
การออกแบบกลองบรรจุภัณฑเพื่อใหไดจำนวนชนิดของกลองนอยที่สุด

นายธีระเดช ไหลสุพรรณวงศ

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาคณิตศาสตรประยุกตและวิทยาการคณนา
ภาควิชาคณิตศาสตรและวิทยาการคอมพิวเตอร
คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2560

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย
บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

DESIGNING PACKING BOXES TO MINIMIZE NUMBER OF BOX TYPES

Mr. Teeradech Laisupannawong

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2017

Copyright of Chulalongkorn University

Thesis Title DESIGNING PACKING BOXES TO MINIMIZE NUMBER OF

BOX TYPES

By Mr. Teeradech Laisupannawong

Field of Study Applied Mathematics and Computational Science

Thesis Advisor Assistant Professor Boonyarit Intiyot, Ph.D.

Thesis Co-advisor Associate Professor Phantipa Thipwiwatpotjana, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Master’s Degree

. Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

. Chairman

(Assistant Professor Krung Sinapiromsaran, Ph.D)

. Thesis Advisor

(Assistant Professor Boonyarit Intiyot, Ph.D.)

. Thesis Co-advisor

(Associate Professor Phantipa Thipwiwatpotjana, Ph.D.)

. Examiner

(Assistant Professor Petarpa Boonserm, Ph.D.)

. External Examiner

(Associate Professor Chawalit Jeenanunta, Ph.D.)

iv

ธีระเดช ไหลสุพรรณวงศ : การออกแบบกลองบรรจุภัณฑเพื่อใหไดจำนวนชนิดของกลอง
นอยที่สุด. (DESIGNING PACKING BOXES TO MINIMIZE NUMBER OF

BOX TYPES) อ.ที่ปรึกษาวิทยานิพนธหลัก : ผศ.ดร. บุญฤทธิ์ อินทิยศ, อ.ที่ปรึกษา
วิทยานิพนธรวม : รศ.ดร. พันทิพา ทิพยวิวัฒนพจนา 89 หนา.

ในกระบวนการบรรจุผลิตภัณฑ กลองจำนวนหลายชนิดอาจถูกใชในกระบวนการบรรจุ
ถาโรงงานมีสินคาหรือผลิตภัณฑหลายชนิด การใชตนทุนสำหรับการใชกลองหลายชนิดในการ
บรรจุอาจเพิ่มตนทุนในการผลิตใหสูงขึ้น อยางไรก็ตามเราสามารถเพิ่มประสิทธิภาพในแงของ
การลดตนทุนและการจัดการการผลิตไดถาเราสามารถออกแบบกลองที่มีขนาดเหมาะสมและ
สามารถลดจำนวนชนิดของกลองสำหรับบรรจุสินคา ในงานวิจัยนี้เรานำเสนอฮิวริสติกอัลกอ
ลิทึมสำหรับออกแบบกลองเพื่อนำไปใชบรรจุสินคาแตละชนิดซึ่งมีรูปทรงสินคาเปนสี่เหลี่ยม
เมื่อระบุจำนวนชิ้นของสินคาตอกลองมาให วัตถุประสงคของอัลกอลิทึมนี้คือตองการออกแบบ
กลองทรงสี่เหลี่ยมที่มีรูปทรงใกลเคียงลูกบาศกมากที่สุดภายใตขอบเขตความยาวที่กำหนด นอก
จากนี้ไดเราไดนำเสนอวิธีการฮิวริสติกและกำหนดการเชิงจำนวนเต็มสำหรับลดจำนวนชนิดของ
กลองใหนอยที่สุด กลองชนิดหนึ่งสามารถถูกแทนดวยกลองอีกชนิดหนึ่งไดเมื่อเปอรเซ็นตของ
ผลตางความยาวแตละดานของกลองสองกลองนั้น (เทียบกับกลองที่ใหญกวา) ไมเกินคาคาหนึ่ง
ที่ระบุมาให ตัวอยางปญหาถูกแสดงเพื่อใหเห็นการใชงานของฮิวริสติกและโมเดลที่ไดนำเสนอ

ภาควิชาคณิตศาสตรและ. ลายมือชื่อนิสิต .

. .วิทยาการคอมพิวเตอร. ลายมือชื่อ อ.ที่ปรึกษาหลัก

สาขาวิชา .คณิตศาสตรประยุกต. ลายมือชื่อ อ.ที่ปรึกษารวม

. .และวิทยาการคณนา
ปการศึกษา2560. .

v

5971985023 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE

KEYWORDS : DESIGNING BOX / BOX TYPE / HEURISTIC / INTEGER LINEAR PRO-

GRAMMING

TEERADECH LAISUPANNAWONG : DESIGNING PACKING BOXES TO MINIMIZE

NUMBER OF BOX TYPES. ADVISOR : ASST. PROF. BOONYARIT INTIYOT, Ph.D.,

COADVISOR : ASSOC. PROF. PHANTIPA THIPWIWATPOTJANA, Ph.D., 89 pp.

In a product packing procedure, many types of packing boxes may be used if a

factory has several kinds of goods or products. The cost spent for many types of boxes

is added to the manufacturing cost. However, it would be more efficient in the aspects of

the cost reduction and the production management if we can design reasonable box sizes

and can minimize the number of box types for packing goods. In this work, we propose

a heuristic rectangular box design algorithm for packing each kind of rectangular goods

when the number of goods per box is given. The objective of this algorithm is to design

the rectangular boxes with the shapes close to cubes as much as possible under the given

bounds. Furthermore, we propose a heuristic method and an integer linear programming

model for minimizing the number of types of packing boxes. A smaller box could be

substituted by a larger one only when the percentage change on each size of both boxes

(with respect to the larger box) does not exceed a given value. Example problems are

given to illustrate the use of the proposed heuristic and model.

Department :Mathematicsand. Student’s Signature .

.ComputerScience. Advisor’s Signature .

Field of Study :Applied.Mathematics.and . Co-advisor’s Signature

.ComputationalScience. . . .

Academic Year :2017. .

vi

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor Assistant Professor Boonyarit Intiyot

and my co-advisor Associate Professor Phantipa Thipwiwatpotjana for their invaluable

help, guidance, and encouragement. They always give good advice when I had problems

or questions about this research. I could not complete this master thesis without their

support.

I also would like to thank my thesis committees, Assistant Professor Krung Sinapirom-

saran, Assistant Professor Petarpa Boonserm, and Associate Professor Chawalit Jeena-

nunta for their recommendations and suggestions.

In addition, I am thankful to my friends, AMCS students, for their suggestions and

their helps, especially Mr.Thanet Markchom who helped me when I had a problem about

computer programming.

Moreover, I would like to acknowledge to the Development and Promotion of Science

and Technology Talents Project (DPST) for funding and support all of master degree

program study.

Finally, I am most grateful to my mother and brother for their encouragement and

support. They always foster me throughout the study and everything in my life.

CONTENTS
Page

ABSTRACT IN THAI . iv

ABSTRACT IN ENGLISH . v

ACKNOWLEDGEMENTS . vi

CONTENTS . vii

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Assumptions of this work . 2

1.4 Background knowledge . 3

1.4.1 Definition of the height, the length, and the width of a box 3

1.4.2 Linear programming . 4

1.4.3 Either-or constraints . 5

1.4.4 Heuristics . 7

1.4.5 The container loading problem . 7

1.4.5.1 Model of the container loading problem 8

1.4.5.2 A heuristic algorithm for solving the container loading

problem . 14

1.4.5.3 Key to design a box by applying the container loading

problem . 18

1.5 Overview of thesis . 20

2 LITERATURE REVIEW . 21

3 METHODOLOGY . 24

3.1 The model for designing boxes . 24

3.2 A heuristic algorithm for designing boxes . 27

3.3 A heuristic algorithm for minimizing number of types of packing boxes . . 36

viii

CHAPTER Page

3.4 A binary integer linear programming model for minimizing number of

types of packing boxes . 40

4 Numerical Experiments . 44

4.1 The generated data set . 44

4.2 The heuristic algorithm for designing boxes 47

4.3 The heuristic algorithm for minimizing number of types of packing boxes . 53

4.4 The binary integer linear programming for minimizing number of types

of packing boxes . 55

4.5 The comparison of efficiency of the heuristic algorithm and binary in-

teger linear programming for minimizing number of types of packing

boxes . 57

5 CONCLUSIONS . 63

5.1 Conclusion of this work . 63

5.2 Discussion and future works . 63

REFERENCES . 67

APPENDICES . 69

BIOGRAPHY . 89

ix

LIST OF TABLES

Table Page

4.1 The criteria for defining the range for the random number of goods per

box for goods of kind k, k ∈ {1, 2, ..., 50}. 45

4.2 The generated data set. 45

4.3 The computational results from the box designing heuristic using the gen-

erated data set. 47

4.4 The computational results of the heuristic algorithm for minimizing the

number of packing box types. 54

4.5 List of T ∗
ij = 1 for each case of t. 54

4.6 The computational results of the BILP model for minimizing the number

of packing box types. 55

4.7 The results of case t = 30% from the two methods. 56

4.8 The sizes of boxes No.51 – 120. 58

4.9 Efficiency comparison in case t = 5% of the two methods. 59

4.10 Efficiency comparison in case t = 10% of the two methods. 59

4.11 Efficiency comparison in case t = 15% of the two methods. 60

4.12 Efficiency comparison in case t = 20% of the two methods. 60

4.13 Efficiency comparison in case t = 30% of the two methods. 61

x

LIST OF FIGURES

Figure Page

1.1 Two types of rotations for each item of goods. 3

1.2 Height, length, and width of a box. 4

1.3 Some examples of box types. 4

1.4 The left-front-bottom corner of the container. 9

1.5 Box i is on the left of box j. 12

1.6 Initial step of Algorithm 1. 14

1.7 Step 1 – 3 of box i = 2. 16

1.8 The graphical representation of a solution to the small example given by

Algorithm 1. 17

1.9 The graphical representation of the rectangular required space for packing

all boxes. 18

3.1 An example of two overlapping items. 29

3.2 Box i is on the left of box j with xi + pi ≤ xj . 29

3.3 An example of finding index i1, i2, and i3. 34

3.4 Box i adjoining box i1. 35

4.1 The graphical representations of some solutions. 53

CHAPTER I

INTRODUCTION

1.1 Motivation

“A good packing design can reduce the manufacturing cost.” This statement moti-

vates the main idea of our research study which focuses on designing reasonable boxes for

packing goods and reduce some box types when we have too many types of boxes. We

want to design a box that can hold some number of units of the same rectangular shape

product. If we know the size of the box, an arrangement of a number of the same products

in this box is a special case of a container loading problem. Therefore, we try to apply

the container loading problem ideas together with some other designing criteria to create

a reasonable box. The term “reasonable box” is actually depending on the purpose of the

packing. For example, if the box is meant to be used for packing a body size mirror, this

box may be thin but the longest length could be at least 180 cm. In this case, it would

not be that good if the box becomes a cube. Therefore we need to set up some criteria

for our term “reasonable”. First of all, the box we create must be able to hold a given

number of units of the same product as mentioned earlier, where the given number is an

input information from a user. This is the main requirement that the designed box should

meet. Other than that is the matter of how to design it reasonably. We may also consider

the criterion of the unused space in the box by limiting it proportionally to the whole box

so that the items in the box would not move that much during transportation. Another

aspect that is also important is to design the box to become as close to a cube as possible

after the box satisfies the two criteria above. This is because a “close to a cube” box is

more stable than other rectangular boxes. Under the scope of our “reasonable box”, we

hope to create optimization model(s) and method(s) that can help us design boxes for

packing goods and reduce their types.

2

1.2 Objectives

We conclude our objectives of this research again as follows.

1. To design a box for packing a fixed number of the same kind of goods into one box.

The box that we design will have the shape close to a cube as much as possible

within some certain boundaries and criteria.

2. To propose a method and an optimization model for minimizing the number of

types of packing boxes.

In this work, we will design a box for each kind of goods/products. Then all designed

box types will be minimized by using the proposed method/optimization model. As a

result, we will get boxes that fit our needs and can reduce the packing cost by minimizing

the number of box types.

1.3 Assumptions of this work

The assumptions of this thesis are as follows.

1. Each kind of goods has rectangular shape.

2. Each unit of goods will be called an item.

3. Each item is orthogonally positioned in the container box; i.e., the edges of an item

are either parallel or perpendicular to the axes of the container box.

4. Each item must be packed right side up in a box (the height of the item is per-

pendicular to the floor), i.e., the item can be rotated in only two cases as shown in

Figure 1.1.

5. The upper bounds of the dimensions of boxes are given.

6. The number of goods per box is given.

3

7. One designed box for packing a kind of goods can be used to pack other kinds of

goods.

Figure 1.1: Two types of rotations for each item of goods.

1.4 Background knowledge

In this section, we present background knowledge for this research. We start with

definitions of the dimensions of a box, linear programming, either-or constraints, and

heuristics. After that, we describe the container loading problem which is a combinatorial

problem that our model is based on.

1.4.1 Definition of the height, the length, and the width of a box

According to the announcement No.4432 (2012) from Ministry of Industry [13], the

definitions of the length, the width, and the height of a box are presented below.

1. The height of a box refers to the only dimension without a flap.

2. The length of a box is always the longest side of the box that has a flap.

3. The width of a box is always the second longest side of the box that has a flap.

Figure 1.2 shows how to call each measurement of a box according to [13]. Some

examples of box types are shown in Figure 1.3.

4

Figure 1.2: Height, length, and width of a box.

Credit : https://www.esupplystore.com/How-To-Measure-A-Box-ep-32-1.html

Figure 1.3: Some examples of box types.

Credit : https://www.esupplystore.com/How-To-Measure-A-Box-ep-32-1.html

1.4.2 Linear programming

A linear programming (LP) problem is an optimization problem where its objective

function is a linear function and its constraints are linear equalities or linear inequalities.

A linear programming problem can be formulated in a canonical form as follows:

max z := c1x1 + c2x2 + ...+ cnxn

s.t. a11x1 + a12x2 + ...+ a1nxn ≤ b1

a21x1 + a22x2 + ...+ a2nxn ≤ b2
...

am1x1 + am2x2 + ...+ amnxn ≤ bm

x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0.

5

In an LP problem, the objective function can be maximizing or minimizing. We

can convert the LP problem from maximizing to minimizing by replacing the objective

function z to −z. An LP problem with some inequalities “≥” or equalities constraints

can be converted to the canonical form as follows.

1. An inequality ‘≥’ type constraint

ai1x1 + ai2x2 + ...+ ainxn ≥ bi

can be converted to an inequality ‘≤’ type constraint by multiplying −1 to the in-

equality:

−ai1x1 − ai2x2 − ...− ainxn ≤ −bi.

2. An equality constraint

ai1x1 + ai2x2 + ...+ ainxn = bi

can be converted to ‘≤’ inequality form by replacing it with two inequality con-

straints: −ai1x1 − ai2x2 − ...− ainxn ≤ −bi

ai1x1 + ai2x2 + ...+ ainxn ≤ bi.

The objective of an LP problem is to find an optimal solution. In our case, we want

to maximize the objective value. A well known approach used for solving the LP problem is

the simplex method. A set of vectors (x1, x2, ..., xn) satisfying all the constraints is called

a feasible solution. A feasible solution (x1, x2, ..., xn) is called optimal if it maximizes

the objective function. If all decision variables of the LP problem require to have integer

values, the problem will be the integer linear programming (ILP) problem. The problem

is called the mixed integer linear programming (MILP) problem when some decision

variables are integers.

1.4.3 Either-or constraints

Either-or constraints are non-simultaneous logical constraints. At least one of two

constraints expressing “either-or” must be hold. A general form of the either-or constraints

6

can be expressed as

Either f(x1, x2, ..., xn) ≤ d1

or g(x1, x2, ..., xn) ≤ d2,

 (1.1)

where f and g are linear.

An LP problem which has either-or constraints has to be reformulated into a new

problem so that all constraints in the new problem must be satisfied simultaneously. Let

F1 and F2 be the sets of all feasible solutions of the first and the second constraint in (1.1),

respectively. Suppose that all linear constraints in (1.1) are bounded in the intersection

of F1 and F2, i.e. ∃M1 ∈ R such that ∀(x1, x2, ..., xn) ∈ F1 ∩ F2, f(x1, x2, ..., xn) ≤ M1

and ∃M2 ∈ R such that ∀(x1, x2, ..., xn) ∈ F1 ∩ F2, g(x1, x2, ..., xn) ≤ M2. The either-or

constraints can become two simultaneous inequality linear constraints using an auxiliary

binary variable y and a large positive number M , where M ≥ max{M1,M2}; i.e., the

either-or constraints can be replaced by

f(x1, x2, ..., xn) ≤ b1 +My

g(x1, x2, ..., xn) ≤ b2 +M(1− y).

 (1.2)

Note that if y = 0, g(x1, x2, ..., xn) ≤ b2 +M is redundant and the first constraint,

f(x1, x2, ..., xn) ≤ b1, is satisfied. If y = 1, the constraint f(x1, x2, ..., xn) ≤ b1 + M is

redundant and the other constraint, g(x1, x2, ..., xn) ≤ b2, is satisfied. Hence, the either-

or constraints (1.1) can be added to an LP problem using the form (1.2), and the problem

turns to be the MILP one due to the binary variable y.

A following example illustrates how to reformulate an LP problem with either-or

constraints into the MILP problem.

Example 1. Consider the LP problem

7

max z := 3x1 + 2x2

s.t. 6x1 + 6x2 ≤ 420

Either 3x1 + 6x2 ≤ 300

or 4x1 + 2x2 ≤ 240

x1 ≥ 0, x2 ≥ 0.

Let M be a large positive number and y be a binary variable. This LP problem

can be reformulated into the MILP problem as follows.

max z := 3x1 + 2x2

s.t. 6x1 + 6x2 ≤ 420

3x1 + 6x2 ≤ 300 +My

4x1 + 2x2 ≤ 240 +M(1− y)

x1 ≥ 0, x2 ≥ 0, y ∈ {0, 1}.

1.4.4 Heuristics

In the real world, many optimization problems have very large size or nonlinearity.

It is not easy to find a global optimal solution within acceptable time. Heuristic algorithms

are designed for finding an approximate solution of an optimization problem. The solution

may not be the best of all solutions to the problem but it is acceptably good. Heuristic

algorithms aim to find or to discover a solution by trial and error. In general, a heuristic

algorithm will be designed upon a problem at hand. Heuristic algorithms are often used to

solve NP-hard problems. The NP-hard problems are intrinsically difficult problems that

are too complex to be solved in polynomial time. An example of the NP-hard problems

is the container loading problem.

1.4.5 The container loading problem

The container loading problem (CLP) is to find the best way of loading a given set

of rectangular boxes into a given rectangular container where the length of the occupied

space in the container is minimized. The CLP plays a crucial role in logistics planning

8

and scheduling. An optimal filling of a container can reduce the transportation cost. The

CLP is also referred to as the packing problem, the bin packing problem and the knapsack

loading problem. The packing problem aims to seek the best way of loading a given set of

rectangular boxes into a large rectangular container where the volume of the container is

minimized. The bin packing problem is to pack a given number of boxes into a minimum

number of bins or containers. The knapsack loading problem is the problem of loading

a subset of boxes into a container of fixed dimension such that the volume of the packed

boxes is maximized (maximize volume utilization) or the waste space in the container is

minimized. The CLP is a problem from the real world. The constraints for the CLP are

as follows.

1. No two packed boxes can overlap in the container.

2. Each box lies completely inside the container.

3. Each box is orthogonally positioned in the container; i.e., the edges of a box are

either parallel or perpendicular to the axes of the container.

1.4.5.1 Model of the container loading problem

According to Chen et al. [1] and Huang et al. [11], the CLP can be modeled as

a mixed integer linear programming model. There are assumptions that the container

is placed with its length along the x-axis and its width along the y-axis as well as the

left-front-bottom corner of the container is fixed at the origin in 3D coordinate system as

shown in Figure 1.4. In addition, this model does not consider the weight distribution of

boxes in the container.

The parameters and variables used in the model of the CLP are defined as below.

Parameters:

9

Figure 1.4: The left-front-bottom corner of the container.

n Total number of the given set of boxes to be loaded.

N The index set of boxes, N = {1, 2, ..., n}.

x, y, z The length, width, and height of the container, respectively.

M A large positive number.

pi, qi, ri The length, width, and height of box i, respectively.

Variables:
x, y, z Decision variables representing the magnitude along the x-, y-, and z-axes,

of the space that required for packing all n boxes into the container,

respectively. It is clear that 0 ≤ x ≤ x, 0 ≤ y ≤ y, and 0 ≤ z ≤ z.

(xi, yi, zi) Decision variables representing the coordinates of the left-front-bottom

corner of box i.

lxi, lyi, lzi Binary variables that will equal to 1 if the length of box i is parallel

to the x-axis, the y-axis, and the z-axis, respectively. For example,

lxi = 1 if the length of box i is parallel to the x-axis; otherwise lxi = 0.

It is clear that lxi + lyi + lzi = 1.

wxi, wyi, wzi Binary variables that will equal to 1 if the width of box i is parallel

to the x-axis, the y-axis, and the z-axis, respectively. For example,

wxi = 1 if the width of box i is parallel to the x-axis; otherwise wxi = 0.

It is clear that wxi + wyi + wzi = 1.

10

hxi, hyi, hzi Binary variables that will equal to 1 if the height of box i is parallel

to the x-axis, the y-axis, and the z-axis, respectively. For example,

hxi = 1 if the height of box i is parallel to the x-axis; otherwise hxi = 0.

It is clear that hxi + hyi + hzi = 1.

(αij , βij , δij) Binary variables indicating the relative positions of box i and box j; i.e.,

(a) (αij , βij , δij) = (0, 0, 1) if box i is on the left of box j.

(b) (αij , βij , δij) = (0, 1, 0) if box i is on the right of box j.

(c) (αij , βij , δij) = (1, 0, 0) if box i is in front of box j.

(d) (αij , βij , δij) = (0, 1, 1) if box i is behind box j.

(e) (αij , βij , δij) = (1, 0, 1) if box i is below box j.

(f) (αij , βij , δij) = (1, 1, 0) if box i is above box j.

Note that there are 6 relative positions of any two boxes, i.e. left,

right, in front of, behind, below, and above. However, the combination

of the binary variables (αij , βij , δij) yields 8 possible cases, which is 2

more cases than we need. The authors cleverly discarded 2 cases (0,0,0)

and (1,1,1) by enforcing additional constraint (7) to limit the possible

combinations to only 6 cases. Therefore, each relative position can be

assigned to a remaining combination of (αij , βij , δij) as shown in (a)–(f).

The mathematical model which is the mixed integer linear programming of the CLP

can be stated as follows (See [1, 11]):

11

min x

s.t. xi + pilxi + qiwxi + rihxi ≤ xj +M(1 + αij + βij − δij) ∀i, j ∈ N, i < j, (1)

xj + pjlxj + qjwxj + rjhxj ≤ xi +M(1 + αij − βij + δij) ∀i, j ∈ N, i < j, (2)

yi + pilyi + qiwyi + rihyi ≤ yj +M(1− αij + βij + δij) ∀i, j ∈ N, i < j, (3)

yj + pjlyj + qjwyj + rjhyj ≤ yi +M(2 + αij − βij − δij) ∀i, j ∈ N, i < j, (4)

zi + pilzi + qiwzi + rihzi ≤ zj +M(2− αij + βij − δij) ∀i, j ∈ N, i < j, (5)

zj + pjlzj + qjwzj + rjhzj ≤ zi +M(2− αij − βij + δij) ∀i, j ∈ N, i < j, (6)

1 ≤ αij + βij + δij ≤ 2 ∀i, j ∈ N, i < j, (7)

xi + pilxi + qiwxi + rihxi ≤ x ∀i ∈ N, (8)

yi + pilyi + qiwyi + rihyi ≤ y ∀i ∈ N, (9)

zi + pilzi + qiwzi + rihzi ≤ z ∀i ∈ N, (10)

lxi + lyi + lzi = 1 ∀i ∈ N, (11)

wxi + wyi + wzi = 1 ∀i ∈ N, (12)

hxi + hyi + hzi = 1 ∀i ∈ N, (13)

lxi + wxi + hxi = 1 ∀i ∈ N, (14)

lyi + wyi + hyi = 1 ∀i ∈ N, (15)

lzi + wzi + hyi = 1 ∀i ∈ N, (16)

xi, yi, zi ≥ 0, 0 ≤ x ≤ x, 0 ≤ y ≤ y, 0 ≤ z ≤ z; lxi, lyi, lzi, wxi, wyi, wzi, hxi, hyi, hzi,

αij , βij , and δij are binary variables.

The objective function is to minimize the magnitude along the x-axis of the required

space in the container for packing all boxes. Constraints (1)–(7) ensure that no two

packed boxes can overlap in the container. As mentioned earlier, constraint (7) limits the

possible combinations to only 6 cases. To ensure that box i and box j does not overlap,

it suffices to enforce one relative position to be true between them. Constraints (1)–(6)

ensure that one relative position is enforced between box i and box j. For example,

if (αij , βij , δij) = (0, 0, 1), constraint (1) becomes xi + pilxi + qiwxi + rihxi ≤ xj and

constraints (2)–(6) will be redundant. This makes sure that box i is on the left of box j

because the value xi plus the magnitude of the side of box i that is parallel to the x-axis

(depend on the rotation of box i, i.e. which one of lxi, wxi, and hxi is equal to 1) does not

12

(a) Box i is on the left of box j with lxi = 1 (xi + pi ≤ xj).

(b) Box i is on the left of box j with wxi = 1 (xi + qi ≤ xj).

(c) Box i is on the left of box j with hxi = 1 (xi + ri ≤ xj).

Figure 1.5: Box i is on the left of box j.

exceed the value xj (See Figure 1.5 for an example of each rotation of box i). The

interpretations of other cases of (αij , βij , δij) can be explained similarly. Furthermore, it

13

suffices to define constraints (1)–(7) only when i < j since if we know the position of box

i relative to box j, we also know the position of box j relative to box i. Hence, in a case

where i > j such as (i, j) = (7, 2), constraints (1)–(6) will enforce a position of box 2

relative to box 7, say, box 2 is above box 7. This also enforces box 7 to be below.

Constraints (8)–(10) serve for the fact that all boxes must be packed within the

required space in the container. Constraint (8) means the value of the coordinate left-

front-bottom along the x-axis of each box i (xi) plus the magnitude of the side along the

x-axis of itself can not exceed the magnitude along the x-axis of the space that required

for packing all boxes (x). Constraint (9) and (10) can be explained similarly except that

they consider along the y-axis and z-axis, respectively.

Constraints (11)–(13) make sure that the length, the width, and the height of the

box is parallel to one of the x-axis, the y-axis, or the z-axis, respectively. The values of

lxi + lyi + lzi , wxi +wyi +wzi, and hxi + hyi + hzi cannot be 2 or 3 because one side of a

box (the length, the width, or the height) cannot be parallel to 2 or 3 axes simultaneously.

Constraints (14)–(16) ensure that there is only one of the length, the width, and

the height of the box parallel to the x-axis, the y-axis, or the z-axis, respectively. The

values of lxi+wxi+hxi , lyi+wyi+hyi, and lzi+wzi+hzi cannot be 2 or 3 because each

axis (x-axis, y-axis, or z-axis) cannot be parallel to 2 or 3 sides of a box simultaneously.

In this model, the value of a large positive number M can be M = max{x, y, z}

because it can certainly dominate the left-hand-side (LHS) of the constraint (1), (2), (3),

(4), (5), or (6) when redundancy is needed. This is because, by constraints (8)–(10), we

can see that the left-hand side (LHS) of constraint (8), (9), and (10) (which is equivalent

to the LHS of constraints (1)–(2), (3)–(4), and (5)–(6), respectively) are less than or equal

to the values x, y, and z, respectively. In addition, we also know that x ≤ x, y ≤ y, and

z ≤ z. Therefore, the LHS of constraints (1)–(2), (3)–(4), and (5)–(6) will be less than or

equal to M = max{x, y, z}.

The CLP is an NP-hard problem [5, 11]. Hence, a heuristic method is needed for

14

solving a large CLP.

1.4.5.2 A heuristic algorithm for solving the container loading problem

Due to the NP-hardness of the CLP in nature, it is not easy to find an optimal solu-

tion when the size of the problem is large. Many heuristic algorithms have been developed

to cope this problem. We state an idea of a loading process of a heuristic algorithm used

in [11] for solving the CLP in Algorithm 1. Note that the algorithm that is stated here

does not consider the rotation of boxes. The parameters used in this algorithm are the

same as in the model of the CLP in the previous subsection. Suppose that we have n

boxes; i.e., box 1, box 2, ..., box n. In this heuristic algorithm, all boxes will be loaded one

by one into the container. The heuristic algorithm for loading n boxes into the container

are described in Algorithm 1.

Figure 1.6: Initial step of Algorithm 1.

The algorithm begins with loading the first box into the container by setting its

left-front-bottom corner to be at (0,0,0). For the remaining boxes i = 2 to n, each box i

will be verified in these steps. Step 1, box i will be tried to load along the x-axis. If we

can do Step 1, then the coordinate of the left-front-bottom of box i will be assigned as

the coordinate of the right-front-bottom of the loaded box k which has the smallest value

of xk + pk comparing to other loaded boxes. Step 2, box i will be tried to load along the

y-axis. If we can do Step 2, then the coordinate of the left front bottom of box i will be

reassigned as the coordinate of the left-behind-bottom of the loaded box k which has the

15

Algorithm 1 Heuristic algorithm for solving the CLP (See [11])
1: Load box i = 1 into the container by setting the left-front-bottom corner of

box i = 1 at the origin (See Figure 1.6).
2: for i = 2 to n do

3: Step 1 : load box i by attaching the left-front-bottom corner of box i to
the right-front-bottom corner of the loaded box k such that xk + pk is the
smallest among all loaded boxes as well as box i does not overlap with any
loaded box and lies completely inside the container (See Figure 1.7 (a)).

4: Step 2 : Move box i by attaching the left-front-bottom corner of box i to
the left-behind-bottom corner of the loaded box k such that yk + qk is the
smallest among all loaded boxes as well as box i does not overlap with any
loaded box and lies completely inside the container if possible (See Figure
1.7 (b)).

5: Step 3 : Move box i by attaching the left-front-bottom corner of box i to
the left-front-top corner of the loaded box k such that zk+rk is the smallest
among all loaded boxes as well as box i does not overlap with any loaded
box and lies completely inside the container if possible (See Figure 1.7 (c)).

6: if all three steps cannot be done then
7: return Infeasibility
8: end if
9: end for

10: return max
i∈N

{xi + pi}

16

(a) Step 1 of box i = 2.

(b) Step 2 of box i = 2.

(c) Step 3 of box i = 2.

Figure 1.7: Step 1 – 3 of box i = 2.

smallest value of yk + qk comparing to other loaded boxes. Lastly, box i will be tried to

load along the z-axis in Step 3. If it can be done, the coordinate of the left-front-bottom

17

of box i will be reassigned as the coordinate of the left-front-top of the loaded box k which

has the smallest value of zk + rk comparing to other loaded boxes. From this procedure,

it means that the coordinate of the left-front-bottom of box i will be firstly assigned from

loading along the z-axis if possible. If this cannot be done, the algorithm will backtrack

to use the value from Step 2 and Step 1, respectively. In other words, any box i will be

loaded along the z-axis first, the y-axis second, and the x-axis third. It corresponds to

the objective function which is to minimize the magnitude along the x-axis of the space

that is required for packing all n boxes. However, if all 3 steps cannot be done in any

box i, the algorithm will return infeasibility since all n boxes cannot be loaded into the

container. Otherwise, the algorithm will return the magnitude along the x-axis of the

space that required for packing all boxes into the container.

Next, we will give a small example of the CLP and we solve it by using this heuristic

algorithm.

Example 2. Consider the following small CLP. The container with the length of 6 m,

the width of 3 m, and the height of 2 m is given for packing six cube boxes with the 1 m

side length and one cube box with the 0.5 m side length. Let box 1 to box 6 are six cube

boxes with the 1 m side length and box 7 is the cube box with the 0.5 m side length. After

the example is solved with Algorithm 1, we will get the solution with objective value 1.5

as shown in Figure 1.8.

Figure 1.8: The graphical representation of a solution to the small example given by
Algorithm 1.

18

1.4.5.3 Key to design a box by applying the container loading problem

In this subsection, we will describe how we can apply the CLP to design a set

of boxes for packing goods. We have known that the CLP is to pack a given set of

rectangular boxes into a given rectangular container. If we have an arrangement of boxes

in the container, we can specify the rectangular required space for packing all boxes with

this arrangement. The rectangular required space for packing all boxes is a subspace

within the container and its left-front-bottom corner is also at the origin. For example,

consider the solution in Figure 1.8, which shows the arrangement of 7 boxes in the given

container with the length x = 6 m, the width y = 3 m, and the height z = 2 m. Therefore,

the magnitude along the x-axis of the rectangular required space for packing all boxes of

length x = 1.5 m. The magnitude along the y-axis of the rectangular required space for

packing all boxes of width y = 3 m, and the magnitude along the z-axis of the rectangular

required space for packing all boxes of height z = 2 m. The volume of the rectangular

space for packing all boxes is 1.5× 3× 2 m3 as shown in Figure 1.9 where the rectangular

required space is indicated with dashed lines.

Figure 1.9: The graphical representation of the rectangular required space for packing
all boxes.

From the CLP, we will apply it to design a set of boxes for packing goods in this

thesis as described below.

19

1. We view the boxes that are packed into the container as rectangular goods that we

want to design a box for packing.

2. We view the rectangular required space for packing all boxes in the CLP (or goods

in our problem) as a box that we can design for packing goods. The rectangular

required space or the box that we can design has the coordinate left-front-bottom

corner at the origin in 3D coordinate system as the given container in the CLP.

For example, the box that we can design for Example 2 with the arrangement in

Figure 1.9 will have a dimension 1.5× 3× 2.

3. We view the given container with the length x, the width y, and the height z as

the bound space of the box that we want to design for packing our goods. In other

words,

• The given magnitude x along the x-axis is the magnitude upper bound of the

side of the rectangular required space for packing all goods along the x-axis,

or magnitude upper bound of the side of the box that we will design along

the x-axis.

• The given magnitude y along the y-axis is the magnitude upper bound of the

side of the rectangular required space for packing all goods along the y-axis,

or magnitude upper bound of the side of the box that we will design along

the y-axis.

• The given magnitude z along the z-axis is the magnitude upper bound of the

side of the rectangular required space for packing all goods along the z-axis,

or magnitude upper bound of the side of the box that we will design along

the z-axis.

4. For a box that is designed, the measurement of the designed box are as follows.

• The height of the designed box is always the only dimension of the rectangular

required space for packing goods measured along the z-axis. This is because

the goods must be packed right side up in the box by the assumption of this

thesis.

20

• The length of the designed box is the longest side of the rectangular required

space for packing goods along the x-axis and the y-axis.

• The width of the designed box is the shortest side of the rectangular required

space for packing goods along the x-axis and the y-axis.

For example, consider the box we design in Example 2 with the dimension 1.5×3×2.

The length is 3, which is measured along the y-axis. The width is 1.5, which is

measured along the x-axis and the height is 2.

However, the shape of a box that we want to design for packing goods in this thesis

must be close to a cube as much as possible. Moreover, all items of goods that are packed

in the designed box must be of the same kind. Therefore, the methodology from the CLP

must be modified to make it fit our requirements. The methodology for our problem will

be explained in Chapter 3.

1.5 Overview of thesis

This thesis consists of five chapters. Chapter 1 provides an introduction to this re-

search study which includes motivation, objectives, assumptions, and background knowl-

edge. The background knowledge has 5 sections, i.e., the definition of a box, linear

programming, either-or constraints, heuristics, and the container loading problem. Chap-

ter 2 is the literature review which relates to the container loading problem, the packing

problem, the bin packing problem, and the knapsack loading problem. Chapter 3 is the

methodology which is divided into 4 sections. In the first section, the nonlinear opti-

mization model for designing boxes is introduced. We proposed a heuristic algorithm for

solving the model for designing boxes in the second section. The third section presents

a criteria for reducing the number of box types and a heuristic algorithm for minimizing

the number of box types. The last section presents a binary integer linear programming

(BILP) for minimizing the number of types of packing boxes based on the criteria in the

third section. Numerical examples are shown in Chapter 4. Finally, the conclusions of

this research study are in Chapter 5.

CHAPTER II

LITERATURE REVIEW

The container loading problem (CLP) appears in many related studies such as the

packing problem [2, 3, 4], the knapsack loading problem (KLP) [5, 7, 8, 9, 10], and the

bin packing problem (BPP) [12].

In 1995, a mathematical model of the CLP was first proposed by Chen et al. [1].

They proposed a mixed integer linear programming model (MILP) for the CLP. The

result showed that the model can be solved for small size problems. Their study uses

many binary variables to formulate the model which requires to heavy computation.

Tsai and Li [2] considered the CLP in other version which is called the packing

problem. They adapted the MILP of Chen et al. [1] using considerably fewer binary vari-

ables and presented a mixed integer nonlinear programming which aims to pack a given

set of boxes into a container with minimum volume. They used piecewise linearization

technique to find the global optimum of the packing problem. The result showed that

their method can find a global optimum within a tolerable error. Later, Tsai et al. [3]

reformulated the nonlinear packing problem into a MILP using an improved piecewise

linearization technique and logarithmic transformations. This approach can reduce the

number of binary variables and constraints; and consequentially enhances the computa-

tional efficiency. On the other hand, Hu et al. [4] developed a novel method for solving

the packing problem. They converted the nonlinear objective function in the packing

problem into an increasing function with single variable and two fixed parameters. The

new problem becomes a linear program which is easier to find a global optimum.

As for the BPP, Paquay et al. [12] proposed a mixed integer linear programming

model of the BPP with additional constraints that encountered in the real world. They

proposed the model of the BPP with the constraints that met in the air cargo industry.

This specific application involves new constraints such as the stability and the fragility of

22

cargo.

However, the CLP and the related problems are NP-hard. Only few exact methods

have been suggested in the literature and it may not find an optimal solution in an

acceptable time. Most researches have focused on the development of heuristic algorithms.

Pisinger [5] proposed a heuristic algorithm to decompose the KLP into a number of

layers which are divided into a number of strips. The decomposed sub-problem of the

packing strips becomes the well-known knapsack problem. Bortfeldt and Mack [6] offered

a heuristic algorithm derived from the layer building approach that was proposed by

Pisinger [5] for solving the CLP. Eley [7] presented a greedy heuristic algorithm that are

improved by a tree search for solving the KLP. Other heuristic algorithms such as genetic

algorithms (GA) [8, 9 ,10] are used to solve the KLP. In Karabulut and Inceoglu [8],

GA was used to solve the KLP with the deepest bottom left with fill. They define the

length, the width, and the height of the container are along the z-axis, the x-axis, and

the y-axis, respectively. An object will be firstly moved to the deepest available position

(smallest z value) in the container, and then as far as to the bottom (smallest y value) in

the second, and then as far as possible to the left (smallest x value) in the third. Kang

et al. [9] presented the improved deepest bottom left with fill algorithm which utilizes a

hybrid GA to solve the KLP. On the other hand, Goncalves and Resende [10] presented a

multi-population biased random key genetic algorithm for solving the KLP. They used a

maximal space representation to manage the free space in the container. In 2016, Huang

et al. [11] presented a simple but effective heuristic algorithm for solving the CLP. The

results of their algorithm showed that it is capable for solving the large size problems

with more than two hundred boxes. The experiment results showed that their developed

heuristic algorithm is more efficient than existing heuristic algorithms.

In this thesis, we modify the model of the CLP in [1, 11] and the heuristic algorithm

for solving the container loading problem in [11] to design a box for packing each kind of

goods. We view packing boxes that are loaded in the CLP as goods and view the space

in the given container as the upper bound space of the box that we want to design as

explained in Section 1.4.5.3. The space that is required for packing all goods is viewed

23

as the designed box. We want to design a box to be close to a cube as much as possible

for packing goods. Furthermore, we will propose a method as a heuristic algorithm and a

mathematical model as a binary integer linear programming for minimizing the number

of types of packing boxes.

CHAPTER III

METHODOLOGY

3.1 The model for designing boxes

In this section, we state the problem statement of our designing boxes problem and

a model for designing boxes as follows. By assuming that we want to design a box for

packing a given number of the goods of the same kind, we would like to design a box

with the shape close to a cube as much as possible within the given bound of each side

of the box. We try to design a box close to a cube since a cube box is more stable than

other rectangular boxes. Moreover, each item must be packed right side up in the box.

In addition, the volume utilization rate (VU rate) of the designed box, which is defined

as the ratio of the sum of all volumes of items to the volume of box, should be relatively

large because this also leads to high stability. For the model for designing boxes, it can

be modified from the model of the CLP. We will view the boxes that are loaded into the

given container (in the CLP) as goods (in our problem) and view the size of the given

container (in the CLP) as the given bound of each side of the box that we want to de-

sign (in our problem). We change the objective function and add a constraint about the

VU rate to the model of the CLP. The parameters and variables used in the model for

designing boxes are defined below.

Parameters:
n Total number of the given goods of the same kind to be packed in the

same box.

N The index set of the goods, N = {1, 2, ..., n}.

p, q, r The length, the width, and the height of the goods, respectively.

x, y, z Upper bound of the magnitude of the side of the box to be designed

along the x-, y-, and z-axes, respectively.

25

M A large positive number, M = max{x, y, z}.

Vu Parameters indicating the lower bound of the volume utilization rate of

the box to be designed, Vu ∈ [0, 1].

Henceforth, we will call a rectangular space which has the left-front-bottom cor-

ner at (0,0,0) and the right-behind-top corner at (x, y, z) as the bound space.

Variables:
x, y, z Variables indicating the magnitude along the x-, y-, and z-axes of the

required space for packing all n items of the goods into the bound space,

respectively. The value max{x, y} is referred to as the length of the

designed box, the value min{x, y} is referred to as the width, and the

value z is referred to as the height of the designed box.

(xi, yi, zi) Variables indicating the coordinates of the left-front-bottom corner of

item i.

lxi, lyi, lzi Binary variables indicating whether the length of item i is parallel to

the x-axis, the y-axis, or the z-axis, respectively. For example, lxi = 1

if the length of item i is parallel to the x-axis; otherwise lxi = 0.

wxi, wyi, wzi Binary variables indicating whether the width of item i is parallel to

the x-axis, the y-axis, or the z-axis, respectively. For example, wxi = 1

if the width of item i is parallel to the x-axis; otherwise wxi = 0.

hxi, hyi, hzi Binary variables indicating whether the height of item i is parallel to

the x-axis, the y-axis, or the z axis, respectively. For example, hxi = 1

if the height of item i is parallel to the x-axis; otherwise hxi = 0.

(αij , βij , δij) Binary variables indicating the relative positions of item i and item j,

i.e.,

(a) (αij , βij , δij) = (0, 0, 1) if item i is on the left of item j.

(b) (αij , βij , δij) = (0, 1, 0) if item i is on the right of item j.

(c) (αij , βij , δij) = (1, 0, 0) if item i is in front of item j.

(d) (αij , βij , δij) = (0, 1, 1) if item i is behind item j.

26

(e) (αij , βij , δij) = (1, 0, 1) if item i is below item j.

(f) (αij , βij , δij) = (1, 1, 0) if item i is above item j.

The model for designing boxes can be stated as follows:

min max{x, y, z} − min{x, y, z}

s.t. xi + plxi + qwxi + rhxi ≤ xj +M(1 + αij + βij − δij) ∀i, j ∈ N, i < j, (1)

xj + plxj + qwxj + rhxj ≤ xi +M(1 + αij − βij + δij) ∀i, j ∈ N, i < j, (2)

yi + plyi + qwyi + rhyi ≤ yj +M(1− αij + βij + δij) ∀i, j ∈ N, i < j, (3)

yj + plyj + qwyj + rhyj ≤ yi +M(2 + αij − βij − δij) ∀i, j ∈ N, i < j, (4)

zi + plzi + qwzi + rhzi ≤ zj +M(2− αij + βij − δij) ∀i, j ∈ N, i < j, (5)

zj + plzj + qwzj + rhzj ≤ zi +M(2− αij − βij + δij) ∀i, j ∈ N, i < j, (6)

1 ≤ αij + βij + δij ≤ 2 ∀i, j ∈ N, i < j, (7)

xi + plxi + qwxi + rhxi ≤ x ∀i ∈ N, (8)

yi + plyi + qwyi + rhyi ≤ y ∀i ∈ N, (9)

zi + plzi + qwzi + rhzi ≤ z ∀i ∈ N, (10)

lxi + lyi + lzi = 1 ∀i ∈ N, (11)

wxi + wyi + wzi = 1 ∀i ∈ N, (12)

hxi + hyi + hzi = 1 ∀i ∈ N, (13)

lxi + wxi + hxi = 1 ∀i ∈ N, (14)

lyi + wyi + hyi = 1 ∀i ∈ N, (15)

lzi + wzi + hyi = 1 ∀i ∈ N, (16)

hzi = 1 ∀i ∈ N, (17)

n p q r

x y z
≥ Vu (18)

xi, yi, zi ≥ 0, 0 ≤ x ≤ x, 0 ≤ y ≤ y, 0 ≤ z ≤ z; lxi, lyi, lzi, wxi, wyi, wzi, hxi, hyi, hzi,

αij , βij , and δij are binary variables.

The objective function of this model is to minimize the magnitude difference be-

tween the longest side and the shortest side of the required space for packing all n items of

goods. This makes the required space for packing goods or the designed box has the shape

near a cube as much as possible as we desire. Constraints (1)–(7) ensure that all items in

27

the box cannot overlap. Constraints (8)–(10) ensure that all items are packed within the

designed box and cannot penetrate the surface of the box. Constraints (11)–(16) ensure

that the item faces must be parallel or perpendicular to the faces of the designed box.

The constraints (1)–(16) are the same as the constraints in the CLP (page 11) and they

can be explained similarly. Constraint (17) enforces that all items are packed right side

up into the box according to the assumption. Constraint (18) enforces that the VU rate

of the designed box must be at least the value that is given by the user. Actually, this

model has higher complexity than the model of the CLP since the constraint (18) has

the nonlinear term xyz. Therefore, a heuristic algorithm for solving it is necessary and is

proposed in the next section.

3.2 A heuristic algorithm for designing boxes

In this section, a heuristic algorithm is proposed for designing boxes based on the

model for designing boxes in Section 3.1. This algorithm is modified from the heuristic

algorithm for solving the CLP in [11]. Let us we state our problem again. Assume that

we have n items of a kind of goods and have the given magnitude bound of each side of

the box that we want to design for packing all n items of goods. We want to design a box

(the space that requires for packing all goods in the given bound space) with the shape

as close to a cube as possible and the volume utilization rate of the designed box must

be at least a value given by a user as described earlier. Each item of goods also must

be packed right side up in the box that we want to design. The parameters used in this

heuristic algorithm for designing boxes consist of the following.

28

T The max number of iterations.

n The number of goods of the same kind to be packed in the same box.

N The index set of goods, N = {1, 2, ..., n}.

Nl The set of indices of all loaded items, Nl ⊆ N.

l, w, h The length, the width, and the height of the goods, respectively.

(pi, qi, ri) The magnitude of the side which is parallel to the x-, y-, and z-axes of

item i (depending on the rotation of the item), respectively, i ∈ N.

(xi, yi, zi) The coordinate of the left-front-bottom corner of item i, i ∈ N.

P The n× 6 matrix which represents the packing pattern of goods. Each

row i of P collects pi, qi, ri and the coordinate of the left-front-bottom

corner of item i. At the beginning, P is given by

P =


p1 q1 r1 x1 y1 z1

...
...

pn qn rn xn yn zn

 =


l w h x1 y1 z1

...
...

l w h xn yn zn

 ,

where xi, yi, zi, ∀i ∈ N can be arbitrary value initially. Typically, we set

xi = yi = zi = −1,∀i ∈ N at the beginning to indicate that item i is not

loaded into the box yet.

x, y, z Upper bound of the magnitude of the side of the box to be designed along

the x-, y-, and z-axes, respectively. For simplicity, we will call a rectangular

space which has the left-front-bottom corner at (0,0,0) and the

right-behind-top corner at (x, y, z) as the bound space.

x, y, z The magnitude along the x-, y-, and z-axes of the rectangular required

space for packing all n items of the goods, respectively. The value max{x, y},

min{x, y}, and z are referred to as the length, the width, and the height

of the designed box, respectively.

f The objective value of the model for designing boxes, i.e.,

f = max{x, y, z} − min{x, y, z}.

Vu The lower bound of the volume utilization rate of the designed box

which is given by a user.

According to the heuristic algorithm for solving the CLP in Huang et al. [11],

29

they propose the condition for checking whether any two rectangular objects overlap in

the container which is called the non-overlapping condition and the condition for check-

ing whether each object i is positioned inside the container which is called the non-

overstepping condition. These conditions will be used in this algorithm by viewing the

items and the bound space as the rectangular objects and the container, respectively.

1. The non-overlapping condition.

For any two items i and j, they will overlap if and only if the truth value of State-

ment (3.1) is false,

(xi+pi ≤ xj) ∨ (xj+pj ≤ xi) ∨ (yi+qi ≤ yj) ∨ (yi+qj ≤ yi) ∨ (zi+ri ≤ zj) ∨ (zj+rj ≤ zi).

(3.1)

Figure 3.1: An example of two overlapping items.

Figure 3.2: Box i is on the left of box j with xi + pi ≤ xj .

Figure 3.1 illustrates the overlapping of two items i and j. It is easy to see that all

6 conditions in Statement (3.1) are violated. But if at least one condition in Statement

(3.1) holds, it guarantee that items i and j will not overlap. For example, if the first

condition xi + pi ≤ xj in Statement (3.1) hold, it means that item i is on the left of item

30

j as shown in Figure (3.2)

2. The non-overstepping condition.

Each item i will be positioned inside the bound space if it satisfies all 3 conditions

in Statement (3.2),

(xi + pi ≤ x) ∧ (yi + qi ≤ y) ∧ (zi + ri ≤ z). (3.2)

The main idea of the proposed heuristic for designing boxes is as follows. All items

will be loaded one by one into the bound space where the first item will be loaded into

the bound space by setting its coordinate of the left-front-bottom corner at (0,0,0). Then

the remaining items i = 2 to n will be loaded one by one into the bound space such that

the magnitude of the required space for packing goods along the x-, y-, and z-axes should

expand approximately in the same rate (so that it is still as close to a cube as possible).

The heuristic algorithm for designing boxes is shown in Algorithm 2. The inputs of the

algorithm include the number of iteration T , the number of goods to be packed n, the

upper bounds of the dimensions of the designed box x, y, z, the lower bound of the VU

rate of the designed box Vu, and the dimensions of goods l, w, h. First, P is initialized by

setting pi = l, qi = w, ri = h and xi = yi = zi = −1, ∀i ∈ N . The best packing pattern

P ∗ and the VU rate of the best packing pattern V ∗ are set to be null. The value f∗ which

implies the objective value of the best packing pattern is initially set to be infinity. For

each iteration r = 1 to T , the first item will be positioned at (0,0,0) in the bound space

and set Nl = {1}. Then for each item i = 2 to n, we will find indices i1, i2, and i3 from

Nl (Algorithm 3). The indices i1, i2, and i3 are defined as follows.

• The index i1 is the index of a loaded item that has the smallest distance along

the x-axis from the origin to its right-front-bottom corner. Moreover, item i1 must

be such that item i can be loaded into the bound space by attaching the left-

front-bottom corner of item i to the right-front-bottom corner of item i1 without

overlapping with other loaded items as well as staying within the bound space. (If

31

Algorithm 2 Heuristic algorithm for designing boxes
Input : T, n, x, y, z, Vu, l, w, h

1: Set P =

p1 q1 r1 x1 y1 z1
... ...

pn qn rn xn yn zn

 , pi = l, qi = w, ri = h, xi = yi = zi = −1,

∀i ∈ N, P ∗ = null, f ∗ = ∞, V ∗ = null.
2: for r = 1 to T do
3: if p1 ≤ x and q1 ≤ y and r1 ≤ z then
4: Set x1 = y1 = z1 = 0 and Nl = [1]
5: for i = 2 to n do
6: Do Find indices and obtain i1, i2, i3 (See Algorithm 3.)
7: if i1 = i2 = i3 = null then
8: break
9: else

10: Set Candidate = {xi1 + pi1 , yi2 + qi2 , zi3 + ri3}
11: Set low = min(Candidate). If there are more than one element in

Candidate list which equal to the minimum, each of them may be
low with equal probability.

12: if low == xi1 + pi1 then
13: Set xi = xi1 + pi1 , yi = yi1 and zi = zi1
14: else if low == yi2 + qi2 then
15: Set xi = xi2 , yi = yi2 + qi2 and zi = zi2
16: else
17: Set xi = xi3 , yi = yi3 and zi = zi3 + ri3
18: end if
19: Set Nl = Nl ∪ {i}
20: end if
21: end for
22: end if
23: if length(Nl) == n then
24: Set x = max

i∈N
{xi + pi}, y = max

i∈N
{yi + qi}, z = max

i∈N
{zi + ri}

25: Set f = max{x, y, z} − min{x, y, z}, V =
n l w h

x y z
26: if f < f ∗ and V ≥ Vu then
27: Set f ∗ = f, P ∗ = P, x∗ = x, y∗ = y, z∗ = z and V ∗ = V
28: end if
29: end if
30: for i = 1 to n do
31: a = random number in [0,1]
32: if a > 0.5 then
33: Set (pi, qi) = (qi, pi)
34: end if
35: end for
36: end for
37: return P ∗, x∗, y∗, z∗, V ∗, f ∗

32

Algorithm 3 Find indices.
1: Define xi = xi′ + pi′ , yi = yi′ and zi = zi′ where i′ ∈ Nl to be used in (3.1)

and (3.2).
2: Find i1 = argmin

i′∈Nl

{xi′ + pi′ |(3.1) ≡ True, ∀j ∈ Nl − {i′} and (3.2) ≡ True}.

If more than one item can be i1, select the item with the smallest zi1 .
3: if i1 = null then
4: Set xi1 + pi1 = ∞
5: end if
6: Define xi = xi′ , yi = yi′ + qi′ and zi = zi′ where i′ ∈ Nl to be used in (3.1) and

(3.2).
7: Find i2 = argmin

i′∈Nl

{yi′ + qi′|(3.1) ≡ True, ∀j ∈ Nl − {i′} and (3.2) ≡ True}.

If more than one item can be i2, select the item with the smallest zi2 .
8: if i2 = null then
9: Set yi2 + qi2 = ∞

10: end if
11: Define xi = xi′ , yi = yi′ and zi = zi′ + ri′ where i′ ∈ Nl to be used in (3.1) and

(3.2).
12: Find i3 = argmin

i′∈Nl

{zi′ + ri′ |(3.1) ≡ True, ∀j ∈ Nl − {i′} and (3.2) ≡ True}.

13: if i3 = null then
14: Set zi3 + ri3 = ∞
15: end if

33

more than one item can be item i1, we firstly choose the item that has zi1 the

smallest so that item i will be supported by the floor of the bound space or other

packed item. See an example in Figure 3.3 (a))

• The index i2 is the index of a loaded item that has the smallest distance along the

y-axis from the origin to its left-behind-bottom corner. Moreover, item i2 must

be such that item i can be loaded into the bound space by attaching the left-

front-bottom corner of item i to the left-behind-bottom corner of item i2 without

overlapping with other loaded items as well as staying within the bound space. (If

more than one item can be item i2, we firstly choose the item that has zi2 the

smallest so that item i will be supported by the floor of the bound space or other

packed item. See an example in Figure 3.3 (b))

• The index i3 is the index of a loaded item that has the smallest distance along the

z-axis from the origin to its left-front-top corner. Moreover, item i3 must be such

that item i can be loaded into the bound space by attaching the left-front-bottom

corner of item i to the left-front-top corner of item i3 without overlapping with

other loaded items as well as staying within the bound space (See an example in

Figure 3.3 (c)).

If we cannot find all valid indices i1, i2 and i3, the iteration r will be broken since

the remaining item i to item n cannot be loaded into the bound space. Otherwise, we will

consider that item i should be loaded. We compare the distances xi1 + pi1 , yi2 + qi2 , and

zi3 + ri3 and set the smallest distance as ‘low’. If there are more than one ‘low’ value, we

will randomly choose one of them. For example, if xi1 + pi1 = yi2 + qi2 = zi3 + ri3 < ∞,

then each value can be low with probability 1

3
. Then we will load item i by attaching it to

one of items i1 (along the x-axis), i2 (along the y-axis), or i3 (along the z-axis) depending

on which one is corresponding to low. For example, in the situation in Figure 3.3, item i

will be loaded by attaching it to item i1 along the x-axis as shown in Figure 3.4. It means

that we always firstly load item i along the direction that has the smallest magnitude of

the occupied space. This make the magnitude of the required space for packing goods

along the x-, y-, and z-axes expand in approximately the same rate and it makes the

34

(a) An example of finding index i1.

(b) An example of finding index i2.

(c) An example of finding index i3.

Figure 3.3: An example of finding index i1, i2, and i3.

35

designed box has the shape close to a cube as we desire. When there are more than

one value that can be low, we randomly pick one. If all n items can be loaded into the

bound space, the values x, y, z (which are the magnitude of the required space for packing

all goods along the x-, y-, and z-axes, respectively), the value f (which is the objective

value), and the value V (which is the VU rate of the designed box) of iteration r can be

computed. If f < f∗ and the VU rate of the designed box in this iteration is at least the

minimum VU rate which can be accepted by the user, the value f∗, P ∗, x∗, y∗, z∗ and V ∗

are updated. Then the value of pi and qi for each i ∈ N can be swapped with probability

0.5 to generate different rotation of each item of goods. The value of h is fixed in the 3rd

column of P since each item must be packed right side up into the designed box by the

assumption. The items are then reloaded into the bound space in the next iteration and

this essentially yields a different packing pattern. After iteration r = T , the algorithm

will terminate and return P ∗, x∗, y∗, z∗, V ∗ and f∗. The length, width, and height of the

designed box are max{x∗, y∗},min{x∗, y∗} and z∗, respectively. The objective value is

f∗, the VU rate of the designed box is V ∗, and the arrangement of goods in the box can

be derived from P ∗.

Figure 3.4: Box i adjoining box i1.

The proposed heuristic algorithm in this section can be used to design a box’s

dimensions for packing a fixed number of the same kind of goods in to one box which is

the first objective of this thesis. Next, we will discuss the second objective of this thesis

which is to propose a method for minimizing the number of types of packing box in the

next section.

36

3.3 A heuristic algorithm for minimizing number of types

of packing boxes

In product packing, reducing some box types for packing goods when we have

several types of boxes can increase efficiency and reduce the packing cost. In this section,

we propose appropriate criteria to reduce the number of box types and propose a method

which is a heuristic algorithm for minimizing the number of types of packing boxes. The

problem statement can be described as follows. Suppose that we have a set of different

box types for packing goods. The objective is to minimize the number of box types for

packing goods as many as possible under the criteria that a particular box type could be

substituted by a bigger box type if the size difference (length, width, height) in percentage

of the larger box stays within a specific bound which is given by a user. It means that

the smaller box can be discarded and the bigger box will be used instead. In other words,

the objective is to find the minimum number of box types after indicating the discarding

boxes and knowing the replacement boxes.

Assume that we have n different box types for packing. Let Li,Wi, and Hi be the

length, the width, and the height respectively of box i, i ∈ {1, 2, ..., n}. For simplicity,

we will call “box type i” as “box i” and “boxes of different sizes” as “boxes”. From the

criteria in the problem statement, box j can be legitimately substituted by box i if and

only if the following 5 conditions are met:

1. Box i is sidewise longer than box j. This makes sense because if this condition is

true, all items that are packed in box j can be certainly in box i. In other words,

all 3 conditions in Statement (3.3) must hold:

(Li ≥ Lj) ∧ (Wi ≥ Wj) ∧ (Hi ≥ Hj). (3.3)

2. The difference of each side does not exceed a certain percentage (given by a user)

of the larger one, say 100t%. This enforces the substituting box to be not too much

larger than the discarded box. In other word, all 3 conditions in Statement (3.4)

37

must hold:

(
Li − Lj

Li
≤ t

)
∧
(
Wi −Wj

Wi
≤ t

)
∧
(
Hi −Hj

Hi
≤ t

)
. (3.4)

3. For any box which is discarded, there is only one box substitutes it.

4. If a box is discarded, then it cannot substitute other boxes.

5. There is no double replacement that violates the size percentage difference bound.

For example, if box i substitutes box j and box k substitutes box i, it seems that

we can reduce 2 box types and it potentially means that box k substitutes both

box i and box j but the length difference in percentage between box k and box j

may violate Condition 2.

In this section, we propose a heuristic algorithm based on these 5 conditions for

minimizing the number of types of packing boxes. The parameters used in this algorithm

consist of the following.

Num The maximun number of iterations.

n The total number of the given boxes.

N The index set of boxes, N = {1, 2, ..., n}.

Li,Wi,Hi The length, width, and height of box i, i ∈ N .

T The matrix T = [Tij]n×n. Each row i of T is corresponding to box i ∈ N

and each column j of T is corresponding to box j ∈ N . The element Tij

is equal to 1 if box i substitutes box j. At the beginning, T is initialized

as T = [−1]n×n.

t Parameter implying the maximum percentage difference of each box side

of any 2 boxes that we accept to discard the smaller box. The parameter t

is given by the user, where t ∈ [0, 1].

f The parameter implying the objective value of the problem; i.e.,

f = n−
∑
Tij=1

Tij , the difference of n and sum of all Tij such that Tij = 1.

38

Algorithm 4 Heuristic algorithm for minimizing number of types of packing
boxes

Input : Num, n, Li,Wi, Hi, t
1: Set T = [−1]n×n, T ∗ = ϕ, f ∗ = n.
2: for i = 1 to n do
3: Set Tii = 0
4: end for
5: for i = 1 to n do
6: for j = 1 to n do
7: if Li − Lj < 0 or Wi −Wj < 0 and Hi −Hj < 0 then
8: Set Tij = 0
9: end if

10: end for
11: end for
12: for i = 1 to n do
13: for j = 1 to n do
14: if Li − Lj > tLi or Wi −Wj > tLi and Hi −Hj > tLi then
15: Set Tij = 0
16: end if
17: end for
18: end for
19: Set T d = T
20: for m = 1 to Num do
21: for j = 1 to n do
22: if There is no −1 in column j of T d then
23: pass
24: else
25: Let I be the list of all indices of i which T d

ij = −1
26: Let a be a random number from I
27: Set T d

aj = 1 and T d
kj = 0, ∀k ̸= a

28: Set T d
jk = 0, ∀k ∈ N

29: Set T d
ka = 0, ∀k ∈ N

30: end if
31: end for
32: Set f = n−

∑
∀i∈N

∑
∀j∈N

T d
ij

33: if f < f ∗ then
34: Set f ∗ = f, T ∗ = T d,
35: end if
36: Set T d = T
37: end for
38: return T ∗, f ∗

39

The heuristic algorithm for minimizing the number of types of packing boxes is

shown in Algorithm 4. The inputs of this algorithm include the maximum number of

iterations Num, the total number of boxes n, the sizes of all boxes Li,Wi,Hi, ∀i ∈ N ,

and the bound of the percentage difference for each side between a discarded box and its

substituting box, t. The output are f∗ and T ∗, which are the best objective value and

the best substitution matrix that have been found, respectively. First, the matrix T is

initialized by setting each component as −1 as well as setting f∗ as n and T ∗ as null.

Next, we set all element Tii = 0, ∀i ∈ N because it is the same box. Then, we check

each pair of boxes i and j against Statement (3.3) and (3.4). If Statement (3.3) does not

hold for a pair of boxes i and j, the element Tij in T will be assigned to be zero since

box i is not bigger than box j in every dimensions. If Statement (3.4) does not hold for

a pair of boxes i and j, the element Tij in T will be assigned to be zero since the size

difference in percentage of these two boxes does not stay in the given bound. At this

point, the element Tij is either 0 or −1, where −1 means box i can subsitute box j with

respect to the conditions 1 – 2 of the criteria for legitimate box substitution. Next, the

algorithm will repeat the following solution generation procedure for Num iterations. In

each iteration, T is duplicated as T d and each column j in T d which corresponds to box

j is checked. If there is no the element −1 in column j of T d, then we go check the next

column because there is no box i which can substitute box j. Otherwise, we set I to be

the list of all indices of the row i such that T d
ij = −1 and randomly select an element of

I, say a. We set T d
aj to be 1 and set T d

kj , ∀k ̸= a to be 0. It means that we randomly

select one box, say box a, to replace box j and box j is discarded. Then T d
jk is set to

be zero for all k ∈ N since box j must be discarded and, therefore, it cannot substitute

other boxes. Furthermore T d
ka is also set to be zero for all k ∈ N so that no other box can

substitute box a. This guarantees that there is no double replacement which may violate

the assumption in Statement (3.4). After all columns are processed, each element of T d is

either 0 or 1. The element T d
ij which is equal to 1 implies that we use box i instead of box j

and it satisfies all 5 conditions for box substitution mentioned earlier. Next the objective

value f of the current solution T d is calculated. The value f∗ and the matrix T ∗ are

updated if f < f∗ and the solution generation procedure repeats. Finally, the algorithm

40

returns f∗ which is the total number of the remaining boxes after the substitution and

T ∗ which gives the substitution information, i.e. which box is discarded and which box

substitutes it.

Although the heuristic algorithm can find a good solution of a large size problem

within an acceptable time, it cannot guarantee to find the optimal solution of the problem.

In the next section, we present another way for minimizing the number of packing box

types under the same criteria but can guarantee to find the optimal solution which is a

binary integer linear programming model.

3.4 A binary integer linear programming model for mini-

mizing number of types of packing boxes

In this section, we propose a binary integer linear programming model for minimiz-

ing the number of types of packing boxes which is the same problem described in Section

3.3. The parameters and variables used in the proposed model are defined below.

Parameters:
n The total number of the given boxes.

N The index set of boxes, N = {1, 2, ..., n}.

M An arbitraly large positive number.

ε An infinitesimally small positive number.

Li,Wi,Hi Parameter indicating the length, the width, and the height of box i,

respectively.

t Parameter implying the maximum percentage difference of each

box side of any 2 boxes that we accept to discard the smaller box.

The parameter t is given by the user, where t ∈ [0, 1].

Variables:
Tij Binary variable which is equal to 1 if box i substitutes box j.

yij , aij , bij , cij , dij Auxilary binary variables.

41

In this model, the variable Tij is defined only when i ̸= j. The proposed model can

be stated as follows.

min n−
∑
∀i∈N

∑
∀j∈N
i̸=j

Tij

s.t. [|Li − Lj |+ |Wi −Wj |+ |Hi −Hj |]− [(Li − Lj) + (Wi −Wj) + (Hi −Hj)]

≤ M(1− yij) ∀i, j ∈ N, i ̸= j, (1)

Tij ≤ yij ∀i, j ∈ N, i ̸= j, (2)

(Li − Lj)− t(Li) ≤ M(1− aij) ∀i, j ∈ N, i ̸= j, (3)

Tij ≤ aij ∀i, j ∈ N, i ̸= j, (4)

(Wi −Wj)− t(Wi) ≤ M(1− bij) ∀i, j ∈ N, i ̸= j, (5)

Tij ≤ bij ∀i, j ∈ N, i ̸= j, (6)

(Hi −Hj)− t(Hi) ≤ M(1− cij) ∀i, j ∈ N, i ̸= j, (7)

Tij ≤ cij ∀i, j ∈ N, i ̸= j, (8)∑
∀i∈N
i̸=j

Tij ≤ 1 ∀j ∈ N, (9)

Tij − 1 ≤ M(1− dij)− ϵ ∀i, j ∈ N, i ̸= j, (10)

Tjk ≤ dij ∀i, j, k ∈ N, i ̸= j ̸= k, (11)

Tki ≤ dij ∀i, j, k ∈ N, i ̸= j ̸= k, (12)

Tij , yij , aij , bij , cij , dij are binary variables.

The objective function is to minimize the number of box types within the criteria

that a particular box could be substituted by a bigger box if their relative size difference

does not exceed 100t%. Constraints (1)–(2) ensure that if box i is not bigger than box

j in all dimensions, then Tij is forced to be zero. This is because if box i is bigger than

box j, then Li − Lj ≥ 0,Wi −Wj ≥ 0, and Hi − Hj ≥ 0. The left-hand-side (LHS) of

constraint (1) becomes 0 and the variable yij in constraint (1) can be 0 or 1 and so can

Tij by constraint (2). On the other hand, if there is one dimension of box i is not bigger

than the corresponding dimension of box j, it means that Li − Lj < 0 or Wi −Wj < 0

or Hi −Hj < 0. Then LHS of constraint (1) is positive and the variable yij in constraint

(1) must be 0. Therefore, by constraint (2), Tij is equal to 0. Constraints (3)–(4) ensure

42

that if the length of box i is longer than the length of box j and the difference exceeds

100t% of the larger box, then Tij is forced to be zero. This is because if LHS of constraint

(3) is positive, then the variable aij in constraint (3) can be only 0 and then Tij is equal

to 0 by constraint (4). On the other hand, if LHS of constraint (3) is not positive, then

the variable aij in constraint (3) can be 0 or 1 and so can Tij by constraint (4). However,

if LHS of constraint (3) is negative but Li − Lj < 0, it means that the length of box i

is not large enough to replace box j. Hence, by constraints (1)–(2), Tij is forced to be

0 eventually. Constraints (5)–(6) and (7)–(8) are similar to constraints (3)–(4), but they

consider the width and height instead of the length, respectively. Constraint (9) ensures

that if a box is discarded, it can be substituted by only one box. Constraints (10) and

(11) ensure that if box j is discarded, then it cannot substitute the other boxes. This

is because if Tij is equal to 1 in constraint (10) or box j is discarded, then the variable

dij in constraint (10) must be 0. Hence Tjk = 0, ∀k ̸= j by constraint (11). Constraints

(10) and (12) enforce that if box i substitutes box j, then box i cannot be substituted by

any box so that there is no double replacement which violates the assumption of the size

percentage difference bound. This is because if Tij is equal to 1 in constraint (10), the

variable dij in constraint (10) can be only 0. Hence Tki = 0,∀k ̸= i by constraint (12).

In this model, the value of the large positive number M that ensure the suitable

requirement in constraints (1),(3),(5),(7), and (10) can be set as 12max
i∈N

{Li,Hi}. This is

because the worst case or the maximum value of LHS of constraint (1) will occur when

Li − Lj < 0,Wi −Wj < 0, and Hi − Hj < 0. For simplicity, we let A = max
i∈N

{Li,Hi}.

Note that Li ≥ Wi by assumption. Then,

LHS = |Li − Lj |+ |Wi −Wj |+ |Hi −Hj | − (Li − Lj)− (Wi −Wj)− (Hi −Hj),

= 2|Li − Lj |+ 2|Wi −Wj |+ 2|Hi −Hj |,

≤ 2(|Li|+ |Lj |) + 2(|Wi|+ |Wj |) + 2(|Hi| − |Hj |),

≤ 2(A+A) + 2(A+A) + 2(A+A),

= 12A.

If we use M = 12max
i∈N

{Li,Hi}, it is easy to see that this value is also large enough

to eliminate constraints (3),(5),(7), and (10) when the binary variable aij , bij , cij , or dij

43

is equal to 0.

For the value of ε in constraint (10), we can use any value in the range (0,1). This

is because we want the value of ε to be positive so that whenever the variable Tij in

constraint (10) is equal to 1, the variable dij in constraint (10) can be only 0. Moreover,

we want ε to be small enough so that whenever Tij in constraint (10) is equal to 0, the

variable dij in constraint (10) can be either 0 or 1. Hence, ε needs to be less than 1.

Therefore, we can set the value 0 < ε < 1 in this model.

Numerical examples are given in the next Chapter to illustrate the application of

our approaches.

CHAPTER IV

NUMERICAL EXPERIMENTS

In this chapter, numerical examples are generated which contain 50 kinds of goods

as well as the upper bound of each dimension and the lower bound of the VU rate of the

box to be designed for each kind of goods. Next, the heuristic algorithm for designing

boxes in Section 3.2 is applied to the data to design a box for packing each kind of goods.

Then we will minimize all designed boxes by using the proposed heuristic algorithm for

minimizing the number of packing boxes in Section 3.3 and the BILP model for minimizing

the number of packing boxes in Section 3.4 so that we will get minimal box types for

packing all goods in the generated data. In addition, we will compare the efficiency of

the heuristic algorithm for minimizing the number of packing boxes and the BILP model

for minimizing the number of packing boxes.

4.1 The generated data set

The data used in our experiment are generated in the following steps.

1. The length (l), the width (w), and the height (h) of each kind of goods k ∈

{1, 2, ..., 50} are randomly generated from small sizes to large sizes. The maxi-

mum size of the longest side of goods in this data set is no more than 50 cm.

2. The number of goods per box (n) of each kind of goods is randomly selected from

5 to 50 units. In addition, the parameter n for larger goods will be smaller than

n for smaller goods since one unit of the goods with larger size has to use more

the occupied space. Hence, the range for the random number of goods per box of

each kind of goods k, k ∈ {1, 2, ..., 50} depends on the maximum of the length, the

width, and the height of the goods, or max{lk, wk, hk}, as shown in Table 4.1.

3. The upper bounds for the dimensions of the box to be designed (i.e., x, y, and z)

45

Table 4.1: The criteria for defining the range for the random number of goods per
box for goods of kind k, k ∈ {1, 2, ..., 50}.

Conditions The range for the random number of
goods per box of goods of kind k

max{lk, wk, hk} < 10 [5,50]

10 ≤ max{lk, wk, hk} < 20 [5,40]

20 ≤ max{lk, wk, hk} < 30 [5,35]

30 ≤ max{lk, wk, hk} < 40 [5,20]

40 ≤ max{lk, wk, hk} ≤ 50 [5,15]

of each kind of goods k ∈ {1, 2, ..., 50} are randomly selected within the range

[max{lk, wk, hk}, 100]. We set the maximum to be 100 cm. so that the designed

box is not too large.

4. The lower bounds of volume utilization rate (Vu) of the box to be designed for

goods of kinds 1–30 and 31–50 are 70% and 75%, respectively.

The length (l), the width (w), the height (h), the number of each kind of goods per

box (n), the upper bounds of box dimensions (x, y, z), and the lower bound of VU rate

(Vu) of each kind of goods used in our experiment are shown in Table 4.2.

Table 4.2: The generated data set.

Goods l w h n x y z Vu

1 9.1 8.2 6.4 28 39 71 29 0.7
2 9.6 5.5 5.8 48 44 72 24 0.7
3 8.1 4.9 5.5 18 54 39 57 0.7
4 8 6.6 6 25 16 41 48 0.7
5 8.5 7.6 6.1 41 40 57 47 0.7
6 7.5 7.1 6.6 22 72 83 38 0.7
7 8.3 7 4.4 46 36 22 38 0.7
8 8 4.9 4.5 27 90 58 23 0.7
9 7.6 7.1 6.5 43 99 16 62 0.7
10 6.8 6.6 5.5 33 45 35 44 0.7
11 7.6 5.1 5.9 40 70 26 30 0.7

46

Table 4.2 – Continued
Goods l w h n x y z Vu

12 9.6 9 7 38 80 82 64 0.7
13 8.5 8.2 5.5 34 79 41 94 0.7
14 9.3 6.2 4.8 20 57 51 14 0.7
15 8.4 5.9 5.5 14 59 61 15 0.7
16 9.2 7.6 7.6 16 36 63 65 0.7
17 17.8 14.8 18.7 30 82 73 80 0.7
18 18.4 9.7 10.9 12 92 52 59 0.7
19 18.9 14.3 7.9 26 79 85 36 0.7
20 20 9.3 12 26 70 71 31 0.7
21 11.3 11.3 6 13 57 28 48 0.7
22 11.9 11.8 12.5 38 79 84 69 0.7
23 11 10.4 15 14 98 40 53 0.7
24 12.5 12.5 15 25 31 83 80 0.7
25 19.4 12.4 8 7 38 68 36 0.7
26 16.4 12.7 8 10 72 89 54 0.7
27 16.9 13.9 8 31 53 66 37 0.7
28 19.9 8.9 7.5 24 91 65 53 0.7
29 20.4 9.4 15.5 15 35 82 64 0.7
30 20.4 9.3 7.5 34 71 49 25 0.7
31 26 8.5 12 24 41 86 89 0.75
32 23 13.9 10.5 22 46 85 48 0.75
33 26 19 14.5 12 86 57 92 0.75
34 26.8 17.4 12 31 94 46 51 0.75
35 21.9 20.8 11 16 54 51 60 0.75
36 25.1 17.5 10.5 22 59 93 83 0.75
37 28.5 19 13.2 8 31 41 53 0.75
38 22.8 8.1 10 19 72 97 24 0.75
39 23.5 11.9 11 14 69 44 62 0.75
40 21 10.6 8 17 56 87 84 0.75
41 38.9 20.4 21 13 99 78 88 0.75
42 33.4 16 17 14 70 55 62 0.75
43 30 12.1 18.2 15 52 70 39 0.75
44 31.5 16 22 9 50 74 86 0.75
45 37.4 14.9 25.5 11 82 80 59 0.75
46 35.1 21 13 10 67 46 89 0.75
47 42 10.9 25 7 74 95 54 0.75
48 44 19 22.5 12 80 74 100 0.75
49 43.5 22 20.5 8 91 86 44 0.75
50 40.6 18.9 20.5 9 42 63 70 0.75

47

4.2 The heuristic algorithm for designing boxes

In this section, we apply the proposed heuristic algorithm for designing box to the

data set in Table 4.2. To design boxes, we set the number of iterations (T) of the heuris-

tic algorithm for each kind of goods to 1000. The algorithm is implemented in Matlab

version R2014b. All the experiments were run on a personal computer equipped with

Intel Core i7 CPU, 8 GB RAM and Window 7 64-bit operating system. After performing

the heuristic algorithm with the inputs from Table 4.2, we get outputs x∗, y∗, and z∗

which are the magnitude of the required space for packing goods along the x-, y-, and

z-axes, respectively as well as V ∗ which is the volume utilization rate of the designed box

and the objective value f∗ which is the difference between the largest and the smallest

dimensions. The outputs for each kind of goods are reported in Table 4.3. The value

max{x∗, y∗},min{x∗, y∗}, and z∗ which are referred to as the length (L), the width (W),

and the height (H) of the designed box as well as the CPU time (in seconds) to get

the solutions are also reported in Table 4.3. If L = max{x∗, y∗} = x∗, it means that the

length and the width of the designed box are along the x-axis and the y-axis, respectively.

If L = max{x∗, y∗} = y∗, it means that the length and width of the designed box are

along the y-axis and the x-axis, respectively.

Table 4.3: The computational results from the box designing heuristic using the
generated data set.

Goods x∗ y∗ z∗ V ∗ f∗ L W H CPU time
1 26.4 26.4 25.6 0.7495 0.8 26.4 26.4 25.6 40.04s
2 28.8 28.8 23.2 0.7634 5.6 28.8 28.8 23.2 178.77s
3 17.9 17.9 16.5 0.7432 1.4 17.9 17.9 16.5 12.08s
4 16 26.4 24 0.7813 10.4 26.4 16 24 24.51s
5 25.5 30.4 24.4 0.8542 6 30.4 25.5 24.4 122.19
6 20.7 20.7 19.8 0.7898 0.9 20.7 20.7 19.8 22.49s
7 24.9 21 26.4 0.8519 5.4 24.9 21 26.4 129.15s
8 17.8 17.8 18 0.8351 0.2 17.8 17.8 18 38.20s
9 35.5 15.2 32.5 0.8600 20.3 35.5 15.2 32.5 114.12s
10 20.4 20.4 20 0.8897 0.4 20.4 20.4 20 66.79s
11 22.9 22.9 23.6 0.7391 0.7 22.9 22.9 23.6 111.6s
12 28.8 36 28 0.7917 8 36 28.8 28 102.19s
13 25.5 25.5 27.5 0.7289 2 25.5 25.5 27.5 71.65s

48

Table 4.3 – Continued
Goods x∗ y∗ z∗ V ∗ f∗ L W H CPU time

14 27.8 24.8 9.6 0.8333 18.3 27.8 24.8 9.6 13.96s
15 20.2 20.2 11 0.8502 9.2 20.2 20.2 11 5.09s
16 22.8 22.8 22.8 0.7173 0 22.8 22.8 22.8 8.75s
17 59.2 59.2 56.1 0.7517 3.1 59.2 59.2 56.1 52.27s
18 36.8 29.1 21.8 1 15 36.8 29.1 21.8 3.62s
19 47.5 47.5 31.6 0.7786 15.9 47.5 47.5 31.6 31.09s
20 55.8 57.2 24 0.7576 33.2 57.2 55.8 24 26.05s
21 22.6 22.6 24 0.8125 1.4 22.6 22.6 24 4.52s
22 47.4 47.4 37.5 0.7917 9.9 47.4 47.4 37.5 98.98s
23 31.8 31.8 30 0.7919 1.8 31.8 31.8 30 6.06s
24 25 50 60 0.7813 35 50 25 60 26.49s
25 24.8 31.8 24 0.7117 7.8 31.8 24.8 24 1.03s
26 29.1 25.4 32 0.7045 6.6 29.1 25.4 32 2.60s
27 47.7 47.7 32 0.8001 15.7 47.7 47.7 32 47.35s
28 39.8 37.7 30 0.7082 9.8 39.8 37.7 30 27.80s
29 29.8 40.8 46.5 0.7886 16.7 40.8 29.8 46.5 6.16s
30 50.1 48.3 22.5 0.8886 27.6 50.1 48.3 22.5 51.92s
31 34.5 43 48 0.8938 13.5 43 34.5 48 21.45s
32 46 46 42 0.8310 4 46 46 42 16.75s
33 45 52 43.5 0.8444 8.5 52 45 43.5 3.74s
34 87 44.2 48 0.9398 42.8 87 44.2 48 26.80s
35 43.8 43.8 44 0.9498 0.2 43.8 43.8 44 6.30s
36 42.6 52.5 52.5 0.8642 9.9 52.5 42.6 52.5 18.26s
37 28.5 38 52.8 1 24.3 38 28.5 52.8 0.86s
38 45.6 40.5 20 0.9500 25.6 45.6 40.5 20 11.77s
39 35.7 35.7 44 0.7680 8.3 35.7 35.7 44 5.30s
40 42 31.8 24 0.9444 18 42 31.8 24 10.42s
41 79.7 77.8 42 0.8319 37.7 79.7 77.8 42 4.37s
42 64 49.4 51 0.7888 14.6 64 49.4 51 4.48s
43 48.4 60.5 36.4 0.9298 24.1 60.5 48.4 36.4 3.96s
44 48 63 44 0.75 19 63 48 44 1.68s
45 59.6 67.2 51 0.7653 16.2 67.2 59.6 51 2.55s
46 56.1 42 52 0.7821 14.1 56.1 42 52 1.73s
47 42 43.6 50 0.875 8 43.6 42 50 0.96s
48 63 63 67.5 0.8425 4.5 63 63 67.5 2.88s
49 66 65.5 41 0.8855 25 66 65.5 41 1.14s
50 40.6 56.7 61.5 1 20.9 56.7 40.6 61.5 1.52s

Examples of output P ∗ (an arrangement pattern matrix that gives the information

about the position of the left-front-bottom corner and the rotation of each item of the

49

goods of one kind) are given in Equation (4.1) and (4.2) for the 47th and the 48th kind of

goods, respectively.

P ∗ =



pi qi ri xi yi zi

item i=1 42 10.9 25 0 0 0

item i=2 42 10.9 25 0 10.9 0

item i=3 42 10.9 25 0 21.8 0

item i=4 42 10.9 25 0 0 25

item i=5 42 10.9 25 0 10.9 25

item i=6 42 10.9 25 0 21.8 25

item i=7 42 10.9 25 0 32.7 0


(4.1)

P ∗ =



pi qi ri xi yi zi

item i=1 19 44 22.5 0 0 0

item i=2 19 44 22.5 19 0 0

item i=3 19 44 22.5 0 0 22.5

item i=4 44 19 22.5 19 0 22.5

item i=5 19 44 22.5 19 19 22.5

item i=6 44 19 22.5 0 44 0

item i=7 19 44 22.5 38 0 0

item i=8 19 44 22.5 38 19 22.5

item i=9 19 44 22.5 0 0 45

item i=10 19 44 22.5 19 0 45

item i=11 19 44 22.5 38 0 45

item i=12 44 19 22.5 0 44 45



(4.2)

The results in Table 4.3 show that the proposed heuristic algorithm for designing a

box that is close to a cube for packing each kind of goods within the given bounds gives

solutions within acceptable times. The values in column of f∗ in Table 4.4 are the best

found objective values of our problem, f = max{x, y, z} − min{x, y, z}. Note that the

objective value f∗ of a kind of goods may be large (i.e., the magnitudes of the longest side

and the shortest side of the designed box for packing all items of goods of that kind are

rather different) due to the limitation of the upper bounds. For example, if we consider

the goods of the 9th kind, the length of the box for packing this kind of goods is L = 35.5

which is the magnitude of the longest side of this box and the width W = 15.2 which is

50

the shortest side. The value L is significantly different from W since the upper bound of

box dimension along the x-axis of this box is x = 99 which is high and the upper bound

of box dimension along the y-axis is only y = 16 which is low. Therefore, the width of

this box is inevitably different from the length significantly. In addition, there are only 3

designed boxes (for the 18th, 37th, and 50th goods) where the VU rate is equal to 1. The

solutions with the VU rate equal to 1 are attractive but rarely occur since it is not a part

of the objective function and it is not forced by a constraint. For applications where the

VU rate should be near 1 as much as possible, the heuristic algorithm can be adjusted

accordingly through the objective function and/or a constraint.

Figures 4.1 (a) – (h) show some graphical representations of the solutions. They

show the designed box and the goods arrangement within the box for goods of kind k

where k = 1, 2, 17, 18, 31, 32, 47, 48, respectively 1.

(a) The graphical representation of the designed box for packing 1st kind of goods and
their arrangement pattern.

1The goods are of the same kind, but we color them differently for easy viewing of the
arrangement patterns.

51

(b) The graphical representation of the designed box for packing 2nd kind of goods and
their arrangement pattern.

(c) The graphical representation of the designed box for packing 17th kind of goods
and their arrangement pattern.

(d) The graphical representation of the designed box for packing 18th kind of goods
and their arrangement pattern.

52

(e) The graphical representation of the designed box for packing 31st kind of goods
and their arrangement pattern.

(f) The graphical representation of the designed box for packing 32nd kind of goods
and their arrangement pattern.

(g) The graphical representation of the designed box for packing 47th kind of goods
and their arrangement pattern.

53

(h) The graphical representation of the designed box for packing 48th kind of goods
and their arrangement pattern.

Figure 4.1: The graphical representations of some solutions.

4.3 The heuristic algorithm for minimizing number of types

of packing boxes

In this section, we will minimize the number of packing box types (50 types) that

are designed in Section 4.2 by using the proposed heuristic algorithm for minimizing the

number of types of packing boxes in Section 3.3. The parameters of the length (L), the

width (W), and the height (H) of all boxes are in columns of L,W, and H in Table 4.3.

This algorithm also has the input t, the bound of the difference percentage for each side

between of a discarded box and its substituting box. We vary this parameter t as 5%,

10%, 15%, and 20% and implement the algorithm in Matlab version R2014b. All the

experiments were run on a personal computer equipped with Intel Core i7 CPU, 8 GB

RAM and Window 7 64-bit operating system. The number of iterations Num that we

use, the CPU time (in seconds), and the value of f∗ which imply the best number of

remaining box types after substitution in each case of the parameter t are reported in

Table 4.4.

The results in Table 4.4 show that if we accept the value of t at 5%, 10%, 15%, and

54

Table 4.4: The computational results of the heuristic algorithm for minimizing the
number of packing box types.

t Num f ∗ CPU time

5% 10 48 0.0308s

10% 10 48 0.0351s

15% 50 40 0.0445s

20% 50 30 0.0536s

20%, we can reduce at most 2, 2, 10, and 20 box types, respectively. Consequently, the

number of remaining box types after substitution in each case is 48, 48, 40, and 30 types,

respectively. The time for solving the problem in each case is less than 0.1 second.

Table 4.5 displays the output matrix T ∗ for each case which gives the information

about which box is discarded and which box substitutes it. The elements of T ∗ are either

0 or 1, so we will mention only the elements T ∗
ij which is equal to 1 in Table 4.5.

Table 4.5: List of T ∗
ij = 1 for each case of t.

t List of T ∗
ij = 1

5% T11,16, T27,19

10% T11,16, T27,19

15% T1,21, T10,8, T12,25, T13,11, T16,6, T20,30, T27,19, T31,29, T40,18, T42,44

20% T6,3, T6,8, T12,2, T12,5, T12,25, T13,7, T13,11, T13,16, T20,30, T21,10,

T23,1, T27,19, T31,29, T35,39, T36,47, T40,18, T41,49, T44,33, T45,42, T48,17

From the Table 4.5, if we accept the value of t at 5% or 10%, we can discard

at most 2 boxes. Specifically, we can discard the 16th and 19th box and use the 11th

and 27th box instead, respectively. However, if we accept the the value of t at 15%, we

can discard more boxes. Specifically, we can discard at most 10 boxes, including the

21st, 8th, 25th, 11th, 6th, 30th, 19th, 29th, 18th, and 44th. The boxes for substituting them

are the 1st, 10th, 12th, 13th, 16th, 20th, 27th, 31st, 40th, and 42th, respectively. The results

55

for t = 20% can also be explained in the similar manner. The results from this section

will be compared with the results from the BILP for minimizing the number of box types

in the next section.

4.4 The binary integer linear programming for minimizing

number of types of packing boxes

In this section, the 50 box types that we design in Section 4.2 are minimized by

using the BILP model in Section 3.4. The parameter t is varied in the same manner as

in Section 4.3. The model are solved using CPLEX version 12.6.3 running on the same

computer. The results of the problems are reported in Table 4.6 and will be compared

with the results from the heuristic algorithm in Section 4.3.

Table 4.6: The computational results of the BILP model for minimizing the number
of packing box types.

t Optimal
objective value List of Tij = 1

CPU
time

5% 48 T11,16, T27,19 2.40s

10% 48 T11,16, T27,19 2.53s

15% 40 T1,11, T1,21, T12,25, T16,6, T16,10, T20,30, T27,19, 2.29s

T31,29, T40,18, T42,44

20% 30 T6,3, T6,8, T11,10, T11,16, T12,2, T12,5, T12,25, 2.51s

T23,1, T23,13, T26,7, T27,19, T30,38, T31,29, T35,39

T36,47, T40,18, T41,49, T42,33, T45,44, T48,17

The results from Table 4.6 show that the objective value in each case that we

get from the BILP model is equal to the objective value from the proposed heuristic

algorithm for minimizing the number of box types in Section 4.3. It means that the

proposed heuristic algorithm is useful since it can find an optimal solution in all cases of

consideration. The list of Tij in the cases t = 15% and t = 20% in Table 4.6 are different

56

from the results in Table 4.5, which indicates that the problems have alternative optimal

solutions. The CPU time for solving the BILP in each case is around 2.5 seconds which

is greater than the CPU time required by the heuristic algorithm in Section 4.3.

Next, we consider the case of t = 30%. The results after solving the problem by

using the proposed heuristic algorithm in Section 3.3 with the number of iterations Num

set to 105 and the proposed BILP in Section 3.4 are shown in Table 4.7.

Table 4.7: The results of case t = 30% from the two methods.

Method The objective value CPU time

The proposed heuristic 22 20.69s

The BILP model 20 2.55s

From Table 4.7, we can see that the BILP model gives the solution which is the

optimal solution with 20 box types within 2.55 seconds but the heuristic algorithm gives

the solution 22 which is not optimal solution. Moreover, the heuristic algorithm uses more

time for solving with 20.69 seconds. This happens because if we adjust the parameter t

in the BILP model, the size of the model does not change. It is only an adjustment of

one parameter (coefficient) of the model in CPLEX solver and it should use comparable

time for solving the problem. However, if we considerably increase the parameter t in the

heuristic algorithm, the size of problem will increase significantly because it will increase

the number of possible cases of −1 in the matrix T to be considered.

The generated data set in Section 4.1 and all results from Sections 4.2 – 4.4 alto-

gether are examples of how to design packing boxes to minimize the number of packing

box types. Any industries can use the proposed heuristic for designing boxes and the

proposed BILP model or the proposed heuristic for minimizing number of box types for

their goods so that they can design a box that is close to a cube for packing their goods

and can reduce the packing cost by minimizing the number of box types. In the next

section, we will show more examples to compare the efficiency and benefit of the proposed

heuristic algorithm for minimizing the number of packing boxes and the BILP model for

57

minimizing the number of packing boxes.

4.5 The comparison of efficiency of the heuristic algorithm

and binary integer linear programming for minimizing

number of types of packing boxes

In this section, we will compare the efficiency of the heuristic algorithm and the

BILP for minimizing the number of packing boxes with more large size examples. We will

use the sizes of 50 boxes that we design from Section 4.2 and we also randomly generate

70 boxes which are boxes No.51–120 to use in this section. (Therefore, the total number

of box types used in this section is 120.) The sizes of boxes No.51–120 are shown in Table

4.8.

We consider problems which are to minimize the number of boxes where the number

of boxes (n) are as follows:

• 60 boxes (box No.1–60)

• 70 boxes (box No.1–70)

• 80 boxes (box No.1–80)

• 90 boxes (box No.1–90)

• 100 boxes (box No.1–100)

• 110 boxes (box No.1–110)

• 120 boxes (box No.1–120)

For simplicity, we will call all problems (n = 60 to 120) as the problem set. We

consider the problem set with various bounds of the difference percentage (t), i.e., 5%,

10%, 15%, 20% and 30%. We solve the problem set with each case t by both the heuristic

algorithm and the BILP model for minimizing the number of packing box types. We

58

Table 4.8: The sizes of boxes No.51 – 120.

Box l w h Box l w h

51 10 10 10 86 100 30 30
52 15 15 40 87 105 32 37
53 17 11 6 88 110 70 25
54 20 20 60.5 89 112.5 40.5 10
55 20.5 14.5 6 90 120 60 35
56 25 17 9 91 100.5 33.8 19.5
57 25 25 25 92 71.5 49.5 14.5
58 27.3 22.5 30 93 50.3 50.3 30
59 30 20 11 94 70.5 48.5 24.5
60 35 22 14 95 63.5 44 21.5
61 35.8 30.5 80 96 66 42 19.5
62 36 31 26 97 71 46 24
63 40 40 50 98 57 46 11
64 40 24 16 99 69 52 9.3
65 45 40 35 100 67 50.3 28
66 45 30 20 101 64 40 28.5
67 49 43 31 102 70.5 49.5 16
68 50 45 30 103 28.5 16.5 15.25
69 51 43 35 104 51 17.75 13.35
70 53.6 21.7 42 105 26 19 23.5
71 55 45 40 106 31 23 27
72 60 60 20 107 35.5 24.75 21.25
73 60 20 45 108 39.4 29.5 17.5
74 63.3 37.5 40 109 36 31 13
75 66 60 100 110 36 31 26
76 69 50 44 111 36.5 32.4 62.25
77 70 40 10 112 45 40 35
78 74.5 49.3 50 113 55 45 40
79 78 40 55 114 80 80 20
80 80 80 40 115 31.75 24.1 16.8
81 80 40 20 116 57 26.5 33
82 84 33 22 117 40 30.5 24.1
83 87.6 74 60.5 118 45 40 35
84 93 34 20 119 55 45 40
85 95 50 26 120 60 50 45

59

implement the heuristic algorithm in Matlab and the BILP model in CPLEX on the same

computer configurations described in the previous section.

Table 4.9: Efficiency comparison in case t = 5% of the two methods.

n
Objective

value (optimal)
CPLEX

CPU times
Average Matlab CPU
times to get optimal

60 58 2.02 s 0.02775 s
70 68 2.15 s 0.02867 s
80 78 2.69 s 0.02999 s
90 88 3.12 s 0.03236 s
100 98 4.02 s 0.02748 s
110 107 5.18 s 0.02954 s
120 113 6.13 s 0.02692 s

Table 4.9 shows the results for the problem set with t = 5%. First, we obtain

the optimal objective value of each problem and the CPLEX CPU time as shown in the

second and the third columns, respectively. For the heuristic algorithm, we solve each

problem in the problem set in Matlab until the objective value of the yielded solution

is equal to the optimal solution obtained by the BILP model. We solve each problem

with the heuristic algorithm 10 times and find the average computational time to get the

optimal solution, which is shown in the last column of Table 4.10. From these results, we

can see that the average computational time of the heuristic algorithm of each problem

is less than the CPLEX CPU time to get the optimal solution.

Table 4.10: Efficiency comparison in case t = 10% of the two methods.

n
Objective

value (optimal)
CPLEX

CPU times
Average Matlab CPU
times to get optimal

60 56 2.09 s 0.03142 s
70 65 2.31 s 0.02896 s
80 74 2.87 s 0.02670 s
90 84 3.34 s 0.02866 s
100 94 4.07 s 0.02621 s
110 103 5.05 s 0.03252 s
120 108 6.03 s 0.03069 s

60

Table 4.11: Efficiency comparison in case t = 15% of the two methods.

n
Objective

value (optimal)
CPLEX

CPU times
Average Matlab CPU
times to get optimal

60 48 2.00 s 0.28777 s
70 54 2.23 s 0.30612 s
80 64 2.94 s 0.32949 s
90 74 3.37 s 0.30901 s
100 82 4.25 s 0.32448 s
110 90 5.00 s 0.32170 s
120 94 6.13 s 0.41607 s

Tables 4.10 and 4.11 show the results of the problem set with t = 10% and t = 15%,

respectively. The second and third columns of the tables show the optimal solution of

each problem and the CPLEX CPU time for solving each problem. The last column of

Tables 4.10 and 4.11 show the average Matlab computational time (from 10 repetitions)

to get the optimal solution of each problem. We can see that, in both cases t = 10% and

t = 15%, the average computational times to get the optimal solution of the heuristic

algorithm of all problems are less than the CPLEX CPU times as in case t = 5%.

Table 4.12: Efficiency comparison in case t = 20% of the two methods.

n
Objective

value (optimal)
Average objective
value of heuristic

CPLEX
CPU times

Matlab
CPU times

60 36 36 1.98 s ≈ 1.98 s
70 40 41 2.53 s ≈ 2.53 s
80 49 51 3.06 s ≈ 3.06 s
90 58 60 3.55 s ≈ 3.55 s
100 66 67 4.41 s ≈ 4.41 s
110 73 74 5.37 s ≈ 5.37 s
120 77 78 6.52 s ≈ 6.52 s

Table 4.12 shows the results for the problem set with t = 20%. We obtain the op-

timal objective value of each problem and the CPLEX CPU time as shown in the second

and forth columns, respectively. For the heuristic algorithm, we solve each problem in

the problem set by setting the computational time in Matlab is similar to the CPLEX

CPU time to get the optimal solution. We run heuristic algorithm 10 times and find the

61

average objective value. The average objective value of each problem is shown in the third

column of Table 4.10. The results show that the heuristic algorithm can find the objective

value which is equal to the optimal solution within the CPLEX CPU time in the problem

with 60 boxes only. But in other problems (70–120 boxes), the average objective value

from the heuristic algorithm is slightly higher than the optimal solution.

Table 4.13: Efficiency comparison in case t = 30% of the two methods.

n
Objective

value (optimal)
Average objective
value of heuristic

CPLEX
CPU times

Matlab
CPU times

60 25 29 2.32 s ≈ 2.32 s
70 27 32.5 2.64 s ≈ 2.64 s
80 35 40.5 2.99 s ≈ 2.99 s
90 43 48.3 3.58 s ≈ 3.58 s
100 49 53.8 4.24 s ≈ 4.24 s
110 53 58.9 5.36 s ≈ 5.36 s
120 55 62.2 6.08 s ≈ 6.08 s

Table 4.13 shows the results for the problem set with t = 30%. The optimal solution

and the CPU time that used for solving each problem in CPLEX are shown in the second

and forth columns, respectively. For the heuristic algorithm, we perform similarly to the

case t = 20%, i.e., we solve each problem in the problem set by setting the computational

time in Matlab similar to the CPLEX CPU time to get the optimal solution. Each problem

is run 10 times and the average objective value of these 10 runs of each problem is shown

in the third column of Table 4.13. The results show that the heuristic algorithm cannot

find the optimal solution within CPLEX CPU time in all problems. Furthermore, the

average objective value from the heuristic algorithm of each problem is rather different

from the optimal solution.

The results from all Tables 4.9–4.13 imply that the heuristic algorithm for mini-

mizing the number of box types can give goods result if the the bound of the difference

percentage for each side between of a discarded box and its substituting box (t) is low.

But if the parameter t is high, the heuristic algorithm cannot find an optimal solution of

the problem within the time to get optimal solution from CPLEX. However, we usually

62

set the parameter t low when we try to substitute a box with a bigger box in practice

so that the substituting box is not much larger than the discarded box. Therefore, the

heuristic algorithm for minimizing the number of packing boxes can be a good option to

reduce the number of box types.

CHAPTER V

CONCLUSIONS

5.1 Conclusion of this work

This research study proposes a heuristic for designing packing boxes to pack rect-

angular goods/products of the same kind. The shape of the designed box will be close

to a cube as much as possible within some boundaries and the volume utilization rate of

the designed box will be at least a value given by the user. It can be an option for any

industry who tries to design a cube packing box for packing their goods. An advantage

of a box with a shape near a cube is that it is more stable than other rectangular box

in every rotation. Moreover, our heuristic also considers the handling of empty space in

the box by forcing the volume utilization rate to be at least a lower bound which may be

derived from some limitations in the transportation. This helps increase efficiency when

the goods are to be transported. In addition, this research study proposes a heuristic and

a mathematical model for minimizing the number of types of packing boxes. They can be

options to reduce the number of box types when there are several box types to be used

in product packing. This can be valuable for any packing industries who seek to manage

the number of box types in their business. The heuristic and model can reduce some box

types which leads to a lower packing cost. Example problems are provided to illustrate the

proposed heuristic and the model. The obtained results show satisfactory performances

of both approaches. When the parameter t is no more than 15%, the heuristic obtains

equivalent solution to that of the exact method with less computational time.

5.2 Discussion and future works

1. The heuristic algorithm for designing box in this work does not consider the lim-

itation of stackablility of goods in the box. There may be a stacked item that is

64

supported by other packed items but the area where they actually touch is small

which can cause instability. However, filling the gap with some cushioning materials

such as foam peanuts can help elevate this problem.

2. In this study, the heuristic for designing a packing box is designed with near-cube

shape in mind. Further research is needed to extend or modify the heuristic to

accommodate other general rectangular shapes of a box.

3. The container loading problem (CLP) that is applied in this research does not

consider the weight distribution of boxes in the container and the center of gravity.

Further research should take these requirements into consideration for more realistic

applications and safety concerns.

4. The efficiency of the heuristic for minimizing the number of box types drastically

declined as the parameter t becomes too large due to the combinatorial nature

of the feasible solutions. More study is needed to improve the efficiency of the

heuristic. However, although the heuristic does not guarantee an optimal solution,

unlike the mathematical model approach which needs a solver to obtain an optimal

solution, the heuristic can be implemented using any programming language.

5. The problem of minimizing the number of types of packing boxes requires the

parameter t, which is the upper bound of the percentage difference between the size

of the discarded box and the substituting box, from the user. For some users who

cannot decide on the value of t but wish to eliminate a fixed number of box types, the

problem can be changed to minimizing the percentage difference given the number

of box types they want to discard. The solution will give the least upper bound

on the percentage difference given the fixed number of box types are discarded.

Then, the user can decide whether the resulting upper bound is acceptable and

pursue the suggested substitution plan. If the solution is not acceptable, the user

can adjust the parameter (number of discarded box types) and resolve the problem.

With minor modification to the mathematical model in Section 3.4, we can obtain

a mathematical model for the new problem as follows.

65

Parameters:
n The total number of the given boxes.

N The index set of boxes, N = {1, 2, ..., n}.

M An arbitraly large positive number.

ε An infinitesimally small positive number.

Li,Wi,Hi Parameter indicating the length, the width, and the height of box i,

respectively.

m The total number of boxes to be discarded.

Variables:
x Decision variable implying the bound of the difference percentage

for each side between of a discarded box and is subsituting box.

Tij Decision binary variable which is equal to 1 if box i substitutes box j.

yij , aij , bij , cij , dij Auxilary binary variables.

Mathematical Model:

66

min x

s.t. x ≤ 1 (1)

[|Li − Lj |+ |Wi −Wj |+ |Hi −Hj |]− [(Li − Lj) + (Wi −Wj) + (Hi −Hj)]

≤ M(1−yij) ∀i, j ∈ N, i ̸= j, (2)

Tij ≤ yij ∀i, j ∈ N, i ̸= j, (3)

(Li − Lj)− x(Li) ≤ M(1− aij) ∀i, j ∈ N, i ̸= j, (4)

Tij ≤ aij ∀i, j ∈ N, i ̸= j, (5)

(Wi −Wj)− x(Wi) ≤ M(1− bij) ∀i, j ∈ N, i ̸= j, (6)

Tij ≤ bij ∀i, j ∈ N, i ̸= j, (7)

(Hi −Hj)− x(Hi) ≤ M(1− cij) ∀i, j ∈ N, i ̸= j, (8)

Tij ≤ cij ∀i, j ∈ N, i ̸= j, (9)∑
∀i∈N
i̸=j

Tij ≤ 1 ∀j ∈ N, (10)

Tij − 1 ≤ M(1− dij)− ϵ ∀i, j ∈ N, i ̸= j, (11)

Tjk ≤ dij ∀i, j, k ∈ N, i ̸= j ̸= k, (12)

Tki ≤ dij ∀i, j, k ∈ N, i ̸= j ̸= k, (13)∑
∀i∈N

∑
∀j∈N
i ̸=j

Tij = m (14)

x ≥ 0; Tij , yij , aij , bij , cij , dij ∈ {0, 1}

This mathematical model is presented in detail in Laisupannawong et al. [16].

REFERENCES

[1] C.S. Chen, S.M. Lee, and Q.S. Shen, “An analytical model for the container loading

problem”, European Journal of Operational Research, vol. 80, pp. 68–76, 1995.

[2] J.F. Tsai and H.L. Li, “A global optimization method for packing problems”, Engi-

neering Optimization, vol. 38, pp. 687–700, 2006.

[3] J.F. Tsai, P.C. Wang, and M.H. Lin, “A global optimization approach for solving

three-dimensional open dimension rectangular packing problems”, Optimization, vol.

64, pp. 2601–2618, 2015.

[4] N.Z. Hu, H.L Lee, and J.F. Tsai, “Solving packing problems by a distributed

global optimization algorithm”, Mathematical Problems in Engineering, doi:

10.1155/2012/931092, 2012.

[5] D. Pisinger, “Heuristics for the container loading problem”, European Journal of

Operational Research, vol. 141, pp. 382–392, 2002.

[6] A. Bortfeldt and D. Mack, “A heuristic for the three-dimensional strip packing prob-

lem”, European Journal of Operational Research, vol. 183, pp. 1267–1279, 2007.

[7] M. Elay, “Solving container loading problems by block arrangement”, European Jour-

nal of Operational Research, vol. 141, pp. 393–409, 2002.

[8] K. Karabulut and M.M. Inceoglu, “A hybrid genetic algorithm for packing in 3D

with deepest bottom left with fill method”, Advances in Information Systems, pp.

441–450, 2004.

[9] K. Kang, I. Moon, and H. Wang, “A hybird genetic algorithm with a new packing

strategy for the three-dimensional bin packing problem”, Applied Mathematics and

Computation, vol. 219, pp. 1287–1299, 2012.

68

[10] J.F. Goncalves and M.G. Resende, “A parallel multi-population biased random-key

genetic algorithm for a container loading problem”, Computers and Operations Re-

search, vol. 39, pp. 179–190, 2012.

[11] Y.H. Huang, F.J. Hwang, and H.C. Lu, “An effective placement method for the

single container loading problem”, Computers & Industrial Engineering, vol. 97, pp.

212–221, 2016.

[12] C. Paquay, M. Schyns, and S. Limbourg, “Three dimensional bin packing problem

applied to air cargo”, Colloque International SIL 2011, Casablanca, Morocco, 15–16

December 2011.

[13] Ministry of Industry Announcement No.4432, 2012, Corrugated fibreboard boxes,

accessed 16 August 2017, http://www.ratchakitcha.soc.go.th/DATA/PDF/2555/E/

129/12.PDF.

[14] D.S. Chen, R.G. Batson, and Y. Dang, Applied integer programming: Modeling and

solution, John Wiley & Sons, 2010.

[15] F.S. Hillier and G.J. Lieberman, Introduction to mathematical programming, 2nd ed.,

McGraw-Hill, 1995.

[16] T. Laisupannawong, B. Intiyot and P. Thipwiwatpotjana, “Mixed integer linear pro-

gramming model for reducing types of packing boxes”, Proceedings Operations Re-

search Network Conference 2018, Pattaya, Thailand, 23–24 April 2018, pp. 96–100.

APPENDICES

70

APPENDIX A : Matlab code for the heuristic algorithm for designing boxes.

1 tic

2 T = 1000; n = 28; Vu = 0.5; %input

3 xbar = 39; ybar = 71; zbar = 29;

4 w = 8.2; l = 9.1; h = 6.4;

5
6 P = [l*ones(n,1) w*ones(n,1) h*ones(n,1) -ones(n,3)];

7 InfinitY = 10000;

8 P_star = 0; f_star = InfinitY;

9 V_star = 0;

10
11 for r = 1:T

12 if P(1,1)>xbar || P(1,2)>ybar || P(1,3)>zbar

13 display('infeasible'),r

14 else

15 P(1,4) = 0; P(1,5) = 0; P(1,6) = 0; %load box 1

16 Nl = 1;

17
18 i = 2;

19 xfi = P(1,4)+P(1,1); %find index i1 for box 2

20 yfi = P(1,5);

21 zfi = P(1,6);

22 if xfi+P(i,1) <= xbar && yfi+P(i,2) <= ybar && zfi+P(i,3) <=

zbar

23 i1 = 1;

24 else

25 i1 = -1;

26 end

27 xfi = P(1,4); %find index i2 for box 2

28 yfi = P(1,5)+P(1,2);

29 zfi = P(1,6);

30 if xfi+P(i,1) <= xbar && yfi+P(i,2) <= ybar && zfi+P(i,3) <=

zbar

71

31 i2 = 1;

32 else

33 i2 = -1;

34 end

35 xfi = P(1,4); %find index i3 for box 2

36 yfi = P(1,5);

37 zfi = P(1,6)+P(1,3);

38 if xfi+P(i,1) <= xbar && yfi+P(i,2) <= ybar && zfi+P(i,3) <=

zbar

39 i3 = 1;

40 else

41 i3 = -1;

42 end

43 if i1 == -1 && i2 == -1 && i3 == -1

44 display('infeasible'),r

45 else

46 P = Loadbox(P,i,i1,i2,i3);

47 Nl = [Nl i];

48
49 for i = 3:n

50 i1 = Find_index_x(Nl,P,i,xbar,ybar,zbar);

51 i2 = Find_index_y(Nl,P,i,xbar,ybar,zbar);

52 i3 = Find_index_z(Nl,P,i,xbar,ybar,zbar);

53 if i1 == -1 && i2 == -1 && i3 == -1

54 display('infeasible'),r

55 x_z = InfinitY

56 break

57 else

58 P = Loadbox(P,i,i1,i2,i3);

59 Nl = [Nl i];

60 end

61 end

62 end

63 end

72

64 if length(Nl) == n

65 P;

66 XP = P(1:n,4)+P(1:n,1);

67 x = max(XP);

68 YP = P(1:n,5)+P(1:n,2);

69 y = max(YP);

70 ZP = P(1:n,6)+P(1:n,3);

71 z = max(ZP);

72 xyz = sort([x y z]);

73 f = xyz(3)-xyz(1);

74 V = (n*l*w*h)/prod(xyz);

75 if f < f_star && V >= Vu

76 f_star = f;

77 P_star = P;

78 x_star = x;

79 y_star = y;

80 z_star = z;

81 V_star = V;

82 end

83 end

84
85 for i = 1:n

86 a = randi(2);

87 if a == 1

88 mark = P(i,1);

89 P(i,1) = P(i,2);

90 P(i,2) = mark;

91 end

92 end

93 end

94 f_star

95 P_star

96 x_star

97 y_star

73

98 z_star

99 V_star

100
101 %plot result

102 clf;

103 figure(1);

104 hold on;

105 for i = 1:size(P_star,1)

106 if mod(i,7) == 1

107 cube_plot([P_star(i,4),P_star(i,5),P_star(i,6)],P_star(i,1),

P_star(i,2),P_star(i,3),'b');

108 elseif mod(i,7) == 2

109 cube_plot([P_star(i,4),P_star(i,5),P_star(i,6)],P_star(i,1),

P_star(i,2),P_star(i,3),'g');

110 elseif mod(i,7) == 3

111 cube_plot([P_star(i,4),P_star(i,5),P_star(i,6)],P_star(i,1),

P_star(i,2),P_star(i,3),'r');

112 elseif mod(i,7) == 4

113 cube_plot([P_star(i,4),P_star(i,5),P_star(i,6)],P_star(i,1),

P_star(i,2),P_star(i,3),'c');

114 elseif mod(i,7) == 5

115 cube_plot([P_star(i,4),P_star(i,5),P_star(i,6)],P_star(i,1),

P_star(i,2),P_star(i,3),'m');

116 elseif mod(i,7) == 6

117 cube_plot([P_star(i,4),P_star(i,5),P_star(i,6)],P_star(i,1),

P_star(i,2),P_star(i,3),'y');

118 elseif mod(i,7) == 0

119 cube_plot([P_star(i,4),P_star(i,5),P_star(i,6)],P_star(i,1),

P_star(i,2),P_star(i,3),'k');

120 end

121 end

122 cube_plot([0,0,0],x_star,y_star,z_star,'w');

123 daspect([1 1 1])

124 xlabel('X','FontSize',18)

74

125 ylabel('Y','FontSize',18)

126 zlabel('Z','FontSize',18)

127 h = gca;

128 material metal

129 alpha('color');

130 alphamap('rampup');

131 view(30,30);

132 hold off;

133 toc

The following functions are subroutines of the heuristic algorithm for designing

boxes which include Loadbox, Find_index_x, Find_index_y, and Find_index_z.

1 function [temp1] = Loadbox(P,i,i1,i2,i3)

2 if i1 > 0 && i2 > 0 && i3 > 0

3 Candidate = [P(i1,4)+P(i1,1),P(i2,5)+P(i2,2),P(i3,6)+P(i3,3)];

4 low = min(Candidate);

5 index = find(Candidate == low);

6 if length(index) == 3

7 k = randi(3);

8 if k == 1

9 P(i,4) = P(i1,4)+P(i1,1);

10 P(i,5) = P(i1,5);

11 P(i,6) = P(i1,6);

12 elseif k == 2

13 P(i,4) = P(i2,4);

14 P(i,5) = P(i2,5)+P(i2,2);

15 P(i,6) = P(i2,6);

16 else

17 P(i,4) = P(i3,4);

18 P(i,5) = P(i3,5);

19 P(i,6) = P(i3,6)+P(i3,3);

20 end

21 elseif length(index) == 2

75

22 k = randi(2);

23 if index(k) == 1

24 P(i,4) = P(i1,4)+P(i1,1);

25 P(i,5) = P(i1,5);

26 P(i,6) = P(i1,6);

27 elseif index(k) == 2

28 P(i,4) = P(i2,4);

29 P(i,5) = P(i2,5)+P(i2,2);

30 P(i,6) = P(i2,6);

31 else

32 P(i,4) = P(i3,4);

33 P(i,5) = P(i3,5);

34 P(i,6) = P(i3,6)+P(i3,3);

35 end

36 else

37 if low == P(i1,4)+P(i1,1)

38 P(i,4) = P(i1,4)+P(i1,1);

39 P(i,5) = P(i1,5);

40 P(i,6) = P(i1,6);

41 elseif low == P(i2,5)+P(i2,2)

42 P(i,4) = P(i2,4);

43 P(i,5) = P(i2,5)+P(i2,2);

44 P(i,6) = P(i2,6);

45 else

46 P(i,4) = P(i3,4);

47 P(i,5) = P(i3,5);

48 P(i,6) = P(i3,6)+P(i3,3);

49 end

50 end

51 elseif i1>0 && i2>0 && i3<0

52 if P(i1,4)+P(i1,1) == P(i2,5)+P(i2,2)

53 k = randi(2);

54 if k == 1

55 P(i,4) = P(i1,4)+P(i1,1);

76

56 P(i,5) = P(i1,5);

57 P(i,6) = P(i1,6);

58 else

59 P(i,4) = P(i2,4);

60 P(i,5) = P(i2,5)+P(i2,2);

61 P(i,6) = P(i2,6);

62 end

63 elseif P(i1,4)+P(i1,1) < P(i2,5)+P(i2,2)

64 P(i,4) = P(i1,4)+P(i1,1);

65 P(i,5) = P(i1,5);

66 P(i,6) = P(i1,6);

67 else

68 P(i,4) = P(i2,4);

69 P(i,5) = P(i2,5)+P(i2,2);

70 P(i,6) = P(i2,6);

71 end

72 elseif i1>0 && i2<0 && i3>0

73 if P(i1,4)+P(i1,1) == P(i3,6)+P(i3,3)

74 k = randi(2);

75 if k == 1

76 P(i,4) = P(i1,4)+P(i1,1);

77 P(i,5) = P(i1,5);

78 P(i,6) = P(i1,6);

79 else

80 P(i,4) = P(i3,4);

81 P(i,5) = P(i3,5);

82 P(i,6) = P(i3,6)+P(i3,3);

83 end

84 elseif P(i1,4)+P(i1,1) < P(i3,6)+P(i3,3)

85 P(i,4) = P(i1,4)+P(i1,1);

86 P(i,5) = P(i1,5);

87 P(i,6) = P(i1,6);

88 else

89 P(i,4) = P(i3,4);

77

90 P(i,5) = P(i3,5);

91 P(i,6) = P(i3,6)+P(i3,3);

92 end

93 elseif i1<0 && i2>0 && i3>0

94 if P(i2,5)+P(i2,2) == P(i3,6)+P(i3,3)

95 k = randi(2);

96 if k == 1

97 P(i,4) = P(i2,4);

98 P(i,5) = P(i2,5)+P(i2,2);

99 P(i,6) = P(i2,6);

100 else

101 P(i,4) = P(i3,4);

102 P(i,5) = P(i3,5);

103 P(i,6) = P(i3,6)+P(i3,3);

104 end

105 elseif P(i2,5)+P(i2,2) < P(i3,6)+P(i3,3)

106 P(i,4) = P(i2,4);

107 P(i,5) = P(i2,5)+P(i2,2);

108 P(i,6) = P(i2,6);

109 else

110 P(i,4) = P(i3,4);

111 P(i,5) = P(i3,5);

112 P(i,6) = P(i3,6)+P(i3,3);

113 end

114 elseif i1>0 && i2<0 && i3<0

115 P(i,4) = P(i1,4)+P(i1,1);

116 P(i,5) = P(i1,5);

117 P(i,6) = P(i1,6);

118 elseif i1<0 && i2>0 && i3<0

119 P(i,4) = P(i2,4);

120 P(i,5) = P(i2,5)+P(i2,2);

121 P(i,6) = P(i2,6);

122 else

123 P(i,4) = P(i3,4);

78

124 P(i,5) = P(i3,5);

125 P(i,6) = P(i3,6)+P(i3,3);

126 end

127 temp1 = P;

128 end

1 function [temp2] = Find_index_x(Nl,P,i,xbar,ybar,zbar)

2 Iipx = [];

3 for ipx = Nl

4 xfi = P(ipx,4)+P(ipx,1);

5 yfi = P(ipx,5);

6 zfi = P(ipx,6);

7 for j = Nl

8 if j==ipx

9 continue

10 end

11 count = 0;

12 if xfi+P(i,1) > P(j,4)

13 count = count+1;

14 end

15 if P(j,4)+P(j,1) > xfi

16 count = count+1;

17 end

18 if yfi+P(i,2) > P(j,5)

19 count = count+1;

20 end

21 if P(j,5)+P(j,2) > yfi

22 count = count+1;

23 end

24 if zfi+P(i,3) > P(j,6)

25 count = count+1;

26 end

27 if P(j,6)+P(j,3) > zfi

79

28 count = count+1;

29 end

30 if count == 6 || xfi+P(i,1)> xbar || yfi+P(i,2)> ybar || zfi+

P(i,3)> zbar

31 break

32 end

33 end

34 if count == 6 || xfi+P(i,1)> xbar || yfi+P(i,2)> ybar || zfi+P(i

,3)> zbar

35 continue

36 else

37 Iipx = [Iipx ipx];

38 end

39 end

40 if isempty(Iipx)

41 i1 = -1;

42 else

43 XIipx = P(Iipx,4)+P(Iipx,1);

44 miin = min(XIipx);

45 indexx = find(XIipx == miin);

46 if length(indexx) == 1

47 i1 = Iipx(indexx);

48 else

49 candidate = Iipx(indexx);

50 zcan = P(candidate,6);

51 [zmin,izmin] = min(zcan);

52 i1 = candidate(izmin);

53
54 end

55 end

56 temp2 = i1;

57 end

80

1 function [temp3] = Find_index_y(Nl,P,i,xbar,ybar,zbar)

2 Iipy = [];

3 for ipy = Nl

4 xfi = P(ipy,4);

5 yfi = P(ipy,5)+P(ipy,2);

6 zfi = P(ipy,6);

7 for j = Nl

8 if j==ipy

9 continue

10 end

11 count = 0;

12 if xfi+P(i,1) > P(j,4)

13 count = count+1;

14 end

15 if P(j,4)+P(j,1) > xfi

16 count = count+1;

17 end

18 if yfi+P(i,2) > P(j,5)

19 count = count+1;

20 end

21 if P(j,5)+P(j,2) > yfi

22 count = count+1;

23 end

24 if zfi+P(i,3) > P(j,6)

25 count = count+1;

26 end

27 if P(j,6)+P(j,3) > zfi

28 count = count+1;

29 end

30 if count == 6 || xfi+P(i,1)> xbar || yfi+P(i,2)> ybar || zfi+

P(i,3)> zbar

31 break

32 end

33 end

81

34 if count == 6 || xfi+P(i,1)> xbar || yfi+P(i,2)> ybar || zfi+P(i

,3)> zbar

35 continue

36 else

37 Iipy = [Iipy ipy];

38 end

39 end

40 if isempty(Iipy)

41 i2 = -1;

42 else

43 YIipy = P(Iipy,5)+P(Iipy,2);

44 miin = min(YIipy);

45 indexy = find(YIipy == miin);

46 if length(indexy) == 1

47 i2 = Iipy(indexy);

48 else

49 candidate = Iipy(indexy);

50 zcan = P(candidate,6);

51 [zmin,izmin] = min(zcan);

52 i2 = candidate(izmin);

53 end

54 end

55 temp3 = i2;

56 end

1 function [temp4] = Find_index_z(Nl,P,i,xbar,ybar,zbar)

2 Iipz = [];

3 for ipz = Nl

4 xfi = P(ipz,4);

5 yfi = P(ipz,5);

6 zfi = P(ipz,6)+P(ipz,3);

7 for j = Nl

8 if j==ipz

82

9 continue

10 end

11 count = 0;

12 if xfi+P(i,1) > P(j,4)

13 count = count+1;

14 end

15 if P(j,4)+P(j,1) > xfi

16 count = count+1;

17 end

18 if yfi+P(i,2) > P(j,5)

19 count = count+1;

20 end

21 if P(j,5)+P(j,2) > yfi

22 count = count+1;

23 end

24 if zfi+P(i,3) > P(j,6)

25 count = count+1;

26 end

27 if P(j,6)+P(j,3) > zfi

28 count = count+1;

29 end

30 if count == 6 || xfi+P(i,1)> xbar || yfi+P(i,2)> ybar || zfi+

P(i,3)> zbar

31 break

32 end

33 end

34 if count == 6 || xfi+P(i,1)> xbar || yfi+P(i,2)> ybar || zfi+P(i

,3)> zbar

35 continue

36 else

37 Iipz = [Iipz ipz];

38 end

39 end

40 if isempty(Iipz)

83

41 i3 = -1;

42 else

43 ZIipz = P(Iipz,6)+P(Iipz,3);

44 [miin,imiin] = min(ZIipz);

45 i3 = Iipz(imiin);

46 end

47 temp4 = i3;

48 end

84

APPENDIX B : Matlab code of the heuristic algorithm for minimizing the num-
ber of types of packing boxes.

1 tic

2 Dimension = importdata('sizeset1.txt');

3 L = Dimension(:,1);

4 W = Dimension(:,2);

5 H = Dimension(:,3);

6 n = length(L);

7 t = 0.20;

8 Num = 50;

9 Tstar = []; fstar = n;

10 T = -ones(n,n);

11
12 for i = 1:n

13 T(i,i) = 0;

14 end

15 for i = 1:n

16 for j = 1:n

17 if L(i)-L(j)<0 || W(i)-W(j)<0 || H(i)-H(j)<0

18 T(i,j) = 0;

19 end

20 end

21 end

22 for i = 1:n

23 for j = 1:n

24 if L(i)-L(j)> t*L(i) || W(i)-W(j)> t*W(i) || H(i)-H(j)> t*H(i)

25 T(i,j) = 0;

26 end

27 end

28 end

29 T;

30 Td = T;

31 for m = 1:Num

85

32 for j = 1:n

33 I = find(Td(:,j)==-1);

34 if isempty(I);

35 continue

36 else

37 a = I(randi(length(I)));

38 Td(:,j)= 0; Td(a,j) = 1;

39 Td(j,:)= 0; Td(:,a) = 0;

40 end

41 end

42 f = n-sum(sum(Td));

43 if f < fstar

44 fstar = f;

45 Tstar = Td;

46 end

47 Td = T;

48 end

49 fstar

50 Tstar;

51 toc

86

APPENDIX C : IBM ILOG OPL CPLEX code for the binary integer linear

programming model for minimizing the number of types of packing boxes.

This section includes the code for import and export data and the code of the binary

integer linear programming model for minimizing the number of types of packing boxes.

1 SheetConnection filein("Size of box.xlsx");

2 L from SheetRead(filein, "Sheet2!F2:F51");

3 W from SheetRead(filein, "Sheet2!G2:G51");

4 H from SheetRead(filein, "Sheet2!H2:H51");

5
6 SheetConnection fileout("Val Tij.xlsx");

7 T to SheetWrite(fileout, "Sheet3!B2:AY51");

1 /*** Parameters ***/

2 int n = 50;

3 range R = 1..n;

4 int M = 1000;

5 float ep = 0.1;

6 /*** Input ***/

7 float L[R] = ...;

8 float W[R] = ...;

9 float H[R] = ...;

10 float t = 0.05;

11 /*** Decision Variable ***/

12 dvar boolean T[R][R];

13 dvar boolean y[R][R];

14 dvar boolean a[R][R];

15 dvar boolean b[R][R];

16 dvar boolean c[R][R];

17 dvar boolean d[R][R];

18 /*** Objective_function ***/

19 minimize n - sum(j in R)sum(i in R)T[i][j];

87

20 /*** Constraints ***/

21 subject to {

22 forall (i in R)

23 T[i][i] == 0;

24 forall(i in R)

25 forall (j in R)

26 abs(L[i]-L[j])+abs(W[i]-W[j])+abs(H[i]-H[j])-(L[i]-L[j])-(W[i]-W

[j])-(H[i]-H[j])<=M*(1-y[i][j]);

27 forall(i in R)

28 forall (j in R)

29 T[i][j] <= y[i][j];

30 forall(i in R)

31 forall (j in R)

32 (L[i]-L[j])-t*L[i] <= M*(1-a[i][j]);

33 forall(i in R)

34 forall (j in R)

35 T[i][j] <= a[i][j];

36 forall(i in R)

37 forall (j in R)

38 (W[i]-W[j])-t*W[i] <= M*(1-b[i][j]);

39 forall(i in R)

40 forall (j in R)

41 T[i][j] <= b[i][j];

42 forall(i in R)

43 forall (j in R)

44 (H[i]-H[j])-t*H[i] <= M*(1-c[i][j]);

45 forall(i in R)

46 forall (j in R)

47 T[i][j] <= c[i][j];

48 forall(j in R)

49 sum(i in R)T[i][j] <= 1;

50 forall(i in R)

51 forall(j in R)

52 T[i][j]-1 <= (1-d[i][j])*M-ep;

88

53 forall(i in R)

54 forall(j in R)

55 forall(k in R)

56 T[j][k] <= d[i][j];

57 forall(i in R)

58 forall(j in R)

59 forall(k in R)

60 T[k][i] <= d[i][j];

61 }

89

BIOGRAPHY

Name Mr. Teeradech Laisupannawong

Date of Birth 23 November 1993

Education B.S. (Mathematics) (First-Class Honours), 2016

Department of Mathematics, Faculty of Science,

Kasetsart University

Publication

• T. Laisupannawong, B. Intiyot, and P. Thipwiwatpotjana, “Mixed integer linear

programming model for reducing types of packing boxes”, Proceedings Operations

Research Network Conference 2018, Pattaya, Thailand, 23–24 April 2018, pp. 96-

100.

	COVER (THAI)
	COVER (ENGLISH)
	ACCEPTED
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I INTRODUCTION
	CHAPTER II LITERATURE REVIEW
	CHAPTER III METHODOLOGY
	CHAPTER IV NUMERICAL EXPERIMENTS
	CHAPTER V CONCLUSIONS
	REFERENCES
	APPENDICES
	VITA

