การหาโครงสร้างของสารละลายผสมระหว่างน้ำกับแอมโมเนียที่ล้อมรอบไอออนลิเธียม โดยวิธีมอนติ คาร์โล

นางสาว สุขาดา เกี่ยวศรีกุล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูดรปริญญาวิทยาศาสตร์มหาบัณฑิต

ภาควิชาเคมี

บัณพิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

W.f. 2531

ISBN 974-569-600-5

ลิขสิทธิ์ของบัณพิดวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

016128

THE SOLVATION STRUCTURE OF LITHIUM ION IN WATER-AMMONIA MIXTURE

4

BY MONTE CARLO METHOD

MISS SUCHADA KHEAWSRIKUL

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Chemistry Graduate School Chulalongkorn University 1988 ISBN 974-569-600-5

Thesis Title The Solvation Structure of Lithium Ion in Water-Ammonia Mixture by Monte Carlo Method Miss Suchada Kheawsrikul By Department Chemistry Thesis Advisor Dr.Supot Hannongbua

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

Vajnablaga.... Dean of graduate School (Professor Thavorn Vajrabhaya, Ph.D.)

Thesis Committee

Salary Dhabanandam Chairman

(Associate Professor Salag Dhabanandana, Ph.D.)

S. Harmanghera Thesis Advisor

(Supot Hannongbua, Ph.D.)

Sainat kolupot Member

(Associate Professor Sirirat Kokpol, Ph.D.)

Simhala Member

(Assistant Professor Jumras Limtrakul, Ph.D.)

พิมพ์ต้นฉบับบทกัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

สุขาดา เกี่ยวศรีกุล : การทาโครงสร้างของสารละลายผสมระหว่างน้ำกับแอมโมเนีย ที่ล้อมรอบไอออนลิเธียมโดยวิธีมอนติ คาร์โล (THE SOLVATION STRUCTURE OF LITHIUM ION IN WATER-AMMONIA MIXTURE BY MONTE CARLO METHOD) อ-ที่ปรึกษา : ดร.สุพจน์ หารหนองบัว, 153 หน้า.

ได้ทำการศึกษาทาโครงสร้างของสารละลายแอมโมเนียเข้มขัน 18.45 โมลเปอร์เซนด์ ที่ต้อมรอบไอออนลิเรียมที่อุณฑภูมิ 20 องศาเซลเซียส โดยวิธีมอนติ คาร์โลตามแบบของเมโทรไปลิส ระบบที่ศึกษาประกอบด้วยอนุภาคทั้งหมด 202 อนุภาค คือ ไอออนลิเรียม 1 ไอออน แอมโมเนีย 37 โมเลกุล และน้ำ 164 โมเลกุล ค่าความหนาแน่นของสารละลายจากการทดลองที่นำมาใช้มีค่า 0.9307 กรัมต่อลูกบาศก์เซนติเมตร ความยาวของลูกบาศก์ซึ่งมีคุณสมบัติพีรืออร์ดิกมีค่าเท่ากับ 18.56 อังสตรอม ได้นำสมการศักย์พังก์ชันทั้งหมด 5 สมการที่ได้จากการคำนวณโดยวิธีแอบ อินนิขิ– โอมาใช้เพื่อแทนแรงกระทำระหว่างอนุภาคทุกคู่ โดย 4 คู่ได้มาจากเอกสารอ้างอิง ส่วนศักย์พังก์ชัน ระหว่างลิเธียมและแอมโมเนียได้สร้างขึ้นใหม่ในการศึกษาครั้งนี้ ผลจากการคำนวณพบว่าไอออน ลิเรียมถูกล้อมรอบด้วยโมเลกุลของน้ำได้มากกว่าแอมโมเนีย โครงสร้างในชั้นแรกของไอออนลิเรียม ประกอบด้วยน้ำ 4 โมเลกุล และ แอมโมเนีย 2 โมเลกุล ส่วนในชั้นที่สองประกอบด้วยน้ำและ แอมโมเนีย 8 และ 4 โมเลกุล ตามลำดับ ซึ่งสามารถเขียนแทนได้ด้วย Li[(H₂O) (NH₃)₂]^I [(H₂O)₈(NH₃) 4 ^{III} นอกจากนี้ยังได้วิจารณ์ผลจากการกระจายของเลขโดออร์ดิเนขัน และการ กระจายพลังงานในลักษณะของกลโกการแลกเปลี่ยน

ภาควิชา	เคมี	a a a athra the hust
สาขาวิชา	เคมือนินทรีย์	ลายมอชอนสต/
ปีการศึกษา	2531	ลายมือชื่ออาจารย์ที่ปรึกษา

พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

SUCHADA KHEAWSRIKUL : THE SOLVATION STRUCTURE OF LITHIUM ION IN WATER-AMMONIA MIXTURE BY MONTE CARLO METHOD. THESIS ADVISOR : SUPOT HANNONGBUA, Ph.D. 153 PP.

The solvation structure of lithium ion in 18.45 mole % aqueous ammonia at 20 $^{\circ}$ C is investigated, using the Metropolis Monte Carlo method. The system consists of 202 particles , one lithium ion, 37 ammonia and 164 water molecules. The experimental density of 18.45 mole % aqueous ammonia $(0.9307 \text{ g.cm}^{-3})$ was used, leading to a periodic sidelength of 18.56 Å and half of this length was chosen as spherical cut-off. Five pair potential functions, based on ab inito calculations, are used in order to represent all pairs of interactions, four of them were taken from the literatures while the lithium ion/ammonia pair potential was newly constructed in this work. The results show that lithium ion is preferentially solvated by water molecule. There are 4 water and 2 ammonia molecules in the first shell of lithium ion, the second one 8 water and 4 ammonia molecules. The fully solvated lithium ion in 18.45 mole % aqueous ammonia can be characterized by $Li[(H_20)_4(NH_3)_2]^I[(H_20)_8(NH_3)_4]^{II}$. Distribution of coordination numbers and binding energies have been discussed with respect to exchange mechanisms.

ลายมือช้อนิสิต	Luchada	_Cheaus	rikul
ລາຍນີ້ອີ້ອອາຈາรຍ໌	ที่ปรึกษา .	S. Ham	nghua

ACKNOWLEDGEMENTS

I would like to express my deeply felt gratitude to my advisor Dr.Supot Hannongbua, who was especially helpful in guiding, advising understanding and encouraging me throughout this research and also for preparing this thesis. I am very much obliged to Associate Professor Dr.Salag Dhabanandana, Associate Professor Dr.Sirirat Kokpol and Assistant Professor Dr.Jumras Limtrakul for their valuable suggestions as thesis examiners. I also want to express my special appreciation to visiting Professor Dr.Bernd M. Rode for his valuable discussions and partially proofreading this thesis, Dr.Michael M. Probst and Michael G. Schwendinger for computer-programming assistance, Miss Supa Polman for her encouragement. It is my pleasure to thank the Computational Chemistry Unit Cell for the facility of computer and other instruments throughout this research.

Further appreciation is due to the Department of Chemistry, Chulalongkorn University for providing a University Development Commission (UDC) scholarship for which made this investigation possible. Financial support by UDC and the generous supply of computer time by the Computer Center of Chulalongkorn University are also gratefully acknowledged.

Finally, I would like to extend my appreciation to my parents, sisters and brother, who have given me encouragement throughout the Master program.

CONTENTS

Pages

Abstract in Thai		iv
Abstract in Engl:	ish	v
Acknowledgement		vi
List of Figures		xi
List of Tables .		xiv
Chapter		
I INTRO	DUCTION	1
II QUANTI	UM MECHANICS THEORY ; Ab initio theory	6
2.1	The molecular Hamiltonian operator	7
2.2	The wavefunctions	8
2	2.2.1 Independent electron model	8
2	2.2.2 Molecular orbitals and the Linear	
	Combination of Atomic Orbitals (LCAO)	
	approximation	9
F	Basis functions	10
2.3 1	Minimized of the total energy (Self Consistent	
F	Field thecry)	12
III ANALYI	FICAL PAIR POTENTIAL FUNCTION	15
3.1 I	Details of calculation	17
3	3.1.1 Selection of geometries	17
3	3.1.2 Perfomance the SCF calculation	19
	3.1.2.1 Ammonia monomer	19

Contents continued

 $A_{i} \in$

Chapter					Pages
			3.1.2.2	Lithium ion/ammonia adduct	20
		3.1.3	Fitting o	of pair intermolecular energies to)
			the funct	tional form	34
	0	3.1.4	Testing	the quality of the function	35
	3.2	Result:	s and disc	cussion	35
IV	MONT	E CARLO	METHOD .		41
	4.1	Genera	l Monte Ca	arlo method	41
	4.2	Metrop	olis Monte	e Carlo method	43
	4.3	Calcula	ating proc	cedures	43
	4.4	Charac	teristics	of the simulation	46
		4.4.1	Periodic	boundary condition	46
		4.4.2	Spherica	l cut-off	47
		4.4.3	Radial d	istribution functions and their	
			integrat	ion	48
v	MONT	E CARLO	SIMULATI	ON OF LITHIUM ION IN 18.45 MOLE %	
	AQUE	OUS AMM	ONIA SOLU	TION	50
	5.1	Method	of calcu	lations	50
	5.2	Result	s and dis	cussion	51
		5.2.1	Radial d	istribution functions	53
			5.2.1.1	Ion/molecule radial distribution	
				functions	53
			5.2.1.2	Molecule/molecule radial	
				distribution functions	60

chapter		Pa	ages
	5.2.2	Distribution of coordination numbers	70
	5.2.3	Distribution of angles	79
	5.2.4	Distribution of interaction energies	81
		5.2.4.1 Ion/molecule energy	
		distributions	83
		5.2.4.2 Molecule/molecule energy	
		distributions	85
	5.2.5	Solvent coordinated in the ion's	
		first shell	88
VI S	SUMMARY		91
6	5.1 Li(I)/	NH ₃ analytical intermolecular pair	
	potent	ial	91
6	.2 Monte	Carlo simulation of a lithium ion in	
	18.45	mole % aqueous ammonia solution	91
REFERENCES .	•••••	•••••••••••••••••••••••••••••••••••••••	93
APPENDIX I	Numeric	al radial distribution functions obtained	
	from Mo	nte Carlo simulation (R is given in Å)	103
	A. Lit	hium ion/water radial distribution	
	fun	ctions	103
	B. Lit	hium ion/ammonia radial distribution	
	fun	ctions	105
	C. Wate	er/water radial distribution functions	109
	D. Amm	onia/water radial distribution functions	114

Content continued

£1.

appendix	Fa	ages
	E. Water/ammonia radial distribution functions	119
	F. Ammonia/ammonia radial distribution	
	functions	125
APPENDIX II	Program radial distribution functions	131
APPENDIX III	Program distribution coordination numbers	133
APPENDIX IV	Program distribution of angles for	
	lithium ion/water	135
APPENDIX V	Program distribution of angles for	
	lithium ion/ammonia	138
APPENDIX VI	Program distribution of energies for	
	lithium ion/water	142
APPENDIX VII	Program distribution of energies for	
	lithium ion/ammonia	146
APPENDIX VIII	Program distribution of distances and angles for	
	two ammonia molecules in the first shell of	
	lithium Ion	150
VITA	• • • • • • • • • • • • • • • • • • • •	153

.

LIST OF FIGURES

Figure	S	Pages
3.1	Definition of geometric variables for configurations of	
	lithium ion/ammonia	18
3.2	Comparison of the model calculated ($\ensuremath{\Delta \mathrm{E}_{\mathrm{FIT}}}$) with the	
	quantum mechanically calculated energies (${}^{\Delta}\text{E}_{ extsf{SCF}}$). The	
	line of unit slope represents perfect agreement between	
	the model and the quantum mechanical calculations	39
3.3	Comparison between the DZP ab-initio energies (), $\Delta E_{\rm SCF}$	
	and the fitted analytical potential (), $\Delta E_{\mbox{FIT}}$	40
4.1	Diagram of Monte Carlo calculating procedures	45
4.2	Two dimensional illustration of periodic boundary	
	condition	47
5.1	Convergence characteristics of the present Monte Carlo	
	simulation for lithium ion in 18.45 mole % aqueous ammonia	
	solution at 20 $^{\circ}$ C	52
5.2	Lithium ion/water radial distribution functions and runnin,	g
	integration numbers	56
5.3	Lithium ion/ammonia radial distribution functions and	
	running integration numbers	58
5.4	Water/water radial distribution functions and running	
	integration numbers	61
5.5	Ammonia/ammonia radial distribution functions and running	
	integration numbers	64

÷

List of figures continued

.

Figure	S	Pages
5.6	Water/ammonia radial distribution functions and running	
	integration numbers	65
5.7	Ammonia/ammonia radial distribution functions and running	
	integration numbers	67
5.8	Comparison of N-O radial distribution function. Solid	
	line and dash line show computed RDF and RDF obtained	
	from X-ray scattering, respectively	69
5.9	Distributions of coordination numbers for water in the	
	first solvation sphere of lithium ion	71
5.10	Distributions of coordination numbers for ammonia in the	
	first solvation sphere of lithium ion	71
5.11	Total distributions of coordination numbers in the first	
	solvation sphere of lithium ion	72
5.12	Distributions of coordination numbers for ammonia in the	
	first solvation sphere of water	73
5.13	Distributions of coordination numbers for hydrogen	
	neighbours of water	76
5.14	Distributions of coordination numbers for water in the	
	first solvation sphere of ammonia	77
5.15	Distributions of coordination numbers for hydrogen	
	neighbours of ammonia	78
5.16	Definition of the angles and used in angular	
	distributions	79

xii

List of figures continued

· ·

s. ____

Figure	S	Pages
5.17	Distributions of orientation of water molecules in the	
	first solvation sphere of lithium ion	80
5.18	Distributions of orientation of ammonia molecules in the	
	first solvation sphere of lithium ion	81
5.19	Lithium ion/water pair energy distribution functions	83
5.20	Lithium ion/ammonia pair energy distribution functions	84
5.21	Water/water pair energy distribution functions	85
5.22	Ammonia/ammonia pair energy distribution functions	86
5.23	Water/ammonia pair energy distribution functions	87
5.24	Distributions of N-Li(I)-N angles for the two ammonia	
	molecules located in the first solvation sphere of	
	lithium ion	88
5.25	Distributions of distance between nitrogen atoms fcr the	
	two ammonia molecules in the first located solvated	
	sphere of lithium ion	89
5.26	Computer-generated representation of one of the 10 $^{ m 6}$	
	possible configurations of solvent molecules in the	
	first solvation shell of lithium ion	90

LIST OF TABLES

Tables

.

3.1	Coordinates of ammonia molecule (in atomic units)	20
3.2	Spherical polar angles (degrees) for lithium ion in	
	different directions	21
3.3	Comparison of total energies and dipole moments of ammonia	
	monomer	22
3.4	Orbital exponents fcr the DZP basis set of atoms	23
3.5	Coordinates of the lithium ion for lithium ion/ammonia	
	adduct where (θ , ϕ) = (0 ⁰ ,0 ⁰) and computed interaction	
	energies, ΔE_{SCF} , (in kcal.mol ⁻¹)	24
3.6	Coordinates of the lithium ion for lithium ion/ammonia	
	adduct where (θ , ϕ) = (0° , 30°) and computed interaction	
	energies, ΔE_{SCF} , (in kcal.mol ⁻¹)	25
3.7	Coordinates of the lithium ion for lithium ion/ammonia	
	adduct where (θ , ϕ) = (0 [°] ,60 [°]) and computed interaction	
	energies, ΔE_{SCF} , (in kcal.mcl ⁻¹)	26
3.8	Coordinates of the lithium ion fcr lithium ion/ammonia	
	adduct where (θ , ϕ) = (0° , 90°) and computed interaction	
	energies, ΔE_{SCF} , (in kcal.mcl ⁻¹)	26
3.9	Coordinates of the lithium ion for lithium ion/ammonia	
	adduct where (θ , ϕ) = (0° , 120 $^{\circ}$) and computed interaction	
	energies, ^A E _{SCF} , (in kcal.mol ⁻¹)	27
3.10	Coordinates of the lithium ion for lithium ion/ammonia	
	adduct where (θ , ϕ) = (0 ⁰ ,150 ⁰) and computed interaction	

Tables

.

	energies, ΔE_{SCF} , (in kcal.mol ⁻¹)	27
3.11	Coordinates of the lithium ion for lithium ion/ammonia	
	adduct where (θ , ϕ) = (0 ⁰ ,180 ⁰) and computed interaction	
	energies, ΔE_{SCF} , (in kcal.mol ⁻¹)	28
3.12	Coordinates of the lithium ion for lithium ion/ammonia	
	adduct where (θ , ϕ) = (30 [°] ,60 [°]) and computed interaction	
	energies, ΔE_{SCF} , (in kcal.mcl ⁻¹)	28
3.13	Coordinates of the lithium ion for lithium ion/ammonia	
	adduct where (θ , ϕ) = (30°,90°) and computed interaction	
	energies, ΔE_{SCF} , (in kcal.mol ⁻¹)	29
3.14	Coordinates of the lithium icn for lithium ion/ammonia	
	adduct where (θ , ϕ) = (30 [°] ,120 [°]) and computed interaction	
	energies, ^A E _{SCF} , (in kcal.mol ⁻¹)	29
3.15	Coordinates of the lithium ion for lithium ion/ammonia	
	adduct where (θ , ϕ) = (60°,30°) and computed interaction	
	energies, ΔE_{SCF} , (in kcal.mol ⁻¹)	30
3.16	Coordinates of the lithium ion for lithium ion/armonia	
	adduct where (θ , ϕ) = (60 [°] ,60 [°]) and computed interaction	
	energies, ∆E _{SCF} , (in kcal.mol ⁻¹)	31
3.17	Coordinates of the lithium ion for lithium ion/ammonia	
	adduct where (θ , ϕ) = (60 ⁰ ,90 ⁰) and computed interaction	
	energies, <code>AE_{SCF}, (in kcal.mol⁻¹)</code>	32

.

3.18 Coordinates of the lithium ion for lithium ion/ammonia

Pages

.

Table	S	Pages
	adduct where (θ , ϕ) = (60°,120°) and computed interaction	
	energies, ΔE_{SCF} , (in kcal.mol ⁻¹)	33
3.19	Coordinates of the lithium ion for lithium ion/ammonia	
	adduct where (θ , φ) = (60 [°] , 150 [°]) and computed interaction	
	energies, ΔE_{SCF} , (in kcal.mol ⁻¹)	33
3.20	Final optimized parameters for the interaction of H and N	
	atoms of ammonia with lithium ion. Interaction energies and	l
	r have been evaluated in kcal.mcl ⁻¹ and atomic units,	
	respectively	37
3.21	Number of SCF-data points (N), standard deviation	
	(in kcal.mol ⁻¹), number of testing points (N _{test})	
	and σ_{test} for each optimization step	38
5.1	Structural results of the first hydration shell of lithium	
	ion in water	55
5.2	Structural properties of liquid water	62
5.3	Characteristic values of the radial distribution functions	
	for lithium ion in 18.45 mole % aqueous ammonia solution,	
	$i^{th}Max$, $i^{th}Min$ and n_i are the i^{th} maximum, the the i^{th}	
	minimum and the integration numbers up to the i $^{ extsf{th}}$ minimum,	
	respectively	. 68