REACTIVE BLENDING OF LLDPE/NR WITH MALEIC ANHYDRIDE: CHARACTERIZATION OF GRAFT COPOLYMER Ms. Rewadee Skularriya A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2000 ISBN 974-334-193-5 1 8 a.A. 2547 **Thesis Title**: Reactive Blending of LLDPE/NR with Maleic Anhydride: Characterization of Graft Copolymer By : Ms. Rewadee Skularriya **Program** : Polymer Science Thesis Advisors: Professor Alexander M. Jamieson Dr. Rathanawan Magaraphan Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science. (Prof. Somchai Osuwan) **Thesis Committee:** (Prof. Alexander M. Jamieson) (Dr. Rathanawan Magaraphan) R. Magarajohan (Mr. John W. Ellis) ## บทคัดย่อ นางสาวเรวดี สกุลอาริยะ: การผสมแบบมีปฏิกิริยาของพอลิเอทิลีนความหนาแน่น ต่ำเชิงเส้นกับยางธรรมชาติโคยใช้มาเลอิกแอนไฮครายค์เป็นสารช่วยผสม: การวิเคราะห์พอลิ เมอร์ร่วมแบบกิ่ง (Reactive Blending of LLDPE/NR with Maleic Anhydride: Characterization of Graft Copolymer) อ. ที่ปรึกษา : ศ. คร. อเล็กซานเคอร์ เอ็ม เจมิสัน, คร. รัตนวรรณ มกรพันธุ์ 129 หน้า ISBN 974-334-193-5 การผสมของพอลิเอทิลีนความหนาแน่นต่ำเชิงเส้นกับยางธรรมชาติเป็นสารที่ไม่ สามารถเข้ากันได้ ดังนั้นการใช้สารช่วยผสมเป็นแนวทางหนึ่งที่สามารถลดปัญหานี้ได้ มาเล อิกแอนไฮดรายค์และไดคูมิวเปอร์ออกไซด์เป็นสารช่วยผสมและตัวริเริ่มปฏิกิริยาที่ถูกใช้ อย่างแพร่หลาย เนื่องจากมาเลอิกแอนไฮดรายค์เป็นสารช่วยผสมที่สามารถเกิดปฏิกิริยาตอบ โต้ภายในเครื่องผสมได้ ดังนั้นอาจเกิดผลิตภัณฑ์จากการเกิดปฏิกิริยาขึ้นหลายชนิด ซึ่งผลิตภัณฑ์เหล่านี้จะส่งผลกระทบต่อสมบัติของพอลิเมอร์ผสม การเกิดผลิตภัณฑ์แบบใดขึ้นกับ หลายปัจจัย ได้แก่ สภาวะที่ใช้ในการผสม และ ส่วนประกอบของพอลิเมอร์ผสม ในงานวิจัยนี้ ได้เตรียมพอลิเมอร์ผสมที่สภาวะการผลิตต่าง ๆ และวิเคราะห์ชนิดและปริมาณของผลิตภัณฑ์ ที่เกิดขึ้นในแต่ละวัฏภาคโดยเทคนิดฟูเรียทรานสฟอร์มอินฟราเรดสเปกโตรสโกปี และการ วิเคราะห์ทางความร้อนและน้ำหนักเพื่อให้เข้าใจการช่วยผสมที่เกิดขึ้นในขณะผสม จากการ ศึกษาพบว่าสภาวะการผสมที่เหมาะสมคือที่อุณหภูมิ 150 องสาเซลเซียสสำหรับส่วนประกอบ 90/10 และ50/50 และความเร็วในการผสมที่เหมาะสมคือ 50 และ 30 รอบต่อนาที สำหรับส่วน ประกอบ 90/10 และ50/50 ตามลำดับ ปริมาณเจลเพิ่มขึ้นเมื่อเพิ่มปริมาณไดคูมิวเปอร์ออกไซด์ ในระบบ ปริมาณพอลิเมอร์ร่วมแบบกิ่งของมาเลอิกแอนไฮดรายค์ในพอลิเมอร์ผสมเพิ่มขึ้น เมื่อเพิ่มปริมาณมาเลอิกแอนไฮดรายด์ในระบบ #### **ABSTRACT** ##4172027063 : POLYMER SCIENCE PROGRAM KEY WORDS : Reactive Blending/ Maleic Anhydride/Dicumyl Peroxide Rewadee Skularriya: Reactive Blending of LLDPE/NR with Maleic Anhydride: Characterization of Graft Copolymer. Thesis Advisors: Prof. Alexander M. Jamieson, Dr. Rathanawan Magaraphan, 129 pp. ISBN 974-334-193-5 Blends of linear low density polyethylene (LLDPE) and natural rubber (NR) blend is quite immiscible. Maleic anhydride (MA), added to the blend in the presence of dicumyl peroxide (DCP), acts as a reactive compatibilizer, since it improves the blend properties by producing a graft copolymer. A variety of reaction products can occur, depending on the processing conditions and the blend composition. The blends were prepared at different processing conditions and characterized each separated phase by Fourier transform infrared spectroscopy, and thermogravimetric analysis to insight into the gain in situ compatibilization. The blends were investigated for tensile properties and gel content. It was found that the most suitable process condition occurs at 150°C and, for LLDPE/NR compositions 90/10 and 50/50, at rotor speeds of 50 and 30 rpm, respectively. The gel content increased with increasing amount of DCP. The percentage of grafted copolymer containing MA increased as the amount of MA content increased. #### **ACKNOWLEDGEMENTS** The author would like to gratefully give special thanks to her co-advisor, Professor Alexander M. Jamieson for his constructive criticism and valuable suggestions. She is also deeply indebted to her advisor, Dr. Rathanawan Magaraphan and her thesis committee, Mr. John W. Ellis for their intensive suggestions, valuable guidance and vital help throughout this research work. She greatly appreciates all the professors who have tendered invaluable knowledge to her at the Petroleum and Petrochemical College, Chulalongkorn University. She wishes to express her thanks to all of her friends and to the college staffs who willingly gave her warm support and encouragement. Finally, the author is deeply indebted to her family for their love, understanding, encouragement, and for being a constant source of inspiration. ## TABLE OF CONTENTS | | | PAGE | |---------|---------------------------------------------|------| | | Title Page | i | | | Abstract (in English) | iii | | | Abstract (in Thai) | iv | | | Acknowledgements | V | | | Table of Contents | vi | | | List of Tables | X | | | List of Figures | xiii | | CHAPTER | | | | I | INTRODUCTION | 1 | | | 1.1 Linear Low Density Polyethylene | 2 | | | 1.2 Natural Rubber | 3 | | | 1.3 Polymer Blend | 4 | | | 1.4 Compatibilization of Polymer Blends | 5 | | | 1.4.1 Thermodynamic Miscibility | 5 | | | 1.4.2 Addition of Block and Graft Copolymer | 6 | | | 1.4.3 Addition of Reactive Polymer | 6 | | | 1.4.4 Reactive Blending | 7 | | | 1.5 The Reaction of MA with Polymer | 7 | | | 1.5.1 Maleation via Diel-Alder Reaction | 8 | | | 1.5.2 Maleation via Radical Species | 8 | | II | LITERATURE SURVEY | 10 | | III | EXPERIMENTAL | 15 | | | 3.1 Materials | 15 | | CHAPTER | | | PAGE | |---------|------------|-------------------------------------------|------| | | 3.1.1 | Linear Low Density Polyethylene | 15 | | | 3.1.2 | Natural Rubber | 15 | | | 3.1.3 | Maleic Anhydride | 15 | | | 3.1.4 | Dicumyl Peroxide | 15 | | | 3.1.5 | Acetone | 16 | | | 3.1.6 | Chloroform | 16 | | | 3.1.7 | Xylene | 16 | | | 3.2 Metho | odology | 16 | | | 3.2.1 | Preparation of Blends | 16 | | | 3.2.2 | Solvent Extraction | 19 | | | 3.2.3 | Determination of % Graft of MA by FTIR | 20 | | | 3.2.4 | Molding of Sample for Mechanical Testing | 22 | | | 3.3 Instru | imental | 22 | | | 3.3.1 | Fourier Transform Infrared Spectroscopy | 22 | | | 3.3.2 | Scanning Electron Microscope | 23 | | | 3.3.3 | Thermogravimetric Analysis | 23 | | | 3.3.4 | Instron Universal Testing Machine | 24 | | IV | RESULT | S AND DISCUSSION | 25 | | | 4.1 Effec | et of Mastication Time on Molecular | | | | Weig | ht of NR | 25 | | | 4.2 Effec | et of Processing Conditions on Properties | | | | of LL | DPE/NR Blends | 25 | | | 4.2.1 | Charaterization of MA Grafted onto | | | | | LLDPE/NR Blends | 25 | | | 4.2.2 | Effect of Processing Conditions on Therma | ıl | | | | Stability | 27 | | CHAPTER | | F | PAGE | |---------|------------|---------------------------------------------|------| | | 4.2.3 | Rubber Content of Various Processing | | | | | Conditions | 30 | | | 4.2.4 | Gel Content of Various Processing | | | | | Conditions | 31 | | | 4.2.5 | Mechanical Properties of Various Processing | 9 | | | | Conditions | 32 | | | 4.3 Effect | t of Compatibilizer on Properties of | | | | LLDF | PE/NR Blends | 34 | | | 4.3.1 | Characterization of MA Grafted onto | | | | | LLDPE/NR Blends | 35 | | | 4.3.2 | Effect of Blend Compositions on Thermal | | | | | Stability | 39 | | | 4.3.3 | Rubber Content of Various Compositions | 48 | | | 4.3.4 | Gel Content of Various Compositions | 50 | | | 4.3.5 | Mechanical Properties of Various | | | | | Compositions | 52 | | | 4.3.6 | Effect of Blend Compositions on | | | | | Morphologies | 56 | | | 4.4 Discu | ssion | 66 | | | 4.4.1 | Effect of Processing Parameters | 66 | | | 4.4.2 | Effect of MA and DCP Contents | 67 | | V | CONCL | USIONS | 69 | | | REFERE | ENCES | 71 | | CHAPTER | | | PAGE | |---------|----|--------------------------------------------------|-------| | | AP | PENDICES | 74 | | | A | Calibration Data for Gel Permeation | | | | | Chromatography | 74 | | | В | Amount of Extracted Part from Solvent Extraction | ns 76 | | | C | Integral Peak Area from Curve Fitting of FTIR | 78 | | | D | Degradation Temperature from TGA Thermogram | n 81 | | | E | Tensile Properties | 89 | | | F | Calculation for Amount of Materials that | | | | | used in Brabender | 92 | | | G | Time Temperature and Torque Relationship | 94 | | | Н | FTIR Spectra of Pure, Crude and | | | | | Extracted Samples | 107 | | | CU | URRICULUM VITAE | 111 | # LIST OF TABLES | ΓABL | ABLE | | |------|----------------------------------------------------------|----| | 3.1 | Processing conditions for LLDPE/NR/MA/DCP blend | | | | compositions of 90/10/3/0.5 and 50/50/7/0.5 | 18 | | 3.2 | Variations in amounts of MA and DCP used with | | | | compositions of LLDPE/NR 90/10 and 50/50 blend | 18 | | 4.1 | Effect of mastication time on molecular weight of NR | 24 | | 4.2 | Free MA of LLDPE/NR blend compositions | | | | 90/10 and 50/50 at various MA and DCP | 34 | | A1 | Retention time of standard polystyrene with known | | | | molecular weight at room temperature | 75 | | B1 | Amount of free MA, extracted NR and gel content at | | | | various processing condition | 76 | | B2 | Amount of free MA, extracted NR and gel content at | | | | various MA and DCP concentration for composition 90/10 | 77 | | В3 | Amount of free MA, extracted NR and gel content at | | | | various MA and DCP concentration for composition 50/50 | 77 | | C1 | Integral peak area of blend, extracted NR, and extracted | | | | LLDPE at various processing conditions for composition | | | | 90/10/3/0.5 | 78 | | C2 | Integral peak area of blend, extracted NR, and extracted | | | | LLDPE at various processing conditions for composition | | | | 50/50/7/0.5 | 79 | | C3 | Integral peak area of blend, extracted NR, and extracted | | | | LLDPE at various MA and DCP for composition 90/10 | 79 | | C4 | Integral peak area of blend, extracted NR, and extracted | | | | LL DPF at various MA and DCP for composition 50/50 | 80 | | FABLE | | PAGE | |-------|-----------------------------------------------------------|-------| | D1 | Degradation temperature of pure NR and LLDPE | 81 | | D2 | Degradation temperature of blend composition 90/10/3/0.5 | | | | at various processing conditions | 81 | | D3 | Weight loss of blend composition 90/10/3/0.5 at various | | | | processing conditions | 82 | | D4 | Degradation temperature of blend composition 50/50/7/0.5 | | | | at various processing conditions | 82 | | D5 | Weight loss of blend composition 50/50/7/0.5 at various | | | | processing conditions | 83 | | D6 | Degradation temperature of blend composition 90/10 | | | | at various amounts of MA and DCP | 83 | | D7 | Weight loss of blend composition 90/10 at various | | | | amounts of MA and DCP | 84 | | D8 | Degradation temperature of blend composition 50/50 | | | | at various amounts of MA and DCP | 85 | | D9 | Weight loss of blend composition 50/50 at various amounts | | | | of MA and DCP | 86 | | D10 | Degradation temperature and weight loss of gel content | | | | for blend composition 90/10/3/0.5 at various processing | | | | conditions | 86 | | D11 | Degradation temperature and weight loss of gel content | | | | for blend composition 50/50/7/0.5 at various processing | | | | conditions | 87 | | D12 | Degradation temperature and weight loss of gel content of | | | | blend composition 90/10 at various amounts of MA and DC | CP 87 | | D13 | Degradation temperature and weight loss of gel content of | | | | blend composition 50/50 at various amounts of MA and DC | °P 88 | | TABL | PAGE | | |------|--------------------------------------------------|----| | El | Tensile properties of blend composition 90/10 at | | | | various process conditions | 60 | | E2 | Tensile properties of blend composition 50/50 at | | | | various process conditions | 60 | | E3 | Tensile properties of blend composition 90/10 at | | | | various compositions | 61 | | E4 | Tensile properties of blend composition 50/50 at | | | | various compositions | 61 | ## LIST OF FIGURES | F | FIGURE | | | |---|--------|-------------------------------------------------------------|----| | | 1.1 | Molecular structure of LLDPE | 3 | | | 1.2 | The chemical structure of cis-1,4-polyisoprene | 4 | | | 1.3 | The block and graft copolymer that located at the interface | 6 | | | 1.4 | Maleic anhydride and its dual functionlity-"ene" or radical | | | | | active site and nucleophilic site | 7 | | | 1.5 | Diels-Alder reaction of maleic anhydride with NR | 8 | | | 1.6 | Maleation of maleic anhydride with NR in presence of | | | | | free radical | 8 | | | 1.7 | Maleation of maleic anhydride with LLDPE in presence of | | | | | free radical | 9 | | | 4.1 | FTIR spectra of NR, LLDPE, and NR/LLDPE blend | 26 | | | 4.2 | Effect of processing condition on relative integral ratio | | | | | of blend composition 90/10/3/0.5 and 50/50/7/0.5 | 27 | | | 4.3 | TGA thermogram of NR and LLDPE | 28 | | | 4.4 | TGA thermogram of effect of processing conditions on | | | | | degradation temperature of blends: (a) 90/10/3/0.5; | | | | | and (b) 50/50/7/0.5 | 29 | | | 4.5 | Effect of processing condition of blend compositions | | | | | 90/10/3/0.5 and 50/50/7/0.5 on amount of unbound rubber | 30 | | | 4.6 | Effect of processing condition of blend compositions | | | | | 90/10/3/0.5 and 50/50/7/0.5 on gel content | 31 | | | 4.7 | Effect of processing conditions of blend compositions 90/10 | 0 | | | | and 50/50 on: (a) tensile strength; (b) elongation at break | 33 | FIGURE PAGE | 4.8 | Effect of DCP on relative integral ratio of blend composition | | |------|---------------------------------------------------------------|----| | | 90/10 with MA of 3 % wt: (a) LLDPE/NR blend; | | | | (b) extracted NR; and (c) extracted LLDPE | 36 | | 4.9 | Effect of MA content on relative integral ratio of the blend | | | | composition 90/10 at 0.5 % wt of DCP: (a) LLDPE/NR blend; | | | | (b) extracted NR; and (c) extracted LLDPE | 38 | | 4.10 | Effect of MA on thermal stability of blend composition | | | | 90/10 at 0.5 % wt of DCP: (a) LLDPE/NR blend; | | | | (b) extracted NR; and (c) extracted LLDPE | 41 | | 4.11 | Effect of MA on TGA thermogram of blend composition | | | | 50/50 at 0.5 % wt of DCP: (a) LLDPE/NR blend; | | | | (b) extracted NR; and (c) extracted LLDPE | 43 | | 4.12 | Effect of DCP on thermal stability of blend composition | | | | 90/10 at 0.5 % wt of DCP: (a) blend; (b) extracted NR; | | | | and (c) extracted LLDPE | 45 | | 4.13 | Effect of DCP on thermal stability of blend composition | | | | 50/50 at 0.5 % wt of DCP: (a) LLDPE/NR blend; | | | | (b) extracted NR; (c) extracted LLDPE | 47 | | 4.14 | Effect of MA on unbound rubber content for compositions | | | | 90/10 and 50/50 at 0.5 % wt of DCP | 48 | | 4.15 | Effect of DCP on unbound rubber content for compositions | | | | 90/10 and 50/50 at 3 and 5 % wt of MA respectively | 49 | | 4.16 | Effect of MA on gel content for compositions 90/10 and | | | | 50/50 at 0.5 % wt of DCP | 51 | | 4.17 | Effect of DCP on gel content for compositions 90/10 and | | | | 50/50 at 3 and 5 % wt of MA respectively | 51 | FIGURE PAGE | 4.18 | Tensile properties of blend compositions 90/10 and 50/50 at | | |------|-----------------------------------------------------------------|----| | | 0.5 % wt of DCP: (a) tensile strength; (b) elongation at break; | | | | and (c) tensile modulus | 53 | | 4.19 | Tensile properties of blend compositions 90/10 and 50/50 | | | | with 3 and 7 % wt of MA respectively: (a) tensile strength; | | | | (b) elongation at break; and (c) tensile modulus | 55 | | 4.20 | Effect of MA on morphologies of LLDPE/NR blend | | | | compositions 90/10 at 0.5 % wt of DCP: (a) MA 1% wt; | | | | (b) MA 3% wt; (c) MA 5 % wt; and (d) MA 7 % wt | 57 | | 4.21 | Effect of MA on morphologies of LLDPE/NR blend | | | | compositions 50/50 at 0.5 % wt of DCP: (a) MA 1% wt; | | | | (b) MA 3% wt; (c) MA 5 % wt; and (d) MA 7 % wt | 59 | | 4.22 | Effect of DCP on morphologies of LLDPE/NR blend | | | | compositions 90/10 at 3 % wt of MA: (a) DCP and | | | | MA 0 % wt; (b) DCP 0 % wt; (c) DCP 0.5 % wt; | | | | (d) DCP 1.0 % wt; and (e) DCP 1.5 % wt | 62 | | 4.23 | Effect of DCP on morphologies of LLDPE/NR blend | | | | compositions 50/50 at 7 % wt of MA: (a) DCP and | | | | MA 0 % wt; (b) DCP 0 % wt; (c) DCP 0.5 % wt; | | | | (d) DCP 1.0 % wt; and (e) DCP 1.5 % wt | 65 | | | | | | G1 | Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/3/0.5 at | | | | temperature 140°C and rotor speed 50 rpm | 94 | | G2 | Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/3/0.5 at | | | | temperature 150°C and rotor speed 50 rpm | 95 | | FIGUI | URE | | |-------|--------------------------------------------------|----| | G3 | Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/3/0.5 at | | | | temperature 160°C and rotor speed 50 rpm | 95 | | G4 | Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/3/0.5 at | | | | temperature 150°C and rotor speed 30 rpm | 96 | | G5 | Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/3/0.5 at | | | | temperature 150°C and rotor speed 70 rpm | 96 | | G6 | Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/7/0.5 at | | | | temperature 140°C and rotor speed 50 rpm | 97 | | G7 | Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/7/0.5 at | | | | temperature 150°C and rotor speed 50 rpm | 97 | | G8 | Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/7/0.5 at | | | | temperature 160°C and rotor speed 50 rpm | 98 | | G9 | Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/7/0.5 at | | | | temperature 150°C and rotor speed 30 rpm | 98 | | G10 | Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/7/0.5 at | | | | temperature 150°C and rotor speed 70 rpm | 99 | | G11 | Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/1/0.5 | 99 | | FIGURE | | | |-------------------------------------------------|-----|--| | G12 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/3/0 | 100 | | | G13 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/3/0.5 | 100 | | | G14 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/3/1.0 | 101 | | | G15 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/3/1.5 | 101 | | | G16 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/5/0.5 | 102 | | | G17 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 90/10/7/0.5 | 102 | | | G18 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/1/0.5 | 103 | | | G19 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/3/0.5 | 103 | | | G20 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/5/0.5 | 104 | | | G21 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/7/0 | 104 | | | G22 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/7/0.5 | 105 | | | G23 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/7/1.0 | 105 | | | G24 Time Temperature and Torque Relationship of | | | | LLDPE/NR/MA/DCP blend composition 50/50/7/1.5 | 106 | | | FIGURE | | PAGE | |--------|---------------------------------------------------|------| | H1 | FTIR Spectra of pure LLDPE | 107 | | | FTIR Spectra of pure NR | 107 | | Н3 | FTIR Spectra of LLDPE/NR blend 90/10 | 108 | | H4 | FTIR Spectra of LLDPE/NR blend 50/50 | 108 | | H5 | FTIR Spectra of extracted NR of LLDPE/NR 90/10 | 109 | | Н6 | FTIR Spectra of extracted NR of LLDPE/NR 50/50 | 109 | | H7 | FTIR Spectra of extracted LLDPE of LLDPE/NR 90/10 | 110 | | H8 | FTIR Spectra of extracted LLDPE of LLDPE/NR 50/50 | 110 |