ลักษณะเฉพาะของแลนทานัมอะลูมิเนตที่ใช้เป็นอิเล็กโทรไลด์ ในเซลล์เชื้อเพลิงออกไซด์ของแข็ง

นางสาวเสาวภาพ รักษาพราหมณ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีเชรามิก ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2543 ISBN 974-13-1201-6 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

TU N.U. 2546

11990910X

CHARACTERISTICS OF LANTHANUM ALUMINATE AS AN ELECTROLYTE IN SOLID

OXIDE FUEL CELL

Miss Saowapap Ragsapram

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Ceramic Technology Department of Materials Science Faculty of Science Chulalongkorn University Academic Year 2000 ISBN 974-13-1201-6

CHARACTERISTICS OF LANTHANUM ALUMINATE AS AN
ELECTROLYTE IN SOLID OXIDE FUEL CELL
Saowapap Ragsapram
Ceramic Technology
Assistant Professor Sutin Kuharuangrong, Ph.D

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of

the Requirements for the Master's Degree

Wanch Phtc

Dean of Faculty of Science

(Associate Professor Wanchai Phothiphichitr, Ph.D.)

THESIS COMMITTEE

9. Churry july t

Chairman

(Associate Professor Saowaroj Chuayjuljit)

Embi Kuhamagung

Thesis Advisor

(Assistant Professor Sutin Kuharuangrong, Ph.D.)

Supert

Member

(Associate Professor Supatra Jinawath, Ph.D.)

Smile J.

Member

(Sirithan Jiemsirilers, Ph.D.)

เสาวภาพ รักษาพราหมณ์ : ลักษณะเฉพาะของแลนทานัมอะลูมิเนตที่ใช้เป็นอิเล็กโทรไลต์ในเซลล์ เชื้อเพลิงออกไซด์ของแข็ง (CHARACTERISTICS OF LANTHANUM ALUMINATE AS AN ELECTROLYTE IN SOLID OXIDE FUEL CELL) อ. ที่ปรึกษา : ผศ. ดร. สุทิน คูหาเรืองรอง, 71 หน้า. ISBN 974-13-1201-6.

งานวิจัยนี้ได้ทำการศึกษาผลของการเติมสตรอนเทียมและแมกนีเซียมที่มีต่อสมบัติของ แลนทานัมอะลูมิเนตที่ใช้เป็นอิเล็กโทรไลต์ในเซลล์เชื้อเพลิงออกไซด์ของแข็ง การเตรียมสารประกอบ แลนทานัมอะลูมิเนตทำได้โดยวิธีการผสมสารออกไซด์และคาร์บอเนตแล้วทำการเผาอบผนึกที่อุณหภูมิ 1500, 1550 และ 1575 องศาเซลเซียส การตรวจสอบ เฟส โครงสร้างผลึกและโครงสร้างจุลภาคโดยใช้ XRD และ SEM วิเคราะห์ค่าสัมประสิทธิ์การขยายตัวเมื่อได้รับความร้อนโดยใช้เครื่อง dilatometer และวัดค่าการ นำไฟฟ้าที่ขึ้นกับอุณหภูมิโดยวิธี AC impedance และ DC four probe

จากผลการทดลองพบว่าสารประกอบแลนทานัมอะลูมิเนตที่ไม่มีตัวเติมและที่มีตัวเติม สตรอนเทียมและแมกนีเซียมมีโครงสร้างคล้ายคิวบิคแต่มีมุมไม่เท่ากับ 90° นอกจากนี้ยังพบว่ามีเฟสอื่นเกิด ขึ้นในชิ้นงานหลังจากการเผาอบผนึก ขนาดของเกรนมีแนวโน้มเล็กลงเมื่อเติมสตรอนเทียม 5 โมลเปอร์เซ็นต์ และเมื่อเติมสตรอนเทียมและแมกนีเซียมมากขึ้น ค่าสัมประสิทธิ์การขยายตัวเมื่อได้รับความร้อนเพิ่มขึ้น นอกจากนี้พบว่าการนำไฟฟ้าของ La_{0.9}Sr_{0.1}Al_{0.85}Mg_{0.15}O_{2.875} ที่วัดโดยวิธี AC impedance มีค่าสูงสุด เมื่อเปรียบเทียบกับสูตรอื่นที่ใช้ในการทดลองคือมีค่าประมาณ 301×10^{.3} ซิเมนส์ต่อเซนติเมตรที่อุณหภูมิ 1000 องศาเซลเซียส และ 37 ×10^{.3}ซิเมนส์ต่อเซนติเมตรที่อุณหภูมิ 800 องศาเซลเซียส

ลายมือชื่อนิสิต (สาวการ รถ การการ จั ลายมือชื่ออาจารย์ที่ปรึกษา (การการ จุ.) รูโน

ภาควิชา วัสดุศาสตร์ สาขาวิชา เทคโนโลยีเซรามิก ปีการศึกษา 2543 ## 4172519523 : MAJOR Ceramic Technology

KEY WORD : FUEL CELL / SOLID OXIDE FUEL CELL / SOLID ELECTROLYTE /

LANTHANUM ALUMINATE

SAOWAPAP RAGSAPRAM : CHARACTERISTICS OF LANTHANUM ALUMINATE AS AN ELECTROLYTE IN SOLID OXIDE FUEL CELL. THESIS ADVISOR : ASSIST. PROF. SUTIN KUHARUANGRONG, Ph.D. 71p. ISBN 974-13-1201-6.

This research aimed to study the effect of Sr and Mg substitutions on the properties of LaAIO₃ used as an electrolyte in solid oxide fuel cell. All compositions were synthesized by conventional mixing process of oxides and carbonate and sintered at 1500, 1550 and 1575°C. Phase, crystal structure and microstructure were carried out by XRD and SEM and the thermal expansion coefficient was determined by a dilatometer. The electrical conductivity as a function of temperature was investigated by AC impedance spectroscopy and DC four probe measurements.

The XRD results revealed that the structure of undoped and Sr- and Mg- doped compositions appeared to be distorted from cubic. After sintering, second phases could be observed in all compositions. The SEM microstructure showed that with Sr-dopant, the average grain size of LaAlO₃ decreased. The thermal expansion of all compositions increased as the amount of Sr and Mg increased. The electrical measurement revealed that the highest electrical conductivity of 301.06x10⁻³ S/cm at 1000^oC and 37.23x10⁻³ S/cm at 800^oC could be obtained from the composition of La_{0.9}Sr_{0.1}Al_{0.85}Mg_{0.15}O_{2.875}.

Department Materials Science Field of study Ceramic Technology Academic year 2000

Acknowledgement

I would like to express my deep gratitude to my advisor, Assistant Professor Dr. Sutin Kuharuangrong, for her encouragement, consistent guidance and for all that I have learnt from her throughout this research. Her advises never failed to inspire the good idea and increase my motivation.

I would like to thank the Graduate School of Chulalongkorn University for the research financial support.

Thank to all of my friends at the Department of Material Science for their suggestion and assistance.

Finally, I would like to express my gratitude to my family for their loves, understanding and encouragement.

Contents

page

Abstract (Tha	ii)	IV
Abstract (Eng	glish)	\vee
Acknowledge	ement	vi
Contents		vii
Contents of T	ables	Х
Contents of F	igures	xi
Chapter 1	INTRODUCTION	1
Chapter 2	LITERATURE REVIEW	5
	2.1 Solid Oxide Fuel Cell	5
	2.1.1 Fundamental operating of SOFC	5
	2.1.2 Cell components and requirement	6
	2.2 Solid electrolyte	9
	2.2.1 Zirconia based	9
	2.2.2 Ceria based	10
	2.2.3 Bismuth oxide based	10
	2.2.4 Perovskite oxide based	10
2.3 lc	onic Conductivity in Perovskite – type Oxide	11
	2.3.1 Perovskite structure	11
	2.3.2 Ionic conductivity	14
	2.4 AC impedance spectroscopy	15
Chapter 3	EXPERIMENTAL PROCEDURE	16
	3.1 Raw material and characterization	16
	3.1.1 Starting raw materials	16
	3.1.2 Raw materials characterization	16
	3.1.2.1 Phase analysis	16
	3.1.2.2 Thermal analysis	17

Contents (cont.)

page

	3.2 Preparation of $La_{1-x}Sr_xAl_{1-y}Mg_yO_{3-\delta}$	17
	3.3 Characterization of sintered materials	20
	3.3.1 Phase analysis	20
	3.3.2 Density measurement	20
	3.3.3 Electrical conductivity measurement	20
	3.3.3.1 AC impedance spectroscopy	20
	3.3.3.2 DC four-point method	23
	3.3.4 Microstructure	23
	3.3.5 Thermal expansion coefficient	23
Chapter 4	RESULTS AND DISCUSSION	25
	4.1 Raw material characterization	25
	4.1.1 Phase analysis	25
	4.1.2 Thermal analysis of as-received La ₂ O ₃ and MgO	25
	4.2 Determination of calcining temperature of $La_{1,x}Sr_xAl_{1,y}Mg_yO_{3-\delta}$	31
	4.3 Determination of LaAIO ₃ structure	35
	4.4 Effect of dopant on structural parameter of calcined powder	38
	4.5 Effect of dopant on properties of specimens after sintering	40
	4.5.1 Phase analysis	40
	4.5.2 Density	42
	4.5.3 Electrical conductivity	43
	4.5.4 Microstructure	57
Sec.	4.5.5 Thermal expansion coefficient	58
Chapter 5	CONCLUSIONS	62
References		64

viii

Contents (cont.)

Page

Appendices	66
Appendix A	67
Appendix B	70
Biography	71

Contents of Tables

Table 1.1 Summary of types and their operating condition	3
Table 3.1 Chemicals used in preparation of $La_{1-x}Sr_xAl_{1-y}Mg_yO_{3-\delta}$	16
Table 3.2 The stoichiometric ratio of $La_{1-x}Sr_xAl_{1-y}Mg_yO_{3-\delta}$	19
Table 4.1 The XRD data of std	37
Table 4.2 The lattice parameter determined by cubic approximation and density	
of all compositions	38
Table 4.3 The ionic radii	39
Table 4.4 Density of sintered samples	42
Table 4.5 Calculated activation energy of S5, S10 and S15	46
Table 4.6 Calculated $\sigma_{_{1000}}$ and $\sigma_{_{800}}$ of S5, S10 and S15	47
Table 4.7 Calculated activation energy of all compositions by AC impedance as a	
function of composition	51
Table 4.8 Calculated $\sigma_{_{1000}}$ and $\sigma_{_{800}}$ of all compositions by AC impedance as a	
function of composition	55
Table 4.9 The $\sigma_{_{1000}}$ and $\sigma_{_{800}}$ of S5, S10 and S15 from dc and ac method	56
Table 4.10 Thermal expansion coefficient (TEC) of std, S5 sintered at 1500 $^\circ$ C and	
S10, S15, M5, M10 and M15 sintered at 1575°C	58

page

Contents of Figures

	page
Figure 1.1 Schematic diagram of fuel cell	1
Figure 1.2 Fuel cell component	2
Figure 2.1 Fundamental reactions in the solid oxide fuel cell	6
Figure 2.2 Arrhenius plots of conventional oxide ionic conductor	9
Figure 2.3 Ideal perovskite structure	12
Figure 2.4 Effect of ion in A site on the electrical conductivity	13
Figure 2.5 The AC impedance plot	15
Figure 3.1 Flow chart of material preparation process	18
Figure 3.2 Schematic of apparatus used for the AC conductivity measurement	22
Figure 3.3 Schematic of apparatus used for the DC conductivity measurement	24
Figure 4.1 XRD patterns of received raw materials	26
Figure 4.2 DTA and TGA traces of as-received (a) La_2O_3 and (b) MgO	27
Figure 4.3 Firing schedule of as-received (a) La_2O_3 and (b) MgO	29
Figure 4.4 XRD patterns of as-received and calcined (a) La_2O_3 and (b) MgO	30
Figure 4.5 DTA curves of std, S15 and M15	32
Figure 4.6 Firing schedule of all compositions	33
Figure 4.7 XRD patterns of std, S5, S10 and S15 calcined at 1350°C for 4 hours	34
Figure 4.8 XRD patterns of M5, M10 and M15calcined at 1350°C for 4 hours	34
Figure 4.9 XRD pattern of std calcined at 1350°C for 4 hours	36
Figure 4.10 XRD patterns of std and S5 sintered at 1500°C and S10 and S15	
sintered at 1575°C	41
Figure 4.11 XRD patterns of M5, M10 and M15 sintered at 1575°C	41
Figure 4.12 Electrical conductivity vs reciprocal temperature of S5 sintered at	
1500°C, S10 and S15 sintered at 1575°C	44
Figure 4.13 Electrical conductivity vs reciprocal temperature of S5, S10 and S15	
illustrated the two regions	45
Figure 4.14 Impedance plots of std at 300-900	48

Contents of Figures (cont.)

XII

Figure 4.15 Impedance plots of S10 at 400-500°C	49
Figure 4.16 Impedance plots of sintered at 1500, 1550 and 1575°C and its bulk	
density	50
Figure 4.17 AC conductivity vs reciprocal temperature of S5 sintered at 1500° C,	
S10 and S15 sintered at 1575°C	52
Figure 4.18 AC conductivity vs reciprocal temperature of S10, M5, M10 and M15	
sintered at 1575°C	52
Figure 4.19 AC conductivity vs reciprocal temperature of S5, S10 and S15	
illustrated the two straight lines with the equation and the regression	
coefficient	53
Figure 4.20 AC conductivity vs reciprocal temperature of M5, M10 and M15	
illustrated the two straight lines with the equation and the regression	
coefficient	54
Figure 4.21 SEM micrograph of std sintered at 1500°C 4 hours	59
Figure 4.22 SEM micrograph of S5 sintered at 1500°C 4 hours	59
Figure 4.23 SEM micrograph of S10 sintered at 1575°C 4 hours	60
Figure 4.24 SEM micrograph of S15 sintered at 1575°C 4 hours	60
Figure 4.25 SEM micrograph of M15 sintered at 1575°C 4 hours	61

.