CHAPTER III

EUCLIDEAN N-SPACE

The main purpose of this chapter is to introduce the notion of Euclidean n-space, linear manifold, and Euclidean motion in R^{n}.

The materials of this chapter are drawn from reference [2], $[5]$, and $[6]$.

1. Vector space and subspace

3.1.1 Definition. A vector space consist of an abelian group V under addition and a field F, together with an operation of scalar multiplication of each element of V by each element of F on the left, such that for all a, b $\in F$ and $u, v \in V$ the following conditions are satisfied :
(i) au $\in V$
(ii) $a(b u)=(a b) u$
(iii) $(a+b) u=a u+b u$
(iv) $a(u+v)=a u+a v$
(v) $\quad I u=u$.

The elements of V are called vectors and the elements of F are called scalars. We shall say that V is a vector space over F.
3.1.2 Definition. Let V be a vector space over R. Suppose to each pair of vectors $u, v \in V$ there is assigned a scalar (u,v) $\in R$. This mapping is called an inner product in V if it satisfies the following axioms
(i) $\left(a u_{1}+b u_{2}, v\right)=a\left(u_{1}, v\right)+b\left(u_{2}, v\right)$

$$
\begin{equation*}
(u, v) \quad=(v, u) \tag{ii}
\end{equation*}
$$

(iii) $(u, u) \geqslant 0$; and $(u, u)=0$ if and only if $u=0$.

The vector space V with an inner product is called a real inner product space.
3.1.3 Exampie. The set of all n-tuples of elements of R with vector addition and scalar multiplication defincd by
and

$$
\left(u_{1}, u_{2}, \ldots, u_{n}\right)+\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right)
$$

$$
a\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\left(a u_{1}, a u_{2}, \ldots a u_{n}\right)
$$

where the u_{i}, v_{i} and a belong to R, is a vector space over R; we denote this space by V_{n}.

Consider the dot product in $U \cdot V=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}$,
where $u=\left(u_{1}, u_{2}, \ldots u_{n}\right)$ and $v=\left(v_{1}, v_{2}, \ldots v_{n}\right)$.

This is an inner product on V_{n}, and V_{n} with this inner product is usually refered to as Euclidean n-space and is denoted by R^{n}.
3.1.4 Definition. Let be a subset of a vector space over a field F. W is called a subspace of V if W is itself a vector spece over F rit. respect to the operations of vector addition and scalar multiplication on V.

3.1.5 Definition A subset of a vector space V is said to be lineer varietyof V if $L=u+W$ for some u in V and some subspace of V.

 The subspace W is called base space of the linear variety L.2. Dimension of vector space.
3.2.1 Definition. Let V be a vector space over a field F and let $v_{1}, v_{2}, \ldots v_{m} \in V$. Any vector in V of the form

$$
a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{m} v_{m}
$$

where the $a_{i} \in F_{9}$ is called a linear combination of $v_{1}, v_{2}, \ldots, v_{m}$. The following theorem can be easily verified.
3.2.2 Theoram. Let S L L a nonempty subset of V. The set of all Jinear combinations of vectors in S, denoted by $L(S)$, is a sutspace of V containing S. It is called the subspace spanned or generated by S.
3.2.3 Definition. Let V be a vector space over a ficld F. The vector: $v_{1}, v_{2}, \ldots, v_{m}$ are said $t \cap b$ linearly independent, if for every choice of scalars $a_{1}, a_{2}, \ldots, a_{m} \in F_{s}$

$$
a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{m} u_{m}=0
$$

implies

$$
a_{1}=a_{2}=\ldots=a_{m}=0
$$

3.2.4 Definition. A vector space V is said to be of dimension n, if there exists linearly independent vectors $u_{1}, u_{2}, \ldots, u_{n}$ which span V. The sequence $u_{1}, d_{2}, \ldots, u_{n}$ is then called a basis of V.
3.2.5 Definition. The dimension of a linear variety is defined to be the dimension of the base space of the linear variety.
3.2.6 Definition. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a subset of a real inner product space V. The set l is said to be orthonormal if

$$
\left(u_{i}, u_{j}\right)= \begin{cases}0 & \text { for } \\ i \neq j \\ 1 & \text { for } \\ i=j\end{cases}
$$

3.2.7 Theorem. (Gram-Schmidt theorem). Let

$$
\begin{equation*}
U_{0}=\left\{U_{1}, U_{2}, \ldots, U_{m}\right\} \tag{1}
\end{equation*}
$$

be any finite set of linear independent vectors of R^{n}. Then R^{n} contains a set of vectors

$$
\eta=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}
$$

such that
(i) The set ${ }^{0}$ is orthonormal ;
(ii) Every vector γ_{k} is a linear combination

$$
V_{k}=a_{k 1} U_{1}+a_{k 2} U_{2}+\ldots+a_{k k} U_{k}
$$

of the vectors $U_{1}, \dot{L}_{2}, \ldots, \dot{K}_{k}$;
(iii) Every vector \mathcal{Y}_{k} is a linear combination

$$
\Psi_{k}=b_{k 1} V_{1}+b_{k 2} V_{2}+\ldots b_{k k} V_{k}
$$

of the vector $V_{1}, V_{2}, \ldots V_{k}$ for $k=1,2, \ldots, m$.
Moreover, every vector of \mathcal{F} is uniquely determined by these conditions to within a factor of ± 1.

Proof. First we construct V_{1}. Setting

$$
V_{1}=a_{11} U_{1},
$$

we determine a_{11} from the condition

$$
\left(v_{1}, v_{1}\right)=a_{11}^{2}\left(u_{1}, u_{1}\right)=1
$$

which implies

$$
a_{11}=\frac{1}{b_{11}}=\sqrt{\sqrt{\left(U_{1}, U_{1}\right)}}
$$

This obviously determines V_{1} uniquely (except for sign).
Next suppose vectors $V_{1}, V_{2}, \ldots, V_{k-1}$ satisfying the conditions of theorem have already been constructed. Then U_{k} can be written in the form

$$
\begin{equation*}
q_{k}=b_{k l} v_{1}+\ldots+b_{k k-1} v_{k-1}+w_{k} \tag{2}
\end{equation*}
$$

where

$$
\left(W_{k}, V_{j}\right)=0 \quad(j=1,2, \ldots, k-1)
$$

In fact, the coefficients $b_{k j}$ and hence the vector W_{k} are uniquely determined by the conditions

$$
\begin{aligned}
\left(W_{k}, v_{j}\right) & =\left(u_{k}-b_{k 1} v_{1}-\ldots-b_{k k-1} v_{k-1}, v_{j}\right) \\
& =\left(u_{k}, v_{j}\right)-b_{k j}\left(v_{j}, v_{j}\right)=0, \\
\text { i.c. } b_{k j} & =\left(U_{k}, v_{j}\right) \quad(j=1,2, \ldots, k-1) .
\end{aligned}
$$

Clearly $\left(W_{k}, W_{k}\right)>0$, if $\left(W_{k}, W_{k}\right)=0$ by Definition 3.1.2,
$W_{k}=\theta$, and thus

$$
\begin{equation*}
\mathrm{L}_{\mathrm{k}}-\mathrm{b}_{\mathrm{k} 1} \mathrm{v}_{1}-\ldots-\mathrm{b}_{\mathrm{kk}-1} \mathrm{v}_{\mathrm{k}-1}=\theta, \tag{3}
\end{equation*}
$$

where θ is the zero vector.
By Induction hypothesis, we can write V_{j} on the left hand side of Equ. (3), interm of $U_{1}, \Psi_{2}, \ldots, v_{j}(j=1,2, \ldots, k-1)$.

Then the zero vector in Equ.(3), can be written as a linear conbination of $U_{1}, U_{2}, \ldots, U_{k}$ for which not all coefficients of U_{k} are zero (since the coefficient of $\mathrm{Y}_{\mathrm{k}}=1$). This contradicts the assumed linear independence of the vectors (1). Let

$$
\begin{equation*}
v_{k}=\frac{W_{k}}{\sqrt{\left(W_{k}, W_{k}\right)}} \text {. วาว่ทยาลัย } \tag{4}
\end{equation*}
$$

Laing (2) and (4), we express W_{k} and hence V_{k} in terms of the functions $U_{1}, \Psi_{2}, \ldots, L_{k}$, i.e.,

$$
V_{k}=a_{k 1} U_{1}+a_{k 2} U_{2}+\ldots+a_{k k} U_{k} \text {, }
$$

where

$$
a_{k k}=\frac{1}{\sqrt{\left(W_{k}, W_{k}\right)}}
$$

Moreover

$$
\begin{aligned}
& \left(v_{k}, v_{j}\right)=0 \quad(j=1,2, \ldots, k-1), \\
& \left(v_{k}, v_{k}\right)=1
\end{aligned}
$$

and

$$
\mathrm{u}_{\mathrm{k}}=\mathrm{b}_{\mathrm{k} 1} \mathrm{v}_{1}+\mathrm{b}_{\mathrm{k} 2} \mathrm{v}_{2}+\ldots+\mathrm{b}_{\mathrm{kk}} \mathrm{v}_{\mathrm{k}} \text {, }
$$

where

$$
\mathrm{b}_{\mathrm{kk}}=\sqrt{\left(\mathrm{W}_{\mathrm{k}}, \mathrm{~W}_{\mathrm{k}}\right)}
$$

Thus, start from the vectors $V_{1}, V_{2}, \ldots, V_{k-1}$ satisfying the conditions of the theorem, we have constructed vectors $V_{1}, V_{2}, \ldots, V_{k-1}, \nabla_{k}$ satisfying the same conditions.

The proof now follows by mathematical induction.
3. Linear manifold in R^{n}.
3.3.1 Definition. A set in R^{n} is a k-dimensional linear manifold if the corresponding vectors forn a k-dimensional linear variety of R^{n}.
3.3.2 Remark. From definition 3.1 .5 , let L be a linear manifold of dimension k. Then the vectors of the linear variety L are all vectors of the form

$$
\mathbf{U}=V_{0}+t_{1} W_{1}+t_{2} W_{2}+\ldots+t_{k} W_{k},
$$

where $t_{1}, t_{2}, \ldots, t_{k}$ are arbitrary scalars, V_{0} is a constant vector and $W_{1}, W_{2}, \ldots, W_{k}$ are linearly independent vectors in L.
4. Euclidean motion of R^{n}.
3.4.1 Definition. A mapping $F: R^{n} \longrightarrow R^{n}$ is called a linear mapping (or linear transformation) if it satisfies the following two conditions.
(i) For any $U, V \in R^{n}, F(U V)=F(U)+F(V)$.
(ii) For any $a \in R$ and any $U \in R^{n}, F(a U)=a F(U)$.
3.4.2 Definition. A translation R in R^{n} is any transformation of the form

$$
R(U)=U+C
$$

where $U \in \mathbb{R}^{\mathfrak{n}}$ and C is a constant vector in R^{n}.
3.4.3 Definition. An affine transformation T of R^{n} is any transformation of the form

$$
T(V)=F(V)+C,
$$

where F is a linear mapping of R^{n} and C is a fixed vector in R^{n}.
3.4.4 Definition. A Euclidean motion of R^{n} is an affine map $T(V)=F(V)+D$, where F is a linear mapping and D is a constant vector in R^{n}, such that

$$
(F(U), F(V))=(U, V), U, V \in R^{n}
$$

3.4.5 Theorem Given two orthonormal basis of $R^{n}\left(E_{1}, E_{2}, \ldots, E_{n}\right)$ and $\left(F_{1}, F_{2}, \ldots, F_{n}\right)$. Then there exists a unique Euclidean motion T such that

$$
T\left(E_{i}\right)=F_{i}, \quad i=1,2, \ldots, n
$$

Proof. Given any two vectors p_{1}, p_{2} in R^{n}, then clearly there is a unique translation R in R^{n} such that

$$
R\left(p_{1}\right)=p_{2}
$$

So from now we can assume that ($E_{1}, E_{2}, \ldots, E_{n}$) and ($F_{1}, F_{2}, \ldots, F_{n}$) have the same initial point, which we can take as the origin.

Claim that there is a unique linear map F such that

$$
F\left(E_{i}\right)=F_{i}, \quad i=1,2, \ldots, n .
$$

Define a mapping $F: R^{n} \longrightarrow R^{n}$ as follow :
Let $V \in R^{n}$. Sinca $\left(E_{1}, E_{2}, \ldots, E_{n}\right)$ is a basis of R^{n}, there exist unique scalars $a_{1}, a_{2}, \cdots, a_{n} \in a$ for which $V=a_{1} E_{1}+a_{2} E_{2}+\ldots+a_{n} E_{n}$. We define $F: R^{n} \longrightarrow R^{n}$ by

$$
F(V)=a_{1} F_{1}+a_{2} F_{2}+\ldots+a_{n} F_{n} .
$$

(Since the a_{i} are unique, the mapping F is well defined.) Now, for $i=1,2, \ldots, n$,

$$
E_{i}=O E_{1}+\ldots+1 E_{i}+\ldots+O E_{n}
$$

Hence

$$
F\left(E_{i}\right)=0 F_{1}+\ldots+1 F_{i}+\ldots+0 F_{i}=F_{i}
$$

To prove F is linear. Suppose $V=a_{1} E_{1}+a_{2} E_{2}+\ldots+a_{n} E_{n}$
and $W=b_{1} E_{1}+b_{2} E_{2}+\ldots+b_{n} E_{n}$. Then

$$
v+W=\left(a_{1}+b_{1}\right) E_{1}+\left(a_{2}+b_{2}\right) E_{2}+\ldots+\left(a_{n}+b_{n}\right) E_{n}
$$

and, for any $k \in R, k V=k a_{1} E_{1}+k a_{2} E_{2}+\ldots+k a_{n} E_{n}$.
By definition of the mapping F,

$$
F(V)=a_{1} F_{1}+a_{2} F_{2}+\ldots+a_{n} F_{n} \text { and } F(W)=b_{1} F_{1}+b_{2} F_{2}+\ldots+b_{n} F_{n} .
$$

Hence $\quad F\left(V+W^{\prime}\right)=\left(a_{1}+b_{1}\right) F_{1}+\left(a_{2}+b_{2}\right) F_{2}+\ldots+\left(a_{n 1}+b_{n}\right) F_{n}$

$$
\begin{aligned}
& =\left(a_{1} F_{1}+a_{2} F_{2}+\ldots+a_{n} F_{n}\right)+\left(b_{1} F_{1}+b_{2} F_{2}+\ldots+b_{n} F_{n}\right) \\
& =F(V)+F(W)
\end{aligned}
$$

and $\quad F(k V)=k\left(a_{1} F_{1}+a_{2} F_{2}+\ldots+a_{n} F_{n}\right)=k F(V)$.
Thus F is linear .
Now suppose $G: R^{n} \longrightarrow R^{n}$ is linear and $G\left(E_{i}\right)=F_{i}$, $i=1,2, \ldots$, n if $v=a_{1} E_{1}+a_{2} E_{2}+\ldots+a_{n} E_{n}$, then

$$
\begin{aligned}
G(V) & =G\left(a_{1} E_{1}+a_{2} E_{2}+\ldots+a_{n} E_{n}\right)=a_{1}\left(E_{1}\right)+a_{2} G\left(E_{2}\right)+\ldots+a_{n} G\left(E_{n}\right) \\
& =a_{1} F_{1}+a_{2} F_{2}+\ldots+a_{n} F_{n}=F(V)
\end{aligned}
$$

Since $G(V)=F(V)$ for every $V \in R^{n}, G=F$. Thus F is unique. Thus our claim is proved.

Finally we shall show that T is inner product preserving.
Suppose $V=a_{1} E_{1}+a_{2} E_{2}+\ldots+a_{n} E_{n}$ and $W=b_{1} E_{1}+b_{2} E_{2}+\ldots+b_{n} E_{n}$. Then

$$
(V, W)=\left(a_{1} E_{1}+a_{2} E_{2}+\ldots+a_{n 2} E_{n}, b_{1} E_{1}+b_{2} E_{2}+\ldots+b_{n} E_{n}\right)
$$

$$
=\sum_{i=1}^{n} a_{i} b_{i}\left(E_{i}, E_{i}\right)+\sum_{i \neq j} a_{i} b_{j}\left(E_{i}, E_{j}\right)
$$

and $(F(V), F(W))=\left(a_{1} F_{1}+a_{1} F_{2}+\ldots+a_{n} F_{n}, b_{1} F_{1}+b_{2} F_{2}+\ldots+b_{n 1} F_{n}\right)$

$$
=\sum_{i=1}^{n} a_{i} b_{i}\left(F_{i}, F_{i}\right)+\sum_{i \neq j} a_{i} b_{j}\left(F_{i}, F_{j}\right)
$$

$3 y$ orthonormality of $\left(E_{1}, F_{2}, \ldots, E_{n}\right)$ and ($\left.F_{1}, F_{2}, \ldots, F_{n}\right)$ the last two equation becomes

$$
(V, W)=\sum_{i=1}^{n} a_{i} b_{i}
$$

and $\quad(F(V), F(W))=\sum_{i=1}^{n} a_{i} b_{i}$

Which gives

$$
(V, W)=(F(V), F(W)), \quad V, W \in R^{n}
$$

The required Euclidean motion is the mapping $T=R O F$, and T is unique because of the uniqueness of R and F.

Hence the theorem is proved.

