
PRINCIPLES FOR ANALYZING GENERAL FLUID NETWORKS
CHAPTER III

3.1 Introduction

A general fluid network is formulated from a number of ท nodes, each 
of which is identified by an index such as i or j.

The type of node i is specified as Ti5 which assumes one of the 
following integral values:

0 - Pressure unspecified at node i.
1 - Pressure specified at node i.
2 - Injection or withdrawal rate specified at node i.
3 - Terminal node i with a specified injection or withdrawal rate.

The nodal connection are connected directly to others nodes by a 
pipeline or equipment. A connection matrix is established with possible values 
for a representative element Cjj, as follows:

1 - Node i and node j are joined by a pipeline.
2 - Centrifugal pump that pumps from node i to node j.
3 - Centrifugal compressor that compresses from node i to node j.

For nodal connection Cjj =1, the pipeline diameter D1J5 length Ljj, and 
roughness Ejj, are symmetrical joining node i and node j.
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Nodes at which the specified injection rate is represented positive value 
or withdrawal rate as negative value.

Note:
For nodal connection across an equipment such as pump or compressor, 

if CB =2 or Cj = 3 then always c  11 =0 because it can not operate in reverse flow.

The program always considers node i as the receiving node. Therefore, 
the flow rate within pipeline connection given as " Qjj " is positive value for
flow from node j to node i and negative for the reverse direction.

3.2 Flow in Pipelines

3.2.1 For Liquid

Here:

The flow rate from node j

%  =Vy/ (“*%)
The flow rate from node i

Q , 1 = ^ - y / ( a A )

to node i is given by: 
for y > 0

to node j is given by:
for y < 0

P = p g

y = Pj -  Pi +p(zj -Z i)

(3.1)

(3.2)

(3.3)

(3.4)
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3.2.2 For Gas

Inclined Flow^Zj * Zj ) :

The flow rate from node j to node i is given by:
X,

Qsc-ji for พ > 0Vsc V 5 ]

The flow rate from node i to node j is given by:

Qsc-ii=- —  I ~ ~ for พ <0

Here:
Vs 15,, (*1. - ' )

f

5ji =

M V 7tD?A
Z RTv^avg^vv H y

'N

(j) = exp

S P ii^ -Z j). 
2Mg(z; -  Zj)

ZavgRT

Vsc = PscM
Z.RT.

Horizontal Flow(z; = z j  ะ

The flow rate from node j to node i is given by:

Qsc-ji = ^ ร /*  j.(p? -p f )

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

for Pj > Pi (3.12)
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The flow rate from node i to node j is given by :

Here:

Ji -  4
(3.14)

(3.15)

(3.16)

3.3 Flow in Equipment

3.3.1 For Liquid

There are two separate cases to be considered for each of three 
possibilities as follows:

1. Qji > 0 for flow across the pump from node j to node i:

Q ,  = V a i i / b ii

Qji = ๐ for p,+pz, > p J+PzJ+ a ji (3.17)
for P j + P Z j > P ;  + pz, (3.18)

Q j i = v ( p J  -  p, + P ( Zj -  z , ) ) / b J> otherwise (3.19)
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2. Qij < 0 for flow across the pump from node i to node j:
o "ll o for P j+pZj >p, + pz, + atJ (3.20)

Q ij = -V au/bij for p, +pz, >Pj +pZj (3.21)

Qij =-)/(pi -P j  + aij+f -  z , ) ) / b ร otherwise (3.22)
Here:

p=  pg (3.23)

3.3.2 For Gas

Here:

The flow rate across the compressor from node j to node i is:
พ .

Q s c -
r  1 '

S C -J1
c-jl

VVsJ
k -1 CTi

/ \(k-l)APj_
I p j -1 +  CO 1

(3.24)

The flow rate across the compressor from node i to node j is:
f  1 '

'SC-1J
- w  iic-ij

พ  J
k -1 ÇT,

y y k - D A
+ co„

(3.25)

PscM
v “ ■  Z„RT„ (3.26)

Z Ravg
^ ~ M (3.27)

๑ ii= g(z. ~ z >) (3.28)

0 ü=g(zj - z.) (3.29)



24

(3.30)

3.4 Pipeline Flow with Partial Derivatives

In the followings relatively small variations of the Fanning friction 
factor are ignored.

The partial derivatives for the Newton-Raphson method with respect to 
Pj and Pi are given as follows:

3.4.1 For Liquid
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Inclined Flow(z 1

3.4.2 For Gas
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Horizontal Flow(z, = Zj) :

Table 3.3 Horizontal flow rate with partial derivatives

In Case: Pj > Pi
Q“ -ij

In Case:
K (  P Î-P Î)

pj<p,

dQsc-j, f A,' l ^jiPj f A, ไ Sjipjdp} U J ^ M pJ-P?) dp, vv J iK ( p î - p?)

SQsc-, r M _ -ÇjiPi ÔQsc-,1 ' A,' l -Éjipi
อPJ J vfeji(pî -p?) dp, ^ -S jifa -P *)
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3.5 Equipment Flow with Partial Derivatives

The partial derivatives of non-zero Qji and Qy for the Newton-Raphson 
method with respect to Pj and Pi respectively are given as follows:

3.5.1 For Liquid

Table 3.4 Non-zero liquid flow rate across a pump with partial derivatives
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3.5.2 For Gas

Table 3.5 Gas flow rate across a compressor with partial derivatives

f  1 ไ พ
‘- S C - J I

c-jl

พ s c ' CR,

C R - -A -ÇT
k - r  J

f  \ ( k - l ) / kp^
I p  j

- 1 4- CO

In which: Ci, = 3

Q  „  =
(  1 ไ -พ ,c - l j

V V s c C R .

C R ■ = ^ ÇT,
f  \(k-l)/k 

" j +  CO 1

In which: C:; = 3

d Q s c - j i  T j C  พ 1 ,
f  > ( k - i ) / k

d Q s c - ,  T,c พ (๚
d p j  ~  P j V s c  C R * IpjJ d p j  P j V s c  C R * I p J

d Q s c - j 1 T £  - W ^ ,
f  'N

p ,
( k - i ) / k

d Q s c - i j  T , c  - W H f p , ไ

d p i  P . V s c  C R * I p J d p ,  P i V s c  C R * I p J



3.6 Conversion Units

Table 3.6 British and SI units

Quantity British units SI units

P» P sc psig bar

Q gpm m3/hr

Q sc MMscfd MMscmd
p kg/m3

f t centi poise m Pa- ร
L ft m
D inch mm
z f t m
e f t mm
g ft/sec2 m/sec2

T  T °F °c
M lbB kg
R ft lbf/lb mole °R j/kmole °K

z zavg 5 sc none none

fp none none
Re none none



30

3.6.1 For Liquid

Table 3.7 Conversion units for (Xjj, (3 and Re^

British units SI units
32 * (12)5 * pLjj 32 * 1015 *pLjj

a>' ~  ท2 *144*32.2*(7.48*60)2 ♦ ว]; aji ~ 7T2 *(3600)2 * 1.01325 *105 *D],

p=  p p 144
9.81 *p

^ ~ 1.01325 *105
4*12*105 *pQji

Reji -  748 *60* 32.2 * 2.089 * irpD jj
4*106 *pQJ1 

R6ji -  3600*7tpDj1

3.6.2 For Gas

Inclined Flow(z, * Zj)

Table 3.8 Conversion units for A,ji, 8 11 and (bj 1
British units SI units

K  =
24*60*60 v

(to)6 *(l2)2 * ZavgT * J
24*3600

(to)6 *(l0)6 *ZavgT * J

«ü =
2 * fp,L„

(32^*12)= *D 11 ( z . - Z j ) ,
5,: =

2 * 1 0 3 * fFji Lji
9.81 *(l.01325* 105)2 *Dji(z, -Z j^

4>.i = exp
2 * M'( z - z .)

v 154i3»Z..ITy <t> 1, =exp
2 * 9.81 * m (z, -Z j)

8314.3 * ZavgT

Vsc =■ 32.2 *(l2)2ps 
Z .T , V s c  =■

1.01325 * 10 * p 
Z TSC sc
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Horizontal Flow(z, = Z j )

Table 3.9 Conversion units for Ajj, 4ji and \J) x

British units SI units

24 * 60 * 60 * tcD l 24 * 3600 * TtCri
Ajl "  (10) 6 *4*144 Aji -  (lo) 6 *4*106

f  32.2 *(l2) 3 *MDjj ^ f  (1.01325 *105)2MDJt ^
^ ‘ “ [4*1545.3*Z.lsTfFjLiJ ^  ■ [4 * 83143*101 *Z.vJ f FjLjlJ

(12)! *P«M 1.01325 * 105 *pscM
v,e "  15453 8314.3 1]

Note:
°R = °F + 459.67,

pabsolute pgauge “1“ 14.73,

°K = ° c  +  273.15

avg-ji
_ 3 _  „  3^
Pj Pi

Ip,2 - p L

British unit:
'  4*12*105 *(l2 )2 *(10 )6 *Qsc_ji
^32.2 * 2.089 * 1545.3 * 24 * 3600 * TqiDjj y V ZavgT y

SI unit:

Re, 4 * 106 *1.01325 *(10)5 *(10)6 *Qsc_ji> P.„-,,M]
[ 8314.3 *24 *3600* TtpD 3, J  ̂ ZavgT y
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3.7 Nodal Material Balance Equations

The nodal material balance equations for all nodes i at which the 
pressure Pi, is not specified (for T; * 1 ) can be described as follows:

For steady-state, the sum of the flows into any node i must be zero. That is:
•A

Here:
Fi(p) = 0,

F; (p) is the net flow into any node i. 
I* = [p 1 > p 2 > • • •  ) P n  ]

(3.31)

3.7.1 For Liquid

F; (p) ะ= injection rate (or withdrawal rate) (3.32)
+ net flow in from neighboring nodes to i by pipeline 
+ net flow in from neighboring nodes to i from pumps 
- net flow out to neighboring nodes from i through pumps

The equation forFj(p) becomes:
Fj (p) = V1 (injection (positive) or withdrawal (negative) rate) 

+ Q 1} (two pipeline cases)
J .C j i= l

+ ^  Q1- (three cases for pumping in)
j .Cji =  2

+ X Q , (three cases for pumping out)
j.cB=2

(3.33)
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F, (p) = injection rate (or withdrawal rate) (3.34)
+ net flow in from neighboring nodes to i by pipeline 
+ net flow in from neighboring nodes to i from compressors 
- net flow out to neighboring nodes from i through compressors

=  0

The equation for F,(p) becomes:

3.7.2 For Gas

F(p) = Vi(injection(positive) or withdrawal (negative) rate) 
+ ^  Qj^two pipeline cases for inclined flow)

j .C j i= l

+ ^  Qji(two pipeline cases for horizontal flow)
j .C j i = i

+ ^  Q ji (the case for compressor coming in)
j .C j i= 3

+  X  Q ji  (the case for compressor going out)
J.Cb=3

(3.35)

3.8 Newton-Raphson Method

The simultaneous nonlinear equations in the unknown pressures that are 
obtained from nodal material balances at all nodes i are solved by the iterative 
Newton-Raphson method as follows:

1. Suppose we have an initial estimate of fFj. for all connections 
between node j and node i such that c  31 = 1.
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2. Suppose we also know the approximate and specified pressure Pj, at 
all nodes i.

3. The next step is to find the appropriate partial derivatives of the 
functions F^p), (i = 1, 2, ..., ท) with respect to Pj, (j = 1, 2, ..., ท) which
are then stored as the elements of the left hand side coefficient matrix, o  of 
the simultaneous linear equations:

<D(P)ôP = -F(p) (3.36)
In Eqn. (3.36), the right hand side vector is defined as:

F(P) = [f ,(P), Fj (P), Fj (P), .... F„(p)]‘ (3.37)
where the correction vector ÔP is the solution of the simultaneous linear 
equations and a representative element of the coefficient matrix is:

®(P) = Fs(P) = ^ p >  l < i , j < n  (3.38)

3.8.1 For Liquid

The partial derivative of F,(p) with respect to Pj is given by one 
of following forms:

F,,(p ) =

for y>0
l f  c ,  =  1

for y<0

F ,(p )  = 

F ,,(p ) =

if Cj = 2 

if C,, = 2
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Here (i * j) :

Fa(p ) =
dFj(P)

ôpJ 1 < i J  < ท (3.39)

The partial derivatives of F, (p) with respect to Pi are given by summation 
as follows:

Fa(p) = X  ๆ ? -( two pipeline cases)
j,Cji=i d p i

+ V  (three cases for pumping in)
j , c „=2 d P i

+

J' * 1
V  (three cases for pumping out)

j.CB=2 d p ;

(3.40)

Here:

Fa(p )  =
1 1- °-5M a ^ y ) for y > 0

. ร - 05f  > / K fpsy) for y < 0
>

พ ,)

+ ไ/1/ (bÿwij)

Fa(p ) =
dF,(p)

dp, 1 < i < ท

(3.41)

(3.42)

3.8.2 For Gas

The partial derivative of Fi(p) with respect to Pj is given by one 
of following forms:

I
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rp

'  J

1 J

X pji F j
\ | /_5  ;; ù j i - i )  1 w

k ( i  .)
X li Pj

VJ/„5 ;• (<(>1. - l )  1 - w
พ * , - 1 )<1̂.. 

. S j i P j
V l f s c  )

M > ? - P ? )

<
Çj iPj

VVfsc J f t , (  P Ï - P Î )

for พ>0

for พ<0

for Pj>p 1

for Pj<p;

r if CJ1=1

dQsc-j , T £ 3 o T

"  d PJ
"  p ' * "  เ ^

1' \(k~I)/k 
-  -1 r+“ ji

Pi
J

if Cjj = 3

Fü(p) =

3 ร่ ๖: 1 vjr
^

0 1 d:

d P j  P j M / sc แ ,  -,(k-l)/k ๅ
f - ï  - 1
V p J

L r
+“ ij

f  p.MHA
V P i >

if Cjj =3

The partial derivatives of Fj(p) with respect to pj are given by 
summation as follows:

5Q
Fjj (p) = — —(two pipeline cases, for both inclined and horizontal flow)

j.Cji=l d p .

dQ,+ ^  —̂—(the case for compressor coming in)
J.Cji=3

1,?;ร 1
(the case for compressor going out)
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F»(r)= I

+

« h i P i

V  sc5  j i ( 4 > * - 1 )  r พ

f a ( ♦ . - * )
z i ^  z j ‘

4»j iPi

' P s c ô j i f ' t • 1, -i) r - w

f a
[ A , 1 - S j i P i f o r

Ï M p J - p ’ )
z . = v

A  3. - Ê j i P i

r -  V - ï . ( p î - p î )  f 0 r

T ,  ; - w c-ji (  V (p ,
k-!)/k

p' jè-j \<k-D A I 2 V P j J+“ ji

for พ>0

for พ<0

+ T, Ç -w ,c-ij
j-c^p, Vsc _k___

K 1
(k-l)/k

/ p  \M A
vP,>

4. Use LU decomposition of the Gaussian elimination method with 
column pivoting only to solve the simultaneous linear equation with o(p) as 
the left hand side coefficient matrix.

5. Back substitution to find out the correction vector ÔP. Also using a 
mathematical technique to improve the stability of the method at all nodes i by 
factor a ,, in the correction as follows:

spi = bpi^i (3.43)
Where:

ôp 1 is the value of the correction actually applied.
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ôp* is the value of the correction computed from 
the Newton-Raphson method.

It is recommended that a, =0.5 is the best value to use in order to ensure 
convergence for the first iteration. In subsequent iterations, the value of "a," 
is determined as below:

For A ,< -1 _Q II o

For -1  < Aj < 0 a , =0.4-0.15|A ,
For 0<  A, <1 a , =0.4 + 0.15| A,
For A, >1 _Q II o

Here A1 is computed by using the ÔPi for the current and previous iterations 
as follows:

A, = ^ -  i = l, 2, .... ท (3.44)

In which:
ôpf+1 is the correction to p, for the current iteration, 
ôpf is the correction of Pi for the previous iteration.

Note:
The user has to do some experimentation to obtain the coefficients of 

c,, c2,c3, c4, c5 andc6 for the factor a j5 in accordance with his or her own 
system, (generally, 0.0 <c 1, c2, c3, c4, c5, c6 <1.0)

6. Check for convergence after the corrections ôp 1 have been made at 
all nodes i (improved by the factor to avoid instability in item 5. if necessary) 
according to some criterion such as:

|ôpi|<A. i = l, 2, ..., ท (3.45)
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7. If the corrections ÔP do not satisfy the convergence condition, the 
current vector of pressures is modified according to:

pk+1= Pk +ÔPk (3.46)
Here:

Pk is the current vector (or set) of pressures.
5Pk+1 is the updated set of pressures for use the next iteration.
5Pk is the set of pressure corrections just computed.

8. With these new pressures Pk+1, from equation (3.46), the updated 
flow rates Qji, can be calculated with the old Fanning friction factor fp , for
all pipeline segments as follows:

For Liquid:

For Gas:

Horizontal Flow(z, = z j  :

for p,>p, (3.51)

^ .( pÎ - p O fOT p,<p, (3-52'
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9. The Reynolds numbers Rej1, are computed for all pipeline segments
as follows:

For Liquid:
4 * 12 * 105 *pQji

Rej. -  7 48 * 60 * 32 2 * 2.089 * TipDj, for British units

4 X  106pQji 
6jl = 36007ipDjj for SI units

For Gas:
British units:

4*12*105 *(12)2 *Qjj Pavg-jjM
6jl = 7.48 * 60 * 32.2 * 2.089 * 1545.3 * TtpDjj Z avgT

SI units:
4M 06 *1.01325*105 *Q31 p3 

R6ji = 3600 * 8314.3 * 7ipDjj Z ^R T

10. The program updates the Fanning friction factors fp , as functions
of the Reynolds number and roughness ratio in all pipeline segments as 
follows:

For turbulent flow (r Cj, > 4000) :

-1.737 In 0.269 ฯL
DJi

2.185
R̂ r-In 0 .269^- + 14.5

Rejiy (3.53)

For laminar flow ^Reji < 2000) :
16

R e ji
(3.54)
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11. The sequence of calculations given above is repeated for successive 
iterations k = 1, 2, 3 .... until convergence occurs according to some 
predetermined criterion such as:

|(ph , ) , - ( p , ) , |< ^  fo ra in  = 1,2, .. ท (3.55)
or until a specified maximum number of iterations kmax, has been exceed.

12. If the ith node type is T; = 1 (pressure specified), it can be included 
in the Newton-Raphson method by using it as an unknown in the simultaneous 
linear equations and setting its correction 5P, to zero. This is achieved by 
setting:

F,(p) = 0 

F„(p) = l
Fjj(p) = 0

> For T = 1 (3.56)

3.9 Terminal Node with Specified Injection Rate

Consider the special case of a terminal node i with a specified injection 
rate Vj 3 as follows:

For Liquid:

The net flow into terminal node i must equal zero, so that:
Q ji = - X  (3.57)

In the case of pipeline connection, the flow rates from Eqns. (3.1) and 
(3.2) can be represented by one equation instead of two as follows:



Define:
F,(P) = - a jifPjVi|V ,|-y  = 0 (3.60)

Therefore:
-F ,(P ) = a JifPjiV,|V1|+ y (3.61)

The partial derivatives of the function Fj(p) with respect to Pj and Pi
are given by:

1 , ÔF (p)
^ P )= T = ~'

(3.62)

1 V 5F=(P) Fii(p)- ^  -1 (3.63)

For Gas:

The net flow into terminal node i at standard conditions must equal
zero, thus:

Q~ji = -V, (3.64)

Inclined Flow(z, * Z j j :

For pipeline connection, the flow rates from Eqns. (3.5) and (3.6) can 
be placed by one equation as follows:
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Rearrangement gives:

Define:

Therefore:

F,(p) = -vLv1|v1l- = 0

(3.67)

(3.68)

(3.69)

The partial derivatives of the function F,(p) with respect to Pj and Pi
are given by:

fh(p )=
dF,(p)_ 2̂ >,,P.

(3.70)

(3.71)

Horizontal Flow(z, = z \ :
In the same manner of inclined flow, the flow rates from Eqns. (3.12) 

and (3.13) can be reduced to one equation as follows:
A?
Vs
 ̂A;;

Q«-#= ± 3 % ( p ,2- p?)

r)  ĵ.(pî- pf)-v v  =
Rearrangement gives:

- V . V J v ^ A ’ ^ p ’ -p f)

(3.72)

(3.73)

(3.74)
Define:
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F i (p ) =  -H > iv ,| v 1| - A jÇ j1( p f - p ? )  =  0 (3.75)
Thus:

F,(P) = v iV ,|v ,| + A ^ JI(pJ! - p f ) (3.76)
The partial derivatives of the function Fj(p) with respect to Pj and Pi 

are given by:

3.10 FORTRAN Language

A FORTRAN program (Power Station Version 1.0) is written to accept 
the above information concerning any network of nodes i and use the Newton- 
Raphson iterative technique to compute the unknown nodal pressures at all 
nodes i of node type Tj ะ= 0 or Tj = 3. The output displays a set of matrices 
containing the intemodal flow rates Qji, nodal pressures and the Fanning
friction factors fp.., for all pipeline segments.

3.11 Program Description

A general flow diagram of the program is shown in Fig. 3.1 Subroutine 
SGEM is used to solve the simultaneous linear equations generated at each 
new iteration of Newton-Raphson method. Subroutine UP is implemented to 
generate the next estimates of fanning friction factor after no convergence test.

(3.78)

(3.77)
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Fig. 3.1 A general flow diagram for fluid network analysis program.
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