FRACTURE BEHAVIOR AND MORPHOLOGY OF LLDPE/NR BLENDS PREPARED BY REACIVE BLENDING WITH MALEIC ANHYDRIDE

Ms. Buchanee Chan-ngam

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2000 ISBN 974-334-166-8

Thesis Title : Fracture Behavior and Morphology of LLDPE/NR

Reactive Blending with Maleic Anhydride

By : Ms. Buchanee Chan-ngam

Program : Polymer Science

Thesis Advisors: Professor Alexander M. Jamieson

Dr. Rathanawan Magaraphan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

(Prof. Somchai Osuwan)

Thesis Committee:

(Prof. Alexander M. Jamieson)

(Dr. Rathanawan Magaraphan)

Rathanawan Magaraphan

(Assco.Prof.Anuvat Sirivat)

บทคัดย่อ

บูชณีย์ จันทร์งาม : การศึกษาสมบัติการแตกหักและสมบัติรูปอสัณฐานของพอลิเมอร์ ผสมระหว่างพอลิเอทิลินชนิคความหนาแน่นต่ำเชิงเส้น และยางธรรมชาติด้วยวิธีการผสมแบบรี แอกทีฟ โดยใช้มาเลอิกแอนไฮครายค์เป็นสารช่วยผสม (Fracture Behavior and Morphology of LLDPE/NR Blends Prepared by Reactive Blending with Maleic Anhydride) อ. ที่ปรึกษา: ศ. คร. อเล็กซานเดอร์ เอ็ม เจมิสัน และ คร. รัตนวรรณ มกรพันธุ์ 77 หน้า ISBN 974-334-166-8

พฤติกรรมการแตกหักของพอถีเมอร์ผสมระหว่างพอถิเอทิถีนชนิคความหนาแน่นค่ำ เชิงเส้น (LLDPE) กับยางธรรมชาติ (NR) โดยวิธีการผสมแบบมีอันตรกิริยา (Reactive blending) ด้วยการใช้ตัวริเริ่มปฏิกิริยาใคลูมิวเปอร์ออกไซค์ (DCP) และสารช่วยผสมมาเลอิกแอนไฮ ครายค์ (MA) สามารถศึกษาได้จากสมบัติเชิงกลของพอถิเมอร์ผสมคือ คุณสมบัติการฉีกขาค, คุณสมบัติการกระแทก, ค่าความแข็งแรงคึง, การยืดแบบคราก และค่าความยืดจนขาค ต่อการ เพิ่มปริมาณของ MA DCP และยางธรรมชาติ ในอัตราส่วนผสม 90/10 ของ LLDPE/NR การ เพิ่มขึ้นของ MA ทำให้ความด้านทานต่อการกระแทกและการฉีกขาคเพิ่มขึ้น การใส่ DCP ทำให้ ค่าการกระแทกเพิ่มขึ้นแต่ค่าการฉีกขาดลดลง สำหรับอัตราส่วนผสม 50/50 การเพิ่มขึ้นของ MA และ DCP ช่วยเสริมให้ค่าการกระแทกเพิ่มขึ้นแต่มีผลกระทบเล็กน้อยต่อค่าการฉีกขาด จาก การทดสอบการยืดแบบคราก พบว่าการเติม DCP มีผลต่อการทนทานต่อการยืด ผลการทดลอง แสดงให้เห็นว่า ชิ้นงานที่ผ่านสภาพอากาศแบบเร่งมีค่าความแข็งแรงคึงและค่าความยืดจนขาด ลดลง สำหรับการเพิ่มขึ้นของอัตราส่วน NR ในตัวอย่างที่มีปริมาณยางมาก มีผลทำให้การลดลง ของค่าความแข็งแรงคึงลดลง แต่ค่าการยืดจนขาดลดลงมาก ส่วนค่าการฉีกขาดลดลงเมื่อ ปริมาณ NR มากขึ้น สำหรับค่าการกระแทกพบว่าปริมาณ NR มีผลต่อค่าที่ได้น้อยมาก

ABSTRACT

4172003063: POLYMER SCIENCE PROGRAM

KEYWORD: Impact/ Tear/ Creep/ Reactive Blending/ Maleic

Anhydride/Dicumyl Peroxide

Buchanee Chan-ngam: Fracture Behavior and Morphology of

LLDPE/NR Blends Prepared by Reactive Blending with

Maleic Anhydride.

Thesis Advisors: Prof. Alexander M. Jamieson,

Dr. Rathanawan Magaraphan, 77 pp. ISBN 974-334-166-8

Fracture behavior of blends containing linear low density polyethylene (LLDPE) and natural rubber (NR) was studied via mechanical properties. The blends were prepared by reactive blending using maleic anhydride (MA) as a reactive compatibilizer and dicumyl peroxide (DCP) as an initiator. Mechanical properties such as high-speed impact strength, tear strength, tensile strength, and creep were investigated as a function of MA, DCP, and NR concentrations. For 90/10 LLDPE/NR, increasing MA increases impact strength and tear strength, while increasing DCP increases impact strength, but decreased tear strength. For the 50/50 blend, increasing MA and DCP enhances impact strength, but shows little effect on tear strength. Based on tensile creep tests, the addition of DCP enhances the resistance to deformation. After exposure to accelerated weathering, the blends exhibit decreasing tensile strength and elongation at break. With increasing NR content, a lower percent reduction in tensile strength and higher percent reduction in tensile elongation at break were found for blend with high NR content. Tear strength decreases with increasing NR content. Impact strength shows a weak dependence on NR content.

ACKNOWLEDGEMENTS

I would like to thank the Petroleum and Petrochemical College, Chulalongkorn University, where I have gained my knowledge and enriched my skill in polymer science. I would also like to acknowledge Thai Polyethylene Co., Ltd. for their supporting LLDPE, the raw material used throughout this work.

I would like to express grateful appreciation to my advisors, Prof. Alexander M. Jamieson and Dr. Rathanawan Magaraphan for their invaluable suggestion and criticism. I also wish to give special thanks to Mr. John W. Ellis for providing technical knowledge and helpful suggestions.

I am also indebted to my family and friends for their encouragement and understanding during my studies and thesis work.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of figures	x
CHAPTER		
I	INTRODUCTION	1
	1.1 Background	2
	1.1.1 Fracture	2
	1.1.2 Mechanical failure	2
	1.1.2.1 Impact	2
	1.1.2.2 Tearing	3
	1.1.2.3 Creep	3
	1.1.2.4 Fatigue	4
	1.1.2.5 Tension	4
	1.1.3 Environmental failure	5
II	LITERATURE SURVEY	7

CHAPTER		PAGE
III	EXPERIMENTAL	12
	3.1 Materials	12
	3.2 Methodology	13
	3.2.1 Blending preparation	13
	3.2.2 Fracture behavior determination	14
	3.2.2.1 Impact test	15
	3.2.2.2 Tear test	15
	3.2.2.3 Tensile test	15
	3.2.2.4 Creep test	16
	3.2.2.5 Fatigue test	17
	3.2.3 Morphological characterization	18
IV	RESULTS AND DISCUSSION	19
	4.1 Morphological Characterization	23
	4.1.1 Effect of DCP on morphology	23
	4.1.2 Effect of MA on morphology	23
	4.2 Mechanical Properties	28
	4.2.1 Effect of DCP on mechanical properties	29
	4.2.1.1 Impact strength	29
	4.2.1.2 Tear strength	29
	4.2.1.3 Creep	30
	4.2.1.4 Fatigue	31
	4.2.2 Effect of MA on mechanical properties	33
	4.2.2.1 Impact strength	33
	4.2.2.2 Tear strength	34

CHAPTER		PAGE
	4.2.3 Effect of NR on mechanical properties	35
	4.2.3.1 Impact strength	35
	4.2.3.2 Tear strength	35
	4.2.4 Effect of weathering on tensile properties	36
V	CONCLUSIONS	44
	REFERENCES	45
	APPENDICES	
	A Mechanical properties	48
	B Calculation amount of materials for blending and	
	graphs from Brabender mixer	54
	CURRICULUM VITAE	64

LIST OF TABLES

TABL	FABLE	
3.1	Summary of materials used in this study	12
3.2	Blending conditions	13
3.3	Amount of LLDPE/NR/MA/DCP in the blends (g)	14
3.4	Test condition for tear test	15
3.5	Description of weathering condition for one cycle	16
3.6	Test condition for tensile test	16
3.7	Test condition for fatigue test	18
Al	Effect of DCP concentration on impact and tear strength of	
	LLDPE/NR 90/10 and 50/50 at 3 and 7% of MA	48
A2	Effect of MA concentration on impact and tear strength of	
	LLDPE/NR 90/10 and 50/50 at 0.5% of DCP	48
A3	Effect of NR concentration on impact and tear strength of	
	various compositions	49
A4	Displacement from creep test	49
A5	Crack length (a) and maximum stress (σ_{max}) at each 500 cycles	
	of 90/10/3 LLDPE/NR/MA with and without DCP from fatigue	:
	test	50
A6	Crack growth rate (da/dN) and range of stress intensity factor	
	(ΔK) of composition 90/10/3/0 and 90/10/3/0.5	51
A7	Tensile properties of various compositions before and after	
	weathering	53

LIST OF FIGURES

F	FIGURE		PAGE
	1.1	Positioning of tear test piece in testing machine	3
	1.2	A thermo-oxidation reaction	6
	3.1	Tear test piece	15
	3.2	Diagram illustrating creep	17
	3.3	Single-edge crack specimen	17
	3.4	Diagram illustrating SEM crack growth direction	18
4.1 Form		Formation of a crosslinked PE: (a) polymer, (b) PE macroradical	al,
		and (c) crosslinked	19
	4.2	Multiple crosslink bonding in polymer radicals: (a) unsturated	
		polymer and (b) crosslinked polymer	20
	4.3	Relative integral ratio of 90/10 and 50/50 LLDPE/NR	
		at 3 and 7% of MA respectively (from crude sample)	21
	4.4	Relative integral ratio of 90/10 and 50/50 LLDPE/NR	
		at 0.5% of DCP (from crude sample)	21
	4.5	Gel content of 90/10 and 50/50 LLDPE/NR at 3 and	
		7% of MA respectively	22
	4.6	Gel content of 90/10 and 50/50 LLDPE/NR at 0.5% of DCP	22
	4.7	Tear-fractured surfaces of 90/10/3 LLDPE/NR/M at various	
		DCP content: (a) 0%, (b) 0.5%, (c) 1.0%, and (d) 1.5%	25
	4.8	Tear-fractured surfaces of 50/50/7 LLDPE/NR/M at various	
		DCP content: (a) 0%, (b) 0.5%, (c) 1.0%, and (d) 1.5%	26
	4.9	Tear-fractured surfaces of 90/10 LLDPE/NR at 0.5% DCP by	
		varying MA content: (a) 1%, (b) 3%, (c) 5%, and (d) 7%	27

FIGURE		
4.10	Tear-fractured surfaces of 50/50 LLDPE/NR at 0.5% DCP by	
	varying MA content: (a) 1%, (b) 3%, (c) 5%, and (d) 7%	28
4.11	Effect of DCP content on the impact strength of 90/10 and	
	50/50 LLDPE/NR at 3 and 7% of MA respectively	29
4.12	Effect of DCP content on the tear strength of 90/10 and	
	50/50 LLDPE/NR at 3 and 7% of MA respectively	30
4.13	Displacement resulting from creep test of LLDPE/NR/MA/DCP	•
	90/10/3/0.5, 90/10/3/0, 50/50/7/1.5/ and 50/50/7/0 blends	31
4.14	Fatigue lifetime of 90/10 LLDPE/NR with and without DCP	32
4.15	Stress intensity factor versus crack growth rate of 90/10	
	LLDPE/NR with and without DCP	32
4.16	Effect of MA content on the impact strength of 90/10 and	
	50/50 LLDPE/NR at 0.5% of DCP	33
4.17	Effect of MA content on the tear strength of 90/10 and 50/50	
	LLDPE/NR at 0.5% of DCP	34
4.18	Effect of NR content on the impact strength of various	
	compositions	35
4.19	Effect of NR content on the tear strength of various	
	compositions	36
4.20	Effect of DCP content on tensile strength before and after	
	weathering of 90/10 LLDPE/NR at 3% of MA	37
4.21	Effect of DCP content on tensile strength before and after	
	weathering of 50/50 LLDPE/NR at 7% of MA	38
4.22	Effect of MA content on tensile strength before and after	
	weathering of 90/10 LLDPE/NR at 0.5% of DCP	38

FIGURE			PAGE
	4.23	Effect of MA content on tensile strength before and after	
		weathering of 50/50 LLDPE/NR at 0.5% of DCP	39
	4.24	Effect of DCP content on elongation at break before and after	
		weathering of 90/10 LLDPE/NR at 3% of MA	40
	4.25	Effect of DCP content on elongation at break before and after	
		weathering of 50/50 LLDPE/NR at 7% of MA	40
	4.26	Effect of MA content on elongation at break before and after	
		weathering of 90/10 LLDPE/NR at 0.5% of DCP	41
	4.27	Effect of MA content on elongation at break before and after	
		weathering of 50/50 LLDPE/NR at 0.5% of DCP	41
	4.28	Effect of NR content on tensile strength before and after	
		weathering of various compositions	42
	4.29	Effect of NR content on elongation at break before and after	
		weathering of various compositions	43
	Bl	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 90/10/3/0	56
	B2	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 90/10/3/0.5	56
	В3	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 90/10/3/1.0	57
	B4	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 90/10/3/1.5	57
	B5	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 90/10/1/0.5	58
	B6	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 90/10/5/0.5	58

F]	IGUR	RE	PAGE
	B7	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 90/10/7/0.5	59
	B8	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 50/50/7/0	59
	В9	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 50/50/7/0.5	60
	B10	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 50/50/7/1.0	60
	B11	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 50/50/7/1.5	61
	B12	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 50/50/1/0.5	61
	B13	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 50/50/3/0.5	62
	B14	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 50/50/5/0.5	62
	B15	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 80/20/3/0.5	63
	B16	Time Temperature and Torque Relationship of	
		LLDPE/NR/MA/DCP blend composition 60/40/7/1.5	63