms or make no approximation about the fields, this
equation will cause the non-linear relation of the drift velocity to the applied
fields. This is the effectiveness of this technique to look for such a non-linearity

in transport problem.

Linear Transport

The expression of the averaging exp{i&(ur — <)} is a kind of generating

functional, so let define

(M) = g(falr, o)) (103)

where fs is defined to be equal to %k(6(t —r) — —a)), the delta force. The
linear transportation is considered in the case of weak field, then, empirically, we

can expand g(/ ) into series of the applied fields as
0{fs) = ot Ato tm (102)

where go is the term which contains no applied fields. i contains term in the
first order and so on. In this case, the transport coefficients are considered as the

linear term of the applied fields by defining the relaxation time Tr as, see eq.(99),

B 1
fe+ %WD — g1 = mup ("') (103)

and from eq.(99) we have

1 2 1 "
= = goReg Sukk [ doe el =g(fyfr, o) (104)
r k
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From eq.(103), to keep the efect of i term, we rewrite it as

+ &8 = f_l '
X : evD mVDVre/A (105)

The mobility is defined from the relation

Vo - (106)
which from eq.(105), we get
-1
|
[/rell
-8

- () (107)

\ [/rell

Our task of this thesis work is to calculate the mobility of an electron in our model
system in the linear transformation regime. And then determine the conductivity

a of an electron from the Kubo-Greenwood formula [20], [21];

0= JIiE (-2 ") (-«)"(E)KE) (103)
where (E) is the density of states of an electron in such a system and fi(E) is the

mobility, calculated at absolute zero temperature, eq.(107). If we have applied

the electric field in X- direction , the longtitudinal component of the conductivity
will have the expression
Aoz JdE j  (E)fixx(E) (109)

but for the transverse component, an electron will drift in the transverse direction
to the applied electric field by Lorentz force. Also our system was added with
some imperfections, then the transverse component of the conductivity should be

determined from the expression[20], [21]

o ~ JaJ iEI(E)N(E)ii,1(E) (110)
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These expressions of conductivity have given some sign of quantum Hall conduc-
tivity as has heen studied by Sa-yakanit[22] in the lowest order of approximation.

My work will extend his studies up to the long correlation length limit.
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