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2.1 The distribution of steady state potential in a thin conducting sheet
of constant thickness.

Consider a thin sheet of conducting material of which thickness and
resistivity are uniform. The boundary of the conducting sheet is held at
different electric potential, so that the current flowing in the sheet and
a certain potential distribution are set up.Consider a small element of
the sheet hounded by lines parallel to x and y axes.
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Fig.1 Flow of current through a small element of the conducting sheet

Let iX:iy = Component of current density in xandy direction
V =Electrical Potential
| = Resistivity

In fig 1. Since



Current flow on face IB = ixdy
M =( ix aixdx)dy
DA = iydx "x

1 " » 30 =(i d x
gy

total current entering = total current leaving

ydy+iydx * tey&y!
bl dxdyt-*i dydx = 0

Divide by dxdy

Al Ai
gx t &ry=0
By Ohml law
| = - 3y
P& 1y
hi. 4 hl = (21)
Cohx Byz :

2.2 General Torsion Theory

2.2.1 Torsion Function
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Fig.2
Co-ordinate axes and displacements of shaft
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Consider the general case of a long elastic cylindrical shafi* of which

the cross-section is simply-connected region,is subjected to no body force
and free from external forces on it lateral surface. The generaters of the

shaft are parallel to a - axis. One end is fixed in the plane z =0,
while the other end, in the plane z - 1 is twisted through a small angle
Oby a couple of magnitude Mwhose moment is directed along the axis of
the shaft.

Since the deformation is small, the angle o is assumed to be
proportional to the distance of the section from the fixed base. 'Thus,

Q-oL2
where oCis the twist per unit length.

According to Saint - Venant' Semi Inverse Method, the deformation
of the twisted shaft consists of,

1. The rotation of the cross section of shaft is in such a manner

that every diameter seen on the plane of the cross-section remains -
straight and rotates through the same angle. Thus the displacements -along

Xand y axis correspond  to the rotation of cross section are

= - (Cay, V = ot-ZX
2. The cross sections are warped and each cross - section is
warped in the same way. |t meansthat the warping of the cross-section is
independent of z. The displacement along z - axis can be expressed as
a function of X andy only. This leads USto assume that the displacement
‘along the z-axis in fofm-of

= 0Cty(x,y)
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where U (x,y) is called "Torsion function or Warping function.”

3y simple calculation of the stress corresponding to displacements,
the strain components in fig.3 will be s

"
Fig.3

Strain components in an element in three dimensional form.

w &Y

yy %azg -

77 Al -

£ i - +&L =
Xy by EX



According to Hooke' law

[6}01_ q(gyy 2 622)}
[y = {62z * Gc)]
ezz 2 —;T [ 6ZZ E Yz (620€ ¥ ‘5,}’}’)‘}

%(yz/’lggy’fﬂ:/zl(’;’ Yxz =/%7Zx

E = modulus of elasticity,
[ {= shear modulus
U= Poisson’s ratio

The stress componentswill be

AOX(f~ ) (22

fzx M * (ajt -y) (2.3)
cxy ~Choc- 6yy~o6zz~ 0

y substituting this value in the differential equations"lof
equilibrium

?5522 4.bé';‘xz iy RN

Timoshenko,s,p.and Goodier,J.N. Theory of Elasticity. 2236
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and the houndary condition
X = ~cos ( x)+% cos +"Cz cos( , 2)

Y =@yos (y)+""Nos( )+ cos( X)) (25)

2 = 6Zcos ( 0+ cos ( X)+<Pz cos( )

where cos ($qx), cos ( y),coe (  z) are direction cosines of
the external normal to the surface of the body at the point under
consideration.

The differential equations of equilibrium will be satisfied if
the torsion function ip (x,y) satisfies the Laplace's equation,

inR (2.6)
where R is the region of.-the cross-section of cylinder.

To satisfy tho boundary conditions on the lateral surface of
the cylinder.

(g V) cos (x, V) + (-9+x)cos(y,v) =0 on G
¢ 15 the boundary-of the cross-section of the cylinder.
But oS (X,Z/) + 7~y 003 A A

So the boundary condition can be written in the form of: -

idf =y cos (x,Ty) - Xcos (y,2/) oncC (2.7)
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The problem of solving Laplace's equation in the region  whose
normal derivative is prescribed on the boundary of the region, such as
the problem of solving eq.(2,6) and boundary condition (2.7) is known as
"Neumann problem.”

Since M= JIR (x -y0O <3 (2.8)

By substitute of( the eq.(2.2) and eq.(2»3)
M (x2+ y 2% y ) dxdy (2.9)

Bq. (2.6) is identical to the eq.(2¢ ). If the boundary potential
of the conducting sheet is prescribed in form of

— = A\
2 y cos (x2Y) - X cos (y,2/) on G

which is identical to the eq. (2.7). Then torsion function Ipand
potential Vare analogous. It is not convenient to prescribe this type
of boundary condition on the boundary. Another function which has simpler
boundary condition  should be introduced.

2.2.2 Conugate function

Since the torsion function 2*(x,y) is harmonic in the region of
cross section, it is possible to construct an analytic function ipH/ip
of complex variable X where Ip("y) is the conjugate hormonic function,
related to ip (x,y) by the Cauchy - RLemann equations

i -0y
ax ay ©odyY 3X
The function * (x,y) is called "Conjugatefunction.”
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Sleminate by differentiating the first with respect to yithe
second with respect to X and substracting,then

aV 3y in R (2.10)

The boundary condition of can be determined by eq.(2,7) by
using Cauchy-Riepiann equation and the notation that

€93 = gg :gxy}cos (y,v) - dx = gg

JE dy + Xd
dv ydg d)}(/

bt dlp ajp .dx +alp  dy
d-y ax dy -ay dp

| b M SL =
ay CB 2 X d5

I R

The boundary condition is then defined as
1- (x=ty") + Constant on ¢ (2.11)

From eq.(2.2), (2.3) and (2.9), the stress components and twisting
moment are expressed in term of conjugate function.

T =~ ~ Ho** (e - %) (2.12)

o P (M) 2.13)
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M= w a)c/piL (x2 +y2- XV"y -y ) dxdy (2.14)

0y
If the boundary potential of the conducting sheet is prescribed
in form of

W -2 (x2 +y2) + Constant on ¢.

which is identical to the eq.(2.11). The conjugate function
and potentialV are analogous.

The boundary potential in this case is simple. [t is more
convenient to make the analogy between the potential® and the conjugate
function .

2.2.3 Shearing Stress Function Oul i

The torsion problem may also be formulated in term ofaAfunction
(f( ,y) which is defined as

(pOy) = % y) -0 (x2+y2) (2.15)

by differentiation.

M d0 - dW vy

ox 3IX T oy 3/ (2.16)
then the stress components will be
yi
"x (pCbe] (2.17)
Tay = 5 4y (2.18)

Differentiate eq.(2.16), the first with respect to x and the second
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with respsct to y and add

M, +id = - (2.19)

d x dVA

ihus the functionp (x,y) satisfies Poisson' equation.The function
» (X,y) Is known as "Shearing stress function."

From eq. (2.5), Since X=Y=z2=0 and 003 (212 ) =0
the boundary condition reduces to
7"eo0s (M, x) +5E*>sCyiH = Q
Substituting eq.(2.11) and (2.12) into the boundary condition.

dy 4 Ik dj 0
ay d dx  d5 ~ d5

() = constant (2.20)
along the boundary of cross section.
Recall eq. (2.8)

X xZlj-yo

= C (xH +yfyj&dy
= W oot §y&JtoZr*

By Greenl Theorem
H = - [cos (x, */) +y cos (y, 7/ ) diX 2-A0cl(J) dxdy
Gho'se  —0 on 0*

M= 2 0 éfody (2.21)
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The twisting moment expressed in term of shearing stress function
Is simpler than expressed interm of conjugate function or torsion function.

It is advisable to determine the torsional stiffness in terms of o
Although the shear stress function,”, is not analogous to the potential
Vin the electrical analogy, it can, however, 3 determined from the
conjugate function by mean of eq. (2.15)* Then the twisting moment can
be approximated as shown in section A- 5 appendix A

Consider a family of curves, in the plane of the cross - section
obtained by setting ~= constant, these curves are called LLinesof

shearing stress™ or "Shear stress lines."
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Fig.if Shear stress components on the shear stress lint
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o+ eA *L =0
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T 0T dx -
2 d5 - Cyz gS =0

Acos (x,70 +1 3 cos = C2-22)"



The eq.(2,22) indicates that the components of shear stress
normal to the shear stress lines ( 7"7 in fig*4) are alway zero, thus,
the shear stress at any point in the twisted shaft is in the direction
tangential to the shear stress line.( /7] in fig.4)«

The magnitude of the resultance shear stress is*

'C-'Ca 003 (x’p) - 4s 003 b’2)
=7Aocl aE af + Jy |

0 (2.23)

= M
djl
Thus, the magnitude of resultant shearing stress at any point
is indicated by the closeness of shear stress lines at that point and
the maximum shear stress acts at the point where the shear stress lines

are closest together.
2.3 Method of analogy and supply boundary condition.

Yt

X X! A

/R/\\
P(z,y) /
(b)

(2) )
F1g.5 Co-ordinate axes and the region ot the cross-section
of the shaft and of the conducting sheet under consideration
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Figure 5 (a) and 5 (b) are geometric similarity. Figure 5(b)
represents the conducting sheet and figure 5(a) represents the cross -
section of shaft. The conducting sheet is the enlarged scale mocel of the
cross - section of shaft by the factor of . Point p (x,y) in
figure 5(a) correspond to point P'(x"ry ) in figure 5(b) by.

X' =HX,y" =ny
The potential distributed in a thin conducting sheet as described

in section (2.) is the analogous system of torsion problem in term of
conjugate function if the boundary potential is prescribed in form of

V=g (x2 +y2) + constant

This equation does not specify the unit of potential. Acoefficient
" M1 is introduced so that when the value of expression (x*+ y2) increases
unit, the potential Vincreases 1Volts.The boundary potential suppling
to conducting sheet ii figure 5(b) is then expressed interm of co-ordinate
(x', y1) as
V= 1(x<2+y’2) + Volt (2.24)
The value of on boundary 0 in figure 5(a) is prescribed by
eq. (2,11)
Y= ¢ (X~ +y2) + constant

In this experiment, the constant is alway chosen to be zero. So
the value of iy prescribed on boundary Gin figure 5(a) is governed by

equation

c . (24y2) (2.25)
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Ong unit of-i"is represented by 2volts and hecause the constant
of |f and V can be chosen arbitrarily. The potential V on point P1(x(,y")
in R' represent the conjugate function”mthe corresponding point

p (x,y) in Rby relation
V= 2M 2 (2.26)

The coefficient . and constant e in eq. (2.24) can be determined
from the maximum and minimum value of potential and the Q0 - ordinates.
Go-efficient 2 and constant ¢2 i-n eq«(2.26) can be determined from
two pairs of corresponding points on boundary calculated from eq. (2.24)

and (2. 25)

The dimension of eacblength measured in this experiment is expressed
in term of unit only. The unit of conducting sheet may differ from the

unit of yhe cross-section of the shaft.

There are three types of specimen used in this experiment as shown
rm fig.9 « TW>square conducting sheet of 10 units X 10 units represents

the square QSross- section of shaft of 10 units X 10 units.A unit ofthe
sheet in this case is equal to 25 mm. ,but a unit of cross section of

shaft equal to 2s/n m.m.. This conducting sheet then represents all size
of the crosse-sections of the shafts that has geometric similarity.
The values otf the conjugate function at any corresponding points
remain the ssame for all sizes of the cross-sections.

In this thesis, the potential supply is 5 . In the case of
a square, as in figure g(a) the maximum and minimum boundary potential
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is 10 V and 0 V respectively. Maximum potential is at the point (10,10)
and minimum potential is at the points (0,10) and (10,0)
From eq.(2.24)

[=3Y (xh-y ) + ¢l
10 : 200 1+ 0
0=10 "+Q
1=0.1, C = 10

The boundary potential is then governed by the equation.
V=01 (x2ty2) - 10 Volt. (2.27)

Since either the X or the y (00 -ordinate are always equal to
10 Units, the boundary potential (2.27) is reduced to

V=01x20r01y2 Volt. (2.28)
From eq. (2.25)
at point (10, 10) ] = 100.0
at point (0,10) IP =500

The value of 2 and o can be determined
10 100 2+ Qj
0= 0 2+

52~ 0.2, - 10.0

The potential V relates to the conjugate function lyby the
equation.
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V=02&/+ 00 (2.29)

L~0 9-W- , 2.30
?x S X Yo 5y (2:30)

By the same method, for Itd" eetaripillar -conducting-sheet of 5x00

unit, the boundary potential is governed by

V=01 (x2+y2) - 2.5 Volt (2.31)
The relation between potential and conjugate function are
V=02 -25 (2.32)
= aM - fV . oxakE
Mx 0 'e’chx by ay (233)

Inj the case of the | cross-section in fig.9% the
maximum boundary potential is 10.2 V. The boundary potential is

governed hy

V=015 (x2 +y2) - 0.6 (2.34)
The relation between potential and conjugate function

V=0.3 Va1 0.6 (2.35)

v =a M 1 Av 30.3ML

dx Sx 7y Y (2.36)

2.4 Analytical equatio

For rectangular shaft the torsion function, conjugate fraction,

shear stress components and twisting moment have been solved as followed;-

: okolnikoff,I. , 'mathematical Theory of Elasticity.

P.130-133.
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Fig. 6 Dimensions and co-ordinate axes of the rectangular
shaft under consideration.

V 8a2< (-I)n sinh kj .sin kX (2,37)
*N xy - ip- ) (E)3A 0 AP 1 |

) "l HeR) Jﬁ’z =0 (2rtt-l) cosMiu/Z tos kX (2.38)

Since & (x,y) =il/(x,y) - £ (x2+y2)

) ey @y e 9

b2y FMowA 2 - < 3 (-2 cosh sin kx| (24)
Al L Cosh(Kbl2)

=-Salvhr -1)n . sinh k (2.4)

« WA {2/:1)?2 4qushialbl"y i

M -2 /<A b]i? ; ?AJ,a*4 ;\]:0 tanh !kfr/z) R (2.42)

Where k =2 + 1y
N a

a =length of the side parallel to X - axis
b = n toy - axis
1 a
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It is more convenient to compare the maximum shear stress and
torsional stiffness of rectangular shafts by factors K and K>, The

factors Kand are defined as

K- Zmax (2.43)

M
y/\oCa/\b (2'44)
FOjrl crogii-section, no analytical solutions are established,
but the approximate solutions are as followed,

=]
[ | £
AN

ol b et

l l
At 7 Dimension of the | cross-section under consideration
M= 1<t OC( " + 2 2g) (2.45)
The corresponding dimensionsare shown in fig. 7.

The shear stress of the boundary points far from the corners of
cross section is approximated by the equation of the narrow rectangle.

Timoshenko,s.p.and Goodier,J.N. Theory of Elasticity

P.307-309 and P.321-324.
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A= Oet (2.46)
where t =thickness at that point

The stress concentration at the reentrant corner is approximated
by the approximate equation of the- stress concentration at the
reentrant corner of the angle.

A oyk'oct (1+ ) (2.47)
where r - radius of fillet

The values obtained from the abovs equations will be
compared to the values obtained experimentally.
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