INTERACTIONS BETWEEN THE NON - IONIC SURFACTANT AND POLYACRYLAMIDE STUDIED BY LIGHT SCATTERING AND VISCOMETRY

Ms. Khine Yi Mya

A thesis Submitted in Partial Fulfillment of The Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma
and Case Western Reserve University

1997

ISBN 974-636-237-2

Thesis Title : Interactions between The Non - ionic Surfactant and

Polyacrylamide Studied by Light Scattering and

Viscometry

By : Khine Yi Mya

Program : Polymer Science

Thesis Advisors : Professor Alexander M. Jamieson

Associate Professor Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Master's Degree of Science.

Director of the College

(Prof. Somchai Osuwan)

Thesis Committee

(Prof. Alexander M. Jamieson)

(Assoc. Prof. Anuvat Sirivat)

R. Magaraphan

(Dr. Rathanawan Magaraphan)

ABSTRACT

952006 : POLYMER SCIENCE PROGRAM

KEY WORD: POLYACRYLAMIDE / PAM / TRITON X - 100 / TX-100 /

STATIC LIGHT SCATTERING / SLS / DYNAMIC LIGHT

SCATTERING / DLS / VISCOSITY

KHINE YI MYA: INTERACTIONS BETWEEN THE NON-IONIC SURFACTANT AND POLYACRYLAMIDE STUDIED BY LIGHT SCATTERING AND VISCOMETRY. THESIS ADVISORS: PROF.ALEXANDER M. JAMIESON AND ASSOC. PROF. ANUVAT SIRIVAT 76 pp. ISBN 974-636-237-2

Light scattering and viscometric measurements were carried out on the ternary mixture of high molecular weight polyacrylamides (PAM), and the non- ionic surfactant, Triton X-100 in aqueous solution. In this system, the measurements were made as a functions of surfactant concentration, polymer concentration, and polymer molecular weight. When the surfactant concentration was varied, the PAM diffusion coefficient decreased slightly until reaching a minimum and then rose toward an asymptotic value which is identical to that of a single micelle. Near the critical micelle concentration (cmc) the binding of the surfactant onto a polymer chain induced a slight chain expansion, but the specific viscosity diminished. Above the cmc, as more surfactants were added to the solution, the chains contracted and wrapped around the surface of the micelles. PAM with different molecular weights interact with the surfactant quite similarly.

บทคัดย่อ

คายน์ ชี เมียะ : แรงกระทำระหว่างสารลดแรงตึงผิวที่ไม่มีประจุกับพอลิอะคริลาไมด์ โดย อาศัยเทคนิคการวัดการกระจายแสงและการวัดความหนืด (Interactions between the Nonionic Surfactant and Polyacrylamide Studied by Light Scattering and Viscometry) อ.ที่ ปรึกษา : ศ. คร.อเล็กซานเดอร์ เอ็ม จิมมี่สัน (Prof. Alexander M. Jamieson) และ รศ. คร.อนุวัฒน์ ศิริวัฒน์ 79 หน้า ISBN 974-636-237-2

ในงานวิทยานิพนธ์นี้อาศัยเทคนิคการวัดการกระจายแสงและการวัดความหนืดในการ สึกษาระบบสามส่วนประกอบของสารละถายพอกิเมอร์ Polyacrylamide (PAM) กับสารลดแรงตึงผิว ที่ไม่มีประจุ Triton X-100 และระบบสองส่วนประกอบของทั้งสารละถายพอกิเมอร์และสารละถาย ของสารลดแรงตึงผิว สำหรับระบบสามส่วนประกอบทำการศึกษาในสภาวะต่าง ๆ ดังนี้ การเปลี่ยน แปลงความเข้มข้นของพอกิเมอร์ และการเปลี่ยน แปลงความเข้มข้นของพอกิเมอร์ และการเปลี่ยน แปลงน้ำหนักโมเลกุลของพอกิเมอร์ ซึ่งพบว่าเมื่อความเข้มข้นของสารลดแรงตึงผิวเพิ่มขึ้นจะทำให้ ค่าสัมประสิทธิ์การแพร่ของพอกิเมอร์ สดลงเล็กน้อยจนกระทั่งถึงจุดต่ำสุดและจะเพิ่มขึ้นจนถึงค่าคง ที่ค่าหนึ่งซึ่งเท่ากับค่าของกลุ่มไมเซลล์เดี่ยว ๆ เมื่อความเข้มข้นของสารลดแรงตึงผิวมีค่าใกล้เดียงกับ ค่าความเข้มข้นวิกฤต การจับตัวของสารลดแรงตึงผิวบนสายโช่พอกิเมอร์จะทำให้เกิดการขยายตัว ของสายโช่ แค่จะทำให้ค่าความหนืดจำเพาะลดลง เมื่อความเข้มข้นของสารลดแรงตึงผิวมีค่ามาก กว่าความเข้มข้นวิกฤต สายโช่พอกิเมอร์จะเกิดการหดตัวและจัดเรียงตัวล้อมรอบกลุ่มของไมเซลล์ การเปลี่ยนแปลงน้ำหนักโมเลกุลของพอกิเมอร์ที่ทำปฏิกริยากับสารลดแรงตึงผิวก็ให้ผลที่สอดคล้อง ในทำนองเดียวกัน

ACKNOWLEDGMENTS

I would like to express my gratitude to the Petroleum Authority of Thailand (PTT) for giving a scholarship during the two academic years. I would like to give thanks to all the professors who gave me the valuable knowledge in the Polymer Science Program at the Petroleum and Petrochemical College, Chulalongkorn University.

I would like to express my sincere gratitude to my advisor, Professor Alexander M. Jamieson of Case Western Reserve University, Cleveland, Ohio, USA for his valuable suggestions and originating this thesis work. I would like to give special thanks to my co-advisor, Associate Professor Anuvat Sirivat who gave guidance, directions and helpful suggestions in this work, proof - reading of thesis writing and providing me with the opportunity to present my research work in the Program of the 1997 March American Physical Society (APS) meeting at Kansas City, Missouri, USA. I would also like to thank Dr. Rathanawan Magaraphan who was a thesis committee member.

My thanks are also extended to all of the staff of the Petroleum and Petrochemical College for giving the permission to freely use the research facilities.

Finally, I wish to express my deepest gratitude to my parents and my husband, for their eternal love, understanding and generous encouragement.

TABLE OF CONTENTS

CHAPTER		PAGE
	Title Page	i
	Abstract	iii
	Acknowledgments	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	x
I	INTRODUCTION	1
	1.1. Background	2
	1.1.1 Uncharged Polymer and Ionic	
	Surfactant	2
	1.1.2 Polyelectrolyte and Oppositely	
	Charged Surfactant	3
	1.1.3 Uncharged Polymer and Non - ionic	
	Surfactant	4
	1.2 Polyacrylamide (PAM)	6
	1.3 Non - ionic Surfactant (Triton X - 100)	7
	1.4 Applications of the Polymer - Surfactant	8
	System	
	1.5 Objectives	9

CHAPTER		PAGE
II	EXPERIMENTAL	10
	2.1 Materials	10
	2.1.1 Polymer	10
	2.1.2 Nonionic Surfactant	10
	2.1.3 Solvent and Other Chemicals	10
	2.2 Apparatus	11
	2.2.1 Light Scattering Instrument	11
	2.2.2 Capillary Viscometer	11
	2.2.3 Sintered Glass and Syringe Filter	13
	2.2.4 Centrifugation	13
	2.2.5 Tensiometer	13
	2.2.6 Refractometer	13
	2.3 Methodology	13
	2.3.1 Sample Preparation	13
	2.3.2 Static Light Scattering Measurement	14
	2.3.3 Dynamic Light Scattering	
	Measurement	16
	2.3.4 Viscosity Measurement	18
	2.3.5 Refractive Index Increment	20
III	RESULTS	22
	3.1 Binary System (PAM / water)	22
	3.1.1 Dynamic Light Scattering	22
	3.1.2 Static Light Scattering	24

CHAPTER		PAGE
	3.1.3 Viscosity	26
	3.2 Binary System (Triton X - 100 / Water)	28
	3.3 Ternary System	
	(PAM / Triton X - 100 / Water)	29
	3.3.1 Effect of Surfactant Concentration	30
	3.3.2 Effect of Polymer Concentration	37
	3.3.3 Effect of Polymer Molecular Weight	40
IV	DISCUSSION	42
	4.1 Γ Dependence on q^2	42
	4.2 Physical Model of Polymer - Surfactant	44
	Complex	
	4.3 Mechanisms of Interaction	46
V	CONCLUSIONS	49
	REFERENCES	51
	APPENDICES	56
	CURRICULUM VITAE	76

LIST OF TABLE

TABLE		PAGE
3.1	Static and dynamic properties of PAM in aqueous	
	solution	27
3.2	Comparison of molecular weight by different	
	methods	27

LIST OF FIGURES

FIGURE		PAGE
1.1	Chemical structure of PAM	7
1.2	Surface tension versus bulk surfactant concentration	8
2.1	A schematic diagram of the light scattering instrument	12
2.2	Determination of dn/dc for two different molecular	
	weight of PAM	21
3.1	Relaxation time distribution for 0.4 g/l solution of PAM	22
3.2	Diffusion coefficients of PAM of different molecular	
	weight as a function of concentration	23
3.3	Zimm plot for PAM sample (PS - 19901)	24
3.4	Zimm plot for PAM sample (PS - 02806)	. 25
3.5	Reduced specific viscosity vs. concentration for PAM	
	in water	26
3.6	Diffusion coefficient of TX - 100 micelles in water	
	as a function of concentration	28
3.7	Surface tension vs. concentration for TX - 100 and	
	polymer - surfactant system	29
3.8	Relaxation time distributions for constant PAM	
	concentration (0.4 g/l) with successive increase of	
	TX - 100 concentration	31
3.9	Diffusion coefficient versus concentration for	
	PAM + TX - 100	33

FIGURE		PAGE
3.10 (a)	Dependence of specific viscosity on surfactant	
	concentration	34
3.10 (b)	Semi - logarithmic plot of the dependence of	
	specific viscosity on concentration	35
3.11	Apparent viscosity of complex solution as a function	
	of surfactant concentration	36
3.12	Relaxation time distributions for various concentrations	
	of PAM	38
3.13	Diffusion coefficients for the complex mode as a	
	function of PAM concentration	39
3.14	Specific viscosity vs. polymer concentration at different	
	surfactant concentrations	40
3.15	Dependence of D _{app} on surfactant concentration at	
	different molecular weights	40
3.16	Specific viscosity of 0.4 g/l PAM + TX - 100	41
4.1	Dependence of the relaxation rate vs. the square of the	
	scattering vector for the ternary system	43
4.2	Schematic representation of the interaction between	
	PAM and Triton X - 100	44
4.3	Schematic representations of interaction between a	
	nonionic polymer and an ionic surfactant	45