SYNTHESIS OF MgAl₂O₄ SPINEL AND ITS APPLICATION AS A HUMIDITY SENSING ELEMENT

Mr. Apirat Laobuthee

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma
and Case Western Reserve University

1997
ISBN 974-636-064-7

Thesis Title

: Synthesis of MgAl₂O₄ Spinel and Its Application as a

Humidity Sensing Element

By

: Mr. Apirat Laobuthee

Program

: Polymer Science

Thesis Advisors

: Assoc.Prof. Richard M. Laine

Asst.Prof. Sujitra Wongkasemjit

Prof. Enrico Traversa

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Master's Degree of Science.

...Director of the College

(Prof. Somchai Osuwan)

Thesis Committee

(Assoc, Prof. Richard M. Laine)

(Asst.Prof. Sujitra Wongkasemjit)

(Prof. Enrico Traversa)

(Dr. Nantaya Yanumet)

N. Januaret

ABSTRACT

952002 : POLYMER SCIENCE PROGRAM

KEY WORD: SPINEL / HUMIDITY SENSOR

APIRAT LAOBUTHEE: SYNTHESIS OF MgAl₂O₄ SPINEL AND ITS APPLICATION AS A HUMIDITY SENSING ELEMENT. THESIS ADVISORS: ASSOC. PROF. RICHARD M. LAINE, ASST. PROF. SUJITRA WONGKASEMJIT, AND PROF. ENRICO TRAVERSA, 55 pp. ISBN 974-636-064-7

MgAl₂O₄ spinel powder can be prepared via the oxide one pot synthesis (OOPS) process, solid-state reactions, and the reaction between alumatrane and magnesium methoxide [Mg(OMe)₂]. Spinel preparation via the OOPS process and the reaction between alumatrane and Mg(OMe)₂ offer more advantages compared to the solid-state method, such as shorter process times, lower process temperatures, high homogeneity and higher purity products.

The spinel obtained from the OOPS process by heating the precursor to 1100°C for 2 h was a ceramic oxide of use as a humidity-sensing material, prepared in the bulk form or as porous pellets. The various products were characterized by SEM. Pellets electrical responses were measured using impedance spectroscopy in the frequency range from 10-2 to 10⁵ Hz at 2-90% relative humidity (RH) levels. The powder exhibited good humidity sensitivity and good linearity in the relationship between humidity and impedance. Reproducibility in the 2-90% RH range was similar to that of powders prepared by other methods, such as co-precipitation or solid-state reactions.

บทคัดย่อ

อภิรัตน์ เลาห์บุตรี : การสังเคราะห์แมกนีเชียมอลูมิเนตสปีเนล และการประยุกต์ในการ ใช้เป็นวัสดุสำหรับหัววัดความชื้น [Synthesis of MgAl₂O₄ Spinel and Its Application as a Humidity Sensing Element] อ. ที่ปรึกษา : รศ. ริชาร์ด เอ็ม เลน (Assoc. Prof. Richard M. Laine) ผศ.คร. สุจิตรา วงศ์เกษมจิตต์ และ ศ. เอ็นริโก ทราเวิลซาร์ (Prof. Enrico Traversa) 55 หน้า ISBN 974-636-064-7

การสังเคราะห์ผงเซรามิกแมกนีเซียมอถูมิเนตสปีเนล สามารถเตรียมได้โดยผ่านกรรมวิธีที่ เรียกว่า "The Oxide One Pot Synthesis (OOPS) Process" ปฏิกิริยาระหว่างของแข็งกับของแข็ง และ ปฏิกิริยาระหว่างอลูมาเทรนกับแมกนีเซียมเมทอกไซด์ การเตรียมสปีเนลโดยกรรมวิธี OOPS และ ปฏิกิริยาระหว่างอลูมาเทรนกับแมกนีเซียมเมทอกไซด์ จะให้ผลดีกว่าการเตรียมด้วยปฏิกิริยา ระหว่างของแข็งกับของแข็ง คือ เวลาในการทำปฏิกิริยาสั้นกว่า สามารถเตรียมได้ที่อุณหภูมิต่ำกว่า และได้ผลผลิตที่มีขนาดสม่ำเสมอรวมทั้งให้ความบริสุทธิ์ที่สูงกว่า

ผงสปีเนิลที่เตรียมได้เป็นสารจำพวกเซรามิกที่มีรูพรุน และเหมาะที่จะนำไปใช้เป็นวัสคุ สำหรับหัววัคความชื้น ซึ่งในเบื้องค้นได้ศึกษาในรูปแบบของเม็ดผลึก โดยตรวจสอบโครงสร้าง ของสารที่ได้จาก SEM และวัคสมบัติด้านการนำไฟฟ้าโดยใช้เทคนิคอิมพิแดนท์สเปคโตรสโครปี ในช่วงความถึ่จาก 10⁻² ถึง 10⁵ เฮิร์ท ที่ระดับความชื้นตั้งแต่ 2 ถึง 90% โดยสปีเนลที่เตรียมได้นี้ แสดงสมบัติที่ตอบสนองต่อความชื้นได้ดี และมีความสัมพันธ์เป็นเส้นตรงระหว่างความชื้นกับค่า อิมพิแดนท์ ความเที่ยงตรงในการตอบสนองในระดับความชื้นระดับต่างๆให้ผลเช่นเดียวกับผงเชรา มิกที่เตรียมได้จากวิธีอื่นๆ เช่น การตกตะกอน หรือ ปฏิกิริยาระหว่างของแข็งกับของแข็ง

V

ACKNOWLEDGMENTS

The author would like to thank all the Professors who have tendered invaluable knowledge to him at the Petroleum and Petrochemical College, Chulalongkorn University. He would also like to thank the Petroleum Authority of Thailand for giving him such an opportunity and uninterrupted financial support for two acadamic years.

He would like to give special thanks to his advisors, Assoc. Prof. Richard M. Laine and Prof. Enrico Traversa, who provided him with the opportunity to carry out parts of this research work at the University of Rome "Tor Vergata", Italy and also thanks to Dr. Takaaki Kuroiwa of Yamatake Honeywell for financial support. He is deeply indebted to his coadvisor, Asst. Prof. Dr. Sujitra Wongkasemjit, who not only originated this thesis work, but also gave him intensive recommendation, constructive criticism, suggestions, proof-reading, and the opportunity to present the research work at the International Conference on Polymer Characterization at Denton, Texas, U.S.A.

He wishes to thank Dr. Patrizia Nunziante and Dr. Riccardo Polini for help in the use of equipment and facilities at the University of Rome "Tor Vergata" and to thank Prof. Silvia Licoccia for NMR measurements.

He would like to thank Asst. Prof. Dr. Vanida Bhavakul, of the Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology, Thonburi and Mr. Somchai Pisutjaroenpong, of the Chulabhorn Research Institute, for the ¹H-NMR measurement.

Finally, he would like to thank his family for their love, understanding, encouragement, limitless sacrifice, and for being a constant source of his inspiration.

TABLE OF CONTENTS

CHAPTER		PAGE
	Title Page	i
	Abstract	iii
	Acknowledgments	v
	Table of Contents	vii
	List of Tables	ix
	List of Figures	x
I	INTRODUCTION	1
	1.1 Background	1
	1.2 Research Objectives	11
II	EXPERIMENTAL	
	2.1 Materials	12
	2.2 Instrumentation	
	2.2.1 Positive Fast Atom Bombardment Mass	
	Spectroscopy (FAB ⁺ -MS)	13
	2.2.2 X-Ray Diffraction (XRD)	13
	2.2.3 Instrument for Humidity Measurement	14
	2.2.4 Mercury Porosimeter	14
	2.2.5 Thermogravimetric Analyses (TGA)	14
	2.2.6 BET Surface Area Measurement	15
	2.2.7 Scanning Electron Microscopy (SEM)	15

CHAPTER		PAGE
	2.2.8 ¹ H- and ¹³ C-Nuclear Magnetic Resonance	
	Spectrometer	16
	2.3 Procedure	
	2.3.1 Preparation and Characterization of Magnesium	1
	Aluminate Spinel by the OOPS Process	16
	2.3.2 Preliminary Studies of Magnesium Aluminate	
	Pellets as Humidity Sensors	18
	2.3.3 Preparation of Spinel Directly from Aluminum	
	Hydroxide and Magnesium Hydroxide	19
	2.3.4 Preparation of Spinel from Alumatrane	
	and Mg(OMe) ₂	19
Ш	RESULTS AND DISCUSSION	
	3.1 Preparation and Characterization of Magnesium	
	Aluminate Spinel by the OOPS Process	21
	3.2 Preliminary Studies of Magnesium Aluminate	
	Pellets as Humidity Sensors	27
	3.3 Preparation of Spinel Directly from Aluminum	
	Hydroxide and Magnesium Hydroxide	35
	3.4 Preparation of Spinel from Alumatrane and Mg(OMe)	43
IV	CONCLUSIONS	49
	REFERENCES	50
	CURRICULUM VITAE	55

LIST OF TABLES

TABLE	PAGE
3.1 ¹ H-NMR peak positions and assignments for spinel precurs	sor 24
3.2 ¹³ C-NMR peak positions and assignments for spinel precur	rsor 25
3.3 ¹ H-NMR peak positions and assignments for spinel precurs	sor
prepared from alumatrane and Mg(OMe) ₂	46

LIST OF FIGURES

FIGURE		PAGE
1.1	Spinel structure	3
1.2	Impedance Z plotted as a planar vector using rectangular	
	and polar coordinates	11
2.1	The reaction apparatus	17
2.2	The pellet sample holder for impedance measurement	18
3.1	TGA of spinel precursor obtained from the	
	OOPS process under synthetic air	22
3.2	Spinel precursor ($m/z = 518$, 100% intensity)	23
3.3	XRD pattern of spinel powder obtained after pyrolysis	
	of the precursor at 1100°C for 2 h in air	26
3.4	SEM of spinel powder obtained after pyrolysis	
	of the precursor at 1100°C for 2 h in air	27
3.5	SEM of pellet sintered at 1100°C for 2 h in air	28
3.6	SEM of pellet sintered at 1300°C for 8 h in air	29
3.7	Relationship between log impedance of MgAl ₂ O ₄ pellets	
	sintered at 1100°C for 2 h and at 1300°C for 8 h in air,	
	and a relative humidities of 2-90%	30
3.8	Grotthuss chain reaction	32
3.9	Schematic representation of several mechanisms that may	
	possibly occur in the spinel preparation by solid-state reaction	36
3.10	XRD pattern of spinel powder prepared by solid-state	
	reaction at 1100°C for 15 h in air	39

FIGURE	PAGE
3.11 XRD pattern of spinel powder prepared by solid-state	
reaction at 1100°C for 20 h in air	41
3.12 SEM of spinel product obtained by solid-state	
reaction at 1100°C for 15 h in air	42
3.13 SEM of spinel product obtained by solid-state	
reaction at 1100°C for 20 h in air	42
3.14 Dimeric alumatrane (m/z = 347, 100% intensity)	43
3.15 TGA of spinel precursor prepared from	
alumatrane and Mg(OMe) ₂ in synthetic air	45
3.16 XRD pattern of spinel powder prepared by sintering	
precursor obtained from the reaction of alumatrane and	
Mg(OMe) ₂ at 1100°C for 2 h in air	47
3.17 SEM of spinel powder prepared by sintering	
precursor obtained from the reaction of alumatrane and	
Mg(OMe) ₂ at 1100°C for 2 h in air	48