EFFECT OF SURFACTANT BINDING ON CHAIN CONFIGURATION AND RHEOLOGY OF WATER-SOLUBLE POLYMER (HPC-HTAB)

Ms. Anchulee Pisutwimon

10

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University

1998

ISBN 974-638-513-5

118122413

Thesis Title	Effect of Surfactant Binding on Chain Co	onfiguration
	and Rheology of Water-Soluble Polymer	(HPC-HTAB)
Ву	Ms. Anchulee Pisutwimon	
Program	Polymer Science	
Thesis Advisors	Prof. Alexander M. Jamieson	
	Assoc. Prof. Anuvat Sirivat	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

A. On Director of the College

(Prof. Somchai Osuwan)

Thesis Committee

man

(Prof. Alexander M. Jamieson)

Armat Goural

(Assoc. Prof. Anuvat Sirivat)

R. Magingham

(Dr. Rathanawan Magaraphan)

บทคัดย่อ

อัญชุลี พิสุทธิ์วิมล : ผลกระทบอันเนื่องมาจากการยึดเกาะของสารลดแรงตึงผิวต่อลักษณะ และการไหลชองสายพอลิเมอร์ที่ละลายน้ำ (Effect of Surfactant Binding on Chain Configuration and Rheology of Water Soluble Polymer) อ.ที่ปรึกษา : ศ.ดร. อเล็กซาน เดอร์ เอ็ม เจมิสัน (Prof. Alexander M. Jamieson) และ รศ.ดร. อนุวัฒน์ ศิริวัฒน์ 161 หน้า ISBN 974-638-513-5

ในงานวิจัยนี้อาศัยเทคนิคการวัดการกระจายแสงและการวัคความหนืดในการศึกษาโครง สร้างของสารประกอบเชิงซ้อนระหว่างไฮครอกซีโพรพิลเซลลูโลส (HPC) และเฮกซะเคคซิลไตร เมทธิลแอมโมเนียมโบรไมด์ (HTAB) ในสารละลายเงืองางภายใต้สภาวะต่าง ๆ ได้แก่ ความเข้ม ข้นของสารถดแรงตึงผิว ความเข้มข้นของพอลิเมอร์และอัตราส่วนโดยน้ำหนักของสารถดแรงตึงผิว ต่อพอลิเมอร์ (C_{HTAB}/C_{HPC}) จุดที่สารลดแรงตึงผิวจับกับสายพอลิเมอร์ได้มากที่สุดจะมีค่า C_{HTAB}/C_{HPC} เท่ากับ 1.35 และมีค่าคงที่ทุก C_{HTAB}/C_{HPC} การศึกษาการเกิดเจลที่ผันกลับได้โดย อาศัยความร้อนในสารละลายเข้มข้นของพอลิเมอร์และสารละลายเข้มข้นของสารประกอบเชิงซ้อน ้จะใช้เทคนิคการวัดการไหลเพื่อหาอุณหภูมิที่ loss tangent ไม่ขึ้นกับความถี่หรือเรียกว่าจุดเกิดเจล (gel point) ณ งุคนี้ ตัวแปรทางวิสโคอีลาสติกงะแปรผันตรงกับความถี่ตามกฎกำลัง (power law) สำหรับระบบของสารละลายพอลิเมอร์เข้มข้นที่ช่วงความเข้มข้นระหว่าง 3.0 ถึง 5.0%wt เลข ยกกำลังของกฎกำลัง n จะเพิ่มขึ้นจาก 0.06 ถึง 0.19 และค่าความแข็งแรงวิกฤต S จะเพิ่มขึ้นด้วย ตามความเข้มข้นของพอลิเมอร์ สำหรับการศึกษาระบบของสารละลายเข้มข้นระหว่างพอลิเมอร์กับ สารลดแรงตึงผิวจะตรึงที่ C_{HTAB}/C_{HPC}= 1.35 อุณหภูมิของจุดที่เกิดเจลในช่วงความเข้มข้นของ พอลิเมอร์เท่ากับ 4.0 ถึง 5.0%wt จะเพิ่มขึ้น ค่าของ n ณ อุณหภูมิที่เกิดเจลจะลดลงจาก 0.50 ไปยัง 0.39 แต่ค่าของ S ยังคงเพิ่มขึ้นตามความเข้มข้นของสารถคแรงตึงผิวและพอลิเมอร์ แต่สารละลายที่ ้ความเข้มข้นของพอลิเมอร์ต่ำกว่า 4.0%wt และสูงกว่า 5.0%wt จะไม่พบจุคที่เกิคเจล

ABSTRACT

962001 : POLYMER SCIENCE PROGRAM

KEYWORDS : Hydroxypropylcellulose/ HPC/ Hexadecyltrimethylammonium bromide/ HTAB/ Static light scattering/ SLS/ Dynamic light scattering/ DLS/ Viscosity/ Sol-gel transition/ Gelation/ Rheology

Anchulee Pisutwimon : Effect of Surfactant Binding on Chain Configuration and Rheology of Water Soluble Polymer (HPC-HTAB). Thesis Advisors : Prof. Alexander M. Jamieson and Assoc. Prof. Anuvat Sirivat, 161 pp. ISBN 974-638-513-5

The structure and size of complexes formed by HPC and HTAB were studied by light scattering and viscosity techniques in dilute solutions as a function of C_{IITAB}, C_{HPC} and C_{HTAB}/C_{HPC} in %wt. The maximum binding point occurs at $C_{HTAB}/C_{HPC} = 1.35$ and is independent of C_{HTAB}/C_{HPC} . Rheological studies of the polymer system and the complex system in concentrated solutions were carried out in order to identify gel point. The gel point was determined by the observation of the frequency independent loss tangent. At the gel point, a power law of frequency dependence of the G' and G" functions was observed. For the pure polymer systems, the experiments were carried out in the C_{HPC} range from 3.0 to 5.0% wt. At gel point the power law exponent, n, increases from 0.06 to 0.19 and the critical gel strength parameter, S, also increases with C_{HPC}. For the complex systems, the measurements were performed at fixed $C_{HTAB}/C_{HPC} = 1.35$. In the C_{HTAB} range 4.0 to 5.0%wt, the gel point was found to shift toward higher temperatures. The value of ndecreases from 0.50 to 0.39 but S still increases with an increase in $C_{\rm HTAB}$ and C_{HPC}. For C_{HTAB} lower than 4.0%wt and higher than 5.0%wt, the gel point could not be found.

ACKNOWLEDGMENTS

The author would like to gratefully acknowledges all professors who have taught her at the Petroleum and Petrochemical College, Chulalongkorn University. especially those in the Polymer Science Program.

The author greatly appreciates the efforts of her research advisors, Professor Alexander M. Jamieson and Associate Professor Anuvat Sirivat for their constructive criticisms, suggestions and proof-reading of this manuscript. The author would like to give sincere thanks to Dr. Ratthanawan Magaraphan for being a thesis committee member.

The author wishes to express her thanks to all of her friends who have given her encouragement and also to all of college staff for providing the use of research facilities.

Finally, The author is deeply indebted to her presents for their love, understanding, encouragement, and for being a constant source of her inspiration.

TABLE OF CONTENTS

PAGE

Title Page	i
Abstract	iii
Acknowledgments	v
List of Tables	ix
List of Figures	x

CHAPTER

I	INT	INTRODUCTION			
	1.1	Hydroxypropylcellulose (HPC)	2		
	1.2	Hexadecyltrimethylammonium Bromide (HTAB)	3		
	1.3	The Interaction between Uncharged Polymer and			
		Ionic Surfactant	5		
	1.4	The Main Driving Force	6		
	1.5	Structure of Polymer-Surfactant Complexes	7		
	1.6	Gelation	9		
1.7		Applications of Hydroxypropylcellulose and			
		Cationic Surfactants	10		
	1.8	Literature Reviews	11		
		1.8.1 Interaction between Nonionic Polymers			
		and Ionic Surfactants	11		
		1.8.2 Gelation	13		
	1.9	Objectives	17		

II

EXPERIMENTAL SECTION				
2.1	Mater	ials		
	2.1.1	Polymer		
	2.1.2	Cationic Surfactant		
	2.1.3	Solvent and Other Chemicals		
2.2	Instru	ments		
	2.2.1	Capillary Viscometer		
	2.2.2	Light Scattering Instrument		
	2.2.3	Refractometer		
	2.2.4	Rheometer		
	2.2.5	Tensiometer		
	2.2.6	Conductometer		
	2.2.7	Filtering Accessories		
	2.2.8	Centrifuge		
2.3	Meth	odology		
	2.3.1	Sample Preparation		
	2.3.2	Viscosity Measurement		
	2.3.3	Dynamic Light Scattering		
	2.3.4	Static Light Scattering		

2.3.5Refractive Index Increment332.3.6Rheology34

III RESULTS AND DISCUSSION

3.1	Dilute Solution : Determination of Maximum		
	Bindi	ng Point	37
	3.1.1	Binary System (HPC/Water)	37

		3.1.2	Binary System (HTAB/Water)	44
		3.1.3	Ternary System (HPC/HTAB/Water)	46
	3.2	Conce	entrated Solution : Determination of Sol-	
		Gel T	ransition	57
		3.2.1	Binary System (HPC/Water)	57
		3.2.2	Ternary System (HPC/HTAB/Water)	62
		3.2.3	Mechanism and Gel Strength	68
		3.2.4	Fractal Dimension	69
IV	CO	NCLUS	SION	72
IV	RE	FEREN	ICES	74
	AP	PENDI	CES	79
	CU	RRICU	LUM VITAE	161

LIST OF TABLES

TABLE	PAGE
3.1 Dynamic properties of HPC in aqueous solutions	44
3.2 Maximum binding points of complex at different	
polymer concentrations	55
3.3 Parameters in binary systems at sol-gel transition	61
3.4 The amounts of polymer and surfactant in each sample	
solution	62
3.5 Parameters in ternary systems at sol-gel transition	66
3.6 Fractal dimensions for the binary and ternary systems	71

LIST OF FIGURES

FIGURE

PAGE

1.1	Preparation of hydroxypropylcellulose	2
1.2	Chemical structure of hydroxypropylcellulose	3
1.3	Preparation of quaternary ammonium salts	3
1.4	Structure of hexadecyltrimethylammonium bromide	4
1.5	The models of site clustering type and mixed micelle	8
2.1	The dynamic light scattering instrument (Marvern,	
	model 4700)	20
2.2	The fluid rheometer (Rheometric Scientific Inc.,	
	model ARES)	21
2.3	Determination of dn/dc for two measurements of HPC	
	solutions	33
3.1	Reduced viscosity and inherent viscosity for hydroxypropyl-	
	cellulose in water as a function of polymer concentration at	
	30°C	38
3.2	Dynamic viscosity for hydroxypropylcellulose as a function of	
	polymer concentration at 30°C	39
3.3	Apparent diffusion coefficient for HPC in water at fixing C_{HPC}	
	of 0.10% wt as a function of scattering wave vector square at	
	30°C	40
3.4	Center of mass diffusion coefficient for HPC in water as a	
	function of polymer concentration at 30°C	41
3.5	Polydispersity of relaxation time for HPC solutions at 90° as a	
	function of polymer concentration at 30°C	42

3.6	Zimm plot for light scattering intensities of HPC solutions	
	at 30°C	43
3.7	Surface tension for HTAB solution versus surfactant	
	concentration at 28+1°C.	45
3.8	Conductance for HTAB solution versus surfactant	
	concentration at 28±1°C	45
3.9	Surface tension for complex system at the fixed C_{HPC}	
	of 0.04%wt as a function of surfactant concentration	
	at 28 <u>+</u> 1°C	47
3.10	Specific viscosity for complex solution at the fixed	
	C_{HPC} of 0.06% wt as a function of surfactant concentration	
	at 30°C	48
3.11	Schematic representation of the interaction between HPC	
	and HTAB in ternary system	49
3.12	Specific viscosity of complex system at different polymer	
	concentrations as a function of surfactant concentration	
	at 30°C	51
3.13	Apparent diffusion coefficient for complex system at the	
	fixed C _{HPC} of 0.10%wt as a function of scattering wave vector	
	square at 30°C	52
3.14	Diffusion coefficient and hydrodynamic radius of complex	
	system as a function of surfactant concentration at 30°C	53
3.15	Polydispersity of relaxation time for complex solutions at 90°	
	as a function of surfactant concentration at 30°C	54

FIGURE

PAGE

3.16	Specific viscosity of complex system at different polymer	
	concentrations as a function of surfactant concentration at 30°C	56
3.17	Viscoelastic loss tangent at different polymer concentrations	
	as a function of temperature at indicated frequencies	58
3.18	Frequency dependence of the loss tangent at different	
	polymer concentration at indicated temperatures	59
3.19	Plots of G' and G" vs frequencies for different polymer	
	concentrations at the gel point showing the power law	
	behavior	60
3.20	Viscoelastic loss tangent for complex system as a function	
	of temperature at indicated frequencies	63
3.21	Plots of G' and G" vs frequencies at different polymer	
	concentrations as a function of frequency for complex	
	systems at the gel point showing the power law behavior	65
3.22	Viscoelastic loss tangent for complex systems as a function	
	of temperature at indicated frequencies	67