# การไฮโดรจีเนตของเมทิลริซิโนลีเอต



นายสุรพล ดาวพีเศษ

วิทยานีพนธ์นี้ เป็นส่วนหนึ่งของการคึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต ภาควิชาวิศวกรรมเคมี บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ISBN 974-567-322-6 ลิขลิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

Hydrogenation of Methyl ricinoleate

Mr. Surapol Daopiset

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

Department of Chemical Engineering

Graduate school

Chulalongkorn University

1987

ISBN 974-567-322-6

Thesis Title:

Hydrogenation of Methyl Ricinole

By:

Mr. Surapol Daopiset

Department:

Chemical Engineering

Thesis Advisor:

Associate Professor Piyasarn Praserthdam, Dr. Ing.

Thesis Coadvisor:

Miss Boonsri Vangmaneerat, M. Eng.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfil ment of the Requirements for the Master's Degree.

ajras Laya .... Dean of Graduate School

(Professor Thavorn Vajarabhaya, Ph.D.)

Thesis Committee

Chirt Algo. Chairman

(Assistant Professor Chairit Satayaprasert, Dr. Ing.)

(Associate Professor Piyasarn Praserthdam, Dr. Ing.)

(Assistant Professor Ura Pancharoen, Ph.D.)

Record Wangmangrat Member

(Miss Boonsri Vangmaneerat, M.Eng.)

Thesis Title: Hydrogenation of Methyl Ricinoleate

Name: Mr. Surapol Daopiset

Thesis Advisor: Associate Professor Piyasarn Praserthdam, Dr. Ing.

Thesis Coadvisor: Miss Boonsri Vangmaneerat, M.Eng.

Department: Chemical Engineering

Academic Year: 1986

#### **ABSTRACT**

The hydrogenation of methyl ricinoleate was studied under varying reaction condition using nickel catalyst Ni 3742D, which is the best commercial catalyst. The suitable operating condition, for hydrogen gas feeding at the desired temperature of system, was found to be ; temperature 150 C, hydrogen pressure 150 psig, agitation speed 800 rpm, hydrogenation time 2 hours and concentrarion of catalyst 0.07% Ni/oil. The resulting methyl ester wax had an iodine value of 2.72, a hydroxyl value of 163.12, an acid value of 1.47, and melting point 48.5 C. From studying the effect of hydrogen gas feeding at initial heating up the system, the better quality product was obtained. In addtion, from studying the effect of storage time of methyl ricinoleate after the four months of finding suitable operating condition, the lower quality product was obtained. This quality could be improved by using the initial hydrogen feeding method.

หัวข้อวิทยานิพนธ์
ชื่อนิสิต
อาจารย์ที่ปรึกษา
อาจารย์ที่ปรึกษาร่วม
ภาควิชา

การไอโดรจีเนตของเมทิลริซิโนลีเอต นายสุรพล ดาวพิเศษ รองศาสตราจารย์ ดร.บิยะสาร ประเสริฐธรรม นางสาวบุญศรี วังมณีรัตน์ วิศวกรรมเคมี

### บทคัดย่อ

การศึกษาการไอโดรจีเนตของเมทิลริซิโนลีเอดภายใต้ภาวะต่างกัน โดย ใช้ตัวเร่งปฏิกิริยานิกเกิล Ni 3742 D ซึ่งเป็นตัวเร่งปฏิกิริยาที่พบว่ามีประลิทธิภาพดี ที่สุด และพบว่าภาวะที่เหมาะสม ซึ่งทำการทดลองโดยผ่านแก๊สไอโดรเจนเข้าไป ในเครื่องปฏิกรณ์ขณะที่อุณหภูมิที่ทำการทดลองคงที่คือ อุณหภูมิ 150 ° ความดัน ไอโดรเจน 150 ปอนด์ต่อตารางนิ้ว ความเร็วรอบของการกวน 800 รอบต่อนาที ระยะเวลาของปฏิกิริยา 2 ชั่วโมง และความเข้มข้นของตัวเร่งปฏิกิริยา 0.07 % นิเกิลต่อน้ำหนักเมทิลริซิโนลีเอต ผลิตภัณฑ์ที่ได้มีคุณสมบัติ ดังนี้ ค่าไอโอดีน 2.72 ค่าไอดรอกซิล 163.12 ค่าความเป็นกรด 1.47 และจุดหลอมเหลว 48.5 ° ช. จากการศึกษาผลของการผ่านแก๊สไอโดรเจนเข้าไปในเครื่องปฏิกรณ์ขณะเริ่มให้ความ ร้อนแก่ระบบ พบว่าผลิตภัณฑ์ที่ได้มีคุณภาพดีขึ้นเมื่อเปรียบเทียบกับผลิตภัณฑ์ที่ได้จาก ภาวะการทดลองเดียวกับข้างต้น และจากการศึกษาผลของเวลาในการเก็บเมทิล-ริซิโนลีเอตหลังจากการหาภาวะที่เหมาะสมแล้ว 4 เดือน ปรากฏว่าผลิตภัณฑ์ที่ผ่านการ ไอโดรจีเนตมีคุณภาพต่ำลง และจะปรับปรุงคุณภาพของผลิตภัณฑ์ดังกล่าวนี้ให้ดีขึ้นเมื่อ ทำการผ่านแก๊สไอโดรเจนเข้าไปภายในเครื่องปฏิกรณ์ขณะเริ่มให้ความร้อนแก่ระบบ



#### **ACKNOWLEDGEMENT**

The author would like to express gratitude to Associate Professor Dr. Piyasarn Praserthdam, his advisor and Miss Boonsri Vangmaneerat, his coadvisor for their valuable guidance and supervision during this study. He is also grateful to Assistant Professor Dr. Chairit Satayaprasert and Assistant Professor Dr. Ura Pancharoen for serving as chairman and member of the thesis committee, respectively.

His sincere thanks are also due to Thai Kawaken Co., Ltd. for giving raw material; Miss Rungnapa Sinthujariwat, Miss Kullanat Sornkhow and Mr. Chaley Pramanachot from Thai Kawaken Co., Ltd. who assisted in analyzing the properties of methyl ester wax; and other people at Catalysis Research Laboratory, Department of Chemical Engineering, who encorage and assisted in all cases.

Finally, He would like to thank his parent for her patience, support and encouragement over many years of his studying and he delicates this thesis to her.



#### CONTENTS

|              |        |               | P                                       | AGE |
|--------------|--------|---------------|-----------------------------------------|-----|
| ABSTRACT (   | IN EN  | GLISH)        | • • • • • • • • • • • • • • • • • • • • | I   |
| ABSTRACT (   | IN THA | AI)           | • • • • • • • • • • • • • • • • • • • • | II  |
| ACKNOWLEDGE  | MENT . |               | · · · · · · · · · · · · · · · · · · ·   | 11  |
| LIST OF TABI | LES    | • • • • • • • | v                                       | 1 1 |
| LIST OF FIG  | JRES . |               |                                         | 1 1 |
| CHAPTER      |        |               |                                         |     |
| I            | INT    | RODUCTIO      | ON                                      | 1   |
| 1 1          | CHEM   | STRY OF       | F METHYL RICINOLEATE                    | 3   |
|              | 2.1    | Fatty A       | Acids Composition of Castor oil         | 3   |
|              | 2.2    | Charact       | teristic of Methyl Ricinoleate          | 4   |
|              | 2.3    | Chemica       | al Reaction of Methyl Ricinoleate       | 9   |
| 111          | THEOR  | RY            | • • • • • • • • • • • • • • • • • • • • | 12  |
|              | 3.1    | Introdu       | uction                                  | 12  |
|              | 3.2    | Chemist       | try of Hydrogenation                    | 13  |
|              |        | 3.2.1         | The Hydrogenation Reaction              | 13  |
|              |        | 3.2.2         | The Heterogeneous Catalyst              | 17  |
|              |        | 3.2.3         | Catalysis in Relation to Activation     |     |
|              |        |               | Energy                                  | 18  |
|              |        | 3.2.4         | Theory of Catalyst Structure            | 21  |
|              |        | 3.2.5         | Theory of Carbon-Carbon Double Bond     | 25  |
|              |        |               | 3.2.5.1 Carbon-Carbon Double Bond       | 25  |
|              |        |               | 3.2.5.2 Addition to Carbon-Carbon       |     |
|              |        |               | Double Bond                             | 27  |
|              |        | 3.2.6         | The Hydrogenation Mechanism             | 27  |
|              |        |               | 3.2.6.1 Mass trasfer Step in            |     |
|              |        |               | Hydrogenation                           | 27  |
|              |        |               | 3.2.6.2 Mechanism of Hydrogenation      |     |
|              |        |               | and Isomerization                       | 30  |
|              | 3.3    | Theory        | of the Hydrogenation of Methyl          |     |
|              |        | Disins        | 1                                       | 25  |

|    |       | 3.3.1    | Nature of  | f the Reaction                          | 35 |
|----|-------|----------|------------|-----------------------------------------|----|
|    | 3.4   | Operat   | ing Varial | bles                                    | 38 |
| ľV | REVIE | EW OF L  | ITERATURE  |                                         | 43 |
| V  | EXPE  | RIMENT   |            |                                         | 51 |
|    | 5.1   | Cataly   | st and Ma  | terials                                 | 51 |
|    | 5.2   | Apparat  | tus        | • • • • • • • • • • • • • • • • • • • • | 51 |
|    | 5.3   | Procedu  | re         | • • • • • • • • • • • • • • • • • • • • | 60 |
|    |       | 5.3.1    | Hydrogen   | ation                                   | 60 |
|    |       |          | 5.3.1.1    | Screening Commercial                    |    |
|    |       |          |            | Catalysts                               | 62 |
|    |       |          | 5.3.1.2    | Selecting an Suitable                   |    |
|    |       |          |            | Operating Condition                     | 63 |
|    |       |          | 5.3.1.3    | Studying the Effect of the              |    |
|    |       |          |            | Initial Hydrogen Feeding                |    |
|    |       |          |            | on Hydrogenation                        | 63 |
|    |       |          | 5.3.1.4    | Studying the Effect of the              |    |
|    |       |          |            | Storage time on                         |    |
|    |       |          |            | Hydrogenation                           | 63 |
|    |       | 5.3.2    | Analysis   | of the Hydrogenation Methyl             |    |
|    |       |          | Ricinole   | ate                                     | 65 |
|    |       |          | 5.3.2.1    | Determination of Acid Value             | 65 |
|    |       |          | 5.3.2.2    | Determination of Iodine                 |    |
|    |       |          |            | Value                                   | 66 |
|    |       |          | 5.3.2.3    | Determination of Hydroxyl               |    |
|    |       |          |            | Value                                   | 67 |
|    |       |          | 5.3.2.4    | Measuring of Melting Point              | 68 |
| VΙ | RESUI | LT AND I | DISCUSSIO  | N                                       | 69 |
|    | 6.1   | Screen   | ing Comme  | rcial Catalysts                         | 69 |
|    | 6.2   | Determ   | instion o  | f an Suitable Operating                 |    |
|    |       | Condit   | ion        |                                         | 69 |
|    |       | 6.2.1    | Effect o   | f Reaction Temperature                  | 72 |
|    |       | 6.2.2    | Effect o   | f Hydrogen Pressure                     | 76 |
|    |       | 6.2.3    | Effect o   | f Reaction Time                         | 90 |

|            |         | 6.2.4         | Effect      | of Agitation Speed           | 80  |
|------------|---------|---------------|-------------|------------------------------|-----|
|            |         | 6.2.5         | Effect      | of Concentration of Catalyst | 86  |
|            | 6.3     | Effect        | of the      | Initial Hydrogen Feeding     | 90  |
|            | 6.4     | Effect        | of the      | Storage Time                 | 91  |
| 117        | CON     | CLUSION A     | AND REC     | OMMENDATION                  | 96  |
| REFERENCES | • • • • | • • • • • • • | • • • • • • |                              | 99  |
| APPENDIX   |         |               |             |                              |     |
|            | Α .     | JAPANESE      | INDUST      | RIAL STANDARD                |     |
|            | •       | lis K 00.     | 70 - 19     | 66                           | 105 |
|            | В       | JAPANESE      | INDUST      | RIAL STANDARD                |     |
|            | ,       | JIS K 006     | 54 - 19     | 66                           | 116 |
|            | C       | HYDROGEN      | CONSUM      | PTION DATA                   | 123 |
| VISTA      |         |               |             |                              | 155 |

## LIST OF TABLES

| TABLE |     |                                                 | PAGE |
|-------|-----|-------------------------------------------------|------|
|       | 2.1 | Fatty acids composition of castor oil           | 4    |
|       | 2.2 | Characteristic of methyl ricinoleate            | 9    |
|       | 3.1 | Heats of hydrogenation of methyl ester          | 14   |
|       | 5.1 | The commercial hydrogenation catalysts          | 52   |
|       | 5.2 | The various operating condition for this        |      |
|       |     | experiment                                      | 64   |
|       | 6.1 | The comparative result of hydrogenation of      |      |
|       |     | methyl ricinoleate with the various commercial  |      |
|       |     | catalysts                                       | 70   |
|       | 6.2 | Effect of reaction temperature on hydrogenation |      |
|       |     | of methyl ricinoleate                           | 73   |
|       | 6.3 | Effect of hydrogen pressure on hydrogenation of |      |
|       |     | methyl ricinoleate                              | 77   |
|       | 6.4 | Effect of reaction time on hydrogenation of     |      |
|       |     | methyl ricinoleate                              | 81   |
|       | 6.5 | Effect of agitation speed on hydrogenation of   |      |
|       |     | methyl ricinoleate                              | 83   |
|       | 6.6 | Effect of concentration of catalyst on          |      |
|       |     | hydrogenation of methyl ricinoleate             | 87   |
|       | 6.7 | Effect of the initial hydrogen feeding on       |      |
|       |     | hydrogenation of methyl ricinoleate             | 92   |
|       | 6.8 | Effect of storage time on hydrogenation of      |      |
|       |     | methyl ricinoleate                              | 93   |
|       | 6.9 | Properties of commercial methyl 12-hydroxy      |      |
|       |     | stearate wax and some resulting methyl ester    |      |
|       |     | waxes                                           | 95   |

## LIST OF FIGURES

| FIGURE |     |                                                | PAGE |
|--------|-----|------------------------------------------------|------|
|        | 2.1 | Structure of ricinoleic acid                   | 5    |
|        | 2.2 | Chemical reaction of castor oil                | 11   |
|        | 3.1 | Potential energy changes during progress of    |      |
|        |     | reaction effect of catalyst                    | 19   |
|        | 3.2 | Schematic representation of a catalyst         |      |
|        |     | surface                                        | 22   |
|        | 3.3 | Schematic representation of effect of          |      |
|        |     | reduction on nickel catalyst                   | 23   |
|        | 3.4 | Interatomic distance and valence angle for     |      |
|        |     | C=C adsorbed on nickel surface                 | 24   |
|        | 3.5 | Concentration of hydrogen at different stages  |      |
|        |     | in the mass transport of gas bubble to         |      |
|        |     | catalyst surface                               | 29   |
|        | 3.6 | Formation and reaction of the alkyl            |      |
|        |     | intermediate on a metal surface                | 32   |
|        | 3.7 | Bond shift resulting from reaction of the      |      |
|        |     | alkyl intermediate                             | 32   |
|        | 5.1 | High pressure stirrer reactor Parr 4521        | 54   |
|        | 5.2 | Adjustable speed motor controller Parr 64EEN . | 55   |
|        | 5.3 | Automatic temperature controller and Indicator | 56   |
|        | 5.4 | Cooling system                                 | 57   |
|        | 5.5 | Flow diagram of the hydrogenation system       | 58   |
|        | 5.6 | Magnetic stirrer-heater for determination of   |      |
|        |     | melting point                                  | 59   |
|        | 6.1 | Hydrogen consumption curves of various         |      |
|        |     | commercial nickel catalyst                     | 71   |
|        | 6.2 | Hydrogen consumption curves at various         |      |
|        |     | reaction temperatures of Ni 3742D catalyst     | 74   |
|        | 6.3 | Effect of reaction temperature of Ni 3742D     |      |
|        |     | catalyst                                       | 75   |

| 6.4  | Hydrogen consumption curves at various         |    |
|------|------------------------------------------------|----|
|      | hydrogen pressures of Ni 3742D catalyst        | 78 |
| 6.5  | Effect of hydrogen pressure of Ni 3742D        |    |
|      | catalyst                                       | 79 |
| 6.6  | Effect of reaction time of Ni 3742D catalyst . | 82 |
| 6.7  | Hydrogen consumption curves at various         |    |
|      | agitation speeds of Ni 3742D catalyst          | 84 |
| 6.8  | Effect of agitation speed of Ni 3742D catalyst | 85 |
| 6.9  | Hydrogen consumption curves at various         |    |
|      | concentrations of Ni 3742D catalyst            | 88 |
| 6.10 | Effect of concentration of Ni 3742D catalyst   | 89 |
| 6.11 | Comparing the hydrogenated products obtained   |    |
|      | by the different time of hydrogen feeding      | 94 |
| 6.12 | Comparing the hydrogenated products obtained   |    |
|      | hy the different storage time                  | 94 |