CHAPTER IV

QUANTUM TRANSPORT FOR CLEAN SYSTEM
Introduction

In this chapter we would like to determine the transport property of a
two-dimensional system without imperfections in the system. This is a limiting

case for the system of our consideration on transportation with imperfections. For

this clean system, the Hamltonian is
R N\ H‘ (112)

This describes an electron moving in a two dimensional system under an applied
constant magnetic field B in perpendicular direction and an external electric field
f = —ef. A in this expression is the vector potential of the magnetic field

satisfying B = V x A,

In path integrals scheme, we would like to formulate this problem from the

Lagrangian, £(r,r;/). From eq.(Ill), it can be written in the form

LGFEFf) = %%’+ Aryf.7 (112)

olo

We will choose the symmtric gauge for the vector potential, A = (1/2)(yB, —B).

To treat this problem in more details, we would like to use the matrix notations;
[\
, r=(x,y) and e=

|y V1 03

0 -1



Then the Lagrangian in eq.(112) becomes

Ll f) = oFemei4 Sier—7f (113)

We shall use this Lagrangian in our clean system transport problem. In next
section, we would like to determine the density of states of the system, and to see
how an electron has energy under this condition. We shall determine its transport

coefficients in the following section.
Density of States

From the path integrals formulation, the density of states, (E), can be

determined from the Fourier transform of the propagator at the origin,

ARAN 2y 1 i
n(E) = g | dTK(0,0;T)ET (114)

where \(0,0;T) is the Feynman propagator of this system at the origin, rj —0

and r0= 0. The expression of the propagator Is
R rn T} = / DlrJel/M Jy £l (115)
where £(r, r;/) is the Lagrangian from eq.(113). Since £(r, r;/) has a quadratic
form, then its corresponding propagator will have exact expression, in the form
Arr,T) = FI><rs(iP (116)

where F(T) is called the pre factor function which is a function of the time interval

T only and can be evaluated from the classical action by the expression

F(T) = (2;271) (det [3252%;0#)])*“ (117)
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which is called the van Vieck-Pauli  determinant. The classical action of this

system, 5d(rj,ro; /), is well known, it takes the form

54(rr'ro;) = 2> n r/2)1(rl + ”)COS(HT# 2rTe”/\Vo)

A= dty dURG(LE) (119)

where G(t,t') is the Green’s function of this problem, it takes the form

GE> = - (1) ] J At
Fsm (fitl2)st(fI(T —t)/2H(t —1)) (119)

With this classical action, we can get the corresponding prefactor F(T) , eq.(117),

in the form

BT = mimsid by j120),

Then from the resulting classical action Sd, eq.(118), and its corresponding pref-

actor F(T), eq.(120), the propagator, eq.(116), at the origin will take the form

KRBT = Zimsdilin
Poexp{-"7 dty dt'fteudt~t)I"A 1

I (sin(i(T —t)/2)sin(Qt'/ 2)H(t —t)
tsin( 12)sin(n(T - t)/2)H(t' - 1))} (121)
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Since

\
[ = —f = —¢ [ ex
£y |
then we can evaluate the integrals on the exponents of eq.(121) to be
x? . .
m(£|/2)3|n(£IT/2)I dtl s * - os2)sin(SI(T - 0/2)sin( 'f2)
| (e£)2 [Ttsin(EI(T —t)/2)sin(CIt/2)
hmQ | - Sm QT A2y dt (122)

In the limit of large magnetic field, — 0, we can approximate this integration
to be

| {eff
4h mQ”Z’
then eq.(121) becomes
PR os X 110) 1 (eq)2
“OOT) = dirihsinffiT/2) &P i (123)

Then its corresponding density of states hecomes

_ [ A\ mCl2
(E) = \2Trh)  Tth

) akexppB(E -(, +i)Sn ) f - QA (124)
where we have used
: = 2V op'("+il2)nr
Sm(&ﬁﬁ) Vop(*+iR2)
Let us define the notations of the magnetic length and energy as

lg = =1, £h=Tifl and jEj = e£/B
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and dimensionless parameters

r=NI,  =1f and

then eq.(124) becomes

() = n () rexp{*X£-(" + 112 ))r-"V }

J (E'-(n+1/2))2

- T (125)

The resulting density of states in eq.(125) shows that the electric field lift out
the degeneracy of Landau levels from the delta function of 0(E) in the absence

of the electric field,

ME)= (M) E « -( + 1) (126)

We also see that the density of states in eq.(125) will become the delta function
as in eq.(126) when the electric field is small. This shows that the degeneracy
comes back when the electric field is weak and it is lifted out when the electric
field is strong. Figure(4.1) shows the evolution of the density of states, (£'), at

any electric field strength.
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Figure(4.1). Plots of (EJ for the first six Landau levels as a function
of an electron energy E' at different values of the electric energy
Es, (a) 0.01, (b) 0.05, (c) 0.1 and (d) 1.0, in the unit of
magnetic energy.
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Transport

W ith the Lagrangian in eq.(112), we can write down the corresponding

density matrix in the form

p(ITrT) =5 dy arfp(r0rQ)
3 V[r]s V[r’t]e Xpjn dt(C(r, r/) - £(r', r /M) (127)

[ts corresponding equation of motion of the path rt at the time t —T s
m(NT+ 6()T+ef = o (128)

where the guantum average < .. > is made with respect to the density matrix in
eq.(127). Atsteady state, < I >7= 0and on the moving frame R, I = R+ U with

no interesting was applied to and , eq.(128) then becomes
mftevD + €S = o, (129)

where we have used R = VE) the drift velocity of an electron at a steady state,
From the matrix notations we have used, we can write the electric field F as a

function of \E) as

F g (o Cx !
e = -m
| £l ® 0/ V VD> |
or
-1
VDx — o -N £r

(130)
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The coefficients of the electric field are the mobility. Eq.(130) shows only the

transverse, Hall, component and absence of the longitudinal one.

The mohbility s defined from the linear coefficient of the electric field

from the relation

\D - (131)
then from eq.(130), we get
V'1
0 1
= (132)
yf2 0
This shows that X/= — YX and
A g A —o
Vyx = mil an : (133)

The conductivity 0 is defined from the expression

v salE
where the current endsity J can be written as J = (—e)uf>, then we can get the
relation between Oand (70 as
a0 — (—)/0 (134)

then we find that the conductivity components take the forms
ne'2

m fi

(MX—n and Oy — (135)

At finite temperatures, we can use the Kubo-Greenwood formula for the longitu-

dinal component of conductivity;

G~ (0! v AE )N (E)iE(136)
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and for the transverse component;
<y = / fe

where f(El) is the Fermi function. We have put adrmmto our problem to keep

the many particle effect;

vh )= (1+ e(E-EF)/EKT] (135)

with the dimensionless energies, E'D ™EP/EN is Fermi energy, and EXT = kT/Ed

is thermal energy. From eq.(135), then eq.(136) becomes

axx = 0 (139)

e 0 )
' 1 1 N e e
4 E[tE'ZX?)j/L " 1+ eEERIEQ): (140)

in the unit of (e2//i). Plots of a)b(as a function of Epare shown in figure(4.2).

Discussions

For the density of states, see fig.(4.1), it is shown that the electric field has
removed the degeneracy of the system causing the broadening of the Landau levels.
For the conductivity curve, fig.(4.2), shows a step-like curve for the transverse
component. The longitudinal one does not appear. This result is similar to the
experimental result of van Wees which is the point contact measurement, see

fig.(4.3).
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Figure(4.2). The transverse component of the conductivity, CYX
is plotted versus the Fermi energy ET.

This curve is evaluated for the thermal energy EKT = 0.1,
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Figure(4.3). Point contact measurement made by van Wees, €t aI,[29]
at temperature T = 0.6A"

The experimental geometry is shown in the inset.



	CHAPTER IV QUANTUM TRANSPORT FOR CLEAN SYSTEM
	Introduction
	Density of States
	Transport
	Discussions


