CHAPTER V
QUANTUM TRANSPORT
AT LONG CORRELATION LENGTH

Introduction

In this chapter we would like to add some imperfections into our system
resulting from previous chapter we known that the longitudinal conductivity is
absent and there is only the transverse one which contradicts to the real exper-
imental results[9] which still have the longitudinal component at the change of
plateaus regions. This is discussed by Halperin[23] and is generally accepted.

Schematic diagrams of the quantum Hall conductivities are shown in fig.(1.3).

As we have discussed in Chapter Il that the imperfections, we have added
into our system creates the potential V(r) for an electron. Then the Hamiltonian

of our system will become

1
H = %(p-l—%A)?-’rV(r)—f-r (141)

The imperfections are modeled to be fixed impurities located randomly in the
system. The interactions of an electron with these impurities are supposed to be
two-body interactions and are modeled to be a gaussian function. The interaction

appears in the Hamiltonian of eq.(141) the becomes

V() = ) v(r—R) (142)
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where V(F—Ri) is the two-body interaction between an electron and impurities at
the site RI. In Bezak’s model of random gaussian model[18], the interaction has

properties
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where (It —ry) is called the potential correlation function and modeled to be

a gaussian function
(rt-rv) = A 6-(rt-r,) 212 (144)

where ££1and X are called the fluctuation parameter and correlation length 1
respectively. The averaging symbol appeared in eq.(143) is the impurity sites

averaging and was discussed in Chapter 1.

In this disorder model, the impurities act as fixed scatterers and have no
dynamical part in the expression of the Ham iltonian in eq.(L41), then in practical
process we will take only their effects on the dynamical motion of an electron. The
process of averaging over disorder discussed in Chapter Il result in the averaged

propagator and density matrix, eq.(72) and eq.(77), respectively.
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Density of States

From the eq.(72) of Chapter Il, the averaged propagator was taken into

the form
Kav(rT,r0]t) = 3 v[rt]expgr-  dtC(r,r]f)

~2tf Jo dtJo dt'w (rt~ rt'ii (145)

where the £(r, r; /) isthe Lagrangian corresponding to the Ham iltonian ineq.(141).
To treat this problem in some limit of the disorder, since it is impossible to get an
exact results from the disordered systems, we would like to make more approxi-
mation of the potential correlation function,  (rt—rt>), that at long correlation

Iength L — 0, then it can be expanded into a series as
B1- 1) o= (L (re-pn2+ ) (146)

We would like to keep only the first two terms, then our averaged propagator in

eq.(145) becomes
X "(rr,r,:T) = In[r.Jexp{ifdtc(r,r;f)

té» £ * £ AN (147)
Let us consider the last term of the exponent on the right hand side of eq.(147) in
details, we find that it becomes an oscillating part and square of the integration

part. If we define the complex time dependent frequency

2.
— m;] T (148)
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then our propagator in eq.(147) becomes
Kav(rT,rQT) = e_» ra/ss23 v[rt]lexp{r 3 dtE(r,r\f)

cfr - tfa - M ti ey (149)

Applying Hubbard-Stratonovich transformation to the last exponential ofeq.(149)

results in the transformed propagator K(rx,rO',T)
KayrT,r]T) = c~IJr dae-""aaK(rT,r0]T) (150)
where C is the constant of gaussian integration which equals to (4t(1/L2) and

K(rT,r0]T) takes to be
K{rT,r0]T) = e~ »~72h ™ J £>[rtexpiny* dtE(r,r/ -fa)| (151)
The Lagrangian £(r,r;/ + a) in eq.(151) has the form
E(r f0+a) = Armr+ A-rer - Amud2r2+ r(f + a) (152)

which is quadratic in form. Then the propagator of eq.(151) can be taken into

the exact form
k(rT,r0-T) F{T)exp 17 (51 + a) (153)
where the corresponding classical action Sci(r, f + a) is
Sd(rif+a) = 22 ) (a +ni)cos{y.T)- 2Teua/2r()

£ M ja)jjor T w +)*
FTIM xp [ -<))(/+ O*#

kMl TH a4 pa), (154
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where we have used the notation for frequency

n2+ (155)

and G('[,t') in the last term of eq.(154) is the Green’s function, which has the

form

G(t,0 = - Gir T t))sin(nt)H{t - )
Hsin(sin(liT— -y (156)

W ith the classical action in eq.(154), resulting in the prefactor function

m/t
)= dirinsingt.im (157)

Since we are only interested in the propagator at the origin, then we have

f m i \ ruimw
k- )l

texpihm o dtdoo ¢t o [t
enLjj dtftG rja + 1 qG(t)g} (158)
where we have used the notations G(t,7) = 1o d'G(t, t') and G(T) = sor dt /o dt'G(t, t").

Putting this expression back into eq.(151) and making the «-integration, resulting

to the averaged propagator KaV(0,0;T) as

m/f 1
Kau® o T) {iringin(fiT) g a. (4ih)(ZIIL2)G(T))
exp § f14+Sm 1 * |

exp <- (159)

(L- (ii/A){LIL*)G (T))}
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where we have used the notation (f,G ) =1Jq dtftG(t,T). We also find that

1 _ lilircm Z’J{cos(nT/Z) - cos(nT)) (160)

u* Sin’r)

Then /vav(0,0;T) in eq.(159) becomes

Kav(0,0T) = (cos(SIT/2)- cos{nT))
: N2 2% sin(fiT) 2
' PL 2 £202* fiamA.2(c0s(Nr/2) - cos(zT)u’
en JE At ftG{to m (161)
where we have used for the applied force /| = —ef, which is constant in time.

Then eq.(161) becomes

Ka(00]T) = 4|r|h (cos(CIT/Z)l—cos(nD)

'L'L “ i oall
2 S|t,2 IcM{f!r/2) - cos(jiT)) * :
hm(-eE)!G(T« (162)

This equation shows the full expression of the resulting propagator at the origin
in the long correlation length limit. We see that we do not have any physics of
this system in this regime. In real practical situation of the quantum Hall effect,
the electric field is very weak compare to the magnetic field, then we can neglect

the last two terms on the exponent of the right hand side of eq.(162). and this

results to
ooy L mull 1 \(272ih2L2
A0 OT) = Sirih (cos(HT/2) —cos(nT))e (163)
The corresponding density of states of this problem then becomes
AV o mu)2T SPHIT 2% 2L
n(E) = ( ) o _ (164)
VAB/ J-00 (cos(VtT/2) — cos(fiT))
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Using the identity COS( ) (JT)) —ZSIn(T(Q/Z—n)/Z)SIn(T(Ql/Z +

)/2)) and the fact that 2= —( [2+ /)(n/2 —n), let us define the function

£{T) as

261+ 2> %(V%*““l)
HURE 2
§ (165)
From the dimensionless parameters defined in Chapter IV, we get
stey = M+ 8icsrt 1 (166)
where 8= {/3/&)2 and the density of states in eq.(164) become
(167)

«

The integration in the expression of (E]) inthis equation can be done by Chauchy’s

integrals, it was studied in details bye Spies[25]. The resulting (E]) are plotted

in Fig.(5.1).

In the real qunatum Hall situation, the magnetid field is very large (of
the order of 10 Tesla). We can consider this situation for eq.(167). In the large

magnetic field limit, —> , it approaches the form

L
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which results in the gaussian function and they show that in the limit of small

fluctuation parameter, 3—y O , the density of states becomes a delta-function |

(E) - &G 4)8é*(E" ("+i2)) (169)
as in the case of the free electron under the applied magnetic field in a two-

dimensional system without imperfections.

The obtained density of states, fig.(5.1), shows the broadening of Landau
levels caused by the imperfections presented in the system. This broadening
is different from, the one caused by the applied electric field which is discussed
in chapter IV, since all states in the broaden levels are delocalized states but
most states in the case of the presence of disorderes are localized, as discussed
by Halperin[23]. The schematic diagram of the region of localized-delocalized
states is shown in fig.(5.2). We see from the figure that nearly all states in the
energy spectrum of this system are localized. The conduction of an electron in the
localized states is diffusive type[21], and at very low temperatures is dependent
on the distribution of electrons in the system, i.e. on the Fermifunction. Plots of

the degradation of (E) at diferent correlation strengths are shown in figure(5.3).



Figure(5.1). Density of states ,n(E'), at long correlation length is plotted

versus its energy E'. Using @ = 6 and (3= 0.4.
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Figure(5.2). Schematic diagram of localized-delocalized states in case

of the presence of impurities.
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Figure(5.3). Density of states, (E’), is plotted at any strength of

correlation length, (a) a = 6, and (b) d =24,
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Transport

To determine the transport properties of this system, we start by consid-
ering the averaged density matrix, eq.(77),
Pav(rT.r'T) = J dr0j drop(r0,r'o)
0ovErgd virdexp s ac(E(L 1) - E( 10 T))]
Cexpinon @t dE(WATt—rt)
QW (rtertt) + W{r't-r't1)} (170)

The density matrix is averaged over all impurity configurations resulting to the
impurity influence functional phase &{r, "),

k) <

(e W, - ) (171)

In general, the action function in eq.(170) can be written in the form s*r:/] —

[+ tf>(r,r)  then its corresponding equation of motion of the path rt  at
time. =+ IS

m{r)T+ ree(r)T- ¢ = (Vr<r )T (172)

The averaging < .. > is made with respect to the density matrix eq.(170). At the
steady state, < r >71— 0 then eq.(172) becomes

E(er ] = (VAS()T (173)
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This equation displays the balance between the momentum gained from the ap-
plied fields, the left hand side, and the momentum lose into the system, the right
hand side, by scatterings with impurities. Let US consider in more details of the
right hand side of eq.(173), from eq.(171),

MOUIT, = Mo odo < VUK )
-2 (r, - rj1)+ UIO! B rn)) >T (174)

Let us write the potential correlation function in its Fourier transformed form,
W{rt-rt) - (L75)
then eq.(174) becomes

(Vr(r,/")T = E w (okro da ((°(r,“rt) - ett(rrri)) ) (176)

Using the symmetric property of the Fourier component of the potential correla-

tion function,
Wik) = (=k), (1)

which arises from the model function of  (rt — rt) we chose, and the fact that

in the averaging procedure we have the condition 6 (rT—rT),
(0{r)) = 3 drTd drT6(rT- rT)0(r)p(rT.r'7), (178)
Then we can write eq.(176) in the form

(Vr(r,r'))T = -"Re (kK)k J da (eik - ) (179)
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With this expression, eq.(173) will take into the form
?6 <T>+f = —%Re% ; LV(k)k‘/: do <eik(rr—ra)> (180)

To determine its transport coefficient, we would like to move onto a moving frame,
R, that moves with the same velocity as the drift velocity of an electron at the
steady state, vo- That is we choose R = vo. This transformation can be done
by writing rt = Rt + * where * s the fluctuation of the electronic path by
the moving frame resulted from interactions with impurities. Suppose that no
consideration is paid on the dynamical properties of these fluctuations, and
this will make eg.(180) become the form

NogyD 4= - rd- {k)k[ dcrd k V ofeie - vy (181)

Now the averaging process in this equation is made with respect to the density

matrix of an electron on the moving frame. From eq.(151), the density matrix
will take the form
RIS I e
> .exp { ;_l(u uy)(mup + ——eRt)|0}

. / Dl / Dl (ST 721-SI'fcL+é(ua)) (182)

where fi is the Lorentz force;
h = f+— cW=-ef+— tvD. (183)

In the long correlation length limit, the impurity influence functional becomes

J 1
;quuu) _ﬁ%/ dt/ dt’(uy — uy)(up — uy) (184)
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Now, let us consider the average "eMU-'udd) by first writing

kuT—2 = ¥ 7 dthkut(Stt—t) —6(t —a))

* Jo

= J dtfs (185)

then the average is being a kind of generating functional of the delta function

force fst, g(fs). From the density matrix of eq.(182), then we get

g(fSS) = J du2du26( 2— 2)J duxJ dufp(ui, 'l
exp [*-(tit- tH(mvD+  tRY)loj
I V[ut] vutlexp ~-~ dt(C(u,ir,FL+1s)-C(u',u"]fD)\

cexp|-"22y dtd  dt( t-u't)fut' - 4)! (18

Applying Hubbard-Stratonovich transformation to the last term on the exponent
of the right hand side of eq.(186) , resulting in

o(h) = c~11J dae (| o(fs, a) (187)
where the transformed generating functional is

E(l<*) = 1 du2d du2s( 2— )

eXp dt(utu't)(m vD+ J V[Ut]J V[U't}
vexpjry ots o (CU G F)- E(L FY) (188)

where we have defined the forces F and ' in the form

E=litts+a and  Fr=fL+a (189)
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The detailed calculation of eq.(188) is done in the appendix , with the initial

condition of the ground state of the oscillator, results in the form

g{fs'.a) = exP ) <ftefiEf2sin(nif2){rt - £y

- (Fte-in(t-t)/2 - Ftein(- f)2) }. (190)

The expressions of the forces F and r', we see that they are all constant in time.

Let us also define some functions for convenience;

Li(t,a) = 3 dte~ictsin(nt/2)(8(t —t) — 6(t — a))
Bg(t,a) = mLJo dt}o G118 {t — ) —8(t — cr))eQu(-+1 2

A (A2 B (YN s —T) =g - ) (191)
Elr,T) = JTdtd Tdt'eut - t)/2sin (n{t-t")/2)

Eq.(190) becomes

g{fs>a) = exp{-ivDLi(T,a) - i(fs + ci)(Bi(t,T) - Bi(a,T))k

-ihk2B0(T,a)}. (192)

Inserting this equation back into g.(187), and making the a -integration, results
in

g(fs) = exp{-ivDLL(r,a)k - ifL(Bi(j,T) = Bi(cr,T))k

SFBotr<t) - MB - B[<T ) (193)
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With this resulting generating functional, the equation of motion, eq.(181) be-

COmes

~eyD+f = er )k 30 daeikiD®
COt@Xp{—Wﬁ)Li(t,a)k —ifz,(-6i(r, o) - Bi(a, T))k
-ihk280(T,a) - (B, T)- BL<TT))2} (194)
This equation is very complicated, we would like to evaluate it in our condition

for this chapter, they are long correlation length and large magnetic field, then
eq.(193) reduce to

Vapet = - rejirw (k)k 3o daeiwpgr- - r - (195)

Now let us use the fact that J v~k =~ ak»21 and the Fourier component of

the potential correlation function is

(k) = Wie -kt
where L - Putting this expression into the right hand side of eg.(195),
we get

e‘CB‘evD Pt o= - IReJAJ I dkike-kid +ihBor  +ikn T (196)

The <&(2)-integration is a gaussian integral, we can evaluate it and result in

-—evo +f ;T—Re r— V0| lr dair —C —lgl ----------- — 5197)

\ A+ ihBo(T,a)y

From this expression, we would like to define the relaxation time T from the
equation

— e+ = myD— (198)
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then, from eq.(197), we get

s TRer K S (199)

From eg.(198), we wolud like to write it in the matrix form as

| | 1 _f]\ [\
(-0 —m (200)
\ gy ) ( gV
which can define the mobility n to be
-1
V-h o = r:) - (201)
\ T
Or express in it's components as
( e) i +f(fbx) 2 (202)
-€ t
M L+ (f1Ti)2 (203)
The conductivity <ii is related to the mobility from the expression
0X = n(-e)HL (204)

where i the density of electrons at energy £. At this point, we put ad hoc the

many-electrons effect in terms of Fermi function

@) = (1 j e[E-EF/KT] (205)
The electrons at finite temperature have different contributions to the longitudinal

and transverse components of conductivity. For the longitudinal component, it
takes the form

(-«) ] dE(-"81F (E)].. (206)
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and the transverse component will take the form
<V = (-8) 3 dE}*-n(E)hyt{E). (207)

From the resulting mobility of eqs.(202) and (203), we can have the expressions
of the two components of conductivity. Numerical results of them are shown in

next section.
Numerical Results

To determine our results of eqs.(200), (203), (204) and (207), we would like
to write them in terms of dimensionless parameters defined in chapter [V. From

the definition of Bo(r,a) In €q.(192), we can show that

BOt,a) - —sm2n(T - €)/2). (208)

mil
Then the relaxation time in €q.(200) becomes

1 UEX2 & (¥
o= 8mh 6Me CTT (G + Shaman(T-a)2) "

Let us define « — (r —a) and then x* — xfl, then we have an expression of

(209)

dimensionless relaxation time «'1 = UTL as

(L +siazsin2(x'/2))2 (210)

where s defined to be equal to (I/2)mut)/jFn- From eqs.(203) and (204) we
have

b8 0+ e (1)
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and

: 12
Az mf?(1+Tp)' (212)

From eq.(207), the longitudinal component of the conductivity will take the form
= (-e)f" PE'(~4 A (£>,(E") (213)

and from the expression of N(E') and IYE) in eqs.(168) and (211), respectively,
We can write e in the form

(1S 111 A T TE'-E'F)IEiTe-1E -[n+1/2))*M*
fo= eexp S(I+V)/lo (1+ e(E-EF)E-TY (214)

From eq.(208), the transverse component of the conductivity will take the form
<r, = neor deIE)NE(2LD)

and from the expression of (E]) and «,« in eqs.(168) and (212), respectively, we
can write o,x in the form

fa = 1 n T eM-(n+i/2)
A P AVT + tf)'J0 (L+e(M»/hr)

Plots of axx and ayx are shown in fig.(5.4).

Discussions

The resulting density of states, (g), see fig.(5.1), show that the Landau
levels are broaden by the effects of disorder. But these states in the broadened
level are not all delocalized, see fig.(5.2), this causes the appearance of the lon-

gitudinal component of conductivity, see fig.(5.4) as a peak-like function at the



region of plateau-plateau transitions. This shows that in the region that an elec-
tron unlocalized by the disordering can drift in the longitudinal direction caused
by scatterings with impurities and give the contribution to the longitudinal com-
ponent of conductivity.



trans.comp. (true line)

Figure(5.4). Conductivities are plotted versus the Fermi energy, €'p; <xx (dashed line),

16

Fermi energy(mag.energy unit)

and ayx (true line). The calculation is made at the values of
Q=063 =04 and exr = 0.1,

long.comp,(dashed line)
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