REFERENCES

- 1. Y. Amenomiya et al. <u>Conversion of Methane by Oxidative Coupling</u> J. Catal. Rev. Sci. 32(3),(1990) 163-227
- 2. T. Cailin et al. Roles of Oxygen and Carbon Dioxide on Methane Oxidative

 Coupling over CaO and Sm₂O₃ Catalysts Applied Catalysis A: General

 115 (1994) 243-256.
- 3. M. Yamamura et al. Oxidative Coupling of Methane over Ternary Metal

 Oxide Catalysts Consisting of Groups I, III, V Elements in the Periodic

 Table Applied Catalysis A: General 122(1995) 135-149.
- 4. Q. Chen et al. Effect of Pressure on the Oxidative Coupling of Methane in the Absence of Catalyst AlChE Journal March 1994 Vol.40, No. 3.
- 5. A.M. Efstathiou et al. <u>Kinetics of Methane Oxidative Coupling on Zincdoped Titanium Oxide</u> Applied Catalysis A: General, 92(1992) 1-15.
- 6. M. Yamamura et al. Oxidative Coupling of Mathane over Alkali Halide
 Promoted Perovskite Oxide Catalysts Applied Catalysis A:

 General 115 (1994) 269-283.
- 7. B.H. Mahan <u>University Chemistry</u> Manila Philippines, Addison-Wesley Publishing Company, 1975.
- 8. J.W. Moore, W.G. Davies, R.W. Collins <u>Chemistry</u> Tokyo Japan, Kogakusha McGraw-Hill 1978.
- 9. B. Douglas et al. <u>Concepts and Models of Inorganic Chemistry</u> New York N.Y. John Wiley & Sons 1994.
- 10. J.S. Lee and S.T. Oyama, Catal. Rev. Sci. Eng., 30(2), (1988) 249-280.
- 11. M.L. Mitchell and R.H. Waghorne, Exxon, U.S. Pat. 4,250,194 (1980).
- 13. T. Fang and C.T. Yeh, J. Catal. 69, 227(1982).
- 14. W.Hinsen, W. Bytyn and M. Baerns, Proc. 8 th Intern. Congress on Catalysis, Berlin, Verlag Chemie, 3, 581(1984).
- 15. T. Ito and J.H. Lunsford, Nature, 314,721(1985).
- 16. C.H. Lin, J.X. Wang, and J.H. Lunsford, J. Catal. 111,302(1988).

- 17. G.M. Barrow, <u>Physical Chemistry</u> Tokyo Japan, Kogakusha McGraw-Hill LTD. Japan 1979.
- H.S. Fogler, <u>Elements of Chemical Reaction Engineering</u> Englewood Cliffs,
 New Jersey Prentice-Hall International, Inc. 1992.
- O. Levenspiel, <u>Chemical Reaction Engineering</u> Singapore, John Wiley & Sons, Inc. 1976.
- 20. G.F. Froment and K.B. Bischoff. <u>Chemical Reactor Analysis and Design</u> New York N.Y. John Wiley & Sons 1990.
- V21. C.N. Satterfield, <u>Heterogeneous Catalysis in Practice</u> New York, N.Y. McGraw-Hill Book Company. 1980.
- 22. H.D. Young and R.A. Freedman, <u>University Physics</u> Reading Mass.

 Addison Wesley Publishing Company Inc. 1996.
- 23. R.P. Feynman et al. <u>The Feynman Lecture on Physics</u> Menlo Park California, Addison Wesley Publishing Company 1989.
- 24. S.C. Tsang et al. Recent Advance in the Conversion of Methane to

 Synthesis Gas Catalysis Today 23(1995) 3-15.
- 25. A.A. Davydov <u>Basic Sites on the Oxide Surfaces: Their Effect on the Catalytic Methane Coupling</u> Catalysis Today 24 (1995) 225-223.
- 26. Bi Ying-Li et al. Oxidative Coupling of Methane on the Superionic

 Conductors Catalysis Today 24(1995) 245-248.
- 27. E.V. Kondratenko et al. Oxidative Coupling of Methane over Oxides of

 Alkaline Earth Metals Using N₂O as Oxidant Catalysis Today 24(1995)

 273-275.
- 28. M.-C. Gong et al. Study on the Oxidative Coupling of Methane: XRD and XPS Study of TiO₂ Based Catalysts Promoted by Different Additive Catalysis Today 24(1995) 259-261.
- 29. M.-C. Gong Study on the Oxidative Coupling of Methane: Effect of Additive on TiO₂ Baesd Catalytic Performance Catalysis Today 24 (1995) 263-264.

- 30. E.N. Veskressenskaya et al. Comparison of O₂ and N₂O as Oxidants for

 the Oxidative Coupling of Methane over Bi-containing Oxide catalysts

 Catalysis Today 24(1995) 227-279.
- 31. A.G. Anshits et al. The Role of the Defect Structure of Oxide catalysts for the Oxidative Coupling of Methane. The Activation of the Oxidant Catalysis Today 24(1995) 217-223.
- 32. Z.R. Ismagilov et al. Synthesis of Mechanically Strong and Thermally

 Stable Spherical Alumina Catalyst Supports for the Process of Methane

 Dimerization in a Fluidized Bed Catalysis Today 24(1995) 269-271.
- 33. S.N. Vereshchagin and J.R.H. Ross <u>Kinetic Studies of Oxidative Coupling</u>
 of Methane on Samarium Oxide Catalysis Today 24(1995) 285-287.
- 34. K. Heitness et al. <u>Catalytic Partial Oxidation of Methane to Synthesis Gas</u>

 Catalysis Today 24(1995) 211-216.
- 35. R.T. Morrison and R.N. Boyd <u>Organic Chemistry</u> New Delhi, Prentice-Hall of India Private Limited 1981.
- 36. G.F. Keller and M. Bhasin, J. Catal., 73,9(1982).

Appendix A

1. Calculation of the mole composition of Mg/Al/Li/0.2 Pr as a catalyst.

M.W. of MgO = 40.311

The MgO was used = 40.311/100 = 0.4031 g

M.W. of Al_2O_3 = 101.957

The Al_2O_3 was used = 101.957/2 = 50.9785

= 50.9785/100 = 0.5098 g

M.W. of LiOH. H_2O = 41.941

The LiOH.H₂O was used = 41.941/100 = 0.4194 g

M.W. of $Pr(NO_3)_3.6H_2O = 435.02$

The $Pr(NO_3)_3.6H_2O$ was used = 435.01 x 0.20

= 87.004

= 87.004/100 = 0.8700 g

2. Calculation of the flow rate of gases CH₄/O₂ = 1/1 at the room temperature = 27 °c and at velocity 2000 h^{-1} .

The catalyst was weighed 0.2000 g and put in 0.6 cm. I.D. reactor. The height of catalyst in the reactor was 1.2 cm.

Temperature factor at the STP was (27 + 273.15)/273.15 = 1.0988

The volume of the catalyst was $\pi x r^2 x h$, of cat.

 $= 3.1416 \times 0.3^2 \times 1.2 \text{ cm}^3$

 $= 0.33929 \text{ cm}^3$

space velocity = (flow rate) / (vol. of cat.)

then, flow rate = $2000 \text{ h}^{-1} \times 0.33929 \text{ cm}^3$

 $= 678.5840 \text{ cm}^3.\text{h}^{-1}$

that was the total flow rate of two gas of cofeed.

Considered at minute level = 678.5840/60

= 11.3097 cm³.min⁻¹ of cofeed

The flow rate at the STP = 11.3097×1.0988

 $= 12.4271 \text{ cm}^3.\text{min}^{-1}$

Thus the only CH flow rate was $12.4271/2 = 6.2135 \text{ cm}^3 \text{.min}^{-1}$

Checked the flow rate five cm at the seconds.

 $6.2135 \text{ cm}^3 = 60 \text{ sec.}$

 $5 \text{ cm}^3 = (60 \text{ x } 5)/6.2135$

= 48.28 sec.

The total flow rate at 5 cm³ was $(60 \times 5)/12.4271 = 24.14 \text{ sec.}$

3. Calculation of CH₄ conversion

of CH4

conversion (wt.%) = feed area of CH₄ - product area x 100

feed area of CH₁

= $(1738286 - 947718) \times 100 = 45.48 \%$

1738286

4. Calculation of CO and CO₂ products from GC-8A (TCD) to adjust for GC-GOW MAC (FID)

CO does not appear the peak on GÇ/W MAC, but appears on the MS-5A of GC-8A. then it must be adjusted for the GOW MAC. (Fig. A4)

$$CO(GOW MAC) = CH_4(in GOW MAC) \times b$$

b = area of CO(in GC-8A) / 1.13 x area of CH₄ (in GC-8A)

For example on figure

b = $47349 / 1.13 \times 590356$

= 0.070977

 $CO(in GOW MAC) = 0.070977 \times 947718$

= 67266.2963

For the GOW MAC at the same temperature (700 °c):

The area 534481 = 30.38 wt %

Then area $67266.296 = 30.38 \times 67266.296 / 534481$

= 3.82 wt %

For CO₂ (FIG - A5)

 CO_2 (in GOW MAC) = CH_4 (in GOW MAC) x a

a = area of CO_2 in GC-8A / 1.35 x area of CH_4 in GC-8A

For example in figure (Fig. A5)

a = $57041 \cdot 1.35 \times 792581$

= 0.0533

 CO_2 in GOW MAC = 0.0533 x 947718

= 50522.9655

Then the wt% of CO₂ is (50522.9655 x 30.38)/534481 or 2.87 wt%

5. Summary of quantitative analysis of the metal elements of catalysts which be measured by ICP

	Mg	Al	Li	Mn	Ce	Pr	Sm
1. Mg/Al/Li/0.2 Ce	320.1	265.3	84.14	-	184.1	-	-
2. Mg/Al/Li/0.2 Pr	314.0	283.1	80.10	-	-	379.5	-
3. Mg/Al/Li/0.2 Sm	281.5	258.0	75.53	-	4	-	366.7
4. Mg/Al/Li/0.5 Pr	376.2	338.3	83.74		-	126.0	-
5. Mg/Al/Li/0.1 Pr	380.0	348.9	104.1	- 1	+	242.2	-
6. Mg/Al/Li/0.3 Pr	256.8	226.3	69.25	-	-	485.3	-
7. Mg/Li/0.3 Pr	274.2	-	74.93	-	~	525.6	-
8. Mn/Al/Li/0.2 Pr	-	207.7	73.08	548.0	-	307.8	

The unit of the data are mg/liter which would be transferred to mole ratios

Number of mole = wt.(g) / atomic wt.(g)

For the example of Mg/Al/Li/0.1 Pr; Mg, Al, Li, Pr have

the atomic weight of 24.312, 26.98, 6.939, 140.91 respectively.

mole of Mg = 3.80/24.312 = 0.156

mole of Al = 3.489/26.98 = 0.129

mole of Li = 1.041/6.93 = 0.150

mole of Pr = 2.422/140.91 = 0.017

Then Mg:Al:Li:Pr is 0.156/0.156:0.129/0.156:0.150/0.156:0.017/0.156 = 1:0.8:1:0.1

Catalyst: Mg/A1/L;/orPr

188

Figure A=1 Peaks of feed from MS-5A (TCD) for checking the flow rate of ${\rm CH_4/O_2}$ at room temperature

TOTAL

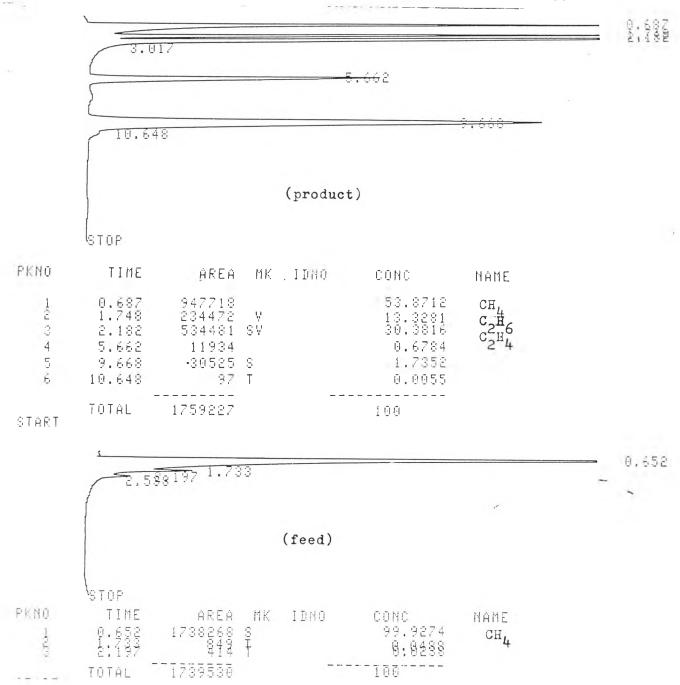


Figure A-2 Peaks of products and feed from Gow Mac (FID) at temperature of 700° C, space velocity of 2000 h⁻¹

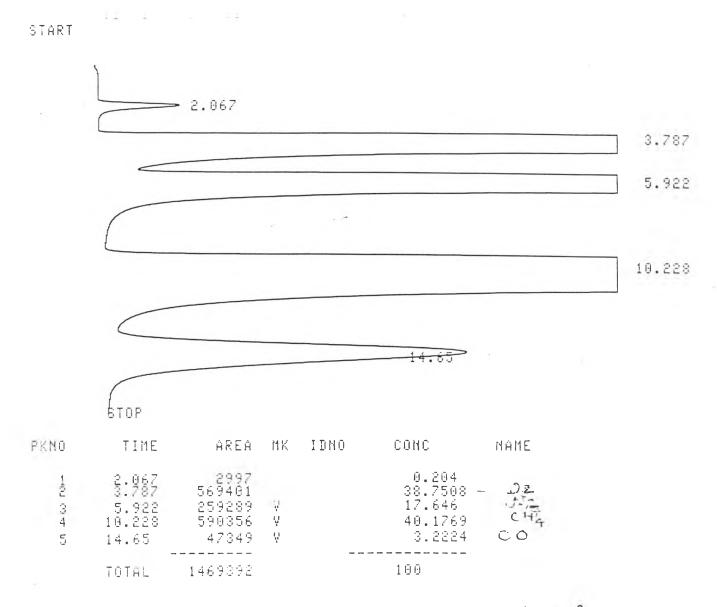


Figure A-3 Peaks of product from Md-5A at temperature of 700°C and space velocity of 2000 h^{-1}

START

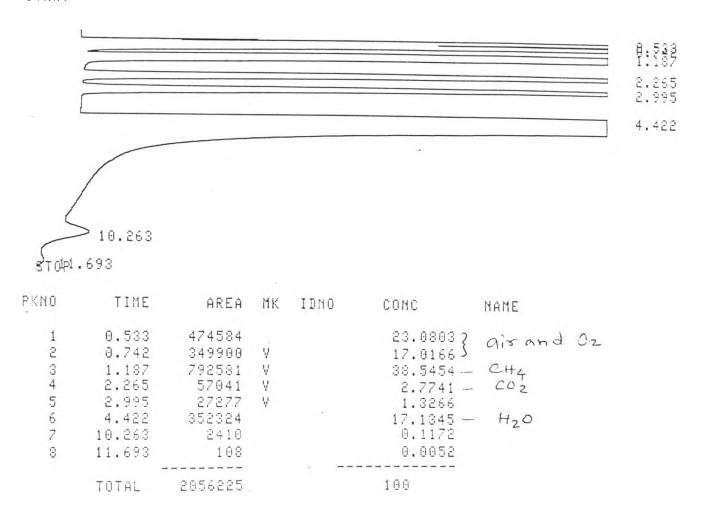


Figure A=4 Peaks of product from Porapak Q (TCD) at temperature of 700° C and space velocity of 2000 h⁻¹

VITA

Mr. Schleng Inkhan was born in Trang, Thailand on March 17, 1945. He received his Bachelor Degree of Science with a major of chemistry from Faculty of Science. Ramkamhaeng University in 1987