CHAPTER IV

RESULTS AND DISCUSSION

Three compounds were isolated from the ethyl acetate extract of the aerial parts of *Coleus amboinicus* (Lour.). Identification of their chemical structures will be discussed.

Identification of compounds isolated from Coleus amboinicus

To identify the chemical structures of these compounds, spectroscopic techniques, e.g. UV, IR, MS and extensive NMR experiments were employed.

1. Identification of compound RAT 1

RAT 1 was obtained as dark-brown oil (48.9 mg) from fraction F017. The molecular formula of $C_6H_6O_3$ was suggested for this compound based on its ¹H and ¹³C NMR spectra and [M]⁺ peak in the EI mass spectrum (Figure 7) at m/z 126, A mass fragment at m/z 95 also suggested the presence of a hydroxymethyl group. The presence of the alcohol functionality in the molecule was also confirmed by a broad OH bonded peak at 3380 cm⁻¹ in the IR spectrum. In addition, IR absorption bands at 1670 cm⁻¹ (C=O stretching), 2850 and 2930 cm⁻¹ (C-H stretching) suggested the presence of aldehyde moiety (Figure 8).

The ¹³C NMR spectrum of RAT 1 (Figure 10) exhibited 6 carbon signals, identified by DEPT and ¹H-¹³C-HETCOR experiments (Figure 12) as those of one

methylene carbons attached to a heteroatom at δ 57.5 ppm, two olefinic methine carbons at δ 110.3 and 123.9 ppm, two downfield quaternary carbons at δ 153.5 and 163.0 ppm, and one formyl carbonyl carbon at δ 178.2 ppm.

In the ¹H NMR spectrum (Figure 13), the methylene protons could be recognized from the most upfield signals at δ 4.65 ppm, while that of the formyl group appeared as the most downfield at δ 9.59 ppm. The ¹H-¹H COSY spectrum (Figure 15) displayed the correlation between one olefinic proton doublet at δ 6.58 ppm (J = 3.6 Hz, H-2) to another at δ 7.37 ppm (J = 3.6 Hz, H-3).

Therefore, a furan structure with a formyl and a hydroxymethyl substituent was proposed as compound RAT 1. 1 H- 13 C HMBC experiment (Figure 16-18) was performed in order to confirm the positions of these substituents. Correlations could be observed between H-4 (δ 6.58 ppm) and C-2 (δ 153.5 ppm), C-3 (δ 123.9 ppm) and C-5 (δ 163.0 ppm), while the nearby H-3 (δ 7.37 ppm) showed cross peaks with C-2 (δ 153.5 ppm), C-4 (δ 110.3 ppm) and C-5 (δ 163.0 ppm). Cross peaks between H₂-7 methylene protons and C-4 and C-5 could also be observed. Major HMBC correlations in the structure of compound RAT 1 can be summarized as shown in Figure 19. Compound RAT 1 was therefore assigned as the known structure of 5-(hydroxymethyl)-2-furaldehyde shown in Figure 20. This compound has never been reported as a constituent of this plant species. Wubert, Oster, and Rudiger (1997) have isolated and identified this compound from bulbs of *Gladiolus* spp., the natural inhibitor of chlorophyll biosynthesis. It is of interest as potential herbicide, result in

low toxicity to animals and man. In addition, it can be used as a reagent in the synthesis of dialdehydes, glycols, ethers, amino alcohols, acetals acid catalyzed ring opening.

Figure 19. Major HMBC correlations of RAT 1

Figure 20. Structure of 5-(hydroxymethyl)-2-furaldehyde

Table 13. ¹H and ¹³C NMR data for RAT 1 (5-(hydroxymethyl)-2-furaldehyde)

Position	δC	δH	HMBC correlations
2	153.5	-	
3	123.9	7.37, d, J = 3.6 Hz	C-2, C-4, C-5
4	110.3	6.58, <i>d</i> , <i>J</i> = 3.6 Hz	C-2, C-3, C-5
5	163.0	-	
6	57.5	4.65, <i>s</i>	C-4, C-5
7	178.2	9.59, s	

Figure 7. EIMS spectrum of RAT 1

Figure 8. IR spectrum of RAT 1

Figure 9. UV spectrum of RAT 1 (in MeOH)

Figure 10. The 125 MHz 13 C NMR spectrum of RAT 1 (in acetone-d₆)

CHO

7 CHO

Figure 12. 1 H- 13 C HETCOR spectrum of RAT 1 (in acetone-d₆)

Figure 13. The 500 MHz ¹H NMR spectrum of RAT 1 (in acetone- d_6)

Figure 14. The 500 MHz ¹H NMR spectrum of RAT 1 (in acetone-d₆)

(expanded in the range of δ 1.20-3.92 ppm)

CHO 0 CH₂OH

Figure 15. ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of RAT 1 (in acetone-d₆)

CH₂OH

CHO

Figure 17. 1 H- 13 C HMBC spectrum of RAT 1 (in acetone-d₆)

(expanded in the range of δ 1H 4.6-7.7 ppm and δ ^{13}C 106-130 ppm)

2. Identification of compound RAT 2

RAT 2 was obtained as light yellow solid (540 mg) from fraction F028. The molecular formula of $C_{16}H_{24}O_7$ was suggested for this compound based on 16 carbon signals observed in its ¹³C NMR spectrum and its [M]⁺ peak in the EIMS (Figure 21) at m/z 328. Mass fragment peaks at m/z 116 and 151 were indicative of successive loss of a sugar moiety and a methyl group. The presence of the alcohol functionality in the molecule was proven by a very intense IR absorption peak at 3390 cm⁻¹ (Figure 22).

Of the sixteen carbon signals in the ¹³C NMR spectrum of RAT 2 (Figure 24), six (δ 62.7, 71.4, 74.9, 77.4, 78.1 and 104.0 ppm) were reminiscent of a β -glucopyranosyl unit while the other ten of which identified the aglycone portion as an aryl-terpenoid possessing isopropyl, methyl and hydroxyl substitutents. DEPT and ¹H-¹³C-HETCOR experiments (Figure 27-28) were employed to classify these signals into those of three methyl carbons at δ 16.0, 23.4 and 23.5 ppm, one methylene carbon at δ 62.7 ppm, eight methine carbons at δ 26.5, 71.4, 74.9, 77.4, 78.1, 104.0, 112.9 and 120.2 ppm, and four quaternary carbons at δ 122.5, 137.6, 148.9 and 151.5 ppm.

In the ¹H NMR spectrum (Figure 29), the isopropyl methyl groups could be recognized as the most upfield doublet (6H, J = 7.0 Hz) at δ 1.13 ppm and an aromatic methyl appeared as a singlet at 2.13 ppm. Two aromatic protons appeared as singlets at δ 6.68 and 6.92 ppm, suggestive of their *para* position. The spectrum also

showed an anomeric proton signal at δ 4.75 ppm as a doublet (J = 7.3 Hz), indicating β -configuration of the sugar moiety. The ¹H-¹H COSY spectrum (Figure 31) displayed the correlation of the two isopropyl methyl protons at δ 1.13 ppm to their vicinal methine proton at δ 3.47 ppm (*septet*, J = 7.0 Hz).

The aglycone of RAT 2 was assigned the monocyclic monoterpene structure of thymoquinol (2-isopropyl-5-methyl-1,4-benzenediol). 1 H- 13 C HMBC experiment (Figure 32-36) was performed in order to confirm the structure. Correlations could be observed between methyl protons at positions 8 and 9 (δ 1.13 ppm) and C-2 (δ 137.6 ppm), whereas the H-3 aromatic methine proton (δ 6.68 ppm) showed correlations to C-1 (δ 148.9 ppm), C-4 (δ 151.5 ppm), C-5 (δ 122.5 ppm) and C-7 (δ 26.5 ppm). Another aromatic proton (δ 6.92 ppm) displayed correlations to C-1, C-2, C-4 and C-10 (δ 16.0 ppm). The position of the aromatic methyl group was confirmed by correlations of its proton signal to C-4, C-5 and C-6 (δ 120.2 ppm). Major HMBC correlations in the structure of RAT 2 can be summarized as shown in Figure 37.

Figure 37. Major HMBC correlations of RAT 2

NOESY experiment (Figure 38) established the glycoside linkage as at position 1, according to the cross peaks observed between the anomeric glucosyl proton signal (H-1', 4.75 ppm, d, J = 7.3 Hz) and H-6 (δ 6.92 ppm), H-3' (δ 3.40 ppm) and H-5' (δ 3.50 ppm). HMBC correlation observed between H-1' and C-1 also supported this location. Major NOESY correlations in the structure of RAT 2 are shown in Figure 39. Therefore, compound RAT 2 was assigned the structure 1,4-dihydroxy-2-*iso*-propyl-5-methylphenyl-1-0- β -D-glucopyranoside (thymoquinol- β -D- glucopyranoside), shown in Figure 40. The compound was initially reported as minor component of the mixture of phenolic glycosides from *Geum japonicum* Thunberg (Rosaceae) (Shigenaga, Kouno and Kawano, 1985). Recently, it was isolated from the fresh fronds of *Pteridium aquilinum* var. *caudatum* (Pteridaceae) (Castillo *et al.*, 1995). This constitutes are the first isolation of this compound from *Coleus amboinicus*.

Figure 39. Major NOESY correlations of RAT 2

Figure 40. Structure of 1,4-dihydroxy-2-*iso*-propyl-5-methylphenyl-1-0-β-Dglucopyranoside (thymoquinol-β-D- glucopyranoside)

	Chemical shift (δ) ppm		
Carbon	Literature value *	RAT 2 **	
Aglycone			
1	148.9	148.9	
2	137.3	137.6	
3	113.0	112.9	
4	152.2	151.5	
5	123.2	122.5	
6	120.3	120.2	
7	26.6	26.5	
8	23.4	23.4	
9	23.7	23.5	
10	16.5	16.0	
Glucosyl			
1'	104.8	104.0	
2'	75.3	74.9	
3'	78.8	77.4	
4'	71.1	71.4	
5'	78.6	78.1	
6'	62.6	62.7	

Table 14. Comparison of carbon chemical shift assignments of RAT 2 and 1,4-dihydroxy-2-*iso*-propyl-5-methylphenyl-1-0- β -D-glucopyranoside (Castillo *et al.*, 1995)

* in C₅D₅N

** in acetone-d₆

Position	δC	δH	HMBC correlations
Aglycone			
1	148.9	-	
2	137.6	-	
3	112.9	6.68, s	C-1, C-4, C-5, C-7
4	151.5	-	
5	122.5	-	
6	120.2	6.92, <i>s</i>	C-1, C-2, C-4, C-10
7	26.5	3.47, septet	C-8, C-9
8	23.4	1.12, d, J = 7.0	C-2, C-7, C-9
9	23.5	1.13, d, J = 7.0	C-2, C-7, C-8
10	16.0	2.13, s	C-4, C-5, C-6
Glucosyl			
1'	104.0	4.75, <i>d</i> , <i>J</i> = 7.3	C-1
2'	74.9	3.42, <i>m</i>	
3'	77.4	3.40, <i>m</i>	
4'	71.4	3.45, <i>m</i>	
5'	78.1	3.50, <i>m</i>	
6'	62.7		
6' a		3.88, <i>dd</i> , <i>J</i> = 10.9, 1.9	
6' b		3.73, <i>dd</i> , <i>J</i> = 10.9, 4.9	

Table 15. ¹H and ¹³C NMR data for RAT 2 (thymoquinol-β-D-glucopyranoside)

Figure 21. EIMS spectrum of RAT 2

Figure 22. IR spectrum of RAT 2

Figure 23. UV spectrum of RAT 2 (in MeOH)

Figure 24. The 125 MHz ¹³C NMR spectrum of RAT 2 (in acetone-d₆)

Figure 25. The 125 MHz 13 C NMR spectrum of RAT 2 (in acetone-d₆)

(expanded in the range of δ 11-79 ppm)

(expanded in the range of δ 103-153 ppm)

Figure 27. The ¹³C DEPT spectrum of RAT 2 (in acetone- d_6)

Figure 28. 1 H- 13 C HETCOR spectrum of RAT 2 (in acetone-d₆)

Figure 29. The 500 MHz ¹H NMR spectrum of RAT 2 (in acetone-d₆)

(expanded in the range of δ 1.10-3.92 ppm)

Figure 31. 1 H- 1 H COSY spectrum of RAT 2 (in acetone-d₆)

Figure 32. 1 H- 13 C HMBC spectrum of RAT 2 (in acetone-d₆)

÷.

(expanded in the range of δ 1H 1.0-3.7 ppm and δ ^{13}C 22-80 ppm)

Figure 35. ${}^{1}\text{H}{}^{-13}\text{C}$ HMBC spectrum of RAT 2 (in acetone-d₆) (expanded in the range of δ ${}^{1}\text{H}$ 6.5-7.1ppm and δ ${}^{13}\text{C}$ 14-29 ppm)

Figure 38. NOESY spectrum of RAT 2 (in acetone- d_6)

3. Identification of compound RAT 3

RAT 3 was obtained as a light yellow solid (190 mg) from fraction F035. The molecular formula of $C_{16}H_{24}O_6$ was suggested for this compound based on its proton spectrum, the number of carbon signals in ¹³C NMR spectrum and its $[M+H-C_6H_{12}O_6]^+$ peak in the EIMS (Figure 41) at m/z 150. The presence of the alcohol functionality in the molecule could be observed from a broad IR absorption peak at 3390 cm⁻¹ (Figure 42).

Similar to previous compound (RAT 2), ¹³C NMR spectrum of RAT 3 (Figure 44) exhibited 16 carbon signals, six of which should belong to a β -glucopyranosyl unit (at δ 62.6, 71.4, 74.7, 77.5, 78.1 and 102.1 ppm). The other ten could be assigned to an aglycone portion of aryl-terpenoid possessing isopropyl, methyl and hydroxyl substitutent groups, although, according to its molecular formula, with one less hydroxy group. DEPT and ¹H-¹³C-HETCOR experiments (Figure 47-48) were performed to classify these signals into those of three methyl carbons at δ 16.0, 24.2 and 24.3 ppm, one methylene carbon at δ 62.6 ppm, nine methine carbons at δ 34.5, 71.4, 74.7, 77.5, 78.1, 102.1, 114.0, 120.5 and 131.0 ppm, and three quaternary carbons at δ 125.2, 148.5 and 156.7 ppm.

In the ¹H NMR spectrum (Figure 49), the isopropyl methyl groups could be recognized from the most upfield signal at δ 1.20 ppm (6H, d, J = 6.7 Hz). The ¹H-¹H COSY spectrum (Figure 51) displayed the correlation of this signal to a one-proton septet at δ 2.84 ppm (H-7). The meta-coupling of an aromatic proton at

 δ 7.02 ppm (d, J = 1.8 Hz, H-6) to a doublet of doublets at δ 6.78 ppm (J = 7.5, 1.8 Hz, H-4), which further ortho-coupling to a doublet at δ 7.02 ppm (J = 7.5 Hz, H-3), could also be observed, suggesting 1, 2, 4-substitution of the aromatic ring.

The aglycone of RAT 3 was thus determined as carvacrol (4) (2-hydroxy-4isopropyl-1-methylbenzene), a monoterpene previously reported from this plant (Skopp and Horster, 1976). ¹H-¹⁵C HMBC experiment (Figure 52-55) was performed in order to confirm the aglycone structure. Correlations could be observed between both isopropyl methyl protons at δ 1.13 ppm and C-5 (δ 148.5 ppm) and C-7 (δ 34.5 ppm), while the isopropyl methine proton (H-7, δ 2.84 ppm) showed correlations to C-4 , C-5 , C-6, C-8 and C-9 at δ 120.5, 148.5, 114.0, 24.2 and 24.3 ppm, respectively, establishing the isopropyl substituent at position 5. An aromatic proton (δ 6.78 ppm), H-4) displayed correlations to C-2 (δ 125.2 ppm), C-6 and C-7 (δ 34.5 ppm), while its neighbour (H-3) gave cross peaks with C-1 (δ 156.7 ppm), C-5 and C-10 (δ 16.0 ppm). A methyl group could be placed at position 2, according to the correlations of this methyl proton (H3-10) to C-1, C-2 and C-3 at δ 156.7, 125.2 and 131.0 ppm, respectively. Major HMBC correlations in the structure of compound RAT 3 can be summarized as shown in Figure 56.

Figure 56. Major HMBC correlations of RAT 3

The β -glucose unit was placed at position 1, according to HMBC correlation between H-1' (δ 4.93 ppm, d, J = 7.6 Hz) and C-1. This was supported by NOESY experiment (Figure 57), in which the correlations between H-1' proton signal and H-6 (δ 7.02 ppm) and H-5' (δ 3.54 ppm) was readily observable. Major NOESY correlations in the structure of RAT 3 are shown in figure 58. Therefore, RAT 3 was identified as 1-hydroxy-5-*iso*-propyl-2-methylphenyl-1-0- β -D-glucopyranoside (carvacrol- β -D- glucopyranoside), shown in Figure 59. This compound was first isolated from *Thymus vulgaris*, another plant in the Labiatae (Skopp and Horster, 1976). However, this is the first report of this monoterpene glucoside from *Coleus amboinicus*.

Figure 58. Major NOESY correlations of RAT 3

Figure 59. Structure of 1-hydroxy-5-*iso*-propyl-2-methylphenyl-1-0-β-Dglucopyranoside (carvacrol-β-D- glucopyranoside)

Position	δC	δH	HMBC correlations
Aglycone			
1	156.7	-	
2	125.2	-	
3	131.0	7.02, <i>d</i> , <i>J</i> = 7.5	C-1, C-5, C-10
4	120.5	6.78, <i>dd</i> , <i>J</i> = 7.5, 1.8	C-2, C-6, C-7
5	148.5	-	
6	114.0	7.02, $d, J = 1.8$	C-2, C-4, C-7
7	34.5	2.84, septet, J = 6.7	C-4, C-5, C-6, C-8, C-9
8	24.2	1.20, d, J = 6.7	C-5, C-7, C-9
9	24.3	1.21, d, J = 6.7	C-5, C-7, C-8
10	16.0	2.20, <i>s</i>	C-1, C-2, C-3
Glucosyl			
1'	102.1	4.93, <i>d</i> , <i>J</i> = 7.6	C-1
2'	74.7	3.42, <i>m</i>	
3'	77.5	3.40, <i>m</i>	
4'	71.4	3.45, <i>m</i>	
5'	78.1	3.54, <i>dd</i> , <i>J</i> = 7.6, 1.8	
6'	62.6		
6' a		3.72, <i>dd</i> , <i>J</i> = 11.5, 4.9	
6' b		3.89, <i>dd</i> , <i>J</i> = 11.5, 1.8	

Table 16. ¹H and ¹³C NMR data for RAT 3 (carvacrol-β-D-glucopyranoside)

Figure 41. EIMS spectrum of RAT 3

Figure 42. IR spectrum of RAT 3

Figure 43. UV spectrum of RAT 3 (in MeOH)

Figure 44. The 125 MHz 13 C NMR spectrum of RAT 3 (in acetone-d₆)

Figure 46. The 125 MHz 13 C NMR spectrum of RAT 3 (in acetone-d₆)

⁽expanded in the range of δ 101-158 ppm)

Figure 47. The ¹³C DEPT spectrum of RAT 3 (in acetone- d_6)

Figure 49. The 500 MHz 1 H NMR spectrum of RAT 3 (in acetone-d₆)

(expanded in the range of δ 1.20-7.04 ppm)

Figure 51. 1 H- 1 H COSY spectrum of RAT 3 (in acetone-d₆)

Figure 52. 1 H- 13 C HMBC spectrum of RAT 3 (in acetone-d₆)

Figure 57. NOESY spectrum of RAT 3 (in acetone- d_6)