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CHAPTER 1
INTRODUCTION

Combinatorial game [3] is a 2-person game with perfect information and no
change moves. Such a game is determined by a set of states, including the initial
state which is a state at the beginning of the game. Play turns from one state
to another, with the players usually alternating turns, until the terminal state is
reached. The terminal state is a state that no moves are possible. After that one
player is declared the winner and the other the loser. However, two players can
draw if no one win.

Dots and Boxes game [1] is one of combinatorial games, the game starts with an
(m+1) x (n+1) array of dots and 0 points for both players. Two players alternately
turn by drawing a vertical or horizontal line between two adjacent dots. A player
who draws the fourth line of k£ square boxes of size 1 x 1 earns k points and draws
one more line. The game ends when every two adjacent dots has a line and a player
having the most points wins. The game has been studied by several researchers,
for examples, Lenhardt [5] analyzed 1 x n Dots and Boxes game and Buzzard and
Ciere [2] constructed a highly efficient algorithm for playing Dots and Boxes game
optimally. In 2016, Ratiprasit, Simadhamnand and Teeravichayangoon derived
Dots and Hexagons game from Dots and Boxes game. They changed square boxes
to hexagonal boxes and used the same rules of playing as in the Dots and Boxes
game.

In this thesis, we modify their games into Closing Octagons game and formulate
the game into the new game using graph. In Chapter II, we give some definitions
about graphs and combinatorial games. In Chapter III, we introduce Closing Oc-
tagons game and the game that is formulated using graph, give some terminologies

involving the game, and analyze patterns of graphs, states, moves and turns that



appear in the game. In Chapter [V, we give strategies of playing the game for each
player to win or draw or get the most possible points in some situations and some

games of size 1 x n, 2 x n and 3 x 3.



CHAPTER II
PRELIMINARIES

In this chapter, we give some definitions about graphs and combinatorial games

that are used in this thesis.

2.1 Graph Theory

We use several graph terminologies in this thesis. Some of them are commonly
used in several graph theory textbooks, for example, [4] and [7]. However, we

slightly modify several terms by using multiset.

Definition 2.1. A graph is a pair (V, E') where V is a finite set called a vertex set
or a set of vertices, and E is a finite multiset called an edge set or a set of edges

such that each edge is a multiset of 2 vertices (not necessarily distinct).

We usually use V(G) and E(G) to denote the vertex set and the edge set of a

graph G, respectively.

Definition 2.2. Let G be a graph. An edge e of G is a loop if there is a vertex v
such that e = {v,v}, and e is a simple edge if e is not a loop and occurs once in

E(G).

Definition 2.3. Let GG be a graph. A vertex v and an edge e of G are incident if
v € e, and two vertices u and v of G are adjacent if there is an edge incident to

both w and v.

Graph are represented by drawing a dot for each vertex, and an arc joining two

dots v and v for each edge incident to both u and v.

Example 2.4. Let G be a graph that is shown in Figure 2.1. Then, V(G) =
{u,v,w,z,y} and E(G) = {{v,v},{v,w}, {w,y}, {z,y},{z, y} }.



o=

Figure 2.1: A graph G

Definition 2.5. A graph G is a simple graph if all edges of G are simple edges.

Definition 2.6. Let v be a vertex of a graph G. The degree of v, denoted dg(v),
is the number of times such that v occurs in edges of E(G), and the weight of v,

denoted w¢(v), is the number of edges incident to v.

Definition 2.7. Let G be a graph. A vertex v of G is an isolated vertex if dg(v) =
0, and v is a leaf if dg(v) = 1.

Lemma 2.8. [7] For any graph G, the sum of degree of all vertices of G equals
twice of the number of edges of G.

Definition 2.9. A graph H is a subgraph of a graph G if V(H) C V(G) and
E(H) C E(G).

Definition 2.10. Let G and H be graphs. An isomorphism between G and H is
a bijection f from V(G) to V(H) such that for each two vertices u, v € V(G), the
number of edges incident to both u and v of G equals the number of edges incident
to both f(u) and f(v) of H. Two graphs G and H are isomorphic if there is an

isomorphism between G and H.

Definition 2.11. A graph G is a connected graph if for each two vertices u and
v of G, there is a list u = vy, v1, V9, ..., v = v of vertices of G such that for all

i€{1,2,3,....,k}, v;_; and v; are adjacent.

Definition 2.12. A graph K is a component of a graph G if K is a maximal
connected subgraph of G, i.e., there is no connected subgraph H of G such that
H # K, H # G, and H contains K.



Definition 2.13. [4] A trivial graph is a graph having exactly 1 vertex and no
edges.

Definition 2.14. [4] Let k € N. A bouquet graph or k-bouquet graph is a graph

having exactly 1 vertex and k loops.

Figure 2.2 shows examples of bouquet graphs.

O &

A 1-bouquet graph A 2-bouquet graph
A 3-bouquet graph A 4-bouquet graph

Figure 2.2: Examples of bouquet graphs

Definition 2.15. [4] Let £ € N. A path graph or k-path graph is a graph having
exactly k + 1 vertices vy, v1, Vo, ..., v and k edges e, es, €3, ..., €, such that for

all i € {1,2,3,...,k}, e; is incident to v;_; and v;.

Figure 2.3 shows examples of path graphs.

*— *—o—
A 1-path graph A 2-path graph

L < < 9 @ . < < 9
A 3-path graph A 4-path graph

Figure 2.3: Examples of path graphs

Definition 2.16. [4] Let £ € N. A graph G with k + 1 vertices is a pseudopath
graph or k-pseudopath graph if G contains a k-path subgraph P such that for each
edge e of G, e is either a loop of G or an edge of P.



Figure 2.4 shows an example of pseudopath graph.

VARV, A

Figure 2.4: An example of pseudopath graph

Definition 2.17. [4] Let k € N. A cycle graph or k-cycle graph is a graph having
exactly k vertices vy, vo, v3, ..., vy and k edges ey, es, €3, ..., e, such that e; is

incident to v; and v, and for all i € {2,3,4,...,k}, e; is incident to v;_; and v;.

A cycle graph C' is called a simple cycle graph if C' is a simple graph. Figure

2.5 shows examples of cycle graphs.

O O

A 1-cycle graph A 2-cycle graph
A 3-cycle graph A 4-cycle graph

Figure 2.5: Examples of cycle graphs

Lemma 2.18. [6] Let G be a connected graph such that for each vertex v of G,

dg(v) = 2. Then, G is a cycle graph.

Definition 2.19. Let G be a graph with k& edges and e be an edge of G. A
subgraph G — e of G is a graph with £ — 1 edges such that V(G —e) = V(G),
E(G —e) C E(G), and the number of times that e occurs in F(G — e) is less than

the number of times that e occurs in F(G) by 1.



Definition 2.20. Let G be a graph. An edge e of G is a cut-edge if the number

of components of G — e is greater than the number of components of G.

Lemma 2.21. [4] Let G be a graph. An edge e of G is a cut-edge if and only if

there is no cycle subgraph C of G such that e is an edge of C.

Lemma 2.22. [}] Let G be a connected graph and e be a cut-edge of G. Then,

G — e has exactly 2 components.

Definition 2.23. [7] A connected graph G is a tree if G contains no cycle sub-
graphs.

Figure 2.6 shows an example of tree.

Figure 2.6: An example of Tree

Lemma 2.24. [7] Every non-trivial tree has at least 2 leaves.

Theorem 2.25. Let T be a non-trivial tree and e be an edge of T. Then, T — e

has exactly 2 components such that each component is a tree.

Proof. By Lemma 2.21, e is a cut-edge of T. By Lemma 2.22, T' — e has exactly
2 components. Since T' contains no cycle subgraphs, T — e contains no cycle

subgraphs. Hence, each component of 7' — e is a tree. [

2.2 Combinatorial Game Theory

This thesis constructs a new combinatorial game by modifying the existing
one. Thus, the following definitions and examples help the reader understand

more about it.



Definition 2.26. [3] A combinatorial game is a game determined by a finite set
called a set of states, and the game satisfies the following conditions.

(1) There are two players called Player I and Player II, and Player I is the
opponent of Player Il and vice versa.

(2) The set of all possible states is finite.

(3) Rules of playing game are specified for actions of both players, each action
is called a turn.

(4) Two players alternate turning from one state to another.

(5) The game ends when there is no possible turn satisfying the rules of playing

game, and either one player wins and the other loses or two players draw.

Note that Sy, S1, So, ..., S; denote states of a game G with ¢t + 1 states.

By (4) and (5) of Definition 2.26, if G is a combinatorial game with ¢+ 1 states,
then there is a list 71, 72,73, ..., 7 of turns such that for all i € {1,2,3,....t}, 7; is
a turn from S;,_; to S;, 7; is Player I's turn if ¢ is odd, 7; is Player II's turn if ¢ is

even, and there is no possible turn from .S;.

Definition 2.27. For any combinatorial game G with ¢ + 1 states, Sop and S; of G

are called the initial state and the terminal state, respectively.

Definition 2.28. [3] A combinatorial game G is an impartial game if the rules of

G make no distinction between players, otherwise G is called a partizan game.

Example 2.29. Any Rock-Paper-Scissors game is not a combinatorial game, the
game does not satisfy (4) of Definition 2.26 because both players reveal their choices

at the same time.

Example 2.30. Tic-Tac-Toe game is a game for two players starting with a 3 x 3
array of spaces. Two players alternately turn by Player I marks sign O and Player
IT marks sign x in a space. The game ends when there is a vertical, horizontal or
diagonal row that is marked by the same sign, or every spaces is marked by a sign.
The player who marks three of their sign in a vertical, horizontal, or diagonal row

wins.



By the rule of the game, we obtain that any Tic-Tac-Toe game is a partizan
combinatorial game.
Let G be a Tic-Tac-Toe game that is shown in Figure 2.7. Then, G has 9 states

and 8 turns, and Player I loses and Player II wins.

(@) X0

[

[
L

Player I’s turn Player IT’s turn

X X

[

[
L

Player I's turn Player II’s turn

OoX O

O O

n
w
&

X

X
o Player II'’s turn-; x

Ss Se

XO X0
Pl I'st ” o x r_ Uy IT’s t ” o x
ayer I’s turn x o o ayer II’s turn x o

[
L

Player I's turn

OXO
OXO

o

X
[o]

Figure 2.7: A Tic-Tac-Toe game G

Example 2.31. Let m, n € N. Dots and Bozes game [1] or m x n Dots and Bozes

game is a game for two players starting with an (m + 1) x (n + 1) array of dots

and 0 points for both players. Two players alternately turn by the following rules.
(1) A player draws one vertical or horizontal line between two adjacent dots.
(2) A player who draws the fourth line of k square boxes of size 1 x 1 earns k

points and draws one more line.
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The game ends when every two adjacent dots has a line, and the player having
the most points wins.

By the rule of the game, we obtain that any Dots and Boxes game is an impartial
combinatorial game.

Let G be a 2 x 2 Dots and Boxes game that is shown in Figure 2.8. Then, G

has 11 states and 10 turns, and Player I loses and Player II wins.

Player I's turn [ Player II’s turn
So S1 Sy
Player I’s turn Player IT’s turn
Sg 54
Player I’s turn Player IT’s turn
S5 56
Player I’s turn Player II’s turn
S7 SS
Player I’s turn Player IT’s turn
Sg SlO

Figure 2.8: A 2 x 2 Dots and Boxes game G



CHAPTER I11
CLOSING OCTAGONS GAME

In this chapter, we introduce the definition of Closing Octagons game and for-
mulate this game into the new game using graph. Several terminologies involving

our Closing Octagons game are given and some analysis of the game are provided.

3.1 Definition of Closing Octagons Game

In this section, we give a definition of our Closing Octagons game and their
relevant terminologies.

First, let us introduce a Closing Octagons game of type I.

Definition 3.1. Let m, n € N. Closing Octagons game of type I or m x n Closing
Octagons game of type I is a game for two players starting with an m x n array of
octagons such that every two adjacent octagons has one common side and 0 points
for both players. Two players alternately turn by the following rules.

(1) A player move by coloring of one side of an octagon.

(2) A player who colors the eighth side of k octagons earns k points and takes
one more move.

The game ends when every side of octagons has been colored, and the player

having the most points wins.

By Definition 3.1, a move is a coloring one side of an octagon and a turn is a
possible list of consecutive move(s) by one player that satisfies the rules of playing

the game.

Definition 3.2. For any m x n Closing Octagons game G of type I, m x n is called

the size of G.
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Definition 3.3. For any Closing Octagons game G of type I, a state of G is a triple
(A, p1,p2) where A, p; and py are an array of octagons with colored-sides and points
of Player I and Player II that are changed by turns, respectively, including ( Ay, 0, 0)

where Aj is an array of octagons with no colored-sides.

To be specific, we use A(S) to denote the array of octagons with colored-sides

of a state S of a Closing Octagons game of type I.

Remark 3.4. Any Closing Octagons game of type I is an impartial combinatorial

game.

Example 3.5. Let G be a 2 x 2 Closing Octagons game of type I that is shown in
Figure 3.2. Then, G has 26 states and 25 turns.
A turn from Sig to Sy gives Player II 2 points, and a turn from Ssy to Sas

gives Player I 2 points. Then, two players draw.

— — —
I 11 I
A(So) A(S1) A(S2) A(S3)
— — —
11 I 11
A(S4) A(S5) A(S6)
— — —
I II I
A(S7) A(Ss) A(So)

peeRieeries
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II

II II

= = =
@ @ @
N N N
= = =
@ @ @
< g \a
= 2 2
@ B @

— — —
I 11 I
— — — —
11 I 11 I
A(S22) A(S23) A(S24) A(S25)

Figure 3.2: A 2 x 2 Closing Octagons game G of type I

Next, we formulate an m x n Closing Octagons game of type I into the new
game using graphs. We construct the graph (Gy),,x» representing the m x n array
of octagons with no colored-sides. Let us regard the set of octagons as the vertex
set of (Go)mxn, and the edge set is the set of sides of octagons such that e is a
simple edge incident to vertices v and v if e is a common side of octagons u and
v, and e is a loop incident to a vertex v if e is an in-common side of an octagon
v. Thus, we get the new game starting with (Go)mxn called an m x n Closing

Octagons game of type II.

Definition 3.6. Let m, n € N. Closing Octagons game of type II or m xn Closing

Octagons game of type II is a game for two players starting with the graph (Gg)mxn

and 0 points for both players. Two players alternately turn by the following rules.
(1') A player move by removing one edge of the graph.
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(2") A player who removes the last edge of k vertices earns k points and takes
one more move.
The game ends when the graph contains no edges, and the player having the

most points wins.

By Definition 3.6, a move is a removal of one edge and a turn is a possible list

of consecutive move(s) by one player that satisfies the rules of playing the game.

Definition 3.7. For any m x n Closing Octagons game G of type II, m x n is

called the size of G.

Definition 3.8. For any Closing Octagons game G of type II, a state of G is a
triple (G, p1,p2) where G, p; and ps are a graph and points of Player I and Player
IT that are changed by turns, respectively, including ((Go)mxn, 0,0).

To be specific, we use G(S) to denote the graph of a state S of a Closing
Octagons game of type II.

G(So) G(51) G(S2) G(53)
— — —
11 I 11
G(Sy) G(S5) G(S6)
— — —
I 11 I
G(S7) G(Ss) G(Sy)

— — —
11 I 11
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G(513)
II I II
G(S16) G(S17) G(S18)
I 11 ° I °
G(S19) G(S20) G(S21)
[ ] L [ ] [ ] Q [ ] [ ]
— — — —
11 ° I ° 11 ° 0 I ° °
G(S22) G(S23) G(S24) G(S25)

Figure 3.4: A 2 x 2 Closing Octagons game G of type II

Remark 3.9. Any Closing Octagons game of type II is an impartial combinatorial

game.

Example 3.10. Let G be a 2 x 2 Closing Octagons game of type II that is shown
in Figure 3.4. Then, G has 26 states and 25 turns, and two players draw.

A Closing Octagons game of type II that is played on a graph theoretic formu-
lation is easier to consider and we can inherit some terminologies in graph theory
to use with the game. From now on, as we talk about a Closing Octagons game,

we refer to the Closing Octagons game of type II.

Definition 3.11. Let G be a graph. A move p of G is a winning mowve if p is a
removal of an edge e of G such that the number of isolated vertices of G — e is

greater than the number of isolated vertices of G.
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By Definition 3.11, we obtain that if G is a Closing Octagons game, a move p

of G is a winning move if ;1 gives points to a player.

Remark 3.12. For any Closing Octagons game G, if 7 = pq, o, i13, ..., fx is a turn
having at least 2 moves of G, then

(1) if 7 is a turn from some state to the terminal state, then py, ua, g, ..., fix
are winning moves, and

(2) if 7 is a turn from some state to a non-terminal state, then puy, ps, ps, ...,

[k—1 are winning moves and gy is not a winning move.

Definition 3.13. Let G be a Closing Octagons game. A non-terminal state S of
G is a normal state if there is no possible turn containing a winning move from S

to another state, otherwise S is called a strategic state.

By Definition 3.13, we obtain that if G is a Closing Octagons game, then Sy is
a normal state of G, and a turn from a normal state to another state has exactly

one move.

Example 3.14. According to the Closing Octagons game in Example 3.10, Sy, Sa,
S3, ..., Sig, Soo, So1, So9 and Ssz are normal states, and Sig and Sy are strategic

states.

Definition 3.15. Let S be a state of a Closing Octagons game. A component K
of G(S) is a weak component if there is a possible turn from S to another state

such that all edges of K are removed, otherwise K is called a strong component.

Definition 3.16. Let S be a state of a Closing Octagons game. A strong compo-
nent K of G(S) is a chain if for each edge e of K, all components of K — e are

weak components.

In general, if there is a possible turn from a normal state to another normal
state, then players often make the turn. Because, if some player turns from a
normal state to a strategic state, then the opponent can earn some points from

this strategic state. Moreover, if all components of the graph of a strategic state
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are weak components, then players often remove all edges of the graph. In order to
analyze a winning strategy, we add more rules into this game and the game with

these additional rules is called a normal game.

Definition 3.17. A Closing Octagons game G is a normal game if two players
turn by the following rule.

(3") If there is a possible turn 7 from a state to a normal state, then a player
has to make the turn 7.

(4) If all components of the graph G of a state are weak components, then a

player has to remove all edges of G.

Example 3.18. Let G be a normal 2 x 2 Closing Octagons game that is shown
in Figure 3.6. Then, Sy, S1, S, ..., Soo are normal states, and Ss3 and Syy are

strategic states.

— — —
I I I
G(So) G(S1) G(S2) G(S3)
— — —
11 1 11
G(S4) G(S5) G(Se)
— — —
I 11 I
G(57) G(Ss) G(S9)
— — —
II I II

G(Sh0) G(S11) G(S12)
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L % ii %

G(S13) G(S1a) G(S15)
SO O Q_Q
T w5
G(S16) G(S17) G(S18)
I % 11 % I %
G(Sh9) G(S20) G(S21)
II % I 0 11 ° I ° °
G(S22) G(S23) G(S24) G(S25)

Figure 3.6: A normal 2 x 2 Closing Octagons game G

Definition 3.19. Let G be a normal Closing Octagons game. A normal state S

of G is a critical state if there is no possible turn from S to another normal state.
Lemma 3.20. FEvery normal Closing Octagon game has exactly one critical state.

Proof. Let G be a normal Closing Octagons game. Suppose that S, and Sk,
are critical states of G where k1 < ky. Then, there is a strategic state S; where
k1 < | < ko such that S;.; is a normal state. Consider a turn which is a list
11, fo, i3, ..., g Of consecutive moves from S; to 51 such that py is a removal of
an edge e incident to u and v (If e is a loop, then u = v.). Then, py is not a winning
move and G(S;11) contains no e. Then, G(S;41) is a subgraph of G(Sk,) —e. Since
Si+1 is a normal state, each removal of an edge of G(S;41) incident to u or v is
not a winning move. Then, each removal of an edge of G(S,) — e incident to u or

v is not a winning move. Since Si, is a normal state, each removal of an edge of
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G(Sk,) is not a winning move. Then, each removal of an edge of G(S,) — e is not
a winning move. This implies that there is a possible turn p from Sy, to another

normal state. This contradicts the assumption that S, is a critical state of G. [

By Lemma 3.20, we obtain that if G is a normal Closing Octagons game with
t + 1 states such that S, is the critical state, then Sy, Si, Ss, ..., S are normal

states and Syy1, Ski2, Skis,..., S;_1 are strategic states of G.

Example 3.21. According to the normal Closing Octagons game in Example 3.18,

S9o 18 the critical state.

3.2 Analysis of Closing Octagons Game

In this section, we analyze our game in terms of moves and turns, normal

states and critical states, strong components, weak components and chains.

Theorem 3.22. The number of moves of an m x n Closing Octagons game is

omn +m +n.

Proof. Let G be an m x n Closing Octagons game. Then, G(Sp) of G has 4
vertices of degree 14, 2(m — 2) + 2(n — 2) vertices of degree 13, and (m — 2)(n — 2)
vertices of degree 12. Thus, the sum of degree of all vertices of G(Sy) equals
14(4) +13(2(m —2)+2(n—2)) 4+ 12(m —2)(n — 2) = 12mn+2m + 2n. By Lemma
2.8, the number of edges of G(Sp) is 6mn+m+n. Therefore, the number of moves

of G is 6mn +m + n. O

Theorem 3.23. Let S be a normal state of a normal m x n Closing Octagons
game such that G(S) has ezactly k edges.
(1) If k — m — n is even, then a turn from S to another state is Player I’s.

(2) If k — m — n is odd, then a turn from S to another state is Player II’s.

Proof. Let G be a normal m xn Closing Octagons game. Then, Sy, S1, s, ..., S are
normal states. By Theorem 3.22, the number of all moves of G is 6mn+m-+n. Since

G(S) has exactly k edges, the number of moves from Sy to S is 6mn +m +n — k.
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Since a turn from a normal state to another state has exactly 1 move, the number
of turns from Sy to S is 6mn + m + n — k. Obviously, 6mn + m +n — k and
k —m — n have the same parity. Therefore,

(1) if Kk —m — n is even, then a turn from S to another state is Player I's, and

(2) if K —m —n is odd, then a turn from S to another state is Player II's. [J

The following theorems involving states of the normal game.

Lemma 3.24. Let S be a normal state of a normal Closing Octagons game. Then,

G(S) contains no isolated vertices.

Proof. Let G be a normal Closing Octagons game. Then, Sy, Si, S, ..., Sy =25
are normal states. Thus, for all i € {0,1,2, ..., k}, there is no possible turn from
S; to Siy1 giving points to a player. This implies that G(S) contains no isolated

vertices. O]

Theorem 3.25. Let G be a normal Closing Octagons game. A state S of G is a

normal state if and only if for each vertex v of G(S), we(s)(v) > 2.

Proof. Assume that S is a normal state of G. By Lemma 3.24, G(S) contains no
isolated vertices. Then, for each vertex v of G(S5), wg(s)(v) > 1.

To show that for each vertex v of G(S5), wg(s)(v) > 2, suppose that there is a
vertex vy of G(S) such that wg(s)(vo) = 1. Let eg be an edge incident to vy and 1o
be a removal of ey. Then, wg(s)—e,(vo) = 0. Thus, pg is a winning move of G(S).
This implies that there is a possible turn containing po from S to another state.
This contradicts the assumption that S is a normal state. Hence, for each vertex
v of G(5), wgs)(v) > 2.

Conversely, assume that S is a state of G such that for each vertex v of G(5),
we(s)(v) > 2. Let e be arbitrary edge of G(S) and p is a removal of e. Let vy and vy
be vertices of G(S) incident to e. If e is a loop, then v; = vy. If € is a simple edge,
then vy # vo. Then, wes)(v1) > 2 and wes)(v2) > 2. Thus, we(s)—(v1) > 1 and
We(s)—e(v2) > 1. Then, p1 is not a winning move of G(.S). This implies that there
is no possible turn containing a winning move from S to another state. Hence, S

is a normal state. O
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Theorem 3.26. Let G be a normal Closing Octagons game. A state S of G is the
critical state if and only if for each vertez v of G(S),

(1) wes)(v) > 2, and

(2) if wgsy(v) > 3, then each edge incident to v is a simple edge, and the

weight of each vertex adjadent to v is 2.

Proof. Assume that S is a critical state of G. Let v be arbitrary vertex of G(S5).
By Theorem 3.25, (1) holds.

To show (2), assume that v is a vertex of G(S) such that wgs)(v) > 3.

First, we show that each edge incident to v is a simple edge. Suppose that there
is a loop [y of G(S) incident to v. Let iy be a removal of ly. Then, we(sy—i,(v) > 2.
Thus, pu; is a possible turn from S to a normal state. This contradicts the assump-
tion that S is a critical state. Hence, each edge incident to v is a simple edge.

Next, we show that the weight of each vertex adjacent to v is 2. Suppose
that there is a vertex vy of G(S) adjacent to v such that wgs)(vg) > 3. Let ey
be a simple edge of G(S) incident to v and vy and pe be a removal of e. Since
wes)(v) = 3 and wes) (Vo) > 3, Wa(s)—e, (V) > 2 and we(s)—e, (o) > 2. Then, po
is a possible turn from S to a normal state. This contradicts the assumption that
S is a critical state. Hence, the weight of each vertex adjadent to v is 2.

Conversely, assume that S is a state of G such that (1) and (2) hold. By
Theorem 3.25, S is a normal state. Let e be arbitrary edge of G(S) and p be a
removal of e. Let v; and v, be vertices of G(.59) incident to e. By (1), we(s)(v1) > 2.
If we(s)(v1) = 2, then we(sy—e(v1) = 1. Ifwees)(v1) > 3, then by (2), we(s)(v2) = 2,
and then wg(s)—e(v2) = 1. Thus, p is a possible turn from S to a strategic state.

Hence, S is a critical state. [

Corollary 3.27. Let G be a normal 1 xn or 2 x 2 Closing Octagons game. A state
S of G is the critical state if and only if for each vertex v of G(S), wg(s)(v) = 2.

Proof. For each vertex v of G(Sy) of G, the number of simple edges incident to v
is at most 2. Then, Theorem 3.26 implies that a state S of G is the critical state

if and only if for each vertex v of G(5), wg(s)(v) = 2. O
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Next, we consider strong components in the graph of states of the game.

Theorem 3.28. Let S be a state of a Closing Octagons game and K be a component
of G(S) such that K is not a 1-cycle component. If K contains no leaves, then K

18 a strong component.

Proof. Assume that K contains no leaves. Then, the weight of each vertex of K
is at least 2. Thus, for each edge e of K, K — e contains no isolated vertices. This
implies that there is no possible turn from S to another state such that all edges

of K are removed. Therefore, K is a strong component. [

By Theorem 3.28, we obtain that if S is a state of a Closing Octagons game
and K is a weak component of G(5), then either K is a 1-cycle component or K

contains a leaf.

Theorem 3.29. Let S be a state of a Closing Octagons game and K be a component
of G(S). If K contains a simple cycle subgraph, then K is a strong component.

Proof. Assume that K contains a simple cycle subgraph C'. To show that there
is no possible turn from S to another state such that all edges of K are removed,
suppose that there is a possible turn 7y from S to another state such that all edges
of K are removed. Let py be a move of 7y such that pg is the first removal of some
simple edge eq of C'. Since ¢y is a simple edge of C', the weight of each vertex of K
incident to eg is at least 2. Then, ug is not a winning move of K. This implies that
1o is the last move of 7y, and some edges of K are not removed. This contradics
the statement that 7 is a possible turn from S to another state such that all edges

of K are removed. Therefore, K is a strong component. [

The following facts are concerning weak components in the graph of states of

the game.

Lemma 3.30. Let S be a state of a Closing Octagons game. A component K
of G(S) is a weak component if and only if there is a list of consecutive winning

moves of G(S) such that all edges of K are removed.
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Proof. By Definition 3.15, a component K of G(S) is a weak component if and
only if there is a possible turn from S to another state such that all edges of K
are removed. Obviously, a component K of G(S) is a weak component if and
only if there is a list of consecutive winning moves such that all edges of K are

removed. OJ

Theorem 3.31. Let S be a state of a Closing Octagons game and K be a component
of G(S). If K is a tree, then K is a weak component.

Proof. Obviously, a trivial tree is a weak component. Assume that K is a non-
trivial tree with k edges. To prove that there is a list of consecutive winning moves
such that all edges of K are removed, we use the mathematical induction on k.

Basic step: k = 1. K has exactly 1 edge. Then, there is a winning move which
is a removal of the edge of K.

Inductive step: k£ > 2. Assume that for each non-trivial tree T" such that the
number of edges less than k, there is a list of consecutive winning moves such
that all edges of T" are removed. By Lemma 2.24, K has at least 2 leaves. Let
vg be a leaf of K, ey be an edge of K incident to vy and p is a removal of eg.
By Corollary 2.25, K — ey has exactly 2 components such that one component is
a trivial component and the other component K’ is a non-trivial tree with k — 1
edges. Then, p is a winning move of K. By the induction hypothesis, there is
a list s, u3, fig, ..., g of consecutive winning moves such that all edges of K’ are
removed. This implies that gy, ps, i3, ..., i is a list of consecutive winning moves
such that all edges of K are removed.

Therefore, K is a weak component. 0

Corollary 3.32. Let S be a state of a Closing Octagons game and K be a compo-
nent of G(S). If K is a path component, then K is a weak component.

Proof. Assume that K is a path component. Then, K contains no cycle subgraphs.

This implies that K is a tree. By Theorem 3.31, K is a weak component. 0

Theorem 3.33. Let S be a state of a Closing Octagons game and K be a component
of G(S). If K contains a loop | such that K—1 is a tree, then K is a weak component.
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Proof. Assume that K has exactly k edges and contains a loop [y such that K —Ij is
a tree. Then, [ is only one loop of K. To prove that there is a list of consecutive
winning moves such that all edges of K are removed, we use the mathematical
induction on k.

Basic step: k = 1. There is a winning move which is a removal of [y of K.

Inductive step: k > 2. Assume that for each component GG containing [, such
that G — [y is a tree and the number of edges of G less than k, there is a list of
consecutive winning moves such that all edges of G are removed. By Lemma 2.24,
K — [y has at least 2 leaves. Then, K has at least 1 leaf. Let vy be a leaf of K,
eg be a simple edge of K incident to vy and p; is a removal of ey. Then, vy and
e — 0 are a leaf and a simple edge of K — [y, respectively. Since K has eaxctly k
edges, K — [y has exactly k — 1 edges. By Corollary 2.25, (K —ly) — eg has exactly
2 components such that one component is a trivial component and the other is
a tree with £ — 2 edges. Then, K — ¢y has exactly 2 components such that one
component is a trivial component and the other component K’ has exactly k — 1
edges and contains [y such that K’ — 1 is a tree. Then, 1 is a winning move of K.
By the induction hypothesis, there is a list uo, i3, g, ..., ptx of consecutive winning
moves such that all edges of K’ are removed. This implies that gy, po, i3, ..., fig 18
a list of consecutive winning moves such that all edges of K are removed.

Therefore, K is a weak component. [

Corollary 3.34. Let S be a state of a Closing Octagons game and K be a compo-
nent of G(S). If K is a pseudopath component having exactly 1 loop, then K is a

weak component.

Proof. Assume that K is a pseudopath component having exactly 1 loop . Then,
K —ly is a path component. Then, K — [y contains no cycle subgraphs. This
implies that K — [ is a tree. By Theorem 3.33, K is a weak component. [

Finally, we consider the chains in the graph of states of our game.

Lemma 3.35. Let S be a state of a Closing Octagons game and K be a strong
component of G(S). If K contains a leaf, then K is not a chain.
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Proof. Assume that K contains a leaf vy. Suppose that K is a chain. Let eq be a
simple edge incident to vy and uy be a removal of ey. Then, wg_.,(vg) = 0. Thus,
(1 is a winning move of K. Since K is a chain, all components of K — ¢, are weak
components. Then, there is a list uso, u3, ..., g of consecutive winning moves such
that all edges of K — ey are removed. This implies that pq, ps, s, ..., g is a list
of consecutive winning moves such that all edges of K are removed. Then, K is a
weak component. This contradicts the statement that K is a chain. Therefore, K

is not a chain. O

Theorem 3.36. Let S be a state of a Closing Octagons game. A pseudopath
component K of G(S) is a chain if and only if K has exactly 2 loops and no leaves.

Proof. Assume that K is a pseudopath chain of G(S). By Lemma 3.35, K contains
no leaves. Then, K has at least 2 loops.

To show that K has exactly 2 loops. Suppose that K contains at least 3 loops.
Then, there is a loop [y of K such that K — [y contains no leaves. By Theorem
3.28, K — [y is a strong component. This contradicts the assumption that K is a
chain. Hence, K has at least 2 loops.

Conversely, assume that K is a pseudopath component of G(S) such that K
has exactly 2 loops and no leaves. Then, K is isomorphic to a graph that is shown
in Figure 3.7. By Theorem 3.28, K is a strong component. Let e be arbitrary
edge of K. If e is a loop, then K — e is a pseudopath component having exactly 1
loop. If e is a simple edge, then K — e has exactly 2 components such that each
component is a pseudopath component having exactly 1 loop. By Corollary 3.34,

all components of K — e are weak components. Hence, K is a chain. [

By Theorem 3.36, we can conclude that a k-pseudopath chain is a graph iso-

morphic to a graph that is shown in Figure 3.7.

O — .._O

Figure 3.7: A pseudopath chain
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Lemma 3.37. Let S be a state of a Closing Octagons game. If K is a strong
component of G(S) such that for each vertex v of K, wg(v) = 2. Then, K is a

2-bouquet component, a pseudopath chain or a simple cycle component.

Proof. Assume that K is a strong component of G/(5) such that for each vertex v
of K, wi(v) = 2. Then, either K is a simple component or K contains a loop.

Case 1. K is a simple component. Then, for each vertex v of K, dx(v) = 2.
By Lemma 2.18, K is a simple cycle component.

Case 2. K contains a loop. Then, K is not a simple cycle component. To show
that K is a 2-bouquet component or a pseudopath chain, assume that K is not a
2-bouquet component. Then, K has at least 1 simple edge.

First, we show that K contains no simple cycle subgraphs. Suppose that K
contains a simple cycle subgraph C. Since K is not a simple cycle component,
there is an edge e; of K incident to some vertex v; of C' such that e; is not an edge
of C. Then, wk(v;) > 3. This contradicts the assumption that for each vertex v
of K, wi(v) = 2. Hence, K contains no simple cycle subgraphs.

Let P be a maximal path subgraph of K and u; and us be distinct leaves of
P. Since K contains no simple cycle subgraphs, each of u; and us is incident to a
loop of K.

Next, we show that K is a pseudopath component. Suppose that K is not a
pseudopath component. Then, there is a simple edge ey of K incident to some
vertex vy of P such that ey is not an edge of P and vy is not a leaf of P. Then,
wg (ve) > 3. This contradicts the assumption that for each vertex v of K, wi(v) =
2. Hence, K is a pseudopath component such that P is a maximal path subgraph
of K.

Finally, we show that K has exactly 2 loops. Suppose that K has at least 3
loops. Since each of u; and wus is incident to a loop, there is a loop ly of K incident
to some vertex vs of P such that v is not a leaf of P. Then, wg(vs) > 3. This
contradicts the assumption that for each vertex v of K, wg(v) = 2. Hence, K has
exactly 2 loops.

Consequently, K is a pseudopath chain. O



27

Theorem 3.38. Let S be a state of a Closing Octagons game and K be a component
of G(S). Then, the following are equivalent.

(1) K is a chain.

(2) For each vertex v of K, wg(v) = 2.

(3) K is a 2-bouquet component, a pseudopath chain or a simple cycle compo-

nent.

Proof. To show that (1) implies (2), assume that K is a chain of G(S). Obviously,
K is neither a trivial component nor a 1-cycle component. By Lemma 3.35, K
contains no leaves. Then, for each vertex v of K, wg(v) > 2.

To show that for each vertex v of K, wi(v) = 2, suppose that there is a vertex
vo of K such that wg(vg) > 3. Then, either there is a loop of K incident to v or
all edges of K incident to vy are simple edges.

Case 1. There is a loop [y of K incident to vg. Then, wg_;,(v9) > 2. This
implies that K — [y contains no leaves. By Theorem 3.28, K — [, is a strong
component. Then, K is not a chain.

Case 2. All edges incident to vy are simple edges. Let ug be a vertex of K
adjacent to vy and e; be an edge of K incident to ug and vg. Then, K — e; has at
most 2 components.

Case 2.1. K —e;q has exactly 1 component. Then, there is a list vy, vy, vo, ..., vy =
ug of vertices of K — ey such that for all i € {1,2,3,...,k}, v;_; and v; are adjacent.
Since ug and vy are adjacent in K, K contains a simple cycle subgraph C' such
that V(C) = {wvo, v1,v9, ..., v =up}. Since wg(vg) > 3, there is a simple edge es of
K incident to vy such that e is not an edge of C'. Then, K — ey contains C. By
Theorem 3.29, K — ey is a strong component. Then, K is not a chain.

Case 2.2. K —eq has exactly 2 component. Then, one component of K —e; con-
tains 4 and the other component K’ contains vy. Since wg(vg) > 3, wi—e, (Vo) >
2. This implies that K’ contains no leaves. By Theorem 3.28, K — [y is a strong
component. Then, K is not a chain.

So by 2 cases, K is not a chain. This contradicts the assumption that K is a

chain. Hence, for each vertex v of K, wi(v) = 2.
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To show (2) implies (3), we use Lemma 3.37 directly.

To show (3) implies (1), we first observe that a pseudopath chain is a chain.
If K is a 2-bouquet component, then by Theorem 3.28, K is a strong component,
and then for each edge e of K, K — e is a 1-bouquet component which is a weak
component. If K is a simple cycle component, then by Theorem 3.29, K is a strong
component, and then for each edge e of K, K — e is a path component which is a

weak component. Hence, K is a chain. [

Example 3.39. Let S be the critical state of a normal 2 x 2 Closing Octagons
game. By Corollary 3.27, for each vertex v of G(S), wg(s)(v) = 2. By Theorem
3.38, each component of G(S) is a 2-bouquet component, a pseudopath chain
or a simple cycle component. We obtain that there are 6 cases of G(S) up to

isomorphism shown in Figure 3.8.

Case 1 Case 2 Case 3

O—O OO00 OOOO
O—O O—0 OO0

Case 4 Case 5 Case 6

Figure 3.8: Six cases of the graph of the critical state of a normal 2 x 2 game



CHAPTER IV
STRATEGIES FOR PLAYING THE GAME

In this chapter, we give strategies of playing the normal Closing Octagons game
for each player to win or draw or get the most possible points in some situations
and some games of size 1 X n, 2 x n and 3 x 3. A strategy is a plan of playing
the game that is constructed for moves or turns of a player. However, the strategy
must be usable and does not contradict the main rules of normal game. A strategy
is called a winning strategy for a player if the player wins when the player plays

according to the plan of the strategy, no matter how the opponent plays.

4.1 Some Strategies

In this section, we give examples of some strategies and analyze results of
playing the normal Closing Octagons game in some situations.
First, we give a definition of maximum turn and introduce the first strategy,

namely, Strategy A.

Definition 4.1. Let S be a state of a Closing Octagons game. A possible turn
7 from S to another state is a mazimum turn if for each passible turn 7/ from S
to another state, the number of moves of 7’ is less than or equal to the number of

moves of 7.

Strategy 4.2 (Strategy A). Let S be a state of a Closing Octagons game. A

player has to make a maximum turn from S to another state.

Example 4.3. Consider a playing normal 3 x 3 Closing Octagons game such that
the graph of the critical state Sy is shown in Figure 4.1. Since G(Sy) has 11 edges,
Theorem 3.23 implies that a turn from Sy to Sy is Player II’s.
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Figure 4.1: The graph of the critical state Sj

If Player IT makes a turn from Sy to Sgyq that is shown in Figure 4.2, then

G(Sk+1) has exactly 2 weak components and 1 chain.

O ® ® Cor—o ®

[

Player IT’s turn

0 0

Sk Sk11

Figure 4.2: Player II's turn from Sy to Sky1

If Player I makes a turn from Sj,; to Sy by using Strategy A that is shown
in Figure 4.3, then Player I earns 5 points.

Cor—o0o L ° ° °

[
L

Player I’s turn

6 [ ]

Sk+1 Sk+2

Figure 4.3: Player I's turn from Sy to Skio

Next, Player II has to make a turn from Sy to the terminal Sy 3 by removing

all edges of G(Sy42), and then Player II earns 4 points. Therefore, Player I wins.
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By Example 4.3, Strategy A makes Player I to win. However, if Player II does
not make a turn from Sy to Sii1 as shown in Figure 4.2, then Player I may not

win, as we can see in Example 4.4.

Example 4.4. Consider a playing normal 3 x 3 Closing Octagons game such that
the graph of the critical state Sy is shown in Figure 4.1. If Player II makes a turn
from Sy to Sky1 that is shown in Figure 4.4, then G(Sy,1) has exactly 2 weak

components and 1 chain.

e ° ] C» ° Py

] e ]

Player II’s turn

0 0

Sk Sk+1

Figure 4.4: Player II's turn from Sj to Ski1

If Player I makes a turn from Syy; to Skio by using Strategy A that is shown
in Figure 4.5, then Player I earns 4 points.

C» ® 9 ® ® 9

C» ] ° ° ]

[
L

Player I’s turn

0 0

Sk+1 Skt2

Figure 4.5: Player I's turn from Sy to Skio

Next, Player II has to make a turn from Sy to the terminal Sy 3 by removing

all edges of G(Sk42), and then Player II earns 5 points. Therefore, Player I loses.

By Example 4.4, Strategy A makes Player I to lose. We conclude that for play-

ing normal Closing Octagons game, if the graph of the critical state is isomorphic
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to a graph that is shown in Figure 4.1, then Strategy A is not a winning strategy
for Player 1.
Next, we introduce Strategy B and show examples of the difference between

Strategy A and Strategy B.

Strategy 4.5 (Strategy B). Let S be a state of a Closing Octagons game. If 7 is
a maximum turn from S to another non-terminal state such that g, po, ti3, ..., pig
are all winning moves of 7, and there is another possible turn 7y from S to another
state such that

(1) all moves of 1y are elements of the set {1, po, i3, ..., pi }, and

(2) for each possible turn 7’ from S to another state such that all moves of 7/
are elements of the set {1, o, i3, ..., pir.}, the number of moves of 7’ is less than
or equal to the number of moves of 7,

then a player has to make a turn 7y from S to another state.

Example 4.6. Consider a playing normal 3 x 3 Closing Octagons game such that
the graph of the critical state Sy is shown in Figure 4.1, and Player II makes a
turn from Si to Sk, that is shown in Figure 4.2.

If Player I makes a turn from Sj; to Spio by using Strategy B that is shown
in Figure 4.6, then Player I earns 3 points.

Cr—o (] (] (] (]

[
L

Player I’s turn

0

Sk+1 Sk+2

Figure 4.6: Player I's turn from Siy; to Skio

Next, Player II can earn at most 2 points from Sk, o to Sii3 and Player I can
earn at least 4 more points from Sy, 3 to the terminal state Si,4. Therefore, Player

I wins.
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Example 4.7. Consider a playing normal 3 x 3 Closing Octagons game such that
the graph of the critical state Sy is shown in Figure 4.1, and Player II makes a
turn from S; to Sk, that is shown in Figure 4.4.

If Player I makes a turn from Sii; to Skio by using Strategy B that is shown
in Figure 4.7, then Player I earns 2 points.

e ° ] C» ° Py

C» ] ° ° ]

[
L

Player I's turn

0 0

Sk+1 Sky2

Figure 4.7: Player I'’s turn from Sj; to Skio

Next, Player II can earn at most 2 points from Si,o to Sii3 and Player I can
earn at least 5 more points from Sy 3 to the terminal state Si14. Therefore, Player

I wins.

By Example 4.6 and Example 4.7, Strategy B makes Player I to win. However,
Strategy B may not always give more points than Strategy A, as we can see in

Example 4.8.

Example 4.8. Consider a playing normal 2 x 3 Closing Octagons game such that
the graph of the critical state S is shown in Figure 4.8. Since G(Sy) has 7 edges,

Theorem 3.23 implies that a turn from Sy to Sy is Player I's.

Figure 4.8: The graph of the critical state Sj
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If Player I makes a turn from S; to Sky1 that is shown in Figure 4.9, then

G(Sks1) has exactly 1 weak component and 1 chain.

[
L

Player I's turn

Sy, Sk+1

Figure 4.9: Player I’s turn from Sy to S,

Case 1. Player II makes a turn from Sy,; to Siio by using Strategy A that is
shown in Figure 4.10. Then, Player II earns 4 points.

® ®
Player II’s turn ° °
Skt1 Sk+2

Figure 4.10: Player IT’s turn from Si,1 to Siie, using Strategy A

Next, Player I has to make a turn from Sy, 5 to the terminal Sk, 3 by removing
all edges of G(Sk42), and then Player I earns 2 points. Therefore, Player 11 wins.
Case 2. Player II makes a turn from Siy; to Skio by using Strategy B that is

shown in Figure 4.11. Then, Player II earns no points.

[

Player IT’s turn

Sk+1 Sk+2

Figure 4.11: Player II’s turn from Sk,; to Skyo, using Strategy B

If Player I makes a turn from Siio to Ski3 that is shown in Figure 4.12, then

Player I earns 4 points.
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[ ] [ ]
Player IT’s turn ° °
Sk:—l—l Sk+2

Figure 4.12: Player I's turn from Sii1 to Sk

Then, Player II has to make a turn from Si,3 to to the terminal Sy.4 by
removing all edges of G(Ski3), and then Player II earns 2 points. Therefore,
Player II loses.

Theorem 4.9. For any normal Closing Octagons game such that the graph of the
critical state is a chain, a player who turns from the first strategic state to another

state wins.

Proof. Let Sy be the critical state of a normal Closing Octagons game such that
G(Sk) is a chain. Then, for each edge e of G(Sk), a removal of e is not a winning
move of G(Si) and all components of G(S) —e are weak components. Thus, Sy is
the first strategic state such that all components of G(Sy1) are weak components.
This implies that a turn from Sg,; to another state is a removal of all edges of

G(Sk+1)- Therefore, the player who turns from Sy, to another state wins. [

The following theorems involving Strategy A and normal games of size m X n
such that all components of the graph of the critical state are 2-bouquet compo-

nents.

Theorem 4.10. For playing normal m xn Closing Octagons game where m and n
are odd, if all components of the graph of the critical state are 2-bouquet components,

then Strategy A is a winning strateqy for Player II.

Proof. Let Si be the critical state of a normal m x m Closing Octagons game where
m and n are odd such that all components of G(Si) are 2-bouquet components

and Player II plays according to Strategy A. Then, G(S) has exactly 2mn edges.
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Obviously, 2mn — m — n is even. By Theorem 3.23, a turn from Si to Sii; is
Player I’s.

Since all mn components of G(Sy) are 2-bouquet components, Player I turns
from Sy to Ski1 by removing a loop of a 2-bouquet component. Then, G(Ski1)
has exactly 1 1-bouquet component and mn — 1 2-bouquet components.

By Strategy A, Player II turns from Sj.; to Si s by removing a loop of a
1-bouquet component and a loop of a 2-bouquet component, respectively. Then,
Player II earns 1 point and G(Sk.2) has exactly 1 1-bouquet component and mn—2
2-bouquet components.

Next, it easy to see that two players alternately turn from Sy s to Sy mn such
that Player I either turns by removing a loop of a 2-bouquet component or turns by
removing a loop of a 1-bouquet component and a loop of a 2-bouquet component,
respectively, and earns at most 1 more point, and Player II turns by removing all
edges of 1-bouquet components and a loop of a 2-bouquet component, respectively,
and earns at least 1 more point.

Now, Player II turns from Sii,,, to the terminal state Syi,,11 by removing
all edges of 1-bouquet components. Then, Player Il earns at least 1 more point.

Since mn is odd and the first point is of Player II, Player II can earn at least

mn+1

5— points and Player I can earn at most %‘1 points. Therefore, Player II

wins. n

Theorem 4.11. For playing normal m xn Closing Octagons game where m or n is
even, if all components of the graph of the critical state are 2-bouquet components,

then a player who uses Strateqy A wins or draws.

Proof. Similar to the proof of Theorem 4.10, a player who uses Strategy A can
earn at least “3* points and the opponent can earn at most “g* points. Therefore,

the player who uses Strategy A wins or draws. 0
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4.2 Strategy for Playing Normal 1 x n and 2 x n Games

In this section, we consider only the games of size 1 x n and 2 x n and analyze

the strategy for playing these games.

Theorem 4.12. For any normal 1 x 2 Closing Octagons game, Player II wins or

draws.

Proof. Let G be a normal 1 x 2 Closing Octagons game and Sy be the critical state
of G. Then, there are 2 cases of G(Sk) up to isomorphism, shown in Figure 4.13.

O—= OQOO

Case 1 Case 2

Figure 4.13: Two cases of the graph of the critical state of a normal 1 x 2 game

Case 1. G(Sy) is a 1-pseudopath chain. By Theorem 3.23, a turn from Sy to
Sky1 is Player I’'s. Then, a Player I’s turn from Sy to Sk.1 is a removal of an edge
of G(Sk). Since G(Sk) is a chain, all components of G(Sk41) are weak components.
Thus, a Player II’s turn from Sii1 to Skio is removal of all edges of G(Syy1). This
implies that Player II earns 2 points.

Case 2. All components of G(Sy) are 2-bouquet components. By Theorem
3.23, a turn from Sy to Ski1 is Player II's. Then, a Player II's turn from Sj to
Sk+1 is a removal of a loop of a 2-bouquet component. Thus, G(Sk41) has exactly
1 1-bouquet component and 1 2-bouquet component. Then, a Player I’s turn from
Sky1 t0 Sk is either a removal of a loop of a 2-bouquet component or removal of a
loop of a 1-bouquet component and a loop of a 2-bouquet component, respectively.
Then, Player I can earn at most 1 point and all components of G(Sk12) are weak
components. Now, a Player II's turn from Sy 5 to Siy3 is removal of all edges of
G(Sk+2). This implies that Player I can earn at least 1 point.

Therefore, by both cases, Player II wins or draws. 0

Theorem 4.13. For playing normal 1 x 2 Closing Octagons game, there is a

strateqy for Player I to draw.
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Proof. Let G be a normal 1 x 2 Closing Octagons game and Sy be the critical state
of G. We construct a strategy for Player I as the following.

(A) Player I's has to turn from Sy to S; by removing a simple edge of G(Sy).

(B) Player I's has to turn from Sy, to Ski2 by removing a loop of a 1-bouquet
component and a loop of a 2-bouquet component, respectively.

Then, (A) implies that all components of G(Si) are 2-bouquet components.
By Case 2 of the proof of Theorem 4.12, (B) implies that Player I earns 1 point.
Therefore, Player I draws. ]

Strategy 4.14. Let S; be a state of a 1 x n or 2 x n Closing Octagons game, a
player turns according to the following plan.

(A) If S; is the initial state, then the player has to remove a simple egde.

(B) If S; is a normal state such that i # 0, then

(B1) if the opponent’s turn from S;_; to S; is a removal of a loop incident to a
vertex v and G(95;) contains a simple egde e incident to v, then the player has to
remove e,

(B2) if the opponent’s turn from S;_; to S; is a removal of a loop incident to
a vertex v and G(S;) contains no simple edges incident to v but G(SS;) contains a
simple edge €', then the player has to remove €,

(B3) if the opponent’s turn from S;_; to S; is a removal of a simple edge and
G(S;) contains a simple edge €', then the player has to remove €', and

(B4) if G(S;) contains no simple edges but G(S;) contains a loop [ such that a
removal of [ is a turn from S; to a normal state, then the player has to remove [.

(C) If S, is a strategic state, then the player has to turn by using Strategy A.

Theorem 4.15. For playing normal 1 x n Closing Octagons game where n is odd,

Strateqy 4.14 is a winning strateqy for Player II.

Proof. Let G be a normal 1 x n Closing Octagons game (where n is odd) such
that Player II plays according to Strategy 4.14. Then, G(Sp) of G has 2 vertices
incident to 7 loops and 1 simple edge, and n — 2 vertices incident to 6 loops and 2

simple edges, shown in Figure 4.14.
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Figure 4.14: The graph of the initial state of a normal 1 x n game G

For each vertex v of G(Sy), the number of loops of G(.Sy) incident to v is greater
than the number of simple edges of G(.Sy) incident to v by at least 4. By (A), (B1),
(B2) and (B3) of Strategy 4.14, each removal of a simple edge is a turn from a
normal state to another normal state, and all simple edges has to be removed
before the critical state is reached.

Then, we obtain that all components of the graph of the critical state of G are
2-bouquet components. By Theorem 3.23, a turn from the critical state to the
first strategic state is Player I's. By (C) of Strategy 4.14, Player II has to turn
from each strategic state to another state by using Strategy A. By Theorem 4.10,
Player II wins. [

Theorem 4.16. For playing normal 1 xn Closing Octagons game where n is even,

a player who uses Strateqy 4.14 wins or draws.

Proof. Let G be a normal 1 x n Closing Octagons game where n is even such
that there is a player who plays according to Strategy 4.14. Similar to the proof
of Theorem 4.15, all components of the graph of the critical state of G are 2-
bouquet components. We can see that (B4) of Strategy 4.14 satisfies Strategy A.
By Theorem 4.11, the player who uses Strategy 4.14 wins or draws. [

Corollary 4.17. For playing normal 1 x n Closing Octagons game where n is

even, there is no winning strategy for both players.

Proof. Suppose that there is a winning strategy o for some players and the player
plays by using o. Then, the player wins, no matter how the opponent plays.
If the opponent plays by using Strategy 4.14, then Theorem 4.16 implies that
the opponent wins or draws. This contradicts the assumption that ¢ is a winning

strategy for the player. Therefore, there is no winning strategy for both players. [J
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Theorem 4.18. For playing normal 2 X n Closing Octagons game, a player who

uses Strateqy 4.14 wins or draws.

Proof. Let G be a normal 2 x n Closing Octagons game such that there is a player
who plays according to Strategy 4.14. Then, G(S) of G has 4 vertices incident to
6 loops and 2 simple edges, and 2n — 4 vertices incident to 5 loops and 3 simple

edges, shown in Figure 4.15.

Figure 4.15: The graph of the initial state of a normal 2 X n game G

For each vertex v of G(Sy), the number of loops of G(.Sy) incident to v is greater
than the number of simple edges of G(.Sy) incident to v by at least 2. By (A), (B1),
(B2) and (B3) of Strategy 4.14, each removal of a simple edge is a turn from a
normal state to another normal state, and all simple edges has to be removed
before the critical state is reached.

Then, we obtain that all components of the graph of the critical state of G are
2-bouquet components. We can see that (B4) of Strategy 4.14 satisfies Strategy
A. By Theorem 4.11, the player who uses Strategy 4.14 wins or draws. 0

Corollary 4.19. For playing normal 2 x n Closing Octagons game, there is no

winning strategy for both players.

Proof. Similar to the proof of Corollary 4.17, there is no winning strategy for both
players. 0
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4.3 Strategy for Playing Normal 3 x 3 Game

In this section, we consider only the game of size 3 x 3 and analyze the strategy

for playing this game.

Strategy 4.20. Let S; be a state of a 3 x 3 Closing Octagons game such that
1 # 0, a player turns according to the following plan.

(A) If S; is a normal state, then

(A1) if the opponent’s turn from S;_; to S; is a removal of a loop incident to a
vertex v and G(S;) contains a simple egde e incident to v such that a removal of
e is a turn from .S; to another normal state, then the player has to remove e,

(A2) if the opponent’s turn from S;_; to S; is a removal of a loop incident to
a vertex v and G(S;) contains no simple edges e incident to v such that a removal
of e is a turn from S; to another normal state but G(S;) contains a simple edge €’
such that a removal of €’ is a turn from .S; to another normal state, then the player
has to remove ¢/,

(A3) if the opponent’s turn from S;_; to S; is a removal of a simple edge and
G(S;) contains a simple edge €' such that a removal of €’ is a turn from S; to
another normal state, then the player has to remove €/,

(A4) if G(S;) contains no simple edges e such that a removal of e is a turn from
S; to another normal state but G(S;) contains a loop [ such that a removal of [ is
a turn from S; to another normal state, then the player has to remove [, and

(A5) if G(S;) contains no edges e such that a removal of e is a turn from S;
to another normal state but G(.S;) contains a 2-bouquet component K, then the
player has to remove a loop of K.

(B) If S; is a strategic state, then

(B1) if G(S5;) contains a 2-bouquet component K, then the player has to turn
by removing all edges of weak components and a loop of K, respectively, and

(B2) if all components of G(S;) are weak components, then the player has to

turn by removing all edges.

For convenience, we illustrate Strategy 4.20 in flowchart, Figure 4.16.



Is the opponent’s turn from S; ; to .S;

A state S,

a removing a loop incident to v?

Has G(S) a simple edge ¢ incident to v
such that a removing e is a turn
from S; to another normal state?

A player removes e.

Has G(S)) a 2-bouquet component?

A player removes all edges of G(S).

Has G(S5) a simple edge ¢’
such that a removing e'is a turn
from S; to another normal state?

A player removes e’.

Has G(S) a loop [
such that a removing [ is a turn

A player removes all edges
of all weak components.

from S; to another normal state?

A player removes [

A player removes one loop
of a 2-bouquet component.

)
N/

End

Figure 4.16: Strategy 4.20




43

Because Strategy 4.20 is a strategy for Player II, plan for a turn of the initial

state is not required.

Theorem 4.21. For playing normal 3 x 3 Closing Octagons game, Strategy 4.20

is a winning strategy for Player I1.

Proof. Let G be a normal 3 x 3 Closing Octagons game such that Player II plays
according to Strategy 4.20. Then, G(Sy) of G has 4 vertices incident to 6 loops
and 2 simple edges, 4 vertices incident to 5 loops and 3 simple edges, and 1 vertex

v’ incident to 4 loops and 4 simple edges, shown in Figure 4.17.

S &

Figure 4.17: The graph of the initial state of a normal 3 x 3 game G

For a vertex v’, the number of loops and the number of simple edges incident
to v' of G(Sp) are equal. By (A1) of Strategy 4.20, 3 of simple edges incident to
v’ have to be removed when the number of loops incident to v’ is at least 1. This
implies that the last simple edge incident to v may not be removed in turns from
a normal state to another normal state

For each vertex v # v’, the number of loops incident to v of G(S) is greater
than the number of simple edges incident to v of G(Sp) by at least 2. By (Al),
(A2) and (A3) of Strategy 4.20, each simple edge e that is not incident to v’ has
to be removed when the number of loops incident to each of vertices v # v’ is at

least 2. This implies that each removal of a simple edge that is not incident to v’
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is a turn from a normal state to another normal state, and all simple edges that
are not incident to v’ has to be removed before the critical state is reached.
Then, we obtain that there are 2 cases of the graph of the critical state of G

up to isomorphism, say G; and G,, shown in Figure 4.18, respectively.

OQOO0QO OO0
OOO—0 OO0
OQOO0QO  OOOOOO

Figure 4.18: Two cases of the graph of the critical state of G

Case 1. The graph of the critical state is GG;. By Theorem 3.23, a turn from
the critical state to another state is Player I's. Since all components of G are
2-bouquet components, a Player I's turn from the critical state to a strategic state
is a removal of a loop of a 2-bouquet component. Then, the graph of the first
strategic state has 1 1-bouquet component and 8 2-bouquet components. By (B1)
and (B2) of Strategy 4.20, Player II can earn at least 5 points and Player I can
earn at most 4 points.

Case 2. The graph of the critical state is G5. By Theorem 3.23, a turn from
the critical state to another state is Player II’s. By (A5) of Strategy 4.20, a Player
IT’s turn from the critical state to a strategic state is a removal of a loop of a
2-bouquet component. Then, the graph of the first strategic state has 1 1-bouquet
component, 6 2-bouquet components, and 1 chain K having 2 vertices and 3 edges.
By (B1) and (B2) of Strategy 4.20, Player II can earn 2 points from K and at least
3 points from the other. This implies that Player II can earn at least 5 points and
Player I can earn at most 4 points.

Therefore, by both cases, Player II wins. [
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